Rationally (Re)constructing
Rational Robots

What does she
even mean?

g Leslie Pack Kaelbling



Research goal:

understand the computational mechanisms
necessary to make

a general-purpose intelligent robot




What makes this hard?

* Enormous variability in task demands and environments

(countries, houses, families, jobs)
How can we

approach this

* Enormous state space (miles, millions of objects) 5
problems? Rationally!

* Long horizon (years)




Rational agents

An agent is rational if it selects actions that
* in expectation,
 given the information it has about the state of the environment,

* will maximize its expected utility
Who are the

rational agents
here, anyway?

Realistically, only ever “bounded”:
subject to the agent’s cognitive/hardware/energy/time constraints



Rational (robot factory)

Find a mapping 7 : (0,a)" — a that optimizes expected future reward

Engineer has uncertainty over
e physical state
* objective function
* physical dynamics
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Design-time rationality

 Build a distribution of world simulators that mirrors
the distribution of worlds (objects, houses,
landscapes, humans) our robots could ever possibly
encounter

* Design a completely general-purpose substrate for
(meta) behavior learning

simulators

* Implement a very very large instance of that _ _ _
learning method Evolution did something

like this for you

* Train it until it achieves general-purpose
intelligence, inventing the best possible algorith-
for the problem distribution

But | don't think
Seems cool it can scale
and beautiful! \



Leverage structured prior

Take all possible advantage of:
 the structure of the physical (and social) world
* algorithmic insights from computer science and cognitive science
 abstraction, composition, inference
e our accumulated cultural knowledge

 Reject the |
 bitter lesson
s " Love the world

Performance

Time / Energy

you're WIth'i



Leverage runtime inference

Performing computation at runtime may make action-selection slower

But it can be worthwhile

e Can reduce sample complexity for learning
[Limits of autoregressive models and their alternatives, Lin et al, 21]

e Can make the easy cases fast!

* circuit complexity for worst-case planning may be terrible
[What Planning Problems Can A Relational Neural Network Solve?, Mao, et al, NeurlPS23]

Simple example: navigating in a novel 2D grid maze with n locations
e problem input: start state, goal set, maze map
* size of a tabular goal-conditioned policy : start x goal x map =n x 2n x 2*n
« difficult to find compact policy (if one exists)
* size of a tabular transition model: start x map = n x 2n
* size of structured model : O(1) (or O(log n) to count bits) |
* time for action-selection is O(min(n, 4*h)) worst case
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Symbol: a bit pattern that represents an aspect of the world

* Represents the same thing no matter where it is in memory
* For now, adopt a correlational theory of representation
* Not necessarily discrete: a float can represent the temperature outside

What are symbols good for?
* Inference: meaning-preserving manipulation of representations
 correct independent of the actual meaning relationship

* re-uses the same circuits for computations "about"
completely different things
* important for efficient learning:

 build (networks for) inference algorithms into the agent A S
s loarn ccaundad renresentations A —) l
symbolic != prior knowledge ] G

D



Solve the problem that you have! _——
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(Rational robot) factory

Find an action a that optimizes expected future reward

t

E.. Beliof Z R(s,a) | continue optimall%\

Robot has uncertainty over
e physical state
e social state (human desires)
* physical dynamics

e sl £)

That's mel




Planning: one type of symbolic inference

* Symbolic expressions represent states of the external world
e Current world state
* Transition model represents dynamics of world states
* Goal / reward model represents utility of world states
* Planning algorithm
* Semantics preserving, domain independent
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Robot policy representation: prevailing view

audio/visual
perception

force/tactile/

; ) motor
proprioception

commands




Policy representation: with inference

audio/visual
perception

force/tactile/
proprioception

models

encoder ‘

planner

motor
control

motor
commands




Flexible, general world model representation : desiderata

* can represent very complex state / goal spaces
* including hybrid discrete-continuous
learnable with low sample complexity / high generalization ability
* key is (nearly) independent substructure : factoring, lifting
efficient for planning

e nearly deterministic outcomes
* independent substructure

can be guided by linguistic input / LLMs, but not required
e can incorporate learned search-control knowledge

can model partial information



What are our symbols?  Images?




Map input state into lower-

Latent, compressed encoding dimensional vector

S is an abstraction

A

e 'I"is smaller, easier to learn
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Factored encoding

>

Divide latent vector into individually
meaningful pieces called factors

* |earn separate transition model
N, for each factor

* not yet very advantageous (but

does enable IW() style planning

F1: temperature

F2: heater-running

F3: window-open

F4: precipitation



Factored encoding: enables locality and sparsity

A

T ~/ Locality: whether and how factors
S change depends on only a few other

factors

s

Sparsity: most factors don’t change
most of the time

-é if heater-running:

temperature := f(temperature, window-opening)

Can result in dramatic reduction in
complexity of the function to be learned

Enables powerful general-purpose search
“heuristics” based on an assumption that
actions don’t “interfere” with each other



“Lifted” (object-based) encoding: objects index factors

objl

obj2

obj3

obj4

obj5

objk

several factors

for each object:

properties

temp(o;)

open(o;)
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several factors for each
tuple of objects:
relations

relpose(0;,0;)
contains(o;, 0;)



Two kinds of symbols: object names, properties

color(obj2) = #b1b

objl
: Properties grounded via
0bj2 perceptual detectors
0obj3 Object names grounded via
: segmentation and tracking;
obj4 can be flexible, fluid
obj5
objk Very compact

models




Properties can encode belief

objl

obj2

obj3

obj4

obj5

objk

P(color(obj2) = #b1b) > 0.9

Belief space = space of
distributions over world states

Planning in belief space is not
technically different from
planning in "state space"

I'm never
completely sure....



Sparse, factored, lifted transition rules

A /\/

S
A

= ————— %|=|

move(A, d):
if contains(A, B) and light(B):
pose(B) := f(relpose(A, B), d)




Sparse, factored, lifted transition rules

A /\/
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move(A, d):
if contains(A, B) and light(B):
pose(B) := f(relpose(A, B), d)




Sparse, factored, lifted transition rules

A /\/

S
A

2 B EE—F 35

move(A, d):
if contains(A, B) and light(B):
pose(B) := f(relpose(A, B), d)




Causal Action Model: lifted, factored, transition model

behavior move to(target: loc) :

body:
bind d: {[1, e], [e, 1], [-1, o], [0, -1]}
achieve not wall at(target)
achieve robot loc == target - d
move(d)

effect:
robot _loc == target

object var: target
parameter: d

predicate: wall_at, robot_loc
controller: move

Range from completely
deterministic program to highly
non-deterministic search space

Jiayuan Mao, Crow Description Language, Hybrid Representations for Decision-Making, WAFR24



Learning the motion rule using Popper
Inductive Logic Programming algorithm

Data Facts
all at(3).
pos(new_at(1, 1, 2)). wall at(3)
wall at(-2).

pos(new_at(1, -1, 0)).
pos(new_at(2, 1, 2)).

pos(new_at(4, -1, 4)).
pos(new_at(-3, 1, -3)).

mysum(X, Y, Z) :- Z #= X + V.

free(X) :- \+ wall at(X).

neg(new_at(1, 1, 1)).
neg(new_at(2, 1, 3)).
neg(new_at(-3, 1, -2)).
neg(new_at(4, -1, 3)).

RESULT

new_at(ve,Vv1i,V2):- mysum(Ve,V1i,V2),free(V2).
new_at(ve,Vv1i,V2):- wall at(V3),mysum(V1i,Ve,V3),mysum(V1i,Vv2,V3).

Cropper & Morel, Learning Programs by Learning From Failures , MLJ21



Continual Learning for Causal Action Models

w—

pre-image predicates
constraint
controllers
samplers
causal /
action
® /@/’*%/\«ngodalg\;
S
C\ - symbolic = prior /;
N

— ,/\\777;’/ /%,7)/7/

Start with some built-in predicates (innate
or via LVM or teaching)

Learn controllers to achieve them (RL on
top of sensible control-theoretic
primitives)

Instantiate CAMs with the predicate as
effect and controller

Learn, by experimentation, generative
models for sampling continuous
parameters

Describe the preimage of the effect under
the controller (sort of like but not the
same as an initiation set) using existing
predicates, if possible, but if not,
instantiate new predicates




Policy representation: with inference

audio/visual
perception

force/tactile/
proprioception

models

encoder ‘

planner

motor
control

motor
commands




Policy representation: our target architecture

common
sense :
teleological

language memory
input

object-based cognitive

spatial planning /
audio/visual memory reasoning
perception

force/tactile/

. . motor motor
proprioception

control commands

g




We currently have a patchwork of the needed parts

N AR WN R

Learned perception plus planning vields strong generalization

We can learn to ground predicate symbols from unlabeled demonstrations

We can learn generative models for continuous parameters by experimentation
We can learn causal action model structures

We can learn "mechanisms" from a single example

Generative models can be compositionally structured and learned

We can use LLM and LVMs to guide learning

Many of these ideas can be integrated, now, But they illustrate the
into a real robot power of the approach

These pieces don't
guite fit together yet!



We currently have a patchwork of the needed parts

N AR WN R

Learned perception plus planning vields strong generalization

We can learn to ground predicate symbols from unlabeled demonstrations

We can learn generative models for continuous parameters by experimentation
We can learn causal action model structures

We can learn "mechanisms" from a single example

Generative models can be compositionally structured and learned

We can use LLM and LVMs to guide learning

Many of these ideas can be integrated, now,
into a real robot



Learned perception plus planning vields generalized policy

exists x. '
G(V) yellow(x) &

on(x, mat) -
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Aidan Curtis, Xiaolin Fang, ..., Caelan Garrett, ICRA 2022



Immediate generalization to novel objects, goals, arrangements

Put all the
objects on the
blue mat!




Put each object in the bowl| of the closest color




Put all the objects on the blue mat
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Cross-embodiment generalization

|

Goal: stack three objects

301. 302.303. 0n(01 y 02) A 011(02, 03)




We currently have a patchwork of the needed parts

N AR WN R

Learned perception plus planning vields strong generalization

We can learn to ground predicate symbols from unlabeled demonstrations

We can learn generative models for continuous parameters by experimentation
We can learn causal action model structures

We can learn "mechanisms" from a single example

Generative models can be compositionally structured and learned

We can use LLM and LVMs to guide learning

Many of these ideas can be integrated, now,
into a real robot



Active learning: training on real robot is expensive!

4 N i - =
i = L
J/E: |
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X/ ‘
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i

Note that we do grasp and motion planning
during data acquisition!

Zi Wang, Caelan Garrett, ..., IROS 2018



We currently have a patchwork of the needed parts

N AR WN R

Learned perception plus planning vields strong generalization

We can learn to ground predicate symbols from unlabeled demonstrations

We can learn generative models for continuous parameters by experimentation
We can learn causal action model structures

We can learn "mechanisms" from a single example

Generative models can be compositionally structured and learned

We can use LLM and LVMs to guide learning

Many of these ideas can be integrated, now,
into a real robot



What can We Learn from a Single Demonstration

( name, type, @)

hook (r: robot, tool: object,
target: object)
— action_sequence

High-order concepts as a “program”!
Modeled as a sequence of contacts

grasp “hook” place grasp
tool tool target

Mao, Lozano-Perez, Tenenbaum, Kaelbling. CoRL 2023. Learning Reusable Manipulation Strategies.



The Contact Mode Subgoals in Hook-Using

Key idea: model manipulation “strategies” as a program of
a sequence of subgoals about contacts among objects

behavior hook(target, tool):
body:
achieve holding(tool, ?graspl)
move-with-contact(tool, target, ?traj)
place down(tool)
grasp(target, ?grasp2)

grasp “hook” place grasp
tool tool target

Mao, Lozano-Perez, Tenenbaum, Kaelbling. CoRL 2023. Learning Reusable Manipulation Strategies.
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The Contact Mode Subgoals in Hook-Using

Key idea: model manipulation “strategies” as a program of
a sequence of subgoals about contacts among objects

behavior hook(target, tool):
body:
achieve holding(tool, ?graspl)
move-with-contact(tool, target, ?traj)
place _down(tool)
grasp(target, ?grasp2)

‘ The sequence of subgoals can be learned
, from a single demonstration!

Mao, Lozano-Perez, Tenenbaum, Kaelbling. CoRL 2023. Learning Reusable Manipulation Strategies.



The Contact Mode Subgoals in Hook-Using

Key idea: model manipulation “strategies” as a program of
a sequence of subgoals about contacts among objects

behavior hook(target, tool):
body:
achieve holding(tool, ?graspl)
move-with-contact(tool, target, ?traj)
place down(tool)
grasp(target, ?grasp2)

-» The sequence of subgoals can be learned
, from a single demonstration!

Concrete values for grasping and
trajectories vary across instances

Mao, Lozano-Perez, Tenenbaum, Kaelbling. CoRL 2023. Learning Reusable Manipulation Strategies.



Learning Contact Constraints and Values

4 N 4
' The high-level concept as a constraint set

behavior hook(target, tool):
- Single Demo: ;| body:

5 achieve holding(tool, ?graspl)

) ; Ilh kll . .
, Usmg a o]0 move-with-contact(tool, target, ?traj)
J. =. place down(tool)

_// grasp(target, ?grasp2)

700

Wall Clock Time
600

Sampling-Based Opt.

*/ following the Program zz

300

<— No Guidance, >10m

+Program, 30.82s

1

*: The demonstration is given in simulation so we can extract contact points directly

200

100

New Instance

0



Learning Contact Constraints and Values

s
’

Single Demo:
Using a “hook”

~

P
The high-level concept as a constraint set
behavior hook(target, tool):

body:

achieve holding(tool, ?graspl)
move-with-contact(tool, target, ?traj)
place down(tool)

F—
5 v

New Instance

Sampling-Based Opt.
following the Program

Leveraging Additional
Visual Cues

grasp(target, ?grasp2)

700

600

500

400

300

200

100

0

Wall Clock Time

<— No Guidance, >10m

+Program, 30.82s

+Vision
[ <4s

*: The demonstration is given in simulation so we can extract contact points directly



Learning Mechanisms Improves Planning Efficiency

Goal:

holding(plate)
Method Edge Hook Lever Poking CoM Slope&Blocker
Basis Ops Only 89.45+5.53 >600 523.184+9.22 >600 19.30+2.82 >600

Ours (Macro+Sampler) 0.57+0.05 3.84+1.56 1.554+0.29 97.76+10.67 0.9740.09 4.11+0.94




Learning Mechanisms Improves Planning Efficiency
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Goal:

holding(plate)
Method Edge Hook Lever Poking CoM Slope&Blocker
Basis Ops Only 89.45+5.53 >600 523.18+9.22 >600 19.30+2.82 >600

Ours (Macro+Sampler) 0.57+0.05 3.84+1.56 1.554+0.29 97.76+10.67 0.9740.09 4.11+0.94




Further compose learned mechanisms via planning

- Q.
4 "
s N -
\ «ii
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Goal: holding(box) Goal: on(box, ramp)
The caliper is too flat to be grasped. Box may slide down the ramp.



We currently have a patchwork of the needed parts

N AR WN R

Learned perception plus planning vields strong generalization

We can learn to ground predicate symbols from unlabeled demonstrations

We can learn generative models for continuous parameters by experimentation
We can learn causal action model structures

We can learn "mechanisms" from a single example

Generative models can be compositionally structured and learned

We can use LLM and LVMs to guide learning

Many of these ideas can be integrated, now,
into a real robot



Planning to practice:
Self-motivated, fully independent, task driven learning

Robot
* Has a set of parameterized skills Practice makes
Knows a task distribution perfect!
Is not very good at deploying those skills
Has some free time on its hands
Decides to practice:
* Choose to practice skills that are important for its tasks and that it's bad at
* Plans, using its current skills:
» to decide which skills are important for its tasks
* to set up the environment so that it can practice the skill
* Plan to practice important skills you think you can improve at at!
* Plan to use skills you think you are good at!

Al INSTITUTE
Nishanth Kumar, Tom Silver, Willie McClinton, Linfeng Xiao, BDAII colleagues, arxiv2024


















Steps toward an integrated real robot

» Exploits factorial structure for planning

* Exploits world knowledge about geometry and kinematics
* Uses generative models for perception

* Learns generative model for actions

e Learns compositionally and incrementally

* Knows what it doesn't know how to do

* Uses these foundations to generalize sensibly and robustly

Oh boy!!!



Cleanup Playroom Environment




Practical (rational robot) factor

Compose

* fundamental algorithms
e physical constraints

* world knowledge in pretrained models O

] : ; : : o
to provide rational designs for runtime rational robots
/

EsBelief Z R(s,a) | continue optimally




Things we didn't talk much about!

common
sense -
teleological

language memory
input
object-based cognitive : | language
scene memory manager anguage
_ generation output
understanding *
spatial planning /
audio/visual memory reasoning
perception
force_/tact:!_e/ motor motor
proprioception control commands




Many other important directions!

* Meta-reasoning:
* Hierarchical planning, intention management
* Posing tractable sub-problems

* How can we design flexible memory systems for space and objects that play well with
other modules?

* How can we address all of these problems when there is substantial, long-term partial
observability?

» See |Ipk rant : The last four frames is not all you need!
https://youtu.be/AtNGJeXTXu4
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