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LANGUAGE
Humans have evolved languages over tens of thousands of years to provide useful abstrac7ons 
for understanding and interac7ng with each other and with the physical world.   

The claim advanced by some is that language influences what we think, what we perceive, 
how we focus our a>en7on, and what we remember.

We use language to capture our understanding of the world around us, to communicate  high-
level goals, inten7ons and objec7ves, and to support coordina7on with others.  

In Computer Science and in the study of AI, we use knowledge representa7on languages and 
programming languages to capture our understanding of the world and to communicate 
unambiguously with computers.

Importantly, language can provide us with useful and purposeful abstrac7ons that can help us 
to generalize and transfer knowledge to new situa7ons.



FORMAL LANGUAGE



(Some) affordances of formal language

• Well-defined seman,cs (unambiguously computer interpretable)
• Composi,onal syntax and seman6cs
• Some languages are declara,ve (elabora6on tolerant)

• Typically concise
• Generally have a “proof system” (of sorts) for sound reasoning

• O@en supports generaliza,on 
• …
• Gateway to established theories and methods:

§Reasoning with theories: E.g., physics, chemistry (stoichiometry), music, …
§ Formal methods: verifica6on, automated synthesis, …
§AI KR&R: default & commonsense reasoning, deon6cs, PDDL, probabilis6c rela6onal models, …
§  …



A Thought Experiment
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A Thought Experiment

How do we advise, instruct, task, … and 
impart knowledge to our AI?



A Thought Experiment

How do we advise, instruct, task, … and 
impart knowledge to our AI?

… and how does an AI exploit this 
knowledge to learn and act?



Reinforcement Learning (RL)

Agent
Environment

Transition Function
Reward Function

Action

Reward

State

Following Su<on and Barto, 2018



Reinforcement Learning (RL)

R(s, a, s0) ! R

Agent
Environment

Transi5on Func5on
Reward Func5on

Action

Reward

State
R(s) ! R

Following Su<on and Barto, 2018



Challenges to RL

• Reward Specification: It’s hard to define reward functions for complex tasks. 

• Sample Efficiency: RL agents might require billions of interactions with the 
environment to learn good policies.

• Partial Observability

[Dulac-Arnold, Mankowitz, Hester, 2019]



Goals, Preferences, Norms, Laws …

• Run the dishwasher when it’s full or when dishes are needed for the next meal.

• Make sure the bath temperature is between 32 – 40 celcius immediately before letting someone 

enter the bathtub.

• Do not vacuum while someone in the house is sleeping.

• …

• Always serve the person who has been waiting the longest

• If you’re driving in Quebec, never turn right on a red light.



… (Procedural) Instructions

When assisCng someone from a car to the sidewalk, please always open the car door 

closest to the person, help the person to standing, move them beyond the car door, 

close the car door, walk them to the sidewalk.



How do we communicate this to our RL agent?



How do we communicate this to our RL agent?

Formal Language



Linear Temporal Logic (LTL) 

A compelling logic to express temporal properties of traces.

Syntax

Properties
• Interpreted over finite or infinite traces.
• Can be transformed into automata.

LTL in a Nutshell

Syntax

Logic connectives: ^,_,¬
LTL basic operators:

next: ⌦'
weak next: ✏'
until:  U�

Other LTL operators:

eventually:  ' def
= trueU'

always: �' def
= ¬ ¬'

release:  R�
def
= ¬(¬ U¬�)

Example: Eventually hold the key, and then have the door open.

 (hold(key) ^⌦ open(door))

Finite and Infinite interpretations

The truth of an LTL formula is interpreted over state traces:

LTL, infinite traces

LTLf , finite traces 1

1cf. Bacchus et al. (1996), De Giacomo et al (2013, 2015)
Camacho et al.: Bridging the Gap Between LTL Synthesis and Automated Planning 5 / 24

Remember 
this!



Goals and Preferences

• Do not vacuum while someone is sleeping

 ⇤[¬(vacuum ^ sleeping)]

I.e.,    always[¬	(vacuum ∧ sleeping)]



How do we communicate this to our RL agent?

Formal Language

 Automata



Formal Language - Automata Correspondence

finite-state automaton

push-down automaton

linear-bounded automaton

Turing machines

Noam Chomsky

Chomsky Hierarchy



(Some) affordances of automata

• Normal-form representation
• Exposes function structure – allowing for compositional learning and transfer
• Distinguish contexts – a Markovian decomposition
• A pathway to understanding computation …

As we will see
• Supports counterfactual reasoning

• Define a sublanguage
§Serve as generators and a recognizers of the traces accepted by an automaton.
   Can be used to generate data.



The alphabet, compositional syntax, and semantics 
of (formal) language can help RL agents learn, 

learn what to remember, and plan. 



The Rest of the Talk

▶  Reward Machines (RM)

§   Exploiting RM Structure in Learning

§   Experiments

§   Creating Reward Machines

§   Concluding Remarks
   



REWARD MACHINES



Simple Example: 
 Go to A, then B, then C, then D 

B * * C

* o *

A * * D

Agent
Office World



Reward FuncOon:
 Go to A, then B, then C, then D 

B * * C

* o *

A * * D

count = 0  # global variable

def get_reward(s):
    if count == 0 and state.at(“A”):
        count = 1
    if count == 1 and state.at(“B”):
        count = 2
    if count == 2 and state.at(“C”):
        count = 3
    if count == 3 and state.at(“D”):
        count = 0
        return 1
    return 0



Encode reward function in an automata-like structure
                   using a vocabulary   

Define a Reward Function using a Reward Machine

count = 0  # global variable

def get_reward(s):
    if count == 0 and state.at(“A”):
        count = 1
    if count == 1 and state.at(“B”):
        count = 2
    if count == 2 and state.at(“C”):
        count = 3
    if count == 3 and state.at(“D”):
        count = 0
        return 1
    return 0

𝑢!

𝑢"

𝑢#

𝑢$

¬A, 0

¬B, 0

¬C, 0

¬D, 0

A, 0

B, 0C, 0

D, 1

𝑃 = {    ,      , 𝑜,∗, 𝐴, 𝐵, 𝐶, 𝐷}  



Reward Machine

• finite set of states 𝑈
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𝑢#

𝑢$

¬A, 0

¬B, 0

¬C, 0

¬D, 0

A, 0

B, 0C, 0

D, 1



Reward Machine

• finite set of states 𝑈
• iniCal state 𝑢" ∈ 𝑈

𝑢!

𝑢"

𝑢#

𝑢$

¬A, 0

¬B, 0

¬C, 0

¬D, 0

A, 0

B, 0C, 0

D, 1



𝑢!

𝑢"

𝑢#

𝑢$

¬A, 0

¬B, 0

¬C, 0

¬D, 0

A, 0

B, 0C, 0

D, 1

Reward Machine

• finite set of states 𝑈
• initial state 𝑢" ∈ 𝑈
• set of transitions labelled by:



𝑢!

𝑢"

𝑢#

𝑢$

¬𝐀, 𝟎

¬𝐁, 𝟎

¬𝐂, 𝟎

¬𝐃, 𝟎

𝐀, 𝟎

𝐁, 𝟎𝐂, 𝟎

𝐃, 𝟏

• finite set of states 𝑈
• iniCal state 𝑢" ∈ 𝑈
• set of transiCons labelled by:

§ A logical condiAon* (guards)
§ A reward func2on (or constant)

*logical formula --- property of the current state in the vocabulary

𝑃 = {    ,      , 𝑜,∗, 𝐴, 𝐵, 𝐶, 𝐷}  

Reward Machine

𝑃



𝑢!

𝑢"

𝑢#

𝑢$

¬A, 0

¬B, 0

¬C, 0

¬D, 0

A, 0

B, 0C, 0

D, 1
B * * C

* o *

A * * D

Reward Machines in AcOon
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𝑢!
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𝑢$
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* o *

A * * D
State

Reward Machines in AcOon



𝑢!

𝑢"

𝑢#

𝑢$

¬A, 0

¬B, 0

¬C, 0

¬D, 0

A, 0

B, 0C, 0

D, 1
B * * C

* o *

A * * D
State

Reward Machines in Action



𝑢!

𝑢"

𝑢#

𝑢$

¬A, 0

¬B, 0

¬C, 0

¬D, 0

A, 0

B, 0C, 0

D, 1
B * * C

* o *

A * * D
State

0

Reward Machines in AcOon



𝑢!

𝑢"

𝑢#

𝑢$

¬A, 0

¬B, 0

¬C, 0

¬D, 0

A, 0

B, 0C, 0

D, 1
B * * C

* o *

A * * D

Reward Machines in AcOon



Other Reward Machines

Task: Deliver coffee to the office, while avoiding furniture.

¬	 ∧ ¬ ∗	, 0

true, 0

∗, 0

𝑢" 𝑢!

¬o ∧ ¬ ∗, 0

𝑢$

true, 0

o ∧ ¬ ∗, 1	 ∧ ¬ ∗	, 0

𝑢#

∗, 0



Task: Deliver coffee to the office, while avoiding furniture.

¬	 ∧ ¬ ∗	, 0

true, 0

∗, 0

𝑢" 𝑢!

¬o ∧ ¬ ∗, 0

𝑢$

true, 0

o ∧ ¬ ∗, 1	 ∧ ¬ ∗	, 0

𝑢#

∗, 0

Other Reward Machines



The Rest of the Talk

•  Reward Machines (RM)

▶  Exploiting RM Structure in Learning

•  Experiments

•  Creating Reward Machines

•  Concluding Remarks



EXPLOITING RM STRUCTURE IN LEARNING



Methods for ExploiOng RM Structure

Our Approaches:
1. Q-learning over Cross-Product State + RM (Q-learning) Baseline
2. Hierarchical RL based on opCons (HRL) Baseline
3. HRL with RM-based pruning (HRL-RM) 
4. Q-learning for Reward Machines (QRM)
5. QRM + Reward Shaping for Reward Machine (QRM + RS)
6. Q-learning with Counterfactual Experiences for Reward Machines (CRM) 
7. CRM+ Reward Shaping for Reward Machine (CRM + RS)

[Toro Icarte, Klassen, Valenzano, M., ICML18]
[Toro Icarte, Klassen, Valenzano, M., JAIR22]



Simple Idea:  
•  Give the learning algorithm access to the reward function 
•  …
•  … 



Simple Idea:  
•  Give the learning algorithm access to the reward func=on 
•  Exploit composi=onal reward func=on structure in learning
•  … 



Methods for ExploiOng RM Structure

Our Approaches:
1. Q-learning over Cross-Product State + RM (Q-learning) Baseline
2. Hierarchical RL based on opCons (HRL) Baseline
3. HRL with RM-based pruning (HRL-RM)
4. Q-learning for Reward Machines (QRM)
5. QRM + Reward Shaping for Reward Machine (QRM + RS)
6. Q-learning with Counterfactual Experiences for Reward Machines (CRM) 
7. CRM+ Reward Shaping for Reward Machine (CRM + RS)

[Toro Icarte, Klassen, Valenzano, M., ICML18]
[Toro Icarte, Klassen, Valenzano, M., JAIR22]



1. Q-Learning over Cross-Product - Baseline

A Reward Machine may define a non-Markovian reward funcCon.
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A Reward Machine may define a non-Markovian reward function.
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1. Q-Learning over Cross-Product - Baseline

A Reward Machine may define a non-Markovian reward function.
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1. Q-Learning over Cross-Product - Baseline

A Reward Machine may define a non-Markovian reward funcCon.
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1. Q-Learning over Cross-Product - Baseline

A Reward Machine may define a non-Markovian reward function.

𝑢!

𝑢"

𝑢#

𝑢$

¬A, 0

¬B, 0

¬C, 0

¬D, 0

A, 0

B, 0C, 0

D, 1
B * * C

* o *

A * * D State

1



1. Q-Learning over Cross-Product - Baseline

SoluLon: Include RM state as part of agent’s state representaCon.
Use standard Q-learning on resulCng MDP.

𝑢!

𝑢"

𝑢#

𝑢$

¬A, 0

¬B, 0

¬C, 0

¬D, 0

A, 0

B, 0C, 0

D, 1
B * * C

* o *

A * * D State

1



Methods for ExploiOng RM Structure

Our Approaches:
1. Q-learning over Cross-Product State + RM (Q-learning) Baseline
2. Hierarchical RL based on opCons (HRL)   Baseline
3. HRL with RM-based pruning (HRL-RM)
4. Q-learning for Reward Machines (QRM)
5. QRM + Reward Shaping for Reward Machine (QRM + RS)
6. Q-learning with Counterfactual Experiences for Reward Machines (CRM) 
7. CRM+ Reward Shaping for Reward Machine (CRM + RS)



Methods for Exploiting RM Structure

Our Approaches:
1. Q-learning over Cross-Product State + RM (Q-learning) Baseline
2. Hierarchical RL based on options (HRL) Baseline
3. HRL with RM-based pruning (HRL-RM)
4. Q-learning for Reward Machines (QRM)
5. QRM + Reward Shaping for Reward Machine (QRM + RS)
6. Q-learning with Counterfactual Experiences for Reward Machines (CRM) 
7. CRM+ Reward Shaping for Reward Machine (CRM + RS)



Simple Idea:  
•  Give the learning algorithm access to the reward func=on 
•  Exploit composi=onal reward func=on structure in learning
•  Employ Counterfactual Reasoning

Remember 
this!



4. Q-Learning for Reward Machines (QRM)

𝑢!

𝑢"

𝑢#

𝑢$

¬A, 0

¬B, 0

¬C, 0

¬D, 0

A, 0

B, 0C, 0

D, 1



4. Q-Learning for Reward Machines (QRM)

QRM (our approach) 
1. Learn one policy (Q-value funcAon) per state in 

the Reward Machine.

𝑢!

𝑢"

𝑢#

𝑢$

¬A, 0

¬B, 0

¬C, 0

¬D, 0

A, 0

B, 0C, 0

D, 1
𝑞"

𝑞#
𝑞!𝑞$



4. Q-Learning for Reward Machines (QRM)

QRM (our approach) 
1. Learn one policy (Q-value funcAon) per state in 

the Reward Machine.

2. Select acAons using the policy of the current 
RM state. 𝑢!

𝑢"

𝑢#

𝑢$

¬A, 0

¬B, 0

¬C, 0

¬D, 0

A, 0

B, 0C, 0

D, 1
𝑞"

𝑞#
𝑞!𝑞$



4. Q-Learning for Reward Machines (QRM)
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QRM (our approach) 
1. Learn one policy (Q-value funcAon) per state in 

the Reward Machine.

2. Select acAons using the policy of the current 
RM state.



4. Q-Learning for Reward Machines (QRM)

𝑢!

𝑢"

𝑢#

𝑢$

¬A, 0

¬B, 0

¬C, 0

¬D, 0

A, 0

B, 0C, 0

D, 1
𝑞"

𝑞#
𝑞!𝑞$

QRM (our approach) 
1. Learn one policy (Q-value function) per state in 

the Reward Machine.

2. Select actions using the policy of the current 
RM state.



4. Q-Learning for Reward Machines (QRM)

𝑢!

𝑢"

𝑢#

𝑢$

¬A, 0

¬B, 0

¬C, 0

¬D, 0

A, 0

B, 0C, 0

D, 1
𝑞"

𝑞#
𝑞!𝑞$

QRM (our approach) 
1. Learn one policy (Q-value funcAon) per state in 

the Reward Machine.

2. Select acAons using the policy of the current 
RM state.

3. Reuse experience to update all Q-value 
funcAons on every transiAon via off-policy 
reinforcement learning.

Remember 
this!

This is a form of Counterfactual Reasoning



Methods for ExploiOng RM Structure

Our Approaches:
1. Q-learning over Cross-Product State + RM (Q-learning) Baseline
2. Hierarchical RL based on opCons (HRL) Baseline
3. HRL with RM-based pruning (HRL-RM)
4. Q-learning for Reward Machines (QRM)
5. QRM + Reward Shaping for Reward Machine (QRM + RS)
6. Q-learning with Counterfactual Experiences for Reward Machines (CRM) 
7. CRM+ Reward Shaping for Reward Machine (CRM + RS)



Methods for ExploiOng RM Structure

Our Approaches:
1. Q-learning over Cross-Product State + RM (Q-learning) Baseline
2. Hierarchical RL based on options (HRL) Baseline
3. HRL with RM-based pruning (HRL-RM)
4. Q-learning for Reward Machines (QRM)
5. QRM + Reward Shaping for Reward Machine (QRM + RS)
6. Q-learning with Counterfactual Experiences for Reward Machines (CRM) 
7. CRM+ Reward Shaping for Reward Machine (CRM + RS)



6. Q-Learning w/ Counterfactual Experiences for RMs (CRM)

QRM  
• learns mulLple Q-funcLons 
• one Q-funcCon q(s,a) per reward machine state 𝑢!

𝑢"

𝑢#
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¬C, 0

¬D, 0

A, 0

B, 0C, 0

D, 1
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𝑞#
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6. Q-Learning w/ Counterfactual Experiences for RMs (CRM)

QRM  
• learns mulLple Q-funcLons 
• one Q-funcCon q(s,a) per reward machine state

CRM  
• learns one Q-funcLon q(s,u,a) for the cross-product state <s,u> 
• synthesizing counterfactual experiences for all the other RM states <s,ui >

  
 CRM behaves iden5cally to QRM in tabular domains

[Toro Icarte, Klassen, Valenzano, M., JAIR22]



OpOmality of QRM and CRM (with reward shaping)

B * * C

* o *

A * * D
𝑎

Theorem (informally stated): 
  QRM & CRM (+RS) preserve optimality guarantees of Q-learning & reward shaping.       
  They converge to optimal policies when there is no function approximation.      

𝑢!

𝑢"

𝑢#

𝑢$

¬A, 0

¬B, 0

¬C, 0

¬D, 0

A, 0

B, 0C, 0

D, 1



The Rest of the Talk

•  Reward Machines (RM)

•  Exploiting RM Structure in Learning

▶  Experiments

•  Creating Reward Machines

•  Concluding Remarks



EXPERIMENTS



Office World Experiments

4 tasks, 30 independent trials per task

B * * C

* o *

A * * D
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[Toro Icarte, Klassen, Valenzano, M., ICML18]
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4 tasks, 30 independent trials per task
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[Toro Icarte, Klassen, Valenzano, M., ICML18]

Legend:
         Q-Learning over Cross Product
          HRL
          HRL-RM
          QRM
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[Toro Icarte, Klassen, Valenzano, M., ICML18]

Cra\ World Experiments
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10 tasks over 10 random maps, 3 independent trials per combination
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Legend:
         DDQN over Cross Product
          DHRL
          DHRL-RM
          DQRM

Water World Experiments

10 tasks over 10 random maps, 3 independent trials per combinaCon
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[Toro Icarte, Klassen, Valenzano, M., ICML18]
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Half Cheetah – ConOnuous State and AcOon Domains

Half Cheetah (Task 2)Half Cheetah (Task 1)

[Toro Icarte, Klassen, Valenzano, M., JAIR22]



The Rest of the Talk

•  Reward Machines (RM)

•  Exploiting RM Structure in Learning

•  Experiments

▶  Creating Reward Machines

•  Concluding Remarks



CREATING REWARD MACHINES



CreaOng Reward Machines

Where do Reward Machines come from?

1. Specify 

2. Generate

3. Learn



1. Reward SpecificaOon: one size does not fit all

Do not need to specify Reward Machines directly. 

Specify reward-worthy behavior in any formal language that is translatable to finite-state automata.

finite-state automaton

push-down automaton

linear-bounded automaton

Turing machines

The Chomsky Hierarchy
Noam Chomsky



1. Construct Reward Machine from Formal Languages

Reward Machines serves as a lingua franca and provide a normal form representaLon 
for the reward funcCon that supports reward-funcLon-tailored learning.

[Camacho, Toro Icarte, Klassen, Valenzano, M., IJCAI19]
[Middleton, Klassen, Baier, M, ICAPS2020 Systems Demo]

Remember 
this!

RM

QRM

Reward 
shaping

Future 
RM-based
algorithms

CRM
DFALTL dialects, LTLf … 

Any Regular Language

Some Natural Language
(Autoformaliza7on (ongoing))



CreaOng Reward Machines

Where do Reward Machines come from?

1. Specify 

2. Generate

o  High-level planner

o  LLMs

o  …

3. Learn

[Illanes, Yan, Toro Icarte, M., RLDM19, ICAPS20, KR2ML@NeurIPS20]



CreaOng Reward Machines

Where do Reward Machines come from?

1. Specify 

2. Generate

3. Learn

o  Use RM as Memory – ParLally Observable Se[ngs

o  Full Observable Se[ngs

o  …

[Toro Icarte; Waldie; Klassen; Valenzano; Castro; M, NeurIPS 2019]
[Toro Icarte; Waldie; Klassen; Valenzano; Castro; M, AIJ23]



CONCLUDING REMARKS



TAKEAWAY

The alphabet, composi>onal syntax, and seman>cs of (formal) language 
can help RL agents learn, learn what to remember, plan, and reason. 

*

Formal languages are powerful and effec>ve tools to advise, instruct, 
task and impart knowledge to an AI that we have only begun to exploit.
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