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Al in everyday use...

A Tesla Model S




...and in the news
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The debate: Are facial
recognition cameras in
shops a step too far?

FALSE 24 October 2025

| J Platforms, such as Open Al's Sora, have gone viral due to their ability to make hyper-realistic videos

Broad societal debate, seeking purpose and deployment opportunities



Safety and security risks in Al decision making

- Al decisions rely on neural network components
- Well known that neural networks are unstable to adversarial perturbations

Physical ttac Lightbeam attack Patch attack Real traffic sign

For high-stakes applications, need provable guarantees on correctness

- Yet Al/ML community focuses on performance - formal verification to the
rescue?

Safety Verification of Deep Neural Networks. CAV 2017 keynote
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New research from Which? reveals that more than half
tech in their cars with many findi

ing off safety
the tech annoying, distracting or even dangerous.
explain why, and how to get the best from

Like airbags and crumple zones, various car safety technologies are mandatory on new cars.
While airbags are considered ‘passive’ safety tech - they only activate when you crash -
Advanced Driver-Assistance Systems (ADAS) are ‘active’ and are intended to prevent you
from having an accident in the first place.

With driver error a leading cause of road accidents in the UK, the best case scenario with
ADAS features is that they prevent avoidable accidents. These include accidents where the
driver unintentionally leaves their lane, is driving too fast or hasn’t spotted an obstacle
ahead of them.

However, Which? has found evidence that these features are being habitually turned off by
drivers, with just over half of drivers who have an ADAS feature on their car reporting they
turn at least one feature off at least some of the time. And when the tech is off, it isn’t
protecting anybody.

This highlights that there’s a lot of room for improvement in the way these systems are
implemented and explained.




Formal verification provides provable guarantees
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Software Moyde|

Modelling = rigorous, mathematical abstraction
Verification = proof that the model satisfies specification

Synthesis = correct-by-construction model/policy from specification
Automated = algorithmic, implemented in software

Probabilistic Model Checking in Autonomy. Kwiatkowska et a/;, Ann Rev of Control, Robotics and Aut. Sys. (2022).




Multiple applications and use cases!
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Formal verification for neural networks (NNs)

- Rigorous formal verification ,Q
— can provide_provable guara_ntees, e.g. that 1 — ﬂ \\ 0_,0 -
no adversarial examples exist O \ A v
— enables safety/security certification and :;;,,;;, } HECE@- 2
correct-by-construction synthesis x3 ~—0 O O—HC}:::;_;; Na
— crucial part of safety assurance x4 o—{y O {}——l(} '

- Neural network models more challenging

— black box, lack interpretability Image classifier is a function f: R" — {c,,...c}
Learnable weights and bias

— high-dimensional function

— interplay between architecture and Approximates human perception from M
training (non-linear optimization) training examples

«  Much progress since 2017: Reluplex, DeepPoly, ReluVal, CROWN,

Safety Verification of Deep Neural Networks. CAV 2017 keynote




This talk: provable guarantees via formal verification

- Al as normal technology
— a tool, used for automation and augmentation of human capabilities
— beyond Al methods and benchmarks, towards real applications

Brief recap of progress in (local) adversarial robustness certification

Beyond (test-time) adversarial robustness
— robustness to (training-time) poisoning attacks
— robustness to strategic manipulations
— robust decision making
— robust collaboration and coordination with humans

Conclusions and future directions

Al as Normal Technology. Narayanan & Kapoor, Knight First Amendment Institute, 2025




Recap of adversarial robustness

Consider local adversarial robustness, for a specific input

Informally, no perturbation results in a misclassification
More formally, assume given

— trained neural network classifier f : R™ — {c,,...c,}

— region n centred at x wrt distance function, e.g. L?, L®
Define local robustness at x wrt n by (SAT friendly)

— Ay € n such that f(x) + f(y)

Here, focus on computing provable guarantees on correctness, rather
than constructing defences

n



Neural network verification

- Given a neural network f: R™ - R™, the NN verification problem is defined as

(@pre» Ppose) FEQUIring that @
~. B

— Vx € R x + Ppre — f(x)F Ppost % — . Label: 30
. a

- Simplification to polyhedral input and +
@ Q f1(x) = f,(x) = 0
+ 0.1 (for logits,

output sets
________________ m=2)

Input Output 30 60 confidence gap

- Typically, exact verification intractable, focus on computing lower/upper bounds



Neural network verification: forward analysis

- Given a neural network f: R™ - R™, the NN verification problem is defined as
(Ppres Ppost) TEQUIring that
— Vx € R%x + Ppre — f(x) F Ppost

- Typical approach: forward analysis

— start from X = {x €ER" |x -} — Q
— bound the worst case on each layer

— propagate bounds through layers

— check whether the predicted labels are Input Output
preserved

- Computes over-approximation of output set
Note may result in loose bounds...



Progress in neural network verification

Compute provable guarantees by lower/upper bounding the reachable
values

Methods include exact/approximate

search-based/Lipschitz, e.g. DLV

constraint solving/SMT/MIP, e.g., Reluplex

convex relaxation, e.qg., interval/linear bound

(l) A
a;

propagation, as in CROWN
abstract interpretation, e.g., DeepPoly

global optimisation, under assumption of

Lipschitz continuity, e.g., DeepGO

Hard problems, typically NP-completeness
Convex relaxation best performers, see VNN-Comp

Linear bounding of
RelLU activations
ReLU(x) := max(0, x)

Scaling, loose bounds and complex architectures an issue...



Neural network verification: backward analysis

Given the NN verification problem (¢, e, ¢,05:) for a neural network f: R™ — R™,
requiring that

- Vx € Rn.x (o (pp‘re — f(x) F (ppOSt

Focus instead on backward analysis Q — Q
Characterize the inputs for

output constraints Y = {y €R™ | y @ }

Preimage Image

Advantages

— more precise correctness guarantees, particularly under-approximation
but

— exact preimage computation is intractable at scale, 0(2") for n unstable ReLU neurons

Provably bounding neural network preimages. Koha et a/, In Proc. NeurlPS 2023.
Provable Preimage Under-Approximation for Neural Networks. Zhang et a/, In Proc. TACAS 2024.




Preimage approximation

- Work backwards to generate preimage approximation via convex relaxation

in terms of disjoint union of polytopes

Given output specification y = f(x) = 0 (any polyhedral property)

Compute symbolic lower/upper bounding functions for
activations from output layer to input:

— Ax+b < f(x)<Ax+b
Preimage under-approximation as a polytope:
— {x|Ax +b = 0} — {x | f(x) = 0}
- Also preimage over-approximation
Method relies on

— backward propagation
— preimage refinement through input/ReLU splitting planes

— heuristics and optimisations, to deal with exponential growth in constraints
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Linear bounding of

ReLU activations

PREMAP: A Unifying PREiMage APproximation Framework for Neural Networks, to appear in JMRL 2025, arXiv:2408.09262




Preimage under/over-approximation

- Anytime algorithm

Preimage refinement to handle approximation loss

— parallel processing of split regions

— tightening of approximation by optimizing relaxation parameters

— (novel differential objective)

- Two types of (sound) preimage refinement

— via input-feature-aligned cutting plane (not shown)
— via ReLU-aligned cutting plane

— (unstable ReLU neuron into two stable E
cases: approximation becomes exact) !

|

1

1

A

- Volume-estimated prioritization of
splitting subregions
Exact volume for final verification
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[ u
PREMAP: A Unifying PREiMage APproximation Framework for Neural Networks, to appear in JMLR, arXiv:2408.09262
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Experimental results: preimage under-approximation

- Method scales to high-dimensional tasks
— first method to scale to I, attack (noise in all image pixels) and patch attack

— recently improved and extended to CNNs
D

@o)+

— evaluated on MNIST, GTSRB and SVHN with varied size and position of the patch,
indicating areas of vulnerability

— provides quantitative coverage results for larger perturbation bounds

L attack|#Poly|Cov(%)|Time(s)||Patch attack|#Poly|Cov(%)|Time(s)

0.05 2 100.0 3.107 3 x 3(center) 1 100.0 2.611
0.07 247 75.2 | 121.661 || 4 x 4(center) | 678 38.2 | 455.988
0.08 522 75.1 | 305.867 || 6 x 6(corner) 2 100.0 9.065
0.09 733 | 165 | 507.116 || 7 x 7(corner) | 7 84.2 | 10.128

Efficient Preimage Approximation for Neural Network Certification. Bjorklund et a/, arxiv.org/abs/2505.22798




Quantitative neural network verification

- Preimage under-approximation enables quantitative verification
— i.e. estimating proportion of inputs that satisfy ¢,
— sound and complete

- Useful in cases when verification fails

- Complementary to robustness verifiers, benchmarked against winner of
VNN-Comp 2023

Task ‘ a, B~-CROWN | Our
| Result Time(s)|Cov(%) #Poly Time(s)
Cartpole (§ € [-1.642, —1.546])‘ yes 3.349 | 100.0 1 1.137
Cartpole (§ € [-1.642,0])) | no  6.927 | 949 2  3.632
MNIST (Lo 0.026) | yes 3415 | 1000 1 2.649
MNIST (Lo 0.04) lunknown 267.139| 100.0 2 3.019

Provable Preimage Under-Approximation for Neural Networks. Zhang et a/, In Proc. TACAS 2024.




Beyond adversarial robustness: poisoning attacks

Test-time adversarial robustness not sufficient
Training of neural networks exposed to

— poisoning attacks by injecting malicious training data

— data prone to corruption, such as missing data or biases

— critical for sensitive domains, e.g. healthcare, finance, etc

Defences against poisoning lack formal guarantees
— e.g. robust training, randomized smoothing

Provable guarantees for certifiable training?

— adaptation of test-time (interval/polyhedral) certification important first step
— approximates training dynamics layer by layer
— suffers from over-approximation and divergence

MIBP-Cert: Certified Training against Data Perturbations with Mixed-Integer Bilinear Programs, Lorenz et a/, NeurlIPS 2025




Certified training against data perturbations

Aim to bound the error introduced by that perturbations of training data
Intractable in general
Formulate a mixed-integer bilinear programming problem
— compute exact bounds for a single training step
— bounding parameters at each step for tractability
— ensure soundness of bounds
Compute certified accuracy on UCI datasets, for complex perturbations

Precondition Certification Rate  Certified Accuracy
Assuming accurate health data (100.0%) 56.3%
Modeling missing mental health values 98.6% 56.3%
Modeling missing values across all features 95.8% 53.5%
Modeling mental health over-reporting 91.5% 50.7%

— can guarantee correct prediction for all test points even for large perturbations

MIBP-Cert: Certified Training against Data Perturbations with Mixed-Integer Bilinear Programs, Lorenz et a/, NeurlIPS 2025




Beyond adversaries: strategyproof robustness

So far, consider only adversarial robustness to individual perturbations,
— but Al agents can behave strategically

Can we instead devise strategyproof policy learning? (correctness by design)

Consider RLHF (reinforcement learning from human feedback)
— multiple agents, diverse preferences, leading to potential bias in learnt policy decisions

— but agents can also strategically manipulate the decisions in their favour by
misreporting their preferences

— existing RLHF methods not strategyproof...

- Aim to devise strategyproof RLHF through mechanism design
— how? incentivise truthful reporting

— can provide an algorithm that is approximately strategyproof and converges to the
optimal policy as the number of individuals and samples increases

Strategyproof Reinforcement Learning from Human Feedback. Kleine Buening et a/, NeurlPS 2025, arXiv:2503.09561v1




Human-AIl collaborations

Human-like

Decision Making - Human-robot interactive systems: important yet challenging

— different interaction patterns (collaborative, adversarial)

— human cognitive states (trust, intention) difficult to predict

— uncertainty, dynamic environments

— complex specifications (beyond reachability, reward maximisation)
r— — can we obtain rigorous guarantees?




Trust-aware human-robot collaboration

- Model trust-based human-robot
collaborations as POMDPs
(partially observable Markov decision
processes)
— human trust is the hidden state
— robot performance affects trust

— trust informs human decision
- Temporal logic specifications

— “visit locations G, J and L (in this order) from A”

— “the trust level must not fall below
a certain threshold”

Human _Incident
. O t|ma| po||cy synthe5|5 TakeoverorStandstlllx
PHIMEIPONEYSYIERESS D Q. o — Gy Wy

- Correctness guarantees, subject
to measurement precision

Location Location

Trust-Aware Motion Planning for Human-Robot Collaboration under Distribution Temporal Logic Specifications.
Yu et al, In Proc. ICRA 2024.




Safe online planning in a crowd

- Robotic agent modelled as a POMDP

— partial observability (e.g., perception inaccuracy)
- Environment is populated with pedestrians
- Pedestrian trajectory prediction

— data-driven trajectory predictor

— uncertainty quantification via
adaptive conformal prediction (ACP)
- Safe online planning via shielding .Y
— on-the-fly safety shield construction

20

. (.
15

— adapt shielding .
- Safety guarantee, given any probability threshold i

10

: : : : e
Safe POMDP Online Planning Among Dynamic Agents via Adaptive Comformal Prediction. -
Sheng et a/, RAL 2024.
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Robot planning with human interventions

- Robot has a trembling hand

— erroneously selects unintended actions
with a small probability

- Human (collaborate/adversary) unpredictable
- Model collaboration as set-valued MDPs
— set-valued probabilistic transitions capture both
action instruction errors and human nondeterminism
- Temporal logic specifications

— “eventually goal configuration and
never undesired configuration”

« Sound verification and synthesis algorithms
« via simplified Bellman equation
« Can generate plans

The Trembling Hand Problem For LTLf Planning. Yu et a/, In Proc. IJCAIl 2024.




Provable guarantees for RL decision policies

Learning of optimal policies from temporal logic specifications

— Sample Efficient Model-free Reinforcement Learning from LTL Specifications with
Optimality Guarantees. Shao et a/, Proc. |JCAI 2023

— Converts LTL to limit-deterministic Buchi automata

Learning temporal logic specifications to debug/explain RL policies

— Learning Probabilistic Temporal Logic Specifications for Stochastic Systems. Roy et a/,
Proc. IJCAI 2025

— Learns concise probabilistic LTL from positive and negative examples

Extension to imitation learning incorporating causal inference

— A Unifying Framework for Causal Imitation Learning with Hidden Confounders. Shao
et al, In ICLR 2025 Workshop on Spurious Correlation and Shortcut Learning:
Foundations and Solutions

— Learns causal effects using instrumental variables



http://fun2model.org/bibitem.php?key=SBK25
http://fun2model.org/bibitem.php?key=SBK25
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Experiments

« Evaluate DML-IV (ours) on benchmarks and semi-synthetic real-world datasets
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Multiple appl
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d NN verification use cases!
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http://fun2model.org/

Human-in-the-loop oversight

- Algorithmic decisions prone to bias
- Human oversight often required to approve or reject Al decisions
+ Can human-in-the-loop (HITL) oversight reliably correct Al errors?

. Study modelling real-world welfare allocation scenarios
— range of algorithmic biases in recommendations, different interventions

+ Observe that HITL failed to reduce algorithmic errors
— often amplified the errors, partisan differences

— interventions lead to at best modest gains, outcomes depend on ideaology
— e.g. financial incentives for correct decisions or inform decisions would retrain

More research needed...

Human-in-the-loop Oversight of Al is Compromised by Political Preferences. Dores Cruz et a/, In PsyArXiv.
2025. https://osf.io/preprints/psyarxiv/9ecms_v2

39



Concluding remarks

Range of techniques developed in the Al/ML and formal methods communities
— provable guarantees needed for high-stakes decisions
— robustness to adversarial, poisoning and strategic manipulations
— robustness and reliability of Al decisions desirable but challenging
— human involvement in decisions proposed
— but human oversight can exacerbate algorithmic errors

Despite progress, major challenges remain
— scalability to complex architectures and properties
— foundational understanding needed
— robust learning for correct-by-construction models and policies
— need support for interactions with human decision makers

Need integrated processes for validation and safety assurance
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