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Safety and security risks in Al decision making

- Al decisions rely on neural network components
- Well known that neural networks are unstable to adversarial perturbations

Physical ttac Lightbeam attack Patch attack Real traffic sign

For high-stakes applications, need provable guarantees on correctness

- Yet Al/ML community focuses on performance - formal verification to the
rescue?

Safety Verification of Deep Neural Networks. CAV 2017 keynote 3
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New research from Which? reveals that more than half
tech in their cars with many findi

ing off safety
the tech annoying, distracting or even dangerous.
explain why, and how to get the best from

Like airbags and crumple zones, various car safety technologies are mandatory on new cars.
While airbags are considered ‘passive’ safety tech - they only activate when you crash -
Advanced Driver-Assistance Systems (ADAS) are ‘active’ and are intended to prevent you
from having an accident in the first place.

With driver error a leading cause of road accidents in the UK, the best case scenario with
ADAS features is that they prevent avoidable accidents. These include accidents where the
driver unintentionally leaves their lane, is driving too fast or hasn’t spotted an obstacle
ahead of them.

However, Which? has found evidence that these features are being habitually turned off by
drivers, with just over half of drivers who have an ADAS feature on their car reporting they
turn at least one feature off at least some of the time. And when the tech is off, it isn’t
protecting anybody.

This highlights that there’s a lot of room for improvement in the way these systems are
implemented and explained.




Formal verification provides provable guarantees
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Software Moyde|

Modelling = rigorous, mathematical abstraction
Verification = proof that the model satisfies specification

Synthesis = correct-by-construction model/policy from specification
Automated = algorithmic, implemented in software

Probabilistic Model Checking in Autonomy. Kwiatkowska et a/;, Ann Rev of Control, Robotics and Aut. Sys. (2022).




Multiple applications and use cases!
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Formal verification for neural networks (NNs)

- Rigorous formal verification ,Q
— can provide_provable guara_ntees, e.g. that 1 — ﬂ \\ 0_,0 -
no adversarial examples exist O \ A v
— enables safety/security certification and :;;,,;;, } HECE@- 2
correct-by-construction synthesis x3 ~—0 O O—HC}:::;_;; Na
— crucial part of safety assurance x4 o—{y O {}——l(} '

- Neural network models more challenging

— black box, lack interpretability Image classifier is a function f: R" — {c,,...c}
Learnable weights and bias

— high-dimensional function

— interplay between architecture and Approximates human perception from M
training (non-linear optimization) training examples

«  Much progress since 2017: Reluplex, DeepPoly, ReluVal, CROWN,

Safety Verification of Deep Neural Networks. CAV 2017 keynote




This talk: provable guarantees via formal verification

Focus on (data-driven) neural network policies and components

Brief recap of (local) adversarial robustness certification
— crucial part of safety assurance, pre-deployment
— and Mmany more use cases

- A selection of snapshots, with a common thread
— pre-image approximation

— quantitative verification

— backward reachability for controllers

— neuro-symbolic models

Conclusions and future directions



Recap of adversarial robustness

Consider local adversarial robustness, for a specific input

— Label: 30

Informally, no perturbation results in a misclassification
More formally, assume given

— trained neural network classifier f : R™ — {c,,...c,}

— region n centred at x wrt distance function, e.g. L?, L®
Define local robustness at x wrt n by (SAT friendly)

— Ay € n such that f(x) + f(y)

Here, focus on computing provable guarantees on correctness, rather
than constructing defences

n



Neural network verification

- Given a neural network f: R™ - R™, the NN verification problem is defined as

(@pre» Ppose) FEQUIring that @
~

~ VX € RUx F @pre = f(X) = Ppost % — Label: 30
s 2

- Simplification to polyhedral input and +
@ Q f1(x) = f,(x) = 0
+ 0.1 (for logits,

output sets
________________ m=2)

Input Output 30 60 confidence gap

- Typically, exact verification intractable, focus on computing lower/upper bounds



Neural network verification: forward analysis

- Given a neural network f: R™ - R™, the NN verification problem is defined as
(Ppres Ppost) TEQUIring that
— Vx € R%x + Ppre — f(x) F Ppost

- Typical approach: forward analysis

— start from X = {x €ER" |x -} — Q
— bound the worst case on each layer

— propagate bounds through layers

— check whether the predicted labels are Input Output
preserved

- Computes over-approximation of output set
Note may result in loose bounds...



Neural network verification: backward analysis

Given the NN verification problem (¢, e, ¢,05:) for a neural network f: R™ — R™,
requiring that

- Vx € Rn.x (o (pp‘re — f(x) F (ppOSt

Focus instead on backward analysis Q — Q
Characterize the inputs for

output constraints Y = {y €R™ | y @ }

Preimage Image

Advantages

— more precise correctness guarantees, particularly under-approximation
but

— exact preimage computation is intractable at scale, 0(2") for n unstable ReLU neurons

Provably bounding neural network preimages. Koha et a/, In Proc. NeurlPS 2023.
Provable Preimage Under-Approximation for Neural Networks. Zhang et a/, In Proc. TACAS 2024.




Preimage approximation

- Work backwards to generate preimage approximation via convex relaxation

in terms of disjoint union of polytopes

Given output specification y = f(x) = 0 (any polyhedral property)

Compute symbolic lower/upper bounding functions for
activations from output layer to input:

— Ax+b < f(x)<Ax+b
Preimage under-approximation as a polytope:
— x[Ax+b =0} — {x| f(x) = 0}
- Also preimage over-approximation
Method relies on

— backward propagation
— preimage refinement through input/ReLU splitting planes

— heuristics and optimisations, to deal with exponential growth in constraints

PREMAP: A Unifying PREiMage APproximation Framework for Neural Networks, arXiv:2408.09262
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Experimental results: preimage under-approximation

- Method scales to high-dimensional tasks
— first method to scale to I, attack (noise in all image pixels) and patch attack

— recently improved and extended to CNNs
D

@o)+

— evaluated on MNIST, GTSRB and SVHN with varied size and position of the patch,
indicating areas of vulnerability

— provides quantitative coverage results for larger perturbation bounds

L attack|#Poly|Cov(%)|Time(s)||Patch attack|#Poly|Cov(%)|Time(s)

0.05 2 100.0 3.107 3 x 3(center) 1 100.0 2.611
0.07 247 75.2 | 121.661 || 4 x 4(center) | 678 38.2 | 455.988
0.08 522 75.1 | 305.867 || 6 x 6(corner) 2 100.0 9.065
0.09 733 | 165 | 507.116 || 7 x 7(corner) | 7 84.2 | 10.128

Efficient Preimage Approximation for Neural Network Certification. Bjorklund et a/, arxiv.org/abs/2505.22798




Quantitative neural network verification

- Preimage under-approximation enables quantitative verification
— i.e. estimating proportion of inputs that satisfy ¢,
— sound and complete

- Useful in cases when verification fails

- Complementary to robustness verifiers, benchmarked against winner of
VNN-Comp 2023

Task ‘ a, B~-CROWN | Our
| Result Time(s)|Cov(%) #Poly Time(s)
Cartpole (§ € [-1.642, —1.546])‘ yes 3.349 | 100.0 1 1.137
Cartpole (§ € [-1.642,0])) | no  6.927 | 949 2  3.632
MNIST (Lo 0.026) | yes 3415 | 1000 1 2.649
MNIST (Lo 0.04) lunknown 267.139| 100.0 2 3.019

Provable Preimage Under-Approximation for Neural Networks. Zhang et a/, In Proc. TACAS 2024.




Backward reachability for controllers

- Provable quantitative guarantees for reinforcement learning (RL) controllers

- via preimage over- and under-approximation

Task Property | Config | #Poly | Cov I Time(s)
| | ux ox | ux ox | ux ox

Cartoole bel-2,—-1 | 25 1 | 0766 1.213 | 13.337  2.149
(FNN o 64) {y €R?| y1 > y2} 6c[-2,-05 | 42 8 | 0750 1.242 | 19.732  5.778
6 € [-2,0] 66 22 | 0.755 1.246 | 30.563  11.476
Lunarlander b€ [—1,0] 18 1 | 0.754 1.068 | 14.453  2.381
(FNN 2 x 64) {y € R* Nieq1,3,4) y2 > vi} v € [-2,0] 67 23 | 0.751 1.246 | 48.455 19.210
b € [—4,0] 97 90 | 0.751 1.249 | 76.234  72.285
L 8] x_ >, |z €[-01,01] | 211 20 | 0.751 1.242 | 182.821 18.666
(FDSEI;“;J;;%) lveR /\| //:fe[“] L= y_z} z, € [—0.2,0.2] | 409 23 | 0.750 1.241 | 323.839 24.788
icl6,8] Y5 = ¥if | 4 €1-0.3,0.3] | 677 43 | 0.750 1.244 | 589.939  41.502

- Efficient, often bounding with few polytopes

PREMAP: A Unifying PREiMage APproximation Framework for Neural Networks, arXiv:2408.09262
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Provable guarantees for RL decision policies

Learning of optimal policies from temporal logic specifications

— Sample Efficient Model-free Reinforcement Learning from LTL Specifications with
Optimality Guarantees. Shao et a/, Proc. |JCAI 2023

— Converts LTL to limit-deterministic Buchi automata

Learning temporal logic specifications to debug/explain RL policies

— Learning Probabilistic Temporal Logic Specifications for Stochastic Systems. Roy et a/,
Proc. IJCAI 2025

— Learns concise probabilistic LTL from positive and negative examples

Extension to imitation learning incorporating causal inference

— A Unifying Framework for Causal Imitation Learning with Hidden Confounders. Shao
etal,In ICLR 2025 Workshop on Spurious Correlation and Shortcut Learning:
Foundations and Solutions

— Learns causal effects using instrumental variables



http://fun2model.org/bibitem.php?key=SBK25

Motivating example: pedestrian-vehicle interaction

- Autonomous vehicle
— partially informed
— aims to predict pedestrian’s intention
— using NN trained from video data

~——> unlikely to cross

m " ——> likely to cross

(1, Y1, X2, V2) “——> very likely to cross

- Pedestrian
— fully informed for worst-case analysis

— decides whether to cross or return to
sidewalk

- Goal: synthesise strategy for vehicle to
minimize likelihood of crash (opposite for pedestrian)

https://data.nvision2.eecs.yorku.ca/PIE_dataset/

25



Neuro-symbolic games (NS-POSGs)

- Agents endowed with neural perception and symbolic decision making
— here: NN classifiers (or other machine learning) for perception tasks
— constrained interface: convert inputs such as images to symbolic percepts
— plus: local strategies for control decisions

| Neural network | percept

Agent 1
1: loc, pe

- Neuro-symbolic games (two players/coalitions)
— finite-state agents + continuous-state environment E
. S = (LocyxPery) X (Loc,xPer,) X S
— agents only use a (learnt) perception function to observe E
. obs; : (Loc;XLoc,) X Sg — Per;

Environment
Sg

action

— joint actions update state probabilistically

- Example: dynamic vehicle parking

— NN maps exact vehicle position to perceived grid cell %
0 1 2 3 4

Strateqy synthesis for zero-sum neuro-symbolic concurrent stochastic games, Kwiatkowska et al, Information &
Computation, 2025 26
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Pedestrian-vehicle interaction as NS-POSG

access

S1

Neural network percept access
SE
Agent 1(C ®e Agent 2
sp:locy, pery
a
action action

- Agent 1: vehicle

— locy: speed
per;. pedestrian intention

— a,: acceleration (e.g. +3,-3)
- Agent 2: pedestrian

— a,: cross, back
- Environment E

— two successive pedestrian positions

(x1,¥1,%2,5)
28



Strategy synthesis for neuro-symbolic POSGs

- Consider zero-sum (discounted) expected reward over infinite horizon
— one sided, so Agent 2 can recover beliefs of Agent 1

access

— assume determined, as value may not exist -
percept access
- HSVI approach (extend Horak et a/2023) O o | i
_ _ _ Agent 1 Environment ©© Agent 2
— continuous state-space decomposed into regions “silewren . N e
— further subdivision at each iteration aetion acton
— work with a class of piecewise-continuous
a—-functions, + closure properties
— anytime :
y PWC a-function g}(
polyhedra + value vector T FJ
- Implementation —4T’ \
— polyhedral pre-image computations of NNs Eﬁ 7L
— LPs to compute lower/upper bound and minimax values -

Partially observable stochastic games with neural perception mechanisms, In Proc FM 2024

29



Efficient online minimax strategies

- How to synthesize strategies based on the lower and upper bound functions

access

S1

““““““““““““““““““““““ ! Neural network percept access

| ag2~UuU9Q | p— /;E\
: m : Environment
VI

| — | e N e
| a; az
: ’ : action action

b S !
| al~Uu il
:(S% ' (s% E Online continual resolving
L g belief ((st ). ) keeps track of belief and counterfactual values
 {(s1,01), 1 f>[LR HSVIT || gage [ (57, 61), @ ) P
B - ‘e of builds and solves a game without storing

|

e complete strategy

Our variant
precomputes HSVI lower bound
keeps track of belief and PWC function «a;
solves a single LP at each stage

NS-HSVI continual re-solving for Ag,

HSVI-based Online Minimax Strategies for Partially Observable Stochastic Games with Neural Perception Mechanisms, 31
In Proc L4ADC 2024




Multiple appl
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http://fun2model.org/

Beyond adversaries: strategyproof robustness

So far, consider only adversarial robustness to individual perturbations, but Al
agents can behave strategically

Can we instead strategyproof policy learning? (correctness by design)

Consider RLHF (reinforcement learning from human feedback)
— multiple agents, diverse preferences, leading to potential bias in learnt policy decisions

— but agents can also strategically manipulate the decisions in their favour by
misreporting their preferences

— existing RLHF methods not strategyproof...

- Aim to devise strategyproof RLHF through mechanism design
— how? incentivise truthful reporting

— can provide an algorithm that is approximately strategyproof and converges to the
optimal policy as the number of individuals and samples increases

Strategyproof Reinforcement Learning from Human Feedback. Kleine Buening et a/, arXiv:2503.09561v1




Concluding remarks

Range of techniques developed in the Al/ML and formal methods communities

— provable guarantees needed for high-stakes decisions

— safety, dependability, optimality, explainability of policies desirable

— but likely to need human involvement in decisions and act as assistants

— ML models increasing in complexity, take up of certification lagging behind
Despite progress, major challenges remain

— scalability to complex architectures and properties

— foundational understanding needed

— ideally, semantic methods, not pixel-based perturbations

— need support for interactions with human decision makers

— robust learning for correct-by-construction models and policies

Need integrated processes for validation and safety assurance, not just
(probabilistic) verification
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