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AI in everyday use…



…and in the news

Broad societal debate, seeking purpose and deployment opportunities



Safety and security risks in AI decision making

• AI decisions rely on neural network components
• Well known that neural networks are unstable to adversarial perturbations

Physical attack              Lightbeam attack           Patch attack                 Real traffic sign

• For high-stakes applications, need provable guarantees on correctness
• Yet AI/ML community focuses on performance – formal verification to the 

rescue?

Safety Verification of Deep Neural Networks. CAV 2017 keynote
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Formal verification provides provable guarantees

• Modelling = rigorous, mathematical abstraction
• Verification = proof that the model satisfies specification
• Synthesis = correct-by-construction model/policy from specification
• Automated = algorithmic, implemented in software

ModelSoftware

void add(Object o) {
 buffer[head] = o;

 head = (head+1)%size;
}

Object take() {
 …

 tail=(tail+1)%size;
 return buffer[tail];

}
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Probabilistic Model Checking in Autonomy. Kwiatkowska et al, Ann Rev of Control, Robotics and Aut. Sys. (2022).



Multiple applications and use cases!

    Protocol debugging                                                     Protocol verification

Prediction of DNA folding                                           Optimal controller synthesis



Formal verification for neural networks (NNs)

• Rigorous formal verification
− can provide provable guarantees, e.g. that 

no adversarial examples exist
− enables safety/security certification and 

correct-by-construction synthesis 
− crucial part of safety assurance

• Neural network models more challenging
− black box, lack interpretability
− high-dimensional function
− interplay between architecture and 

training (non-linear optimization)

•  Much progress since 2017: Reluplex, DeepPoly, ReluVal, CROWN, …

Safety Verification of Deep Neural Networks. CAV 2017 keynote

Image classifier is a function f: Rn → {c1,…ck}
Learnable weights and bias

Approximates human perception from M 
training examples



This talk: provable guarantees via formal verification

• AI as normal technology
− a tool, used for automation and augmentation of human capabilities
− beyond AI methods and benchmarks, towards real applications

• Brief recap of progress in (local) adversarial robustness certification

• Beyond (test-time) adversarial robustness
− robustness to (training-time) poisoning attacks 
− robustness to strategic manipulations
− robust decision making
− robust collaboration and coordination with humans 

• Conclusions and future directions

AI as Normal Technology. Narayanan & Kapoor, Knight First Amendment Institute, 2025



Recap of adversarial robustness

• Consider local adversarial robustness, for a specific input

• Informally, no perturbation results in a misclassification
• More formally, assume given

− trained neural network classifier f : Rm → {c1,…ck} 
− region η centred at x wrt distance function, e.g. L2, L∞ 

• Define local robustness at x wrt η by (SAT friendly)
− ∄y ∈ η such that f(x) ≠ f(y)

• Here, focus on computing provable guarantees on correctness, rather 
than constructing defences
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Neural network verification

• Given a neural network 𝑓: 𝑅! → 𝑅", the NN verification problem is defined as 
(𝜑#$% , 𝜑#&'() requiring that 
− ∀𝑥	 ∈ 	𝑅! . 𝑥	 ⊢ 𝜑"#$ ⟶ 𝑓(𝑥) ⊢ 𝜑"%&'

• Simplification to polyhedral input and 
output sets

• Typically, exact verification intractable, focus on computing lower/upper bounds
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Neural network verification: forward analysis

• Given a neural network 𝑓: 𝑅! → 𝑅", the NN verification problem is defined as 
(𝜑#$% , 𝜑#&'() requiring that 
− ∀𝑥	 ∈ 	𝑅! . 𝑥	 ⊢ 𝜑"#$ ⟶ 𝑓(𝑥) ⊢ 𝜑"%&'

• Typical approach: forward analysis
− start from 𝑋 = {𝑥 ∈𝑅𝑛 |𝑥 ⊢𝜑𝑝𝑟𝑒} 
− bound the worst case on each layer
− propagate bounds through layers
− check whether the predicted labels are 

preserved

• Computes over-approximation of output set
• Note may result in loose bounds…

Input Output



Progress in neural network verification

• Compute provable guarantees by lower/upper bounding the reachable 
values

• Methods include exact/approximate
− search-based/Lipschitz, e.g. DLV
− constraint solving/SMT/MIP, e.g., Reluplex
− convex relaxation, e.g., interval/linear bound 

propagation, as in CROWN
− abstract interpretation, e.g., DeepPoly
− global optimisation, under assumption of 

Lipschitz continuity, e.g., DeepGO

• Hard problems, typically NP-completeness
• Convex relaxation best performers, see VNN-Comp
• Scaling, loose bounds and complex architectures an issue…

Linear bounding of 
ReLU activations

ReLU(x) := max(0, x)
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Neural network verification: backward analysis

• Given the NN verification problem (𝜑#$% , 𝜑#&'() for a neural network 𝑓: 𝑅! → 𝑅", 
requiring that 
− ∀𝑥	 ∈ 	𝑅! . 𝑥	 ⊢ 𝜑"#$ ⟶ 𝑓(𝑥) ⊢ 𝜑"%&'

• Focus instead on backward analysis
• Characterize the inputs for 

output constraints Y = {𝑦 ∈𝑅𝑚│𝑦 ⊢𝜑𝑝𝑜𝑠𝑡 } 

• Advantages
− more precise correctness guarantees, particularly under-approximation

• but
− exact preimage computation is intractable at scale, 𝑂(2𝑛) for 𝑛 unstable ReLU neurons 

ImagePreimage

Provably bounding neural network preimages. Koha et al, In Proc. NeurIPS 2023.
Provable Preimage Under-Approximation for Neural Networks. Zhang et al, In Proc. TACAS 2024.



Preimage approximation

• Work backwards to generate preimage approximation via convex relaxation 
in terms of disjoint union of polytopes

• Given output specification y = 𝑓(𝑥) ≥ 0 (any polyhedral property)
• Compute symbolic lower/upper bounding functions for 

activations from output layer to input:
− 𝐴𝑥 + 𝑏 	≤ 𝑓 𝑥 ≤ 𝐴𝑥 + 𝑏	

• Preimage under-approximation as a polytope:
− x	 𝐴𝑥 + 𝑏 ≥ 0} ⟶ x	 𝑓(𝑥) ≥ 0}

• Also preimage over-approximation
• Method relies on

− backward propagation
− preimage refinement through input/ReLU splitting planes
− heuristics and optimisations, to deal with exponential growth in constraints

PREMAP: A Unifying PREiMage APproximation Framework for Neural Networks, to appear in JMRL 2025, arXiv:2408.09262

𝑙(
(*) 𝑢(

(*)

𝑎(
(*)

ℎ(
(*)

Linear bounding of 
ReLU activations



Preimage under/over-approximation

• Anytime algorithm
• Preimage refinement to handle approximation loss

− parallel processing of split regions
− tightening of approximation by optimizing relaxation parameters
− (novel differential objective)

• Two types of (sound) preimage refinement 
− via input-feature-aligned cutting plane (not shown)
− via ReLU-aligned cutting plane
− (unstable ReLU neuron into two stable

cases: approximation becomes exact)
• Volume-estimated prioritization of 

splitting subregions
• Exact volume for final verification

PREMAP: A Unifying PREiMage APproximation Framework for Neural Networks, to appear in JMLR, arXiv:2408.09262
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Experimental results: preimage under-approximation

• Method scales to high-dimensional tasks 
− first method to scale to 𝒍1 attack (noise in all image pixels) and patch attack 
− recently improved and extended to CNNs

− evaluated on MNIST, GTSRB and SVHN with varied size and position of the patch, 
indicating areas of vulnerability

− provides quantitative coverage results for larger perturbation bounds

Efficient Preimage Approximation for Neural Network Certification. Bjorklund et al, arxiv.org/abs/2505.22798



Quantitative neural network verification

• Preimage under-approximation enables quantitative verification
− i.e. estimating proportion of inputs that satisfy 𝜑"%&'
− sound and complete

• Useful in cases when verification fails
• Complementary to robustness verifiers, benchmarked against winner of 

VNN-Comp 2023

Provable Preimage Under-Approximation for Neural Networks. Zhang et al, In Proc. TACAS 2024.



Beyond adversarial robustness: poisoning attacks

• Test-time adversarial robustness not sufficient
• Training of neural networks exposed to 

− poisoning attacks by injecting malicious training data
− data prone to corruption, such as missing data or biases
− critical for sensitive domains, e.g. healthcare, finance, etc

• Defences against poisoning lack formal guarantees
− e.g. robust training, randomized smoothing

• Provable guarantees for certifiable training?
− adaptation of test-time (interval/polyhedral) certification important first step
− approximates training dynamics layer by layer
− suffers from over-approximation and divergence

MIBP-Cert: Certified Training against Data Perturbations with Mixed-Integer Bilinear Programs, Lorenz et al, NeurIPS 2025



Certified training against data perturbations

• Aim to bound the error introduced by that perturbations of training data
• Intractable in general
• Formulate a mixed-integer bilinear programming problem

− compute exact bounds for a single training step
− bounding parameters at each step for tractability
− ensure soundness of bounds

• Compute certified accuracy on UCI datasets, for complex perturbations

− can guarantee correct prediction for all test points even for large perturbations

MIBP-Cert: Certified Training against Data Perturbations with Mixed-Integer Bilinear Programs, Lorenz et al, NeurIPS 2025



Beyond adversaries: strategyproof robustness

• So far, consider only adversarial robustness to individual perturbations, 
− but AI agents can behave strategically

• Can we instead devise strategyproof policy learning? (correctness by design)

• Consider RLHF (reinforcement learning from human feedback)
− multiple agents, diverse preferences, leading to potential bias in learnt policy decisions
− but agents can also strategically manipulate the decisions in their favour by 

misreporting their preferences
− existing RLHF methods not strategyproof…

• Aim to devise strategyproof RLHF through mechanism design
− how? incentivise truthful reporting
− can provide an algorithm that is approximately strategyproof and converges to the 

optimal policy as the number of individuals and samples increases
Strategyproof Reinforcement Learning from Human Feedback. Kleine Buening et al, NeurIPS 2025, arXiv:2503.09561v1



Human-AI collaborations

• Human-robot interactive systems: important yet challenging
− different interaction patterns (collaborative, adversarial)
− human cognitive states (trust, intention) difficult to predict
− uncertainty, dynamic environments
− complex specifications (beyond reachability, reward maximisation)
− can we obtain rigorous guarantees?



Trust-aware human-robot collaboration

• Model trust-based human-robot 
collaborations as POMDPs 
(partially observable Markov decision 
processes)
− human trust is the hidden state
− robot performance affects trust
− trust informs human decision

• Temporal logic specifications
− “visit locations G, J and L (in this order) from A”
− “the trust level must not fall below

a certain threshold”
• Optimal policy synthesis
• Correctness guarantees, subject 

to measurement precision

Trust-Aware Motion Planning for Human-Robot Collaboration under Distribution Temporal Logic Specifications. 
Yu et al, In Proc. ICRA 2024.



Safe online planning in a crowd

• Robotic agent modelled as a POMDP
− partial observability (e.g., perception inaccuracy)

• Environment is populated with pedestrians
• Pedestrian trajectory prediction

− data-driven trajectory predictor
− uncertainty quantification via 
    adaptive conformal prediction (ACP) 

• Safe online planning via shielding
− on-the-fly safety shield construction
− adapt shielding

• Safety guarantee, given any probability threshold

33Safe POMDP Online Planning Among Dynamic Agents via Adaptive Comformal Prediction. 
Sheng et al, RAL 2024.



Robot planning with human interventions

• Robot has a trembling hand
− erroneously selects unintended actions

with a small probability
• Human (collaborate/adversary) unpredictable
• Model collaboration as set-valued MDPs

− set-valued probabilistic transitions capture both
    action instruction errors and human nondeterminism

• Temporal logic specifications
− “eventually goal configuration and 

never undesired configuration”
• Sound verification and synthesis algorithms

• via simplified Bellman equation
• Can generate plans

The Trembling Hand Problem For LTLf Planning. Yu et al, In Proc. IJCAI 2024.
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Provable guarantees for RL decision policies

• Learning of optimal policies from temporal logic specifications
− Sample Efficient Model-free Reinforcement Learning from LTL Specifications with 

Optimality Guarantees. Shao et al, Proc. IJCAI 2023
− Converts LTL to limit-deterministic Buchi automata

• Learning temporal logic specifications to debug/explain RL policies
− Learning Probabilistic Temporal Logic Specifications for Stochastic Systems. Roy et al, 

Proc. IJCAI 2025
− Learns concise probabilistic LTL from positive and negative examples

• Extension to imitation learning incorporating causal inference
− A Unifying Framework for Causal Imitation Learning with Hidden Confounders. Shao 

et al, In ICLR 2025 Workshop on Spurious Correlation and Shortcut Learning: 
Foundations and Solutions

− Learns causal effects using instrumental variables

http://fun2model.org/bibitem.php?key=SBK25
http://fun2model.org/bibitem.php?key=SBK25


37

Experiments

• Evaluate DML-IV (ours) on benchmarks and semi-synthetic real-world datasets
(infant development and cardiovascular mortality rate datasets)

• Compare the error of the learned causal effect of actions (lower is better):

 Low-dimensional    High-dimensional     Real-World



Multiple applications and NN verification use cases!

Sample-efficient policy learning                                      Protocol verification

Safe planning via conformal prediction                      Optimal controller synthesis

Variational Posterior

http://fun2model.org/ 

http://fun2model.org/


Human-in-the-loop oversight

• Algorithmic decisions prone to bias
• Human oversight often required to approve or reject AI decisions
• Can human-in-the-loop (HITL) oversight reliably correct AI errors?

• Study modelling real-world welfare allocation scenarios
− range of algorithmic biases in recommendations, different interventions

• Observe that HITL failed to reduce algorithmic errors 
− often amplified the errors, partisan differences
− interventions lead to at best modest gains, outcomes depend on ideaology
− e.g. financial incentives for correct decisions or inform decisions would retrain

• More research needed…
39Human-in-the-loop Oversight of AI is Compromised by Political Preferences. Dores Cruz et al, In PsyArXiv. 

2025. https://osf.io/preprints/psyarxiv/9ecms_v2



Concluding remarks

• Range of techniques developed in the AI/ML and formal methods communities
− provable guarantees needed for high-stakes decisions
− robustness to adversarial, poisoning and strategic manipulations 
− robustness and reliability of AI decisions desirable but challenging
− human involvement in decisions proposed 
− but human oversight can exacerbate algorithmic errors

• Despite progress, major challenges remain
− scalability to complex architectures and properties
− foundational understanding needed
− robust learning for correct-by-construction models and policies
− need support for interactions with human decision makers

• Need integrated processes for validation and safety assurance
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• See also
− PRISM www.prismmodelchecker.org
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