
How (formal) language can help AI agents
learn, plan, and remember

Sheila A. McIlraith
Department of Computer Science, University of Toronto
Vector Institute for Artificial Intelligence
Schwartz Reisman Institute for Technology and Society

Photo credit dreamstime.com

UK Royal Society
October 28-29, 2024

LANGUAGE
Humans have evolved languages over tens of thousands of years to provide useful abstrac7ons
for understanding and interac7ng with each other and with the physical world.

The claim advanced by some is that language influences what we think, what we perceive,
how we focus our a>en7on, and what we remember.

We use language to capture our understanding of the world around us, to communicate high-
level goals, inten7ons and objec7ves, and to support coordina7on with others.

In Computer Science and in the study of AI, we use knowledge representa7on languages and
programming languages to capture our understanding of the world and to communicate
unambiguously with computers.

Importantly, language can provide us with useful and purposeful abstrac7ons that can help us
to generalize and transfer knowledge to new situa7ons.

FORMAL LANGUAGE

(Some) affordances of formal language

• Well-defined seman,cs (unambiguously computer interpretable)
• Composi,onal syntax and seman6cs
• Some languages are declara,ve (elabora6on tolerant)

• Typically concise
• Generally have a “proof system” (of sorts) for sound reasoning

• O@en supports generaliza,on
• …
• Gateway to established theories and methods:

§Reasoning with theories: E.g., physics, chemistry (stoichiometry), music, …
§ Formal methods: verifica6on, automated synthesis, …
§AI KR&R: default & commonsense reasoning, deon6cs, PDDL, probabilis6c rela6onal models, …
§ …

A Thought Experiment

Photo: Javier Pierin (Getty Images)

A Thought Experiment

How do we advise, instruct, task, … and
impart knowledge to our AI?

A Thought Experiment

How do we advise, instruct, task, … and
impart knowledge to our AI?

… and how does an AI exploit this
knowledge to learn and act?

Reinforcement Learning (RL)

Agent
Environment

Transition Function
Reward Function

Action

Reward

State

Following Su<on and Barto, 2018

Reinforcement Learning (RL)

R(s, a, s0) ! R

Agent
Environment

Transi5on Func5on
Reward Func5on

Action

Reward

State
R(s) ! R

Following Su<on and Barto, 2018

Challenges to RL

• Reward Specification: It’s hard to define reward functions for complex tasks.

• Sample Efficiency: RL agents might require billions of interactions with the
environment to learn good policies.

• Partial Observability

[Dulac-Arnold, Mankowitz, Hester, 2019]

Goals, Preferences, Norms, Laws …

• Run the dishwasher when it’s full or when dishes are needed for the next meal.

• Make sure the bath temperature is between 32 – 40 celcius immediately before letting someone

enter the bathtub.

• Do not vacuum while someone in the house is sleeping.

• …

• Always serve the person who has been waiting the longest

• If you’re driving in Quebec, never turn right on a red light.

… (Procedural) Instructions

When assisCng someone from a car to the sidewalk, please always open the car door

closest to the person, help the person to standing, move them beyond the car door,

close the car door, walk them to the sidewalk.

How do we communicate this to our RL agent?

How do we communicate this to our RL agent?

Formal Language

Linear Temporal Logic (LTL)

A compelling logic to express temporal properties of traces.

Syntax

Properties
• Interpreted over finite or infinite traces.
• Can be transformed into automata.

LTL in a Nutshell

Syntax

Logic connectives: ^,_,¬
LTL basic operators:

next: ⌦'
weak next: ✏'
until: U�

Other LTL operators:

eventually: ' def
= trueU'

always: �' def
= ¬ ¬'

release: R�
def
= ¬(¬ U¬�)

Example: Eventually hold the key, and then have the door open.

 (hold(key) ^⌦ open(door))

Finite and Infinite interpretations

The truth of an LTL formula is interpreted over state traces:

LTL, infinite traces

LTLf , finite traces 1

1cf. Bacchus et al. (1996), De Giacomo et al (2013, 2015)
Camacho et al.: Bridging the Gap Between LTL Synthesis and Automated Planning 5 / 24

Remember
this!

Goals and Preferences

• Do not vacuum while someone is sleeping

 ⇤[¬(vacuum ^ sleeping)]

I.e., always[¬	(vacuum ∧ sleeping)]

How do we communicate this to our RL agent?

Formal Language

 Automata

Formal Language - Automata Correspondence

finite-state automaton

push-down automaton

linear-bounded automaton

Turing machines

Noam Chomsky

Chomsky Hierarchy

(Some) affordances of automata

• Normal-form representation
• Exposes function structure – allowing for compositional learning and transfer
• Distinguish contexts – a Markovian decomposition
• A pathway to understanding computation …

As we will see
• Supports counterfactual reasoning

• Define a sublanguage
§Serve as generators and a recognizers of the traces accepted by an automaton.
 Can be used to generate data.

The alphabet, compositional syntax, and semantics
of (formal) language can help RL agents learn,

learn what to remember, and plan.

The Rest of the Talk

▶ Reward Machines (RM)

§ Exploiting RM Structure in Learning

§ Experiments

§ Creating Reward Machines

§ Concluding Remarks

REWARD MACHINES

Simple Example:
 Go to A, then B, then C, then D

B * * C

* o *

A * * D

Agent
Office World

Reward FuncOon:
 Go to A, then B, then C, then D

B * * C

* o *

A * * D

count = 0 # global variable

def get_reward(s):
 if count == 0 and state.at(“A”):
 count = 1
 if count == 1 and state.at(“B”):
 count = 2
 if count == 2 and state.at(“C”):
 count = 3
 if count == 3 and state.at(“D”):
 count = 0
 return 1
 return 0

Encode reward function in an automata-like structure
 using a vocabulary

Define a Reward Function using a Reward Machine

count = 0 # global variable

def get_reward(s):
 if count == 0 and state.at(“A”):
 count = 1
 if count == 1 and state.at(“B”):
 count = 2
 if count == 2 and state.at(“C”):
 count = 3
 if count == 3 and state.at(“D”):
 count = 0
 return 1
 return 0

𝑢!

𝑢"

𝑢#

𝑢$

¬A, 0

¬B, 0

¬C, 0

¬D, 0

A, 0

B, 0C, 0

D, 1

𝑃 = { , , 𝑜,∗, 𝐴, 𝐵, 𝐶, 𝐷}

Reward Machine

• finite set of states 𝑈

𝑢!

𝑢"

𝑢#

𝑢$

¬A, 0

¬B, 0

¬C, 0

¬D, 0

A, 0

B, 0C, 0

D, 1

Reward Machine

• finite set of states 𝑈
• iniCal state 𝑢" ∈ 𝑈

𝑢!

𝑢"

𝑢#

𝑢$

¬A, 0

¬B, 0

¬C, 0

¬D, 0

A, 0

B, 0C, 0

D, 1

𝑢!

𝑢"

𝑢#

𝑢$

¬A, 0

¬B, 0

¬C, 0

¬D, 0

A, 0

B, 0C, 0

D, 1

Reward Machine

• finite set of states 𝑈
• initial state 𝑢" ∈ 𝑈
• set of transitions labelled by:

𝑢!

𝑢"

𝑢#

𝑢$

¬𝐀, 𝟎

¬𝐁, 𝟎

¬𝐂, 𝟎

¬𝐃, 𝟎

𝐀, 𝟎

𝐁, 𝟎𝐂, 𝟎

𝐃, 𝟏

• finite set of states 𝑈
• iniCal state 𝑢" ∈ 𝑈
• set of transiCons labelled by:

§ A logical condiAon* (guards)
§ A reward func2on (or constant)

*logical formula --- property of the current state in the vocabulary

𝑃 = { , , 𝑜,∗, 𝐴, 𝐵, 𝐶, 𝐷}

Reward Machine

𝑃

𝑢!

𝑢"

𝑢#

𝑢$

¬A, 0

¬B, 0

¬C, 0

¬D, 0

A, 0

B, 0C, 0

D, 1
B * * C

* o *

A * * D

Reward Machines in AcOon

𝑢!

𝑢"

𝑢#

𝑢$

¬A, 0

¬B, 0

¬C, 0

¬D, 0

A, 0

B, 0C, 0

D, 1
B * * C

* o *

A * * D

Reward Machines in AcOon

𝑢!

𝑢"

𝑢#

𝑢$

¬A, 0

¬B, 0

¬C, 0

¬D, 0

A, 0

B, 0C, 0

D, 1
B * * C

* o *

A * * D
State

Reward Machines in AcOon

𝑢!

𝑢"

𝑢#

𝑢$

¬A, 0

¬B, 0

¬C, 0

¬D, 0

A, 0

B, 0C, 0

D, 1
B * * C

* o *

A * * D
State

Reward Machines in Action

𝑢!

𝑢"

𝑢#

𝑢$

¬A, 0

¬B, 0

¬C, 0

¬D, 0

A, 0

B, 0C, 0

D, 1
B * * C

* o *

A * * D
State

0

Reward Machines in AcOon

𝑢!

𝑢"

𝑢#

𝑢$

¬A, 0

¬B, 0

¬C, 0

¬D, 0

A, 0

B, 0C, 0

D, 1
B * * C

* o *

A * * D

Reward Machines in AcOon

Other Reward Machines

Task: Deliver coffee to the office, while avoiding furniture.

¬	 ∧ ¬ ∗	, 0

true, 0

∗, 0

𝑢" 𝑢!

¬o ∧ ¬ ∗, 0

𝑢$

true, 0

o ∧ ¬ ∗, 1	 ∧ ¬ ∗	, 0

𝑢#

∗, 0

Task: Deliver coffee to the office, while avoiding furniture.

¬	 ∧ ¬ ∗	, 0

true, 0

∗, 0

𝑢" 𝑢!

¬o ∧ ¬ ∗, 0

𝑢$

true, 0

o ∧ ¬ ∗, 1	 ∧ ¬ ∗	, 0

𝑢#

∗, 0

Other Reward Machines

The Rest of the Talk

• Reward Machines (RM)

▶ Exploiting RM Structure in Learning

• Experiments

• Creating Reward Machines

• Concluding Remarks

EXPLOITING RM STRUCTURE IN LEARNING

Methods for ExploiOng RM Structure

Our Approaches:
1. Q-learning over Cross-Product State + RM (Q-learning) Baseline
2. Hierarchical RL based on opCons (HRL) Baseline
3. HRL with RM-based pruning (HRL-RM)
4. Q-learning for Reward Machines (QRM)
5. QRM + Reward Shaping for Reward Machine (QRM + RS)
6. Q-learning with Counterfactual Experiences for Reward Machines (CRM)
7. CRM+ Reward Shaping for Reward Machine (CRM + RS)

[Toro Icarte, Klassen, Valenzano, M., ICML18]
[Toro Icarte, Klassen, Valenzano, M., JAIR22]

Simple Idea:
• Give the learning algorithm access to the reward function
• …
• …

Simple Idea:
• Give the learning algorithm access to the reward func=on
• Exploit composi=onal reward func=on structure in learning
• …

Methods for ExploiOng RM Structure

Our Approaches:
1. Q-learning over Cross-Product State + RM (Q-learning) Baseline
2. Hierarchical RL based on opCons (HRL) Baseline
3. HRL with RM-based pruning (HRL-RM)
4. Q-learning for Reward Machines (QRM)
5. QRM + Reward Shaping for Reward Machine (QRM + RS)
6. Q-learning with Counterfactual Experiences for Reward Machines (CRM)
7. CRM+ Reward Shaping for Reward Machine (CRM + RS)

[Toro Icarte, Klassen, Valenzano, M., ICML18]
[Toro Icarte, Klassen, Valenzano, M., JAIR22]

1. Q-Learning over Cross-Product - Baseline

A Reward Machine may define a non-Markovian reward funcCon.

𝑢!

𝑢"

𝑢#

𝑢$

¬A, 0

¬B, 0

¬C, 0

¬D, 0

A, 0

B, 0C, 0

D, 1
B * * C

* o *

A * * D

1. Q-Learning over Cross-Product - Baseline

A Reward Machine may define a non-Markovian reward function.

𝑢!

𝑢"

𝑢#

𝑢$

¬A, 0

¬B, 0

¬C, 0

¬D, 0

A, 0

B, 0C, 0

D, 1
B * * C

* o *

A * * D

1. Q-Learning over Cross-Product - Baseline

A Reward Machine may define a non-Markovian reward function.

𝑢!

𝑢"

𝑢#

𝑢$

¬A, 0

¬B, 0

¬C, 0

¬D, 0

A, 0

B, 0C, 0

D, 1
B * * C

* o *

A * * D State

1. Q-Learning over Cross-Product - Baseline

A Reward Machine may define a non-Markovian reward funcCon.

𝑢!

𝑢"

𝑢#

𝑢$

¬A, 0

¬B, 0

¬C, 0

¬D, 0

A, 0

B, 0C, 0

D, 1
B * * C

* o *

A * * D

0

State

1. Q-Learning over Cross-Product - Baseline

A Reward Machine may define a non-Markovian reward funcCon.

𝑢!

𝑢"

𝑢#

𝑢$

¬A, 0

¬B, 0

¬C, 0

¬D, 0

A, 0

B, 0C, 0

D, 1
B * * C

* o *

A * * D

1. Q-Learning over Cross-Product - Baseline

A Reward Machine may define a non-Markovian reward funcCon.

𝑢!

𝑢"

𝑢#

𝑢$

¬A, 0

¬B, 0

¬C, 0

¬D, 0

A, 0

B, 0C, 0

D, 1
B * * C

* o *

A * * D State

1. Q-Learning over Cross-Product - Baseline

A Reward Machine may define a non-Markovian reward function.

𝑢!

𝑢"

𝑢#

𝑢$

¬A, 0

¬B, 0

¬C, 0

¬D, 0

A, 0

B, 0C, 0

D, 1
B * * C

* o *

A * * D State

1

1. Q-Learning over Cross-Product - Baseline

SoluLon: Include RM state as part of agent’s state representaCon.
Use standard Q-learning on resulCng MDP.

𝑢!

𝑢"

𝑢#

𝑢$

¬A, 0

¬B, 0

¬C, 0

¬D, 0

A, 0

B, 0C, 0

D, 1
B * * C

* o *

A * * D State

1

Methods for ExploiOng RM Structure

Our Approaches:
1. Q-learning over Cross-Product State + RM (Q-learning) Baseline
2. Hierarchical RL based on opCons (HRL) Baseline
3. HRL with RM-based pruning (HRL-RM)
4. Q-learning for Reward Machines (QRM)
5. QRM + Reward Shaping for Reward Machine (QRM + RS)
6. Q-learning with Counterfactual Experiences for Reward Machines (CRM)
7. CRM+ Reward Shaping for Reward Machine (CRM + RS)

Methods for Exploiting RM Structure

Our Approaches:
1. Q-learning over Cross-Product State + RM (Q-learning) Baseline
2. Hierarchical RL based on options (HRL) Baseline
3. HRL with RM-based pruning (HRL-RM)
4. Q-learning for Reward Machines (QRM)
5. QRM + Reward Shaping for Reward Machine (QRM + RS)
6. Q-learning with Counterfactual Experiences for Reward Machines (CRM)
7. CRM+ Reward Shaping for Reward Machine (CRM + RS)

Simple Idea:
• Give the learning algorithm access to the reward func=on
• Exploit composi=onal reward func=on structure in learning
• Employ Counterfactual Reasoning

Remember
this!

4. Q-Learning for Reward Machines (QRM)

𝑢!

𝑢"

𝑢#

𝑢$

¬A, 0

¬B, 0

¬C, 0

¬D, 0

A, 0

B, 0C, 0

D, 1

4. Q-Learning for Reward Machines (QRM)

QRM (our approach)
1. Learn one policy (Q-value funcAon) per state in

the Reward Machine.

𝑢!

𝑢"

𝑢#

𝑢$

¬A, 0

¬B, 0

¬C, 0

¬D, 0

A, 0

B, 0C, 0

D, 1
𝑞"

𝑞#
𝑞!𝑞$

4. Q-Learning for Reward Machines (QRM)

QRM (our approach)
1. Learn one policy (Q-value funcAon) per state in

the Reward Machine.

2. Select acAons using the policy of the current
RM state. 𝑢!

𝑢"

𝑢#

𝑢$

¬A, 0

¬B, 0

¬C, 0

¬D, 0

A, 0

B, 0C, 0

D, 1
𝑞"

𝑞#
𝑞!𝑞$

4. Q-Learning for Reward Machines (QRM)

𝑢!

𝑢"

𝑢#

𝑢$

¬A, 0

¬B, 0

¬C, 0

¬D, 0

A, 0

B, 0C, 0

D, 1
𝑞"

𝑞#
𝑞!𝑞$

QRM (our approach)
1. Learn one policy (Q-value funcAon) per state in

the Reward Machine.

2. Select acAons using the policy of the current
RM state.

4. Q-Learning for Reward Machines (QRM)

𝑢!

𝑢"

𝑢#

𝑢$

¬A, 0

¬B, 0

¬C, 0

¬D, 0

A, 0

B, 0C, 0

D, 1
𝑞"

𝑞#
𝑞!𝑞$

QRM (our approach)
1. Learn one policy (Q-value function) per state in

the Reward Machine.

2. Select actions using the policy of the current
RM state.

4. Q-Learning for Reward Machines (QRM)

𝑢!

𝑢"

𝑢#

𝑢$

¬A, 0

¬B, 0

¬C, 0

¬D, 0

A, 0

B, 0C, 0

D, 1
𝑞"

𝑞#
𝑞!𝑞$

QRM (our approach)
1. Learn one policy (Q-value funcAon) per state in

the Reward Machine.

2. Select acAons using the policy of the current
RM state.

3. Reuse experience to update all Q-value
funcAons on every transiAon via off-policy
reinforcement learning.

Remember
this!

This is a form of Counterfactual Reasoning

Methods for ExploiOng RM Structure

Our Approaches:
1. Q-learning over Cross-Product State + RM (Q-learning) Baseline
2. Hierarchical RL based on opCons (HRL) Baseline
3. HRL with RM-based pruning (HRL-RM)
4. Q-learning for Reward Machines (QRM)
5. QRM + Reward Shaping for Reward Machine (QRM + RS)
6. Q-learning with Counterfactual Experiences for Reward Machines (CRM)
7. CRM+ Reward Shaping for Reward Machine (CRM + RS)

Methods for ExploiOng RM Structure

Our Approaches:
1. Q-learning over Cross-Product State + RM (Q-learning) Baseline
2. Hierarchical RL based on options (HRL) Baseline
3. HRL with RM-based pruning (HRL-RM)
4. Q-learning for Reward Machines (QRM)
5. QRM + Reward Shaping for Reward Machine (QRM + RS)
6. Q-learning with Counterfactual Experiences for Reward Machines (CRM)
7. CRM+ Reward Shaping for Reward Machine (CRM + RS)

6. Q-Learning w/ Counterfactual Experiences for RMs (CRM)

QRM
• learns mulLple Q-funcLons
• one Q-funcCon q(s,a) per reward machine state 𝑢!

𝑢"

𝑢#

𝑢$

¬A, 0

¬B, 0

¬C, 0

¬D, 0

A, 0

B, 0C, 0

D, 1
𝑞"

𝑞#
𝑞!𝑞$

6. Q-Learning w/ Counterfactual Experiences for RMs (CRM)

QRM
• learns mulLple Q-funcLons
• one Q-funcCon q(s,a) per reward machine state

CRM
• learns one Q-funcLon q(s,u,a) for the cross-product state <s,u>
• synthesizing counterfactual experiences for all the other RM states <s,ui >

 CRM behaves iden5cally to QRM in tabular domains

[Toro Icarte, Klassen, Valenzano, M., JAIR22]

OpOmality of QRM and CRM (with reward shaping)

B * * C

* o *

A * * D
𝑎

Theorem (informally stated):
 QRM & CRM (+RS) preserve optimality guarantees of Q-learning & reward shaping.
 They converge to optimal policies when there is no function approximation.

𝑢!

𝑢"

𝑢#

𝑢$

¬A, 0

¬B, 0

¬C, 0

¬D, 0

A, 0

B, 0C, 0

D, 1

The Rest of the Talk

• Reward Machines (RM)

• Exploiting RM Structure in Learning

▶ Experiments

• Creating Reward Machines

• Concluding Remarks

EXPERIMENTS

Office World Experiments

4 tasks, 30 independent trials per task

B * * C

* o *

A * * D
0 10,000 20,000 30,000 40,000 50,000

0

0.2

0.4

0.6

0.8

1

Number of training steps

N
or
m
al
iz
ed

di
sc
ou
nt
ed

re
w
ar
d

O�ce World

[Toro Icarte, Klassen, Valenzano, M., ICML18]

Legend:
 Q-Learning over Cross Product
 HRL
 HRL-RM
 QRM

BETTER

BE
TT

ER

Office World Experiments

4 tasks, 30 independent trials per task

B * * C

* o *

A * * D
0 10,000 20,000 30,000 40,000 50,000

0

0.2

0.4

0.6

0.8

1

Number of training steps

N
or
m
al
iz
ed

di
sc
ou
nt
ed

re
w
ar
d

O�ce World

[Toro Icarte, Klassen, Valenzano, M., ICML18]

Legend:
 Q-Learning over Cross Product
 HRL
 HRL-RM
 QRM

(Hugely) More Sample Efficiency (x axis)
Greater Reward (y-axis)

BETTER

BE
TT

ER

[Toro Icarte, Klassen, Valenzano, M., ICML18]

Cra\ World Experiments

0 2 · 105 4 · 105 6 · 105 8 · 105 1 · 106
0

0.2

0.4

0.6

0.8

1

Number of training steps

N
or
m
al
iz
ed

di
sc
ou
nt
ed

re
w
ar
d

Minecraft World

10 tasks over 10 random maps, 3 independent trials per combination

CraO World

Legend:
 Q-Learning over Cross Product
 HRL
 HRL-RM
 QRM

BETTER

BE
TT

ER

Legend:
 DDQN over Cross Product
 DHRL
 DHRL-RM
 DQRM

Water World Experiments

10 tasks over 10 random maps, 3 independent trials per combinaCon

0 5 · 105 1 · 106 1.5 · 106 2 · 106
0

0.2

0.4

0.6

0.8

1

Number of training steps

N
or
m
al
iz
ed

di
sc
ou
nt
ed

re
w
ar
d

Water World

[Toro Icarte, Klassen, Valenzano, M., ICML18]

BETTER

BE
TT

ER

Half Cheetah – ConOnuous State and AcOon Domains

Half Cheetah (Task 2)Half Cheetah (Task 1)

[Toro Icarte, Klassen, Valenzano, M., JAIR22]

The Rest of the Talk

• Reward Machines (RM)

• Exploiting RM Structure in Learning

• Experiments

▶ Creating Reward Machines

• Concluding Remarks

CREATING REWARD MACHINES

CreaOng Reward Machines

Where do Reward Machines come from?

1. Specify

2. Generate

3. Learn

1. Reward SpecificaOon: one size does not fit all

Do not need to specify Reward Machines directly.

Specify reward-worthy behavior in any formal language that is translatable to finite-state automata.

finite-state automaton

push-down automaton

linear-bounded automaton

Turing machines

The Chomsky Hierarchy
Noam Chomsky

1. Construct Reward Machine from Formal Languages

Reward Machines serves as a lingua franca and provide a normal form representaLon
for the reward funcCon that supports reward-funcLon-tailored learning.

[Camacho, Toro Icarte, Klassen, Valenzano, M., IJCAI19]
[Middleton, Klassen, Baier, M, ICAPS2020 Systems Demo]

Remember
this!

RM

QRM

Reward
shaping

Future
RM-based
algorithms

CRM
DFALTL dialects, LTLf …

Any Regular Language

Some Natural Language
(Autoformaliza7on (ongoing))

CreaOng Reward Machines

Where do Reward Machines come from?

1. Specify

2. Generate

o High-level planner

o LLMs

o …

3. Learn

[Illanes, Yan, Toro Icarte, M., RLDM19, ICAPS20, KR2ML@NeurIPS20]

CreaOng Reward Machines

Where do Reward Machines come from?

1. Specify

2. Generate

3. Learn

o Use RM as Memory – ParLally Observable Se[ngs

o Full Observable Se[ngs

o …

[Toro Icarte; Waldie; Klassen; Valenzano; Castro; M, NeurIPS 2019]
[Toro Icarte; Waldie; Klassen; Valenzano; Castro; M, AIJ23]

CONCLUDING REMARKS

TAKEAWAY

The alphabet, composi>onal syntax, and seman>cs of (formal) language
can help RL agents learn, learn what to remember, plan, and reason.

*

Formal languages are powerful and effec>ve tools to advise, instruct,
task and impart knowledge to an AI that we have only begun to exploit.

Acknowledgements

Alberto CamachoRichard Valenzano

Rodrigo Toro Icarte

Toryn Klassen

Ethan Waldie Margarita Castro

Pashootan Vaezipoor Phillip ChristoffersenMaayan ShvoAndrew Li Xi Yan

Léon Illanes

Reward Machines: ExploiFng Reward FuncFon Structure in Reinforcement Learning
Toro Icarte, Klassen, Valenzano, McIlraith
Journal of Ar^ficial Intelligence Research (JAIR), 73: 173 – 208 (2022). (IJCAI-JAIR Best Paper Prize)
Code: h<ps://bitbucket.org/RodrigoToroIcarte/reward_machines (CRM) integrated w OpenAI Gym API
Using Reward Machines for High-Level Task SpecificaFon and DecomposiFon in Reinforcement Learning
Toro Icarte, Klassen, Valenzano, McIlraith
ICML 2018
Code: h<ps://bitbucket.org/RToroIcarte/qrm (QRM) Integrated w/ OpenAI Gym API
Teaching MulFple Tasks to an RL Agent using LTL
Toro Icarte, Klassen, Valenzano, McIlraith
AAMAS 2018 & NeurIPS 2018 Workshop (Learning by Instruc^ons)
Code: h<ps://bitbucket.org/RToroIcarte/lpopl
LTL and Beyond: Formal Languages for Reward FuncFon SpecificaFon in Reinforcement Learning
Camacho, Toro Icarte, Klassen, Valenzano, McIlraith
IJCAI 2019
Learning Reward Machines for ParFally Observable Reinforcement Learning
Toro Icarte, Waldie, Klassen, Valenzano, Castro, McIlraith
NeurIPS 2019
Symbolic Plans as High-Level InstrucFons for Reinforcement Learning
Illanes, Yan, Toro Icarte, McIlraith
ICAPS 2020/RLDM 2019/KR2ML@NeurIPS 2020 … and more

Play with the code, read the papers, …

https://bitbucket.org/RodrigoToroIcarte/reward_machines
https://bitbucket.org/RToroIcarte/qrm
https://bitbucket.org/RToroIcarte/lpopl

Reward Machines for Deep Learning in Noisy and Uncertain Environments
Li, Chen, Klassen, Vaezipoor, Toro Icarte, McIlraith
NeurIPS 2024 (to appear).

Learning Reward Machines: A Study in ParFally Observable Reinforcement Learning
Toro Icarte, Klassen, Valenzano, McIlraith
AIJ, 2023.

LTL2AcFon: Generalizing LTL InstrucFons for MulF-Task RL
Vaezipoor, Li, Toro Icarte, McIlraith
ICML 2021.

Learning to Follow InstrucFons in Text-Based Games.
Tuli, Li, Vaezipoor, Klassen, Sanner, McIlraith.
NeurIPS 2022.

Other/More Recent

GeneralizaFon to 1039 tasks

Advice-Based Explora2on in Model-Based Reinforcement Learning.
Toro Icarte, Klassen, Valenzano, McIlraith
Canadian AI 2018.
Linear temporal logic (LTL) formulas and a heuris7c were used to guide explora7on during reinforcement learning.

Non-Markovian Rewards Expressed in LTL: Guiding Search Via Reward Shaping (Extended Version)
Camacho, Chen, Sanner, McIlraith
Extended Abstract: SoCS 2017, RLDM 2017
Full Paper: First Workshop on Goal SpecificaNons for Reinforcement Learning, collocated with
ICML/IJCAI/AAMAS, 2018.
Linear temporal logic (LTL) formulas are used to express non-Markovian reward in fully specified MDPs. LTL is translated to automata
and reward shaping is used over the automata to help solve the MDP.

Learning Interpretable Models in Linear Temporal Logic
Camacho, McIlraith
ICAPS, 2019

FL-AT: A Formal Language–Automaton Transmogrifier.
Middleton, Klassen, Baier, McIlraith
ICAPS 2020 Systems Demo

Other related work

Non-Determinis2c Planning with Temporally Extended Goals: LTL over Finite and Infinite Traces
Camacho, Triantafillou, Muise, Baier and McIlraith
AAAI 2017
Planning with First-Order Temporally Extended Goals Using Heuris2c Search
Baier and McIlraith AAAI 2006

Planning with Temporally Extended Goals Using Heuris2c Search
Baier and McIlraith, ICAPS 2006

Exploi2ng Procedural Domain Control Knowledge in State-of-the-Art Planners
Baier Fritz and McIlraith, ICAPS 2007

Beyond Classical Planning: Procedural Control Knowledge and Preferences in State-of-the-Art Planners
Baier Fritz Bienvenu and McIlraith, AAAI 2008

A Heuris2c Search Approach to Planning with Temporally Extended Preference
Baier, Bacchus and McIlraith ArAficial Intelligence Journal, 2009

Specifying and Compu2ng Preferred Plans
Fritz, Bienvenu and McIlraith, ArAficial Intelligence Journal, 2011 (See also KR2006 paper)

Past work on Planning with Formal Languages & Automata

…

Ques%ons?

Photo credit dreams5me.com

