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Safety and security risks in AI decision making

• AI decisions rely on neural network components
• Well known that neural networks are unstable to adversarial perturbations

Physical attack              Lightbeam attack           Patch attack                 Real traffic sign

• For high-stakes applications, need provable guarantees on correctness
• Yet AI/ML community focuses on performance – formal verification to the 

rescue?

3Safety Verification of Deep Neural Networks. CAV 2017 keynote
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Formal verification provides provable guarantees

• Modelling = rigorous, mathematical abstraction
• Verification = proof that the model satisfies specification
• Synthesis = correct-by-construction model/policy from specification
• Automated = algorithmic, implemented in software

ModelSoftware

void add(Object o) {
 buffer[head] = o;

 head = (head+1)%size;
}

Object take() {
 …

 tail=(tail+1)%size;
 return buffer[tail];

}
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Probabilistic Model Checking in Autonomy. Kwiatkowska et al, Ann Rev of Control, Robotics and Aut. Sys. (2022).



Multiple applications and use cases!

    Protocol debugging                                                     Protocol verification

Prediction of DNA folding                                           Optimal controller synthesis



Formal verification for neural networks (NNs)

• Rigorous formal verification
− can provide provable guarantees, e.g. that 

no adversarial examples exist
− enables safety/security certification and 

correct-by-construction synthesis 
− crucial part of safety assurance

• Neural network models more challenging
− black box, lack interpretability
− high-dimensional function
− interplay between architecture and 

training (non-linear optimization)

•  Much progress since 2017: Reluplex, DeepPoly, ReluVal, CROWN, …

Safety Verification of Deep Neural Networks. CAV 2017 keynote

Image classifier is a function f: Rn → {c1,…ck}
Learnable weights and bias

Approximates human perception from M 
training examples



This talk: provable guarantees via formal verification

• Focus on (data-driven) neural network policies and components

• Brief recap of (local) adversarial robustness certification
− crucial part of safety assurance, pre-deployment
− and many more use cases

• A selection of snapshots, with a common thread
− pre-image approximation
− quantitative verification
− backward reachability for controllers
− neuro-symbolic models

• Conclusions and future directions



Recap of adversarial robustness

• Consider local adversarial robustness, for a specific input

• Informally, no perturbation results in a misclassification
• More formally, assume given

− trained neural network classifier f : Rm → {c1,…ck} 
− region η centred at x wrt distance function, e.g. L2, L∞ 

• Define local robustness at x wrt η by (SAT friendly)
− ∄y ∈ η such that f(x) ≠ f(y)

• Here, focus on computing provable guarantees on correctness, rather 
than constructing defences

x
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Neural network verification

• Given a neural network 𝑓: 𝑅! → 𝑅", the NN verification problem is defined as 
(𝜑#$% , 𝜑#&'() requiring that 
− ∀𝑥	 ∈ 	𝑅! . 𝑥	 ⊢ 𝜑"#$ ⟶ 𝑓(𝑥) ⊢ 𝜑"%&'

• Simplification to polyhedral input and 
output sets

• Typically, exact verification intractable, focus on computing lower/upper bounds

                                                                    

Input Output
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(for logits,
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Neural network verification: forward analysis

• Given a neural network 𝑓: 𝑅! → 𝑅", the NN verification problem is defined as 
(𝜑#$% , 𝜑#&'() requiring that 
− ∀𝑥	 ∈ 	𝑅! . 𝑥	 ⊢ 𝜑"#$ ⟶ 𝑓(𝑥) ⊢ 𝜑"%&'

• Typical approach: forward analysis
− start from 𝑋 = {𝑥 ∈𝑅𝑛 |𝑥 ⊢𝜑𝑝𝑟𝑒} 
− bound the worst case on each layer
− propagate bounds through layers
− check whether the predicted labels are 

preserved

• Computes over-approximation of output set
• Note may result in loose bounds…

Input Output



Neural network verification: backward analysis

• Given the NN verification problem (𝜑#$% , 𝜑#&'() for a neural network 𝑓: 𝑅! → 𝑅", 
requiring that 
− ∀𝑥	 ∈ 	𝑅! . 𝑥	 ⊢ 𝜑"#$ ⟶ 𝑓(𝑥) ⊢ 𝜑"%&'

• Focus instead on backward analysis
• Characterize the inputs for 

output constraints Y = {𝑦 ∈𝑅𝑚│𝑦 ⊢𝜑𝑝𝑜𝑠𝑡 } 

• Advantages
− more precise correctness guarantees, particularly under-approximation

• but
− exact preimage computation is intractable at scale, 𝑂(2𝑛) for 𝑛 unstable ReLU neurons 

ImagePreimage

Provably bounding neural network preimages. Koha et al, In Proc. NeurIPS 2023.
Provable Preimage Under-Approximation for Neural Networks. Zhang et al, In Proc. TACAS 2024.



Preimage approximation

• Work backwards to generate preimage approximation via convex relaxation 
in terms of disjoint union of polytopes

• Given output specification y = 𝑓(𝑥) ≥ 0 (any polyhedral property)
• Compute symbolic lower/upper bounding functions for 

activations from output layer to input:
− 𝐴𝑥 + 𝑏 	≤ 𝑓 𝑥 ≤ 𝐴𝑥 + 𝑏	

• Preimage under-approximation as a polytope:
− x	 𝐴𝑥 + 𝑏 ≥ 0} ⟶ x	 𝑓(𝑥) ≥ 0}

• Also preimage over-approximation
• Method relies on

− backward propagation
− preimage refinement through input/ReLU splitting planes
− heuristics and optimisations, to deal with exponential growth in constraints

PREMAP: A Unifying PREiMage APproximation Framework for Neural Networks, arXiv:2408.09262
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ReLU activations



Experimental results: preimage under-approximation

• Method scales to high-dimensional tasks 
− first method to scale to 𝒍1 attack (noise in all image pixels) and patch attack 
− recently improved and extended to CNNs

− evaluated on MNIST, GTSRB and SVHN with varied size and position of the patch, 
indicating areas of vulnerability

− provides quantitative coverage results for larger perturbation bounds

Efficient Preimage Approximation for Neural Network Certification. Bjorklund et al, arxiv.org/abs/2505.22798



Quantitative neural network verification

• Preimage under-approximation enables quantitative verification
− i.e. estimating proportion of inputs that satisfy 𝜑"%&'
− sound and complete

• Useful in cases when verification fails
• Complementary to robustness verifiers, benchmarked against winner of 

VNN-Comp 2023

Provable Preimage Under-Approximation for Neural Networks. Zhang et al, In Proc. TACAS 2024.



Backward reachability for controllers

• Provable quantitative guarantees for reinforcement learning (RL) controllers
• via preimage over- and under-approximation

• Efficient, often bounding with few polytopes 

19PREMAP: A Unifying PREiMage APproximation Framework for Neural Networks, arXiv:2408.09262



Provable guarantees for RL decision policies

• Learning of optimal policies from temporal logic specifications
− Sample Efficient Model-free Reinforcement Learning from LTL Specifications with 

Optimality Guarantees. Shao et al, Proc. IJCAI 2023
− Converts LTL to limit-deterministic Buchi automata

• Learning temporal logic specifications to debug/explain RL policies
− Learning Probabilistic Temporal Logic Specifications for Stochastic Systems. Roy et al, 

Proc. IJCAI 2025
− Learns concise probabilistic LTL from positive and negative examples

• Extension to imitation learning incorporating causal inference
− A Unifying Framework for Causal Imitation Learning with Hidden Confounders. Shao 

et al, In ICLR 2025 Workshop on Spurious Correlation and Shortcut Learning: 
Foundations and Solutions

− Learns causal effects using instrumental variables

http://fun2model.org/bibitem.php?key=SBK25


Motivating example: pedestrian-vehicle interaction

• Autonomous vehicle
− partially informed
− aims to predict pedestrian’s intention
− using NN trained from video data

• Pedestrian
− fully informed for worst-case analysis
− decides whether to cross or return to 

sidewalk
• Goal: synthesise strategy for vehicle to 

minimize likelihood of crash (opposite for pedestrian)
25https://data.nvision2.eecs.yorku.ca/PIE_dataset/



Neuro-symbolic games (NS-POSGs)

• Agents endowed with neural perception and symbolic decision making 
− here: NN classifiers (or other machine learning) for perception tasks
− constrained interface: convert inputs such as images to symbolic percepts
− plus: local strategies for control decisions

• Neuro-symbolic games (two players/coalitions)
− finite-state agents + continuous-state environment E

• S  =  (Loc1×Per1) × (Loc2×Per2) × SE

− agents only use a (learnt) perception function to observe E
• obsi : (Loc1×Loc2) × SE → Peri

− joint actions update state probabilistically

• Example: dynamic vehicle parking 
− NN maps exact vehicle position to perceived grid cell

26

Agent 1      Environment

percept

action

Neural network

𝑎!
𝑠": 𝑙𝑜𝑐, 𝑝𝑒𝑟

𝑝𝑒𝑟

𝑠#

Strategy synthesis for zero-sum neuro-symbolic concurrent stochastic games, Kwiatkowska et al, Information & 
Computation, 2025



Pedestrian-vehicle interaction as NS-POSG

• Agent 1: vehicle
− 𝑙𝑜𝑐1: speed
𝑝𝑒𝑟1: pedestrian intention

− 𝑎1: acceleration (e.g. +3,-3)
• Agent 2: pedestrian

− 𝑎2: cross, back 
• Environment E

− two successive pedestrian positions
 (𝑥1,𝑦1,𝑥2,𝑦2) 

28



Strategy synthesis for neuro-symbolic POSGs

• Consider zero-sum (discounted) expected reward over infinite horizon
− one sided, so Agent 2 can recover beliefs of Agent 1
− assume determined, as value may not exist

• HSVI approach (extend Horak et al 2023)
− continuous state-space decomposed into regions
− further subdivision at each iteration
− work with a class of piecewise-continuous 
𝛼-functions, + closure properties

− anytime

• Implementation
− polyhedral pre-image computations of NNs
− LPs to compute lower/upper bound and minimax values

29
Partially observable stochastic games with neural perception mechanisms, In Proc FM 2024

PWC 𝛼-function
polyhedra + value vector



Efficient online minimax strategies

• How to synthesize strategies based on the lower and upper bound functions

31

NS-HSVI continual re-solving for 𝐴𝑔)

Online continual resolving
• keeps track of belief and counterfactual values
• builds and solves a game without storing 

complete strategy
Our variant
• precomputes HSVI lower bound
• keeps track of belief and PWC function 𝛼1
• solves a single LP at each stage

HSVI-based Online Minimax Strategies for Partially Observable Stochastic Games with Neural Perception Mechanisms, 
In Proc L4DC 2024



Multiple applications and NN verification use cases!

Sample-efficient policy learning                                      Protocol verification

Safe planning via conformal prediction                      Optimal controller synthesis

Variational Posterior

http://fun2model.org/ 

http://fun2model.org/


Beyond adversaries: strategyproof robustness

• So far, consider only adversarial robustness to individual perturbations, but AI 
agents can behave strategically

• Can we instead strategyproof policy learning? (correctness by design)

• Consider RLHF (reinforcement learning from human feedback)
− multiple agents, diverse preferences, leading to potential bias in learnt policy decisions
− but agents can also strategically manipulate the decisions in their favour by 

misreporting their preferences
− existing RLHF methods not strategyproof…

• Aim to devise strategyproof RLHF through mechanism design
− how? incentivise truthful reporting
− can provide an algorithm that is approximately strategyproof and converges to the 

optimal policy as the number of individuals and samples increases
Strategyproof Reinforcement Learning from Human Feedback. Kleine Buening et al, arXiv:2503.09561v1



Concluding remarks

• Range of techniques developed in the AI/ML and formal methods communities
− provable guarantees needed for high-stakes decisions
− safety, dependability, optimality, explainability of policies desirable
− but likely to need human involvement in decisions and act as assistants 
− ML models increasing in complexity, take up of certification lagging behind

• Despite progress, major challenges remain
− scalability to complex architectures and properties
− foundational understanding needed
− ideally, semantic methods, not pixel-based perturbations
− need support for interactions with human decision makers
− robust learning for correct-by-construction models and policies

• Need integrated processes for validation and safety assurance, not just 
(probabilistic) verification
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