Planning, reasoning, and generalisation in deep learning

Jessica B. Hamrick

jhamrick@google.com

Google DeepMind

The Royal Society "Beyond the symbols vs signals debate" 28 October 2024

Reasoning with a world model

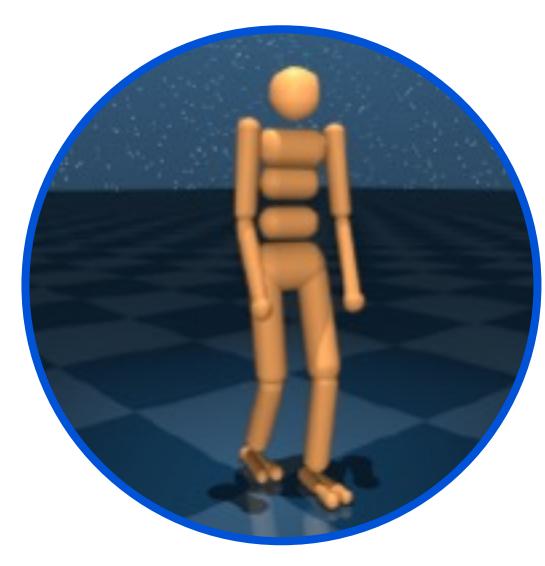
"If the organism carries a **'small-scale model' of external reality** and of its own possible actions within its head, it is able to try out various alternatives, conclude which is the best of them, react to future situations before they arise, utilise the knowledge of past events in dealing with the present and future, and in every way to react in a much fuller, safer, and more competent manner to the emergencies which face it."

-Kenneth Craik, The Nature of Explanation (1943)

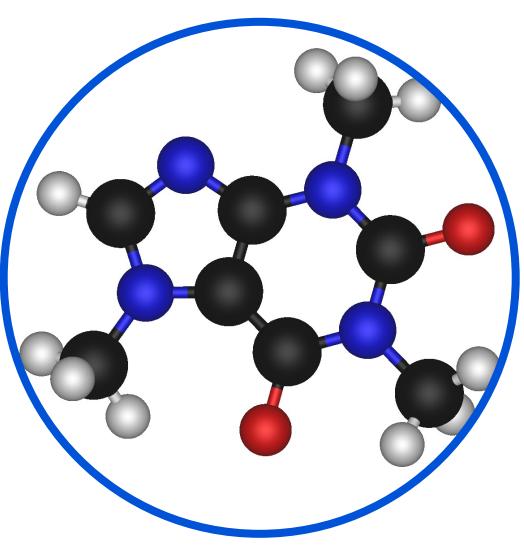
Silver et al. (2016)

Schrittwieser et al. (2020)

OpenAl et al. (2019)

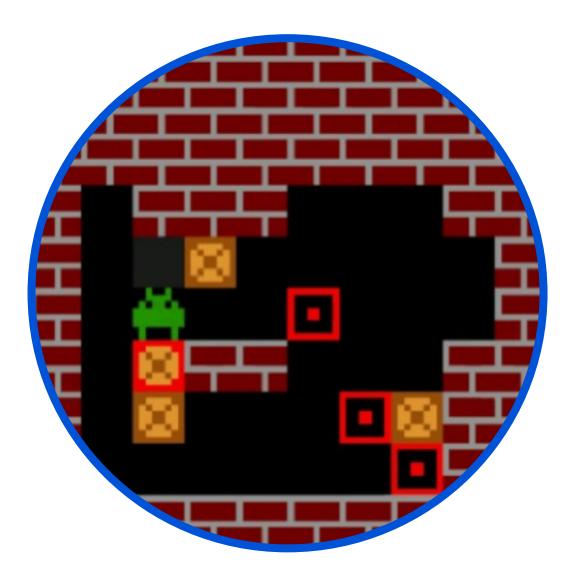


Luo et al. (2019)

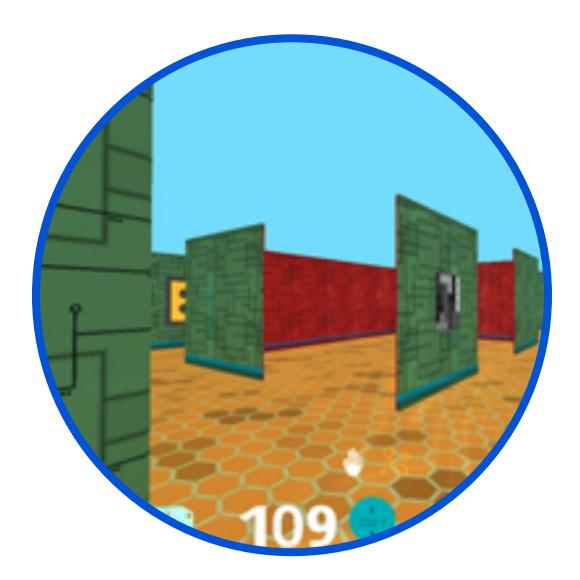


Segler et al. (2018)

Finn et al. (2018)



Weber et al. (2017)



Hafner et al. (2019)

The promise of model-based RL

"Model-free algorithms are in turn far from the state of the art in domains that require *precise and sophisticated lookahead*, such as chess and Go" -Schrittwieser et al. (2019)

"By employing search, we can find strong move sequences potentially *far away* from the apprentice policy, accelerating learning in complex scenarios"

-Anthony et al. (2017)

"....predictive models can enable a real robot to manipulate *previously unseen* objects and solve new tasks"

-Ebert et al. (2018)

"Model-based planning is an essential ingredient of human intelligence, enabling *flexible adaptation* to new tasks and goals" -Lake et al. (2016)

"...a flexible and general strategy such as mental simulation allows us to reason about a wide range of scenarios, even *novel* ones..."

-Hamrick (2017)

"...[models] enable better *generalization* across states, remain valid across tasks in the same environment, and exploit additional unsupervised learning signals..."

-Weber et al. (2017)

Generalization & transfer

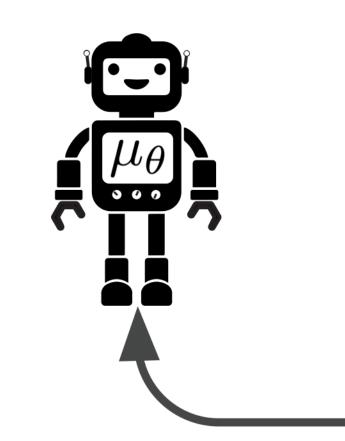
	Novel rewards	e.g., push rather than pull a familiar object	e.g., look for a different type of object in a new maze	e.g., figure out how to use a completely new object		
)))))	Identical rewards	most of 'classic' RL (including model-based)	e.g., different maze layout	e.g., build a taller tower than during training		
		Identical observations	Similar observations	Novel observations		
Degree of generalization						

Degree of transfer

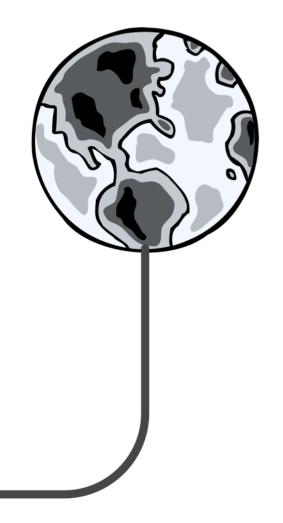
Plan for the talk

- 1. What is model-based RL?
- 2. Lessons from studying generalization & transfer in MBRL
- 3. The missing ingredient for neurosymbolic Al

Model free RL: act according to a policy and update the policy from experience

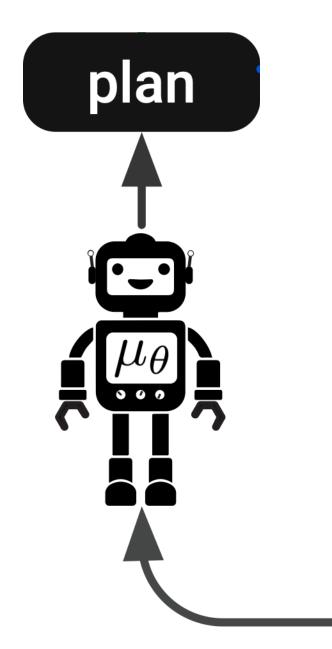


Model based RL: construct **plans** using a model of the world, and use those to update the policy

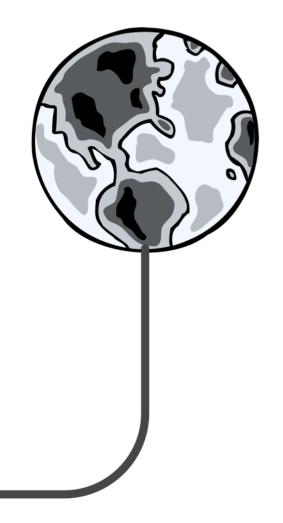


Model free RL: act according to a policy and update the policy from experience

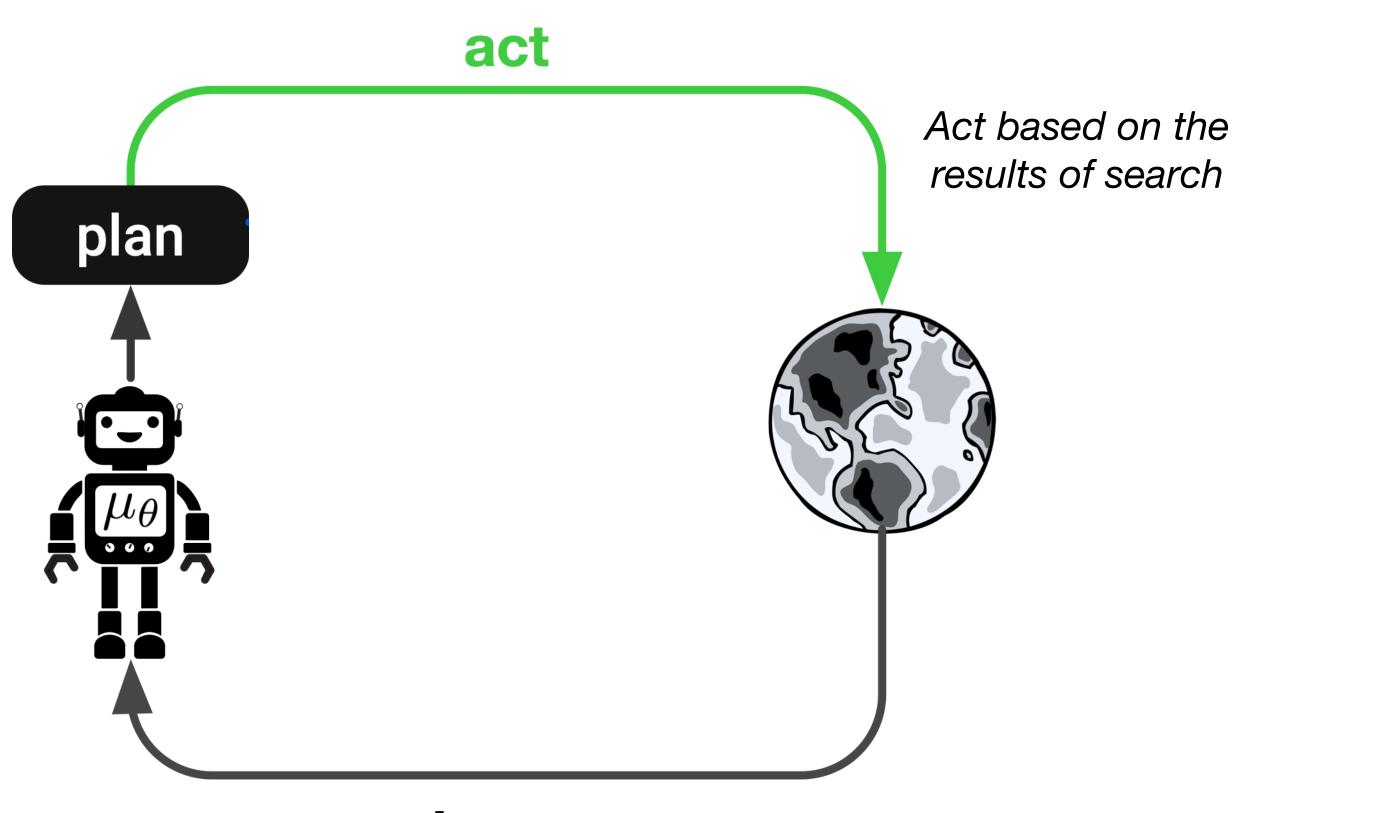
policy: where to search? **model**: what will happen?



Model based RL: construct plans using a model of the world, and use those to update the policy



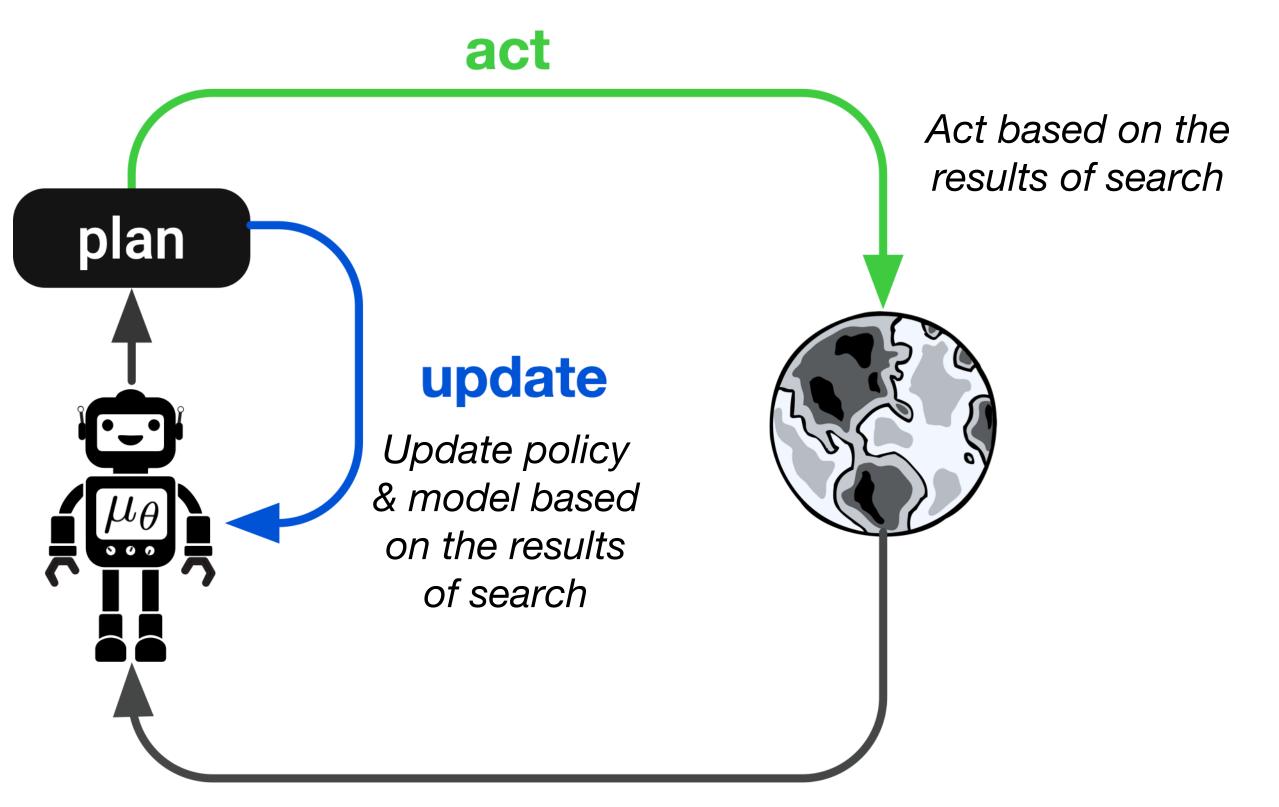
Model free RL: act according to a policy and update the policy from experience



policy: where to search? **model**: what will happen?

Model based RL: construct **plans** using a model of the world, and use those to update the policy

Model free RL: act according to a policy and update the policy from experience



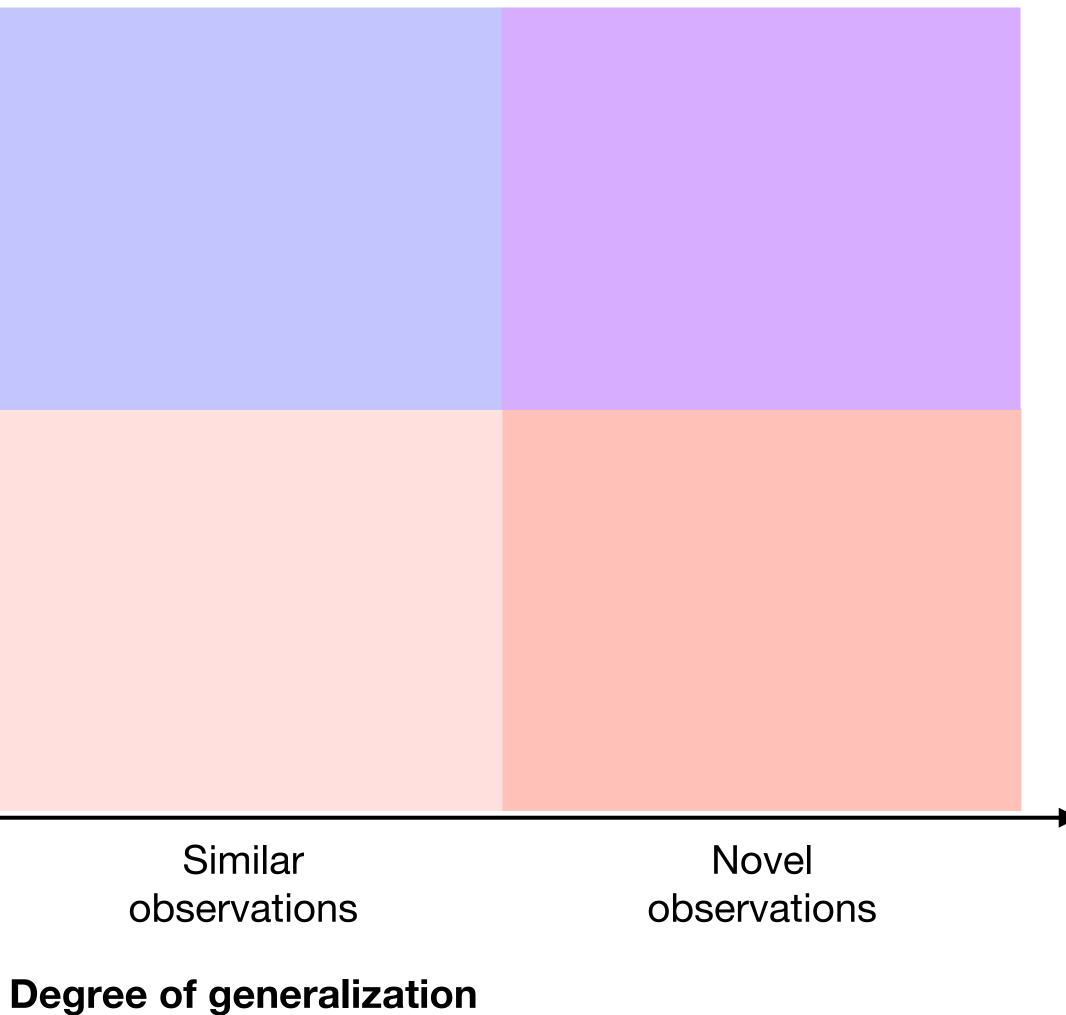
policy: where to search? **model**: what will happen?

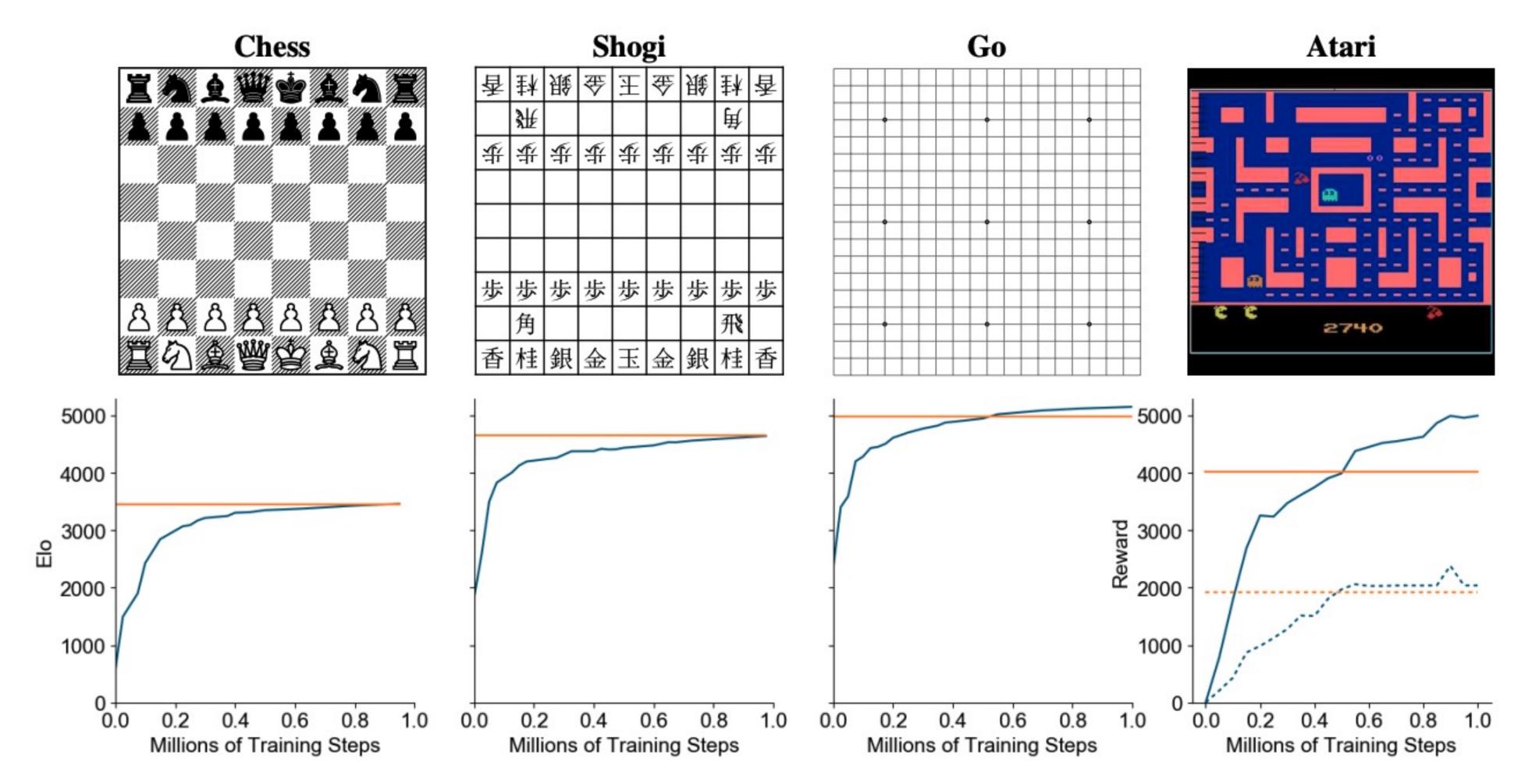
Model based RL: construct **plans** using a model of the world, and use those to update the policy

Lessons in generalization & transfer rewards Novel rewards Identical Hamrick et al. (2021)

Identical observations

Degree of transfer





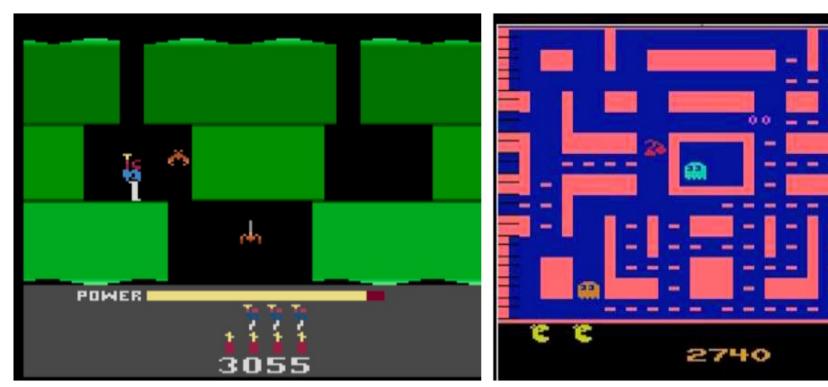
MuZero

Schrittwieser et al. (2019)

Environments

Acrobot (Swingup Sparse)

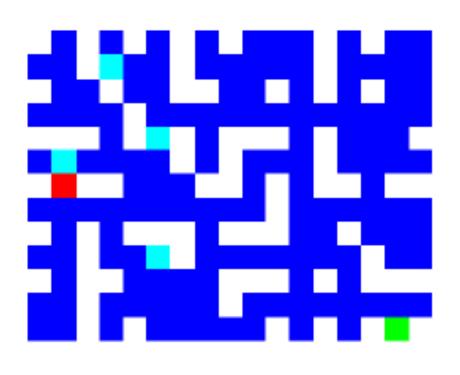
Cheetah (Run)



Hero

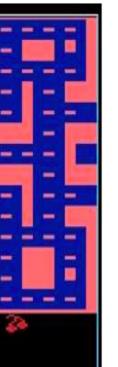
Ms. Pacman

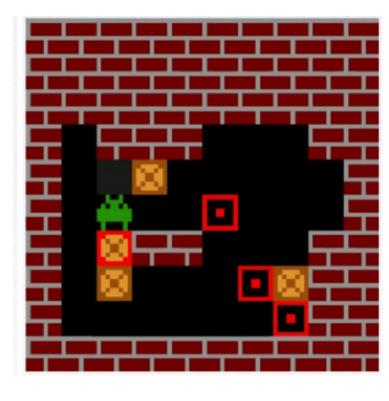
Hamrick et al. (2021). On the role of planning in model-based deep reinforcement learning. ICLR.

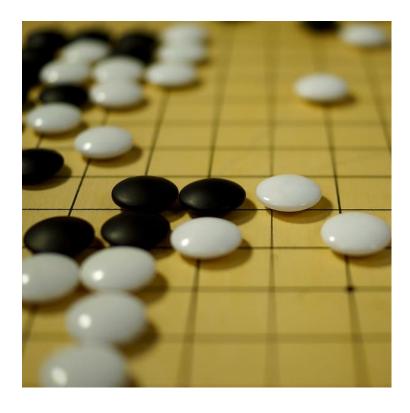


Humanoid (Stand)

Minipacman (Procedural)







Sokoban

9x9 Go

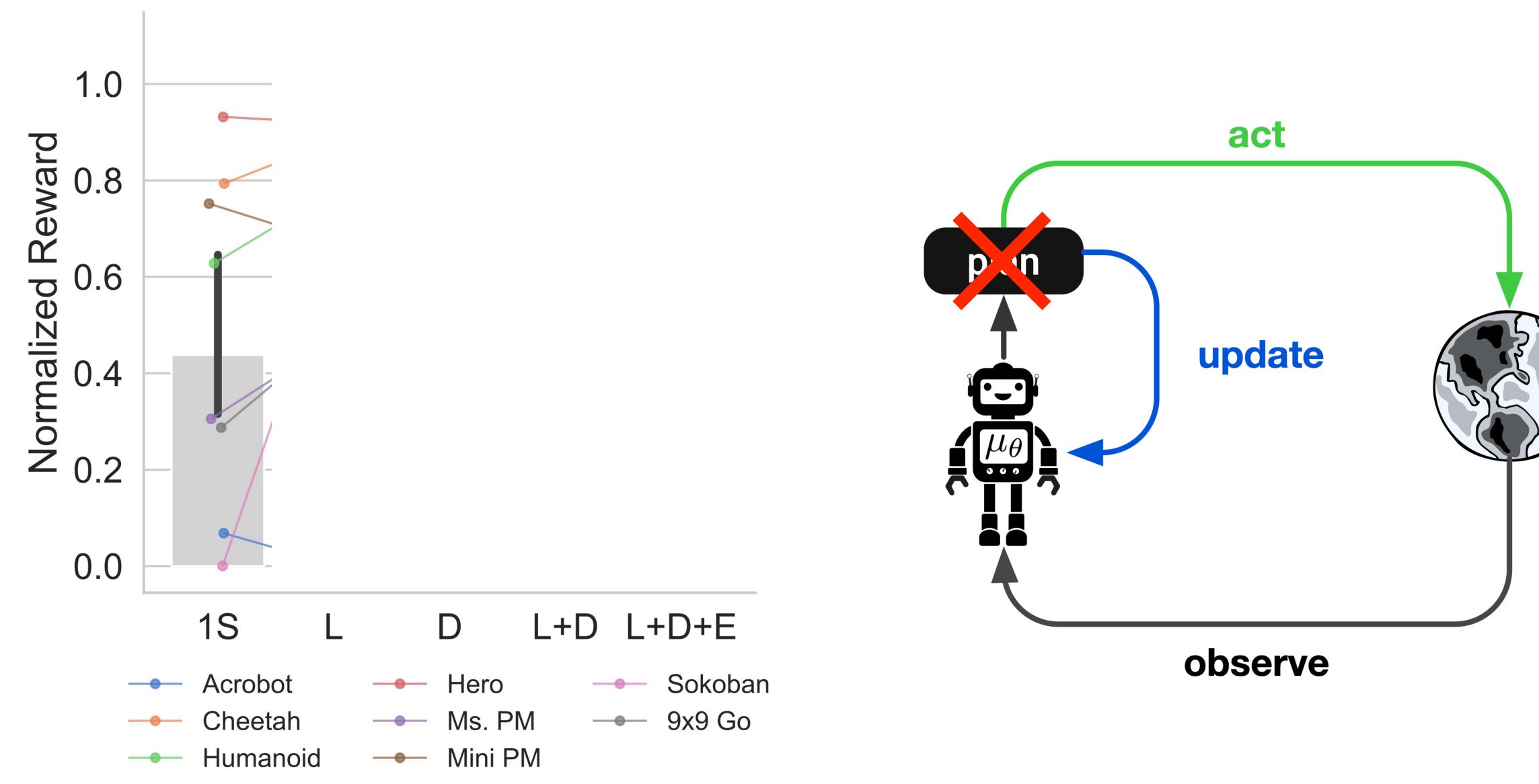
Train Update

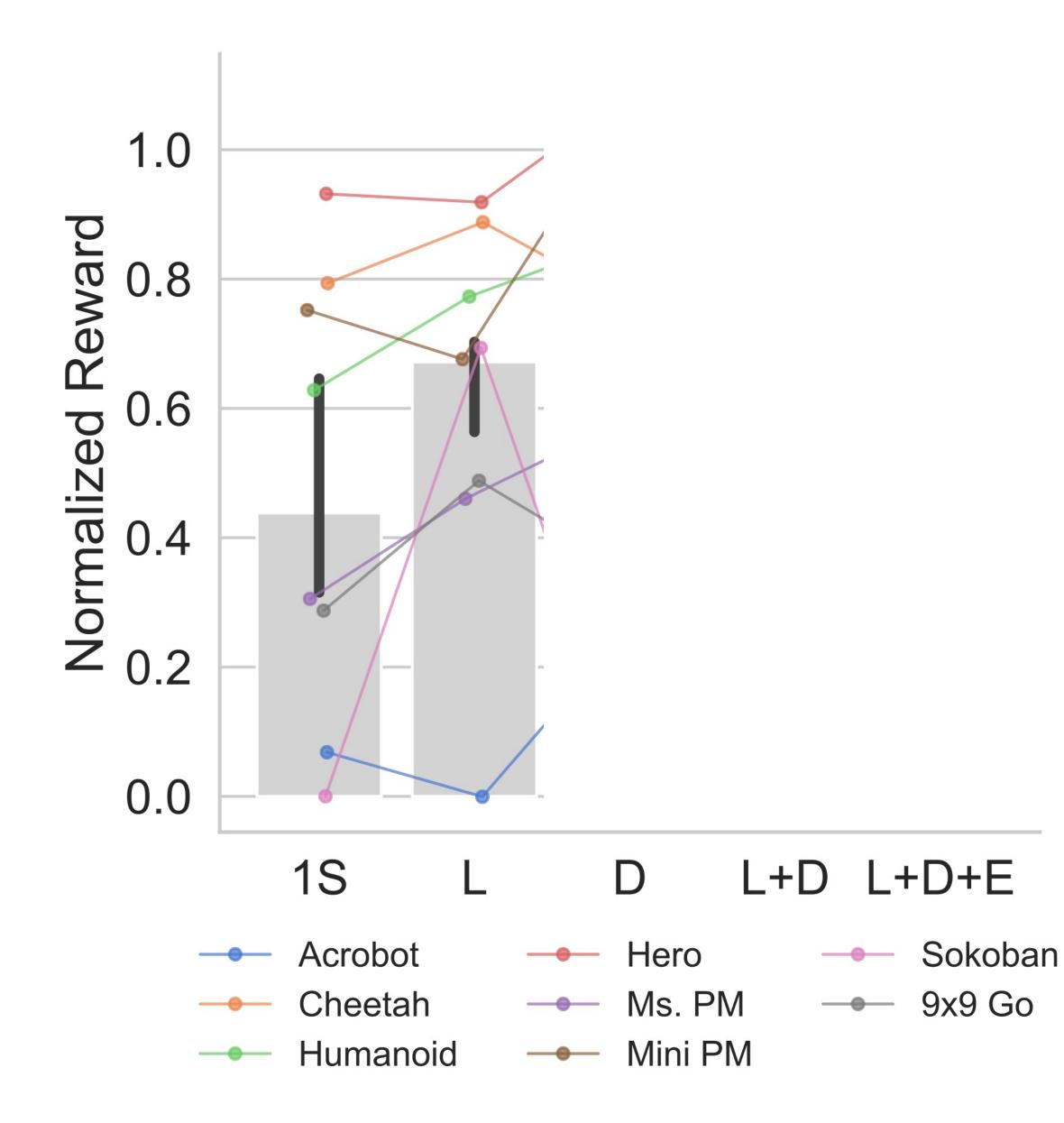
One-Step	Model-free
Learn	Model-based
Data	Model-free
Learn+Data	Model-based
Learn+Data+Eval (vanilla MuZero)	Model-based

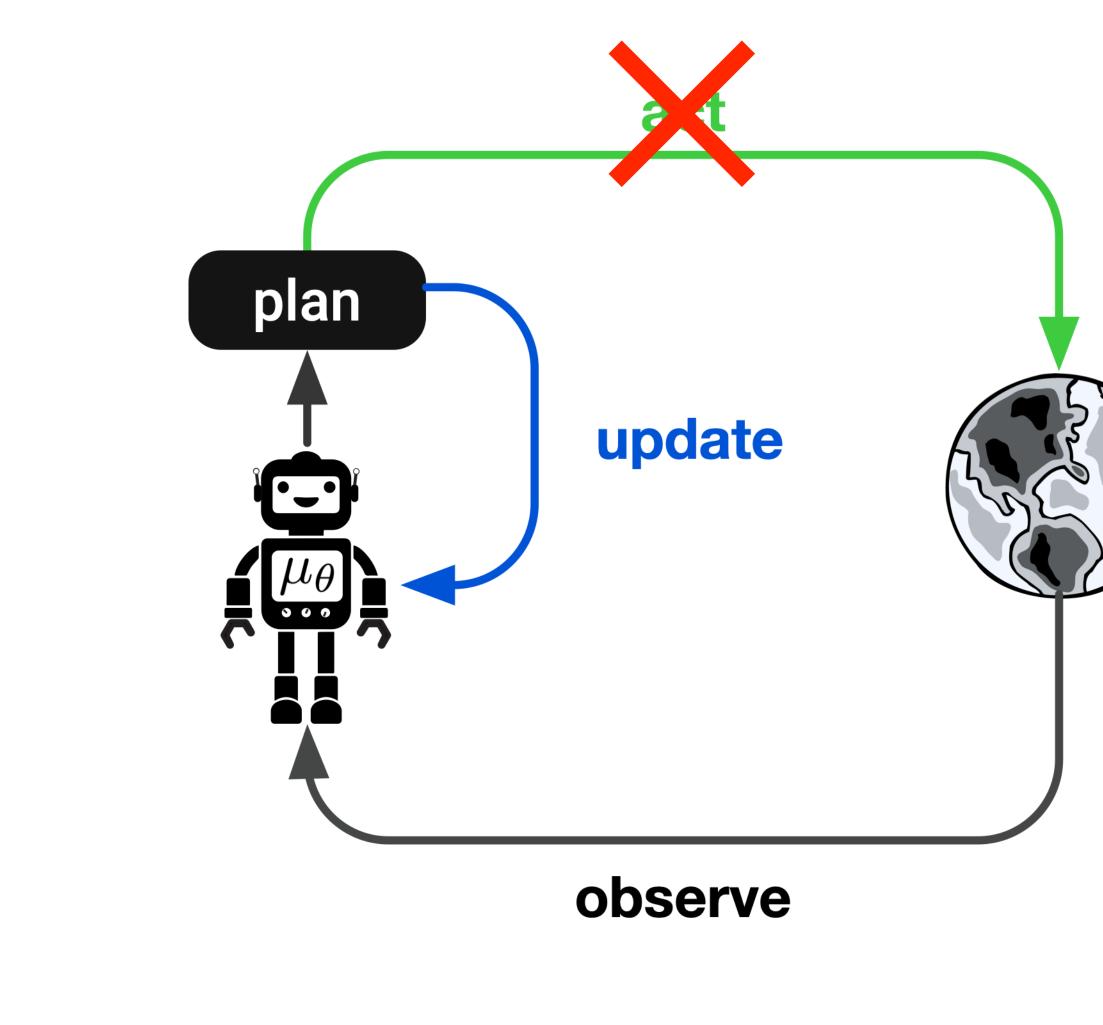
Hamrick et al. (2021). On the role of planning in model-based deep reinforcement learning. ICLR.

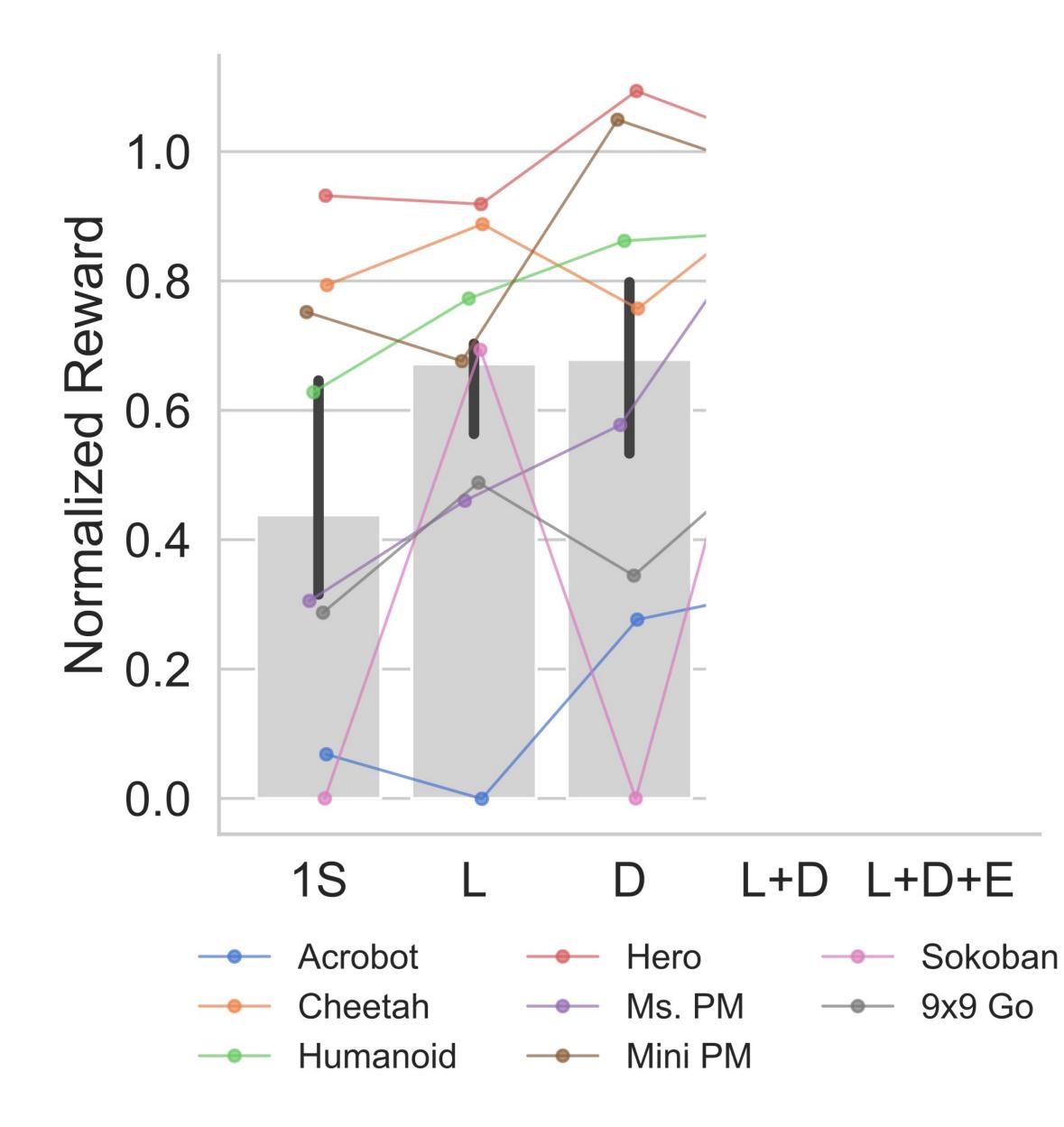
Using search in different ways

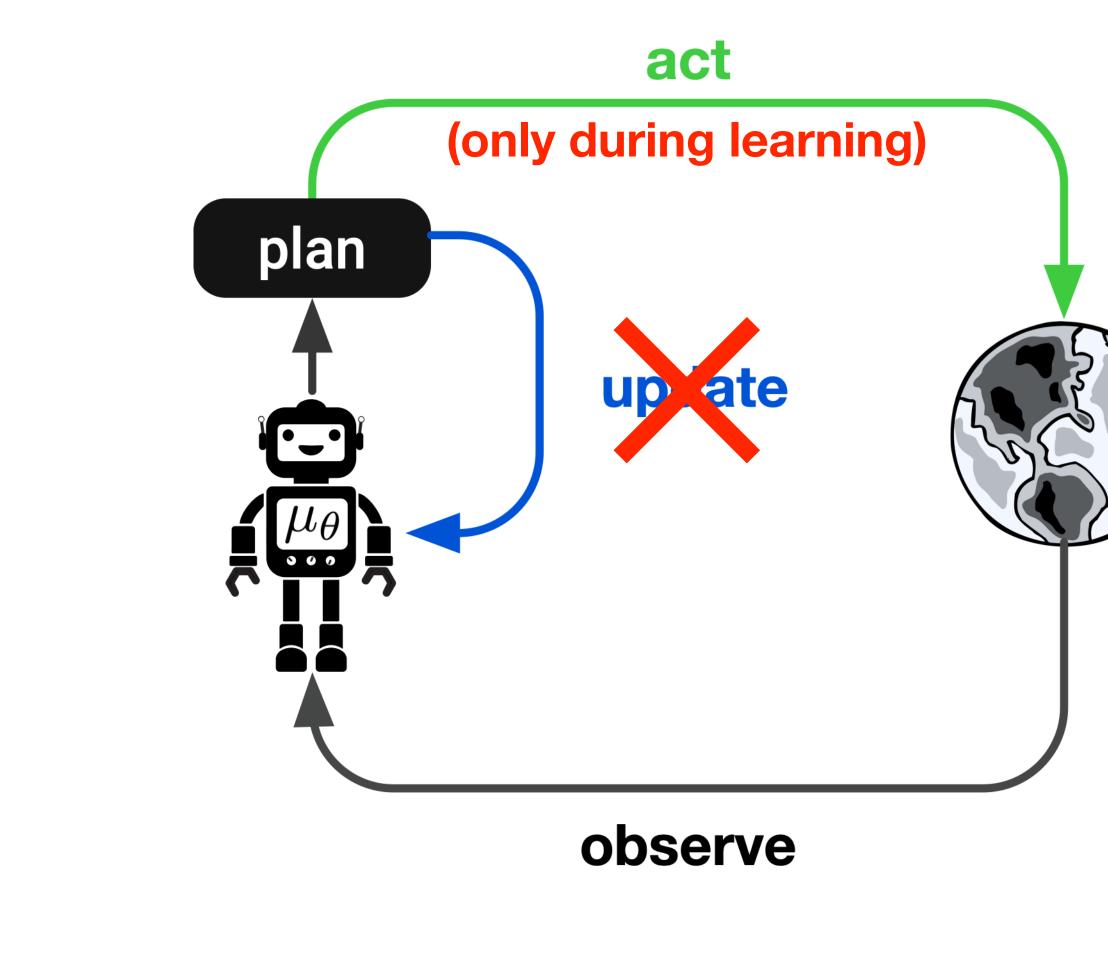
Train Act	Test Act
Model-free	Model-free
Model-free	Model-free
Model-based	Model-free
Model-based	Model-free
Model-based	Model-based

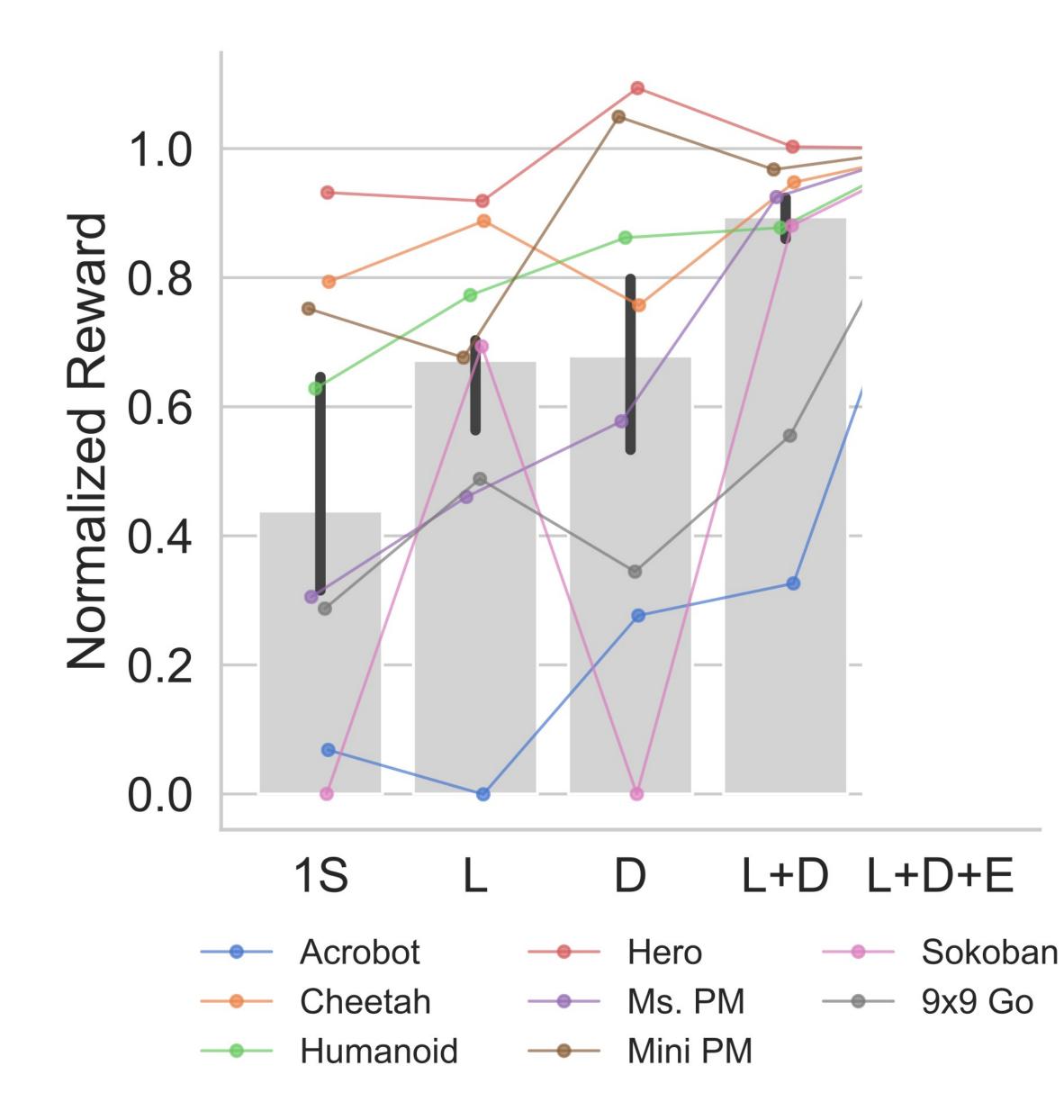


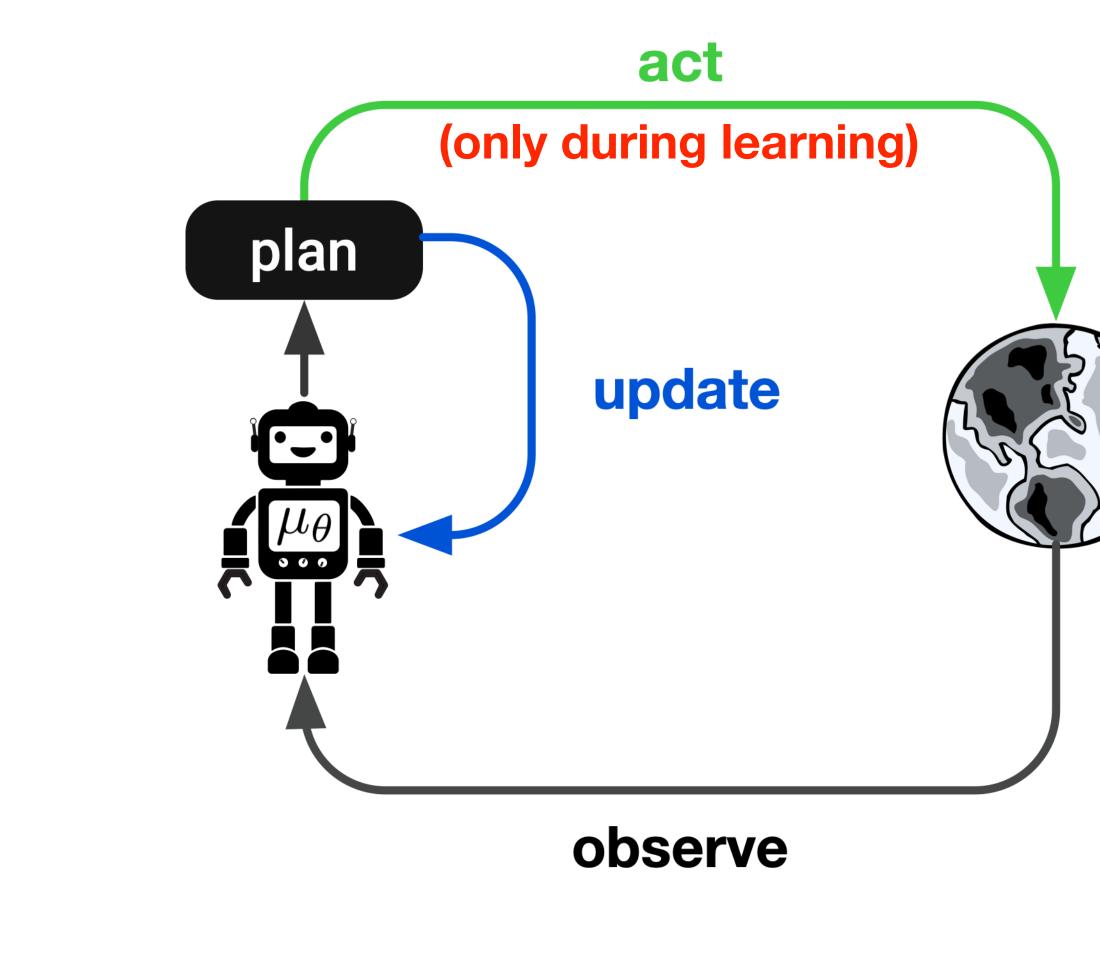


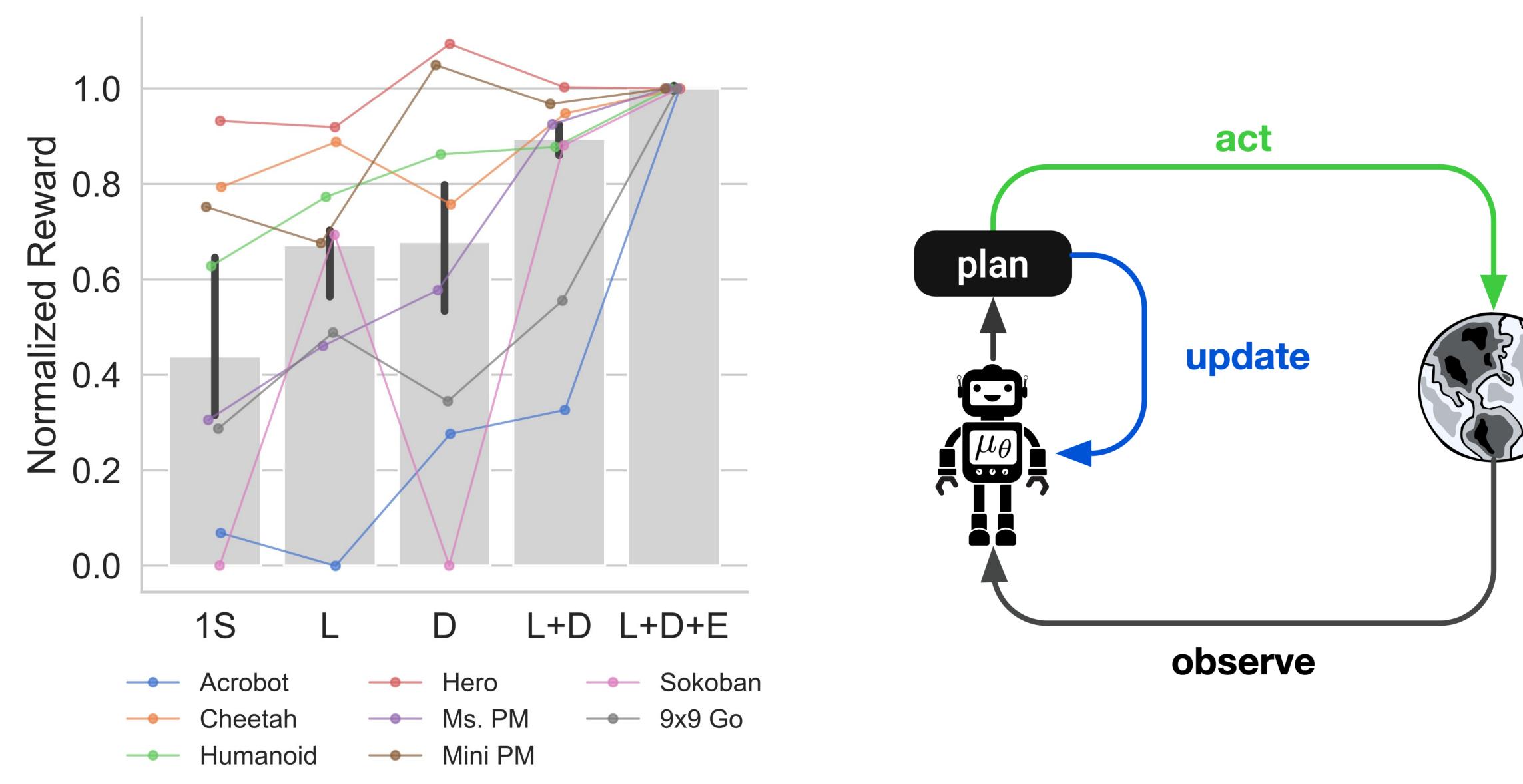


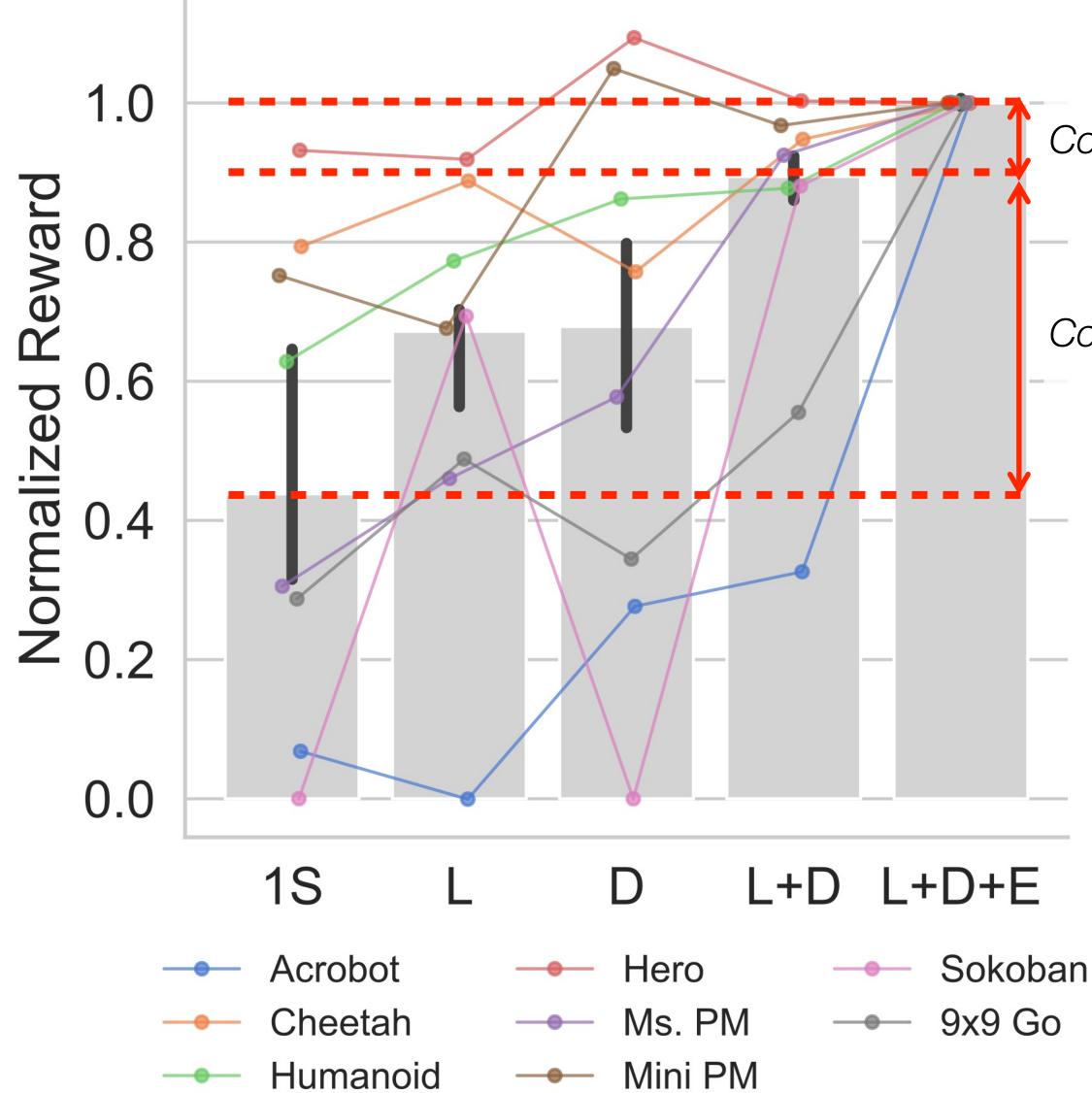








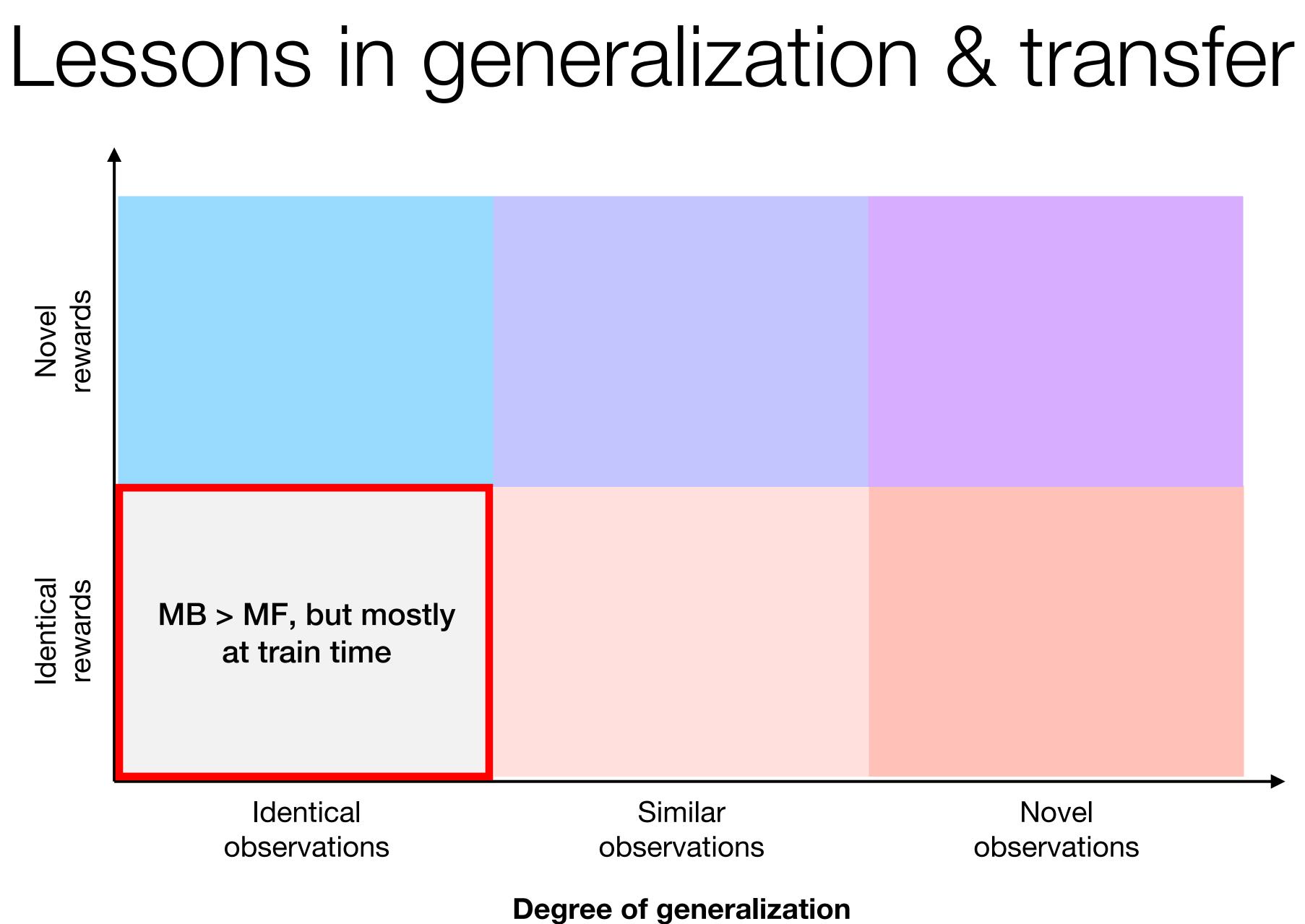




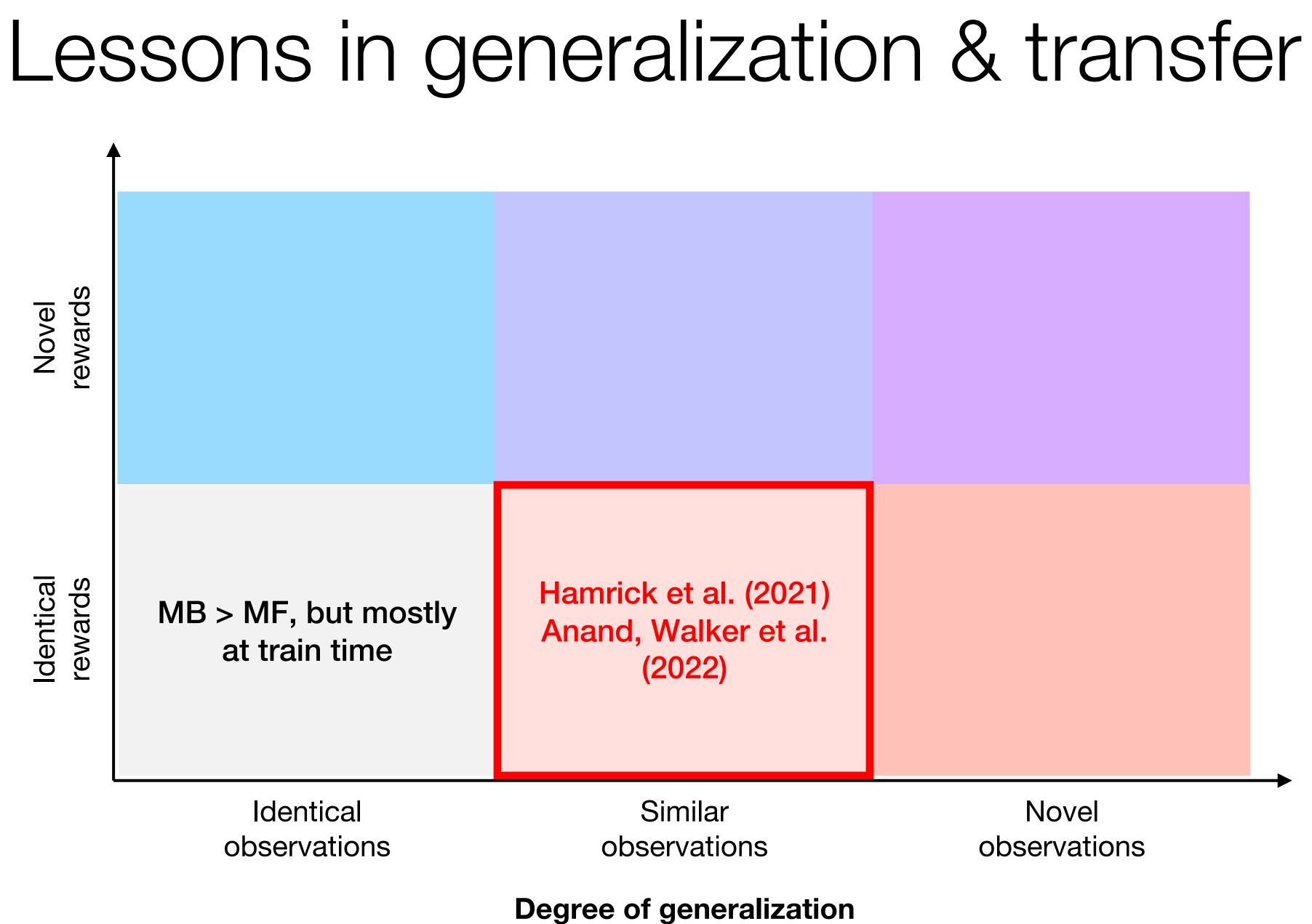
Contribution of planning "in the moment"

Contribution of planning during learning

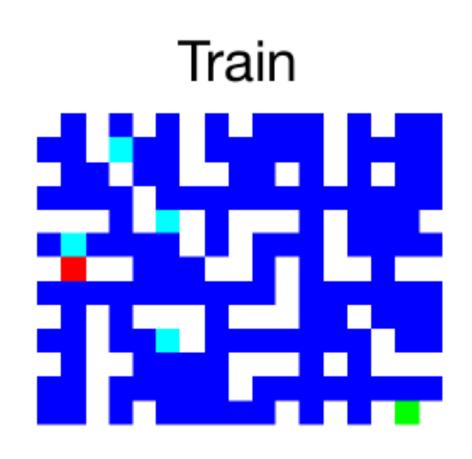
 \rightarrow Planning is most useful for learning, rather than at test time (except for Acrobot and 9x9 Go)



Degree of transfer



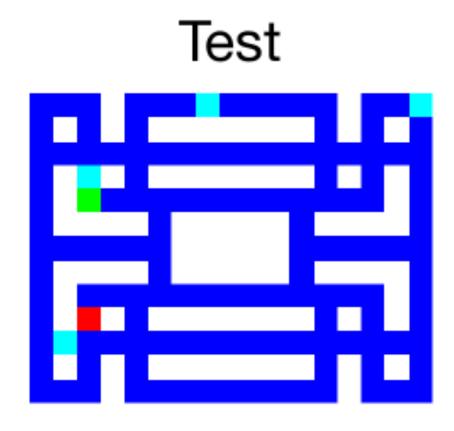
Degree of transfer



Train on a procedurallygenerated distribution of environments

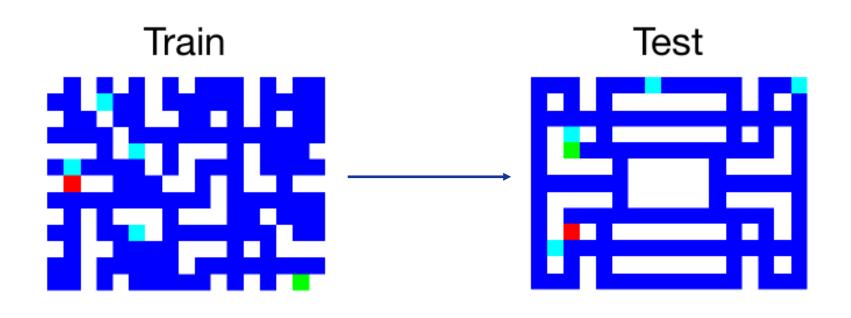
Hamrick et al. (2021). On the role of planning in model-based deep reinforcement learning. ICLR.

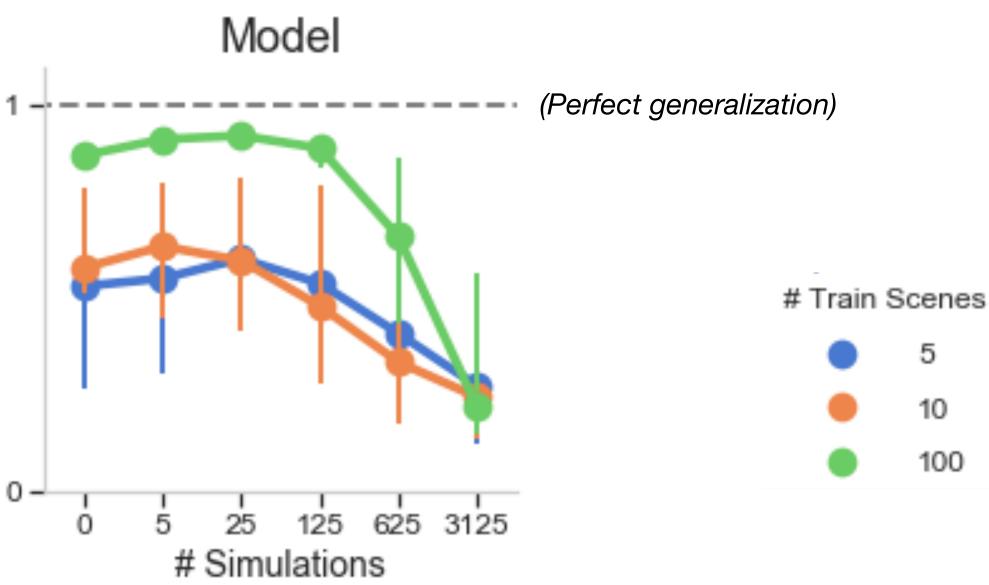
Procedural generalization



Zero-shot generalization to unseen environments

Generalizing to new mazes





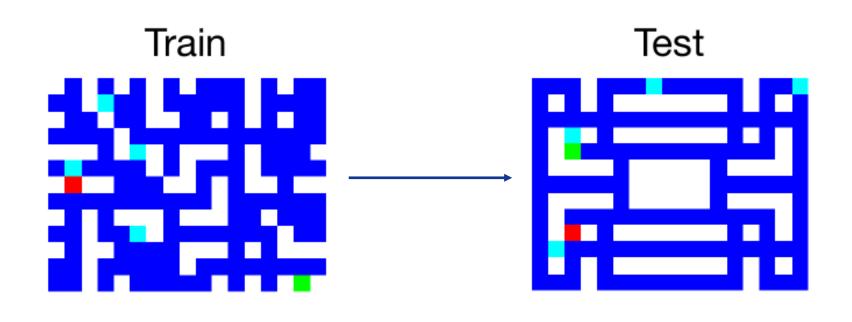
\rightarrow The model learned by MuZero is not very good

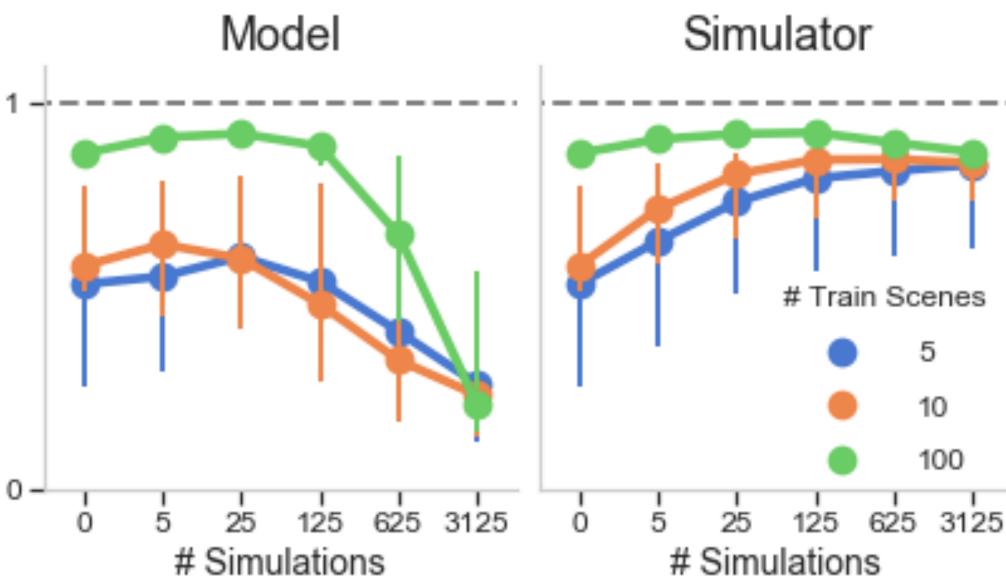
5

10

100

Generalizing to new mazes





\rightarrow The model learned by MuZero is not very good

 \rightarrow But even a perfect model is not sufficient: we also need to know where to search

Procgen (Cobbe et al., 2020)

Train on a procedurallygenerated distribution of environments

Anand, Walker et al. (2022). Procedural generalization by planning with self-supervised world models. ICLR.

Procedural generalization

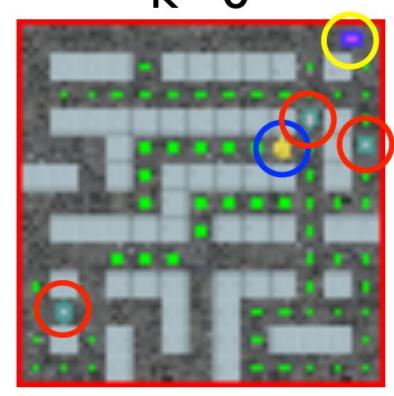
Zero-shot generalization

to unseen environments

Failure of representation

Chaser

k=0

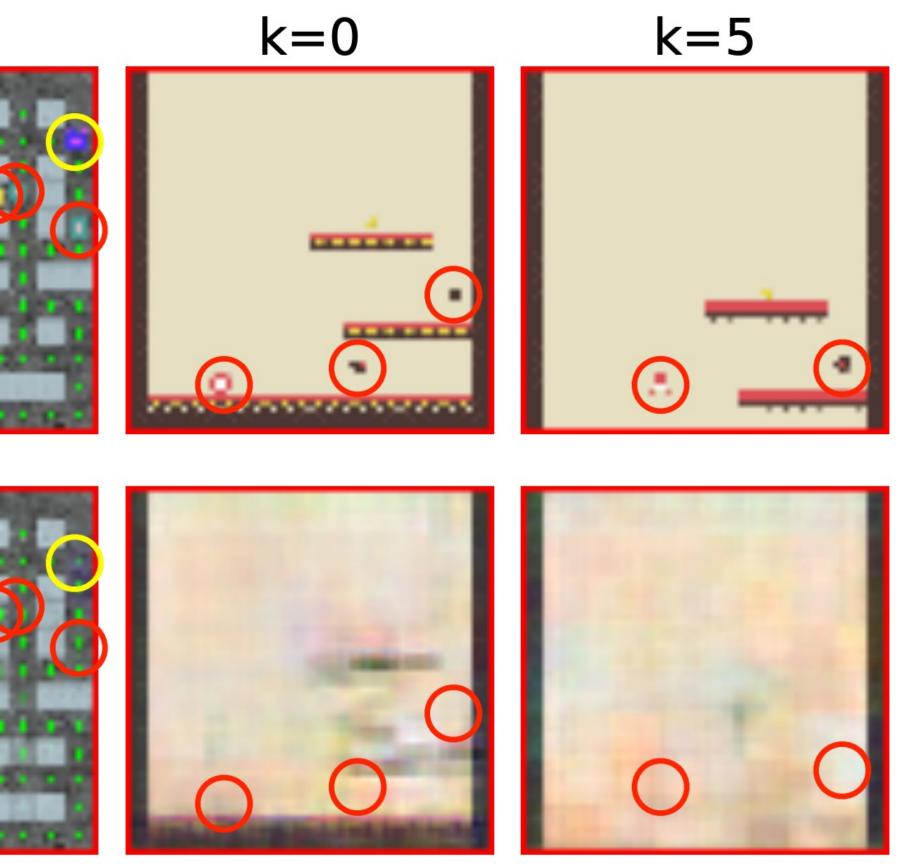


Observation



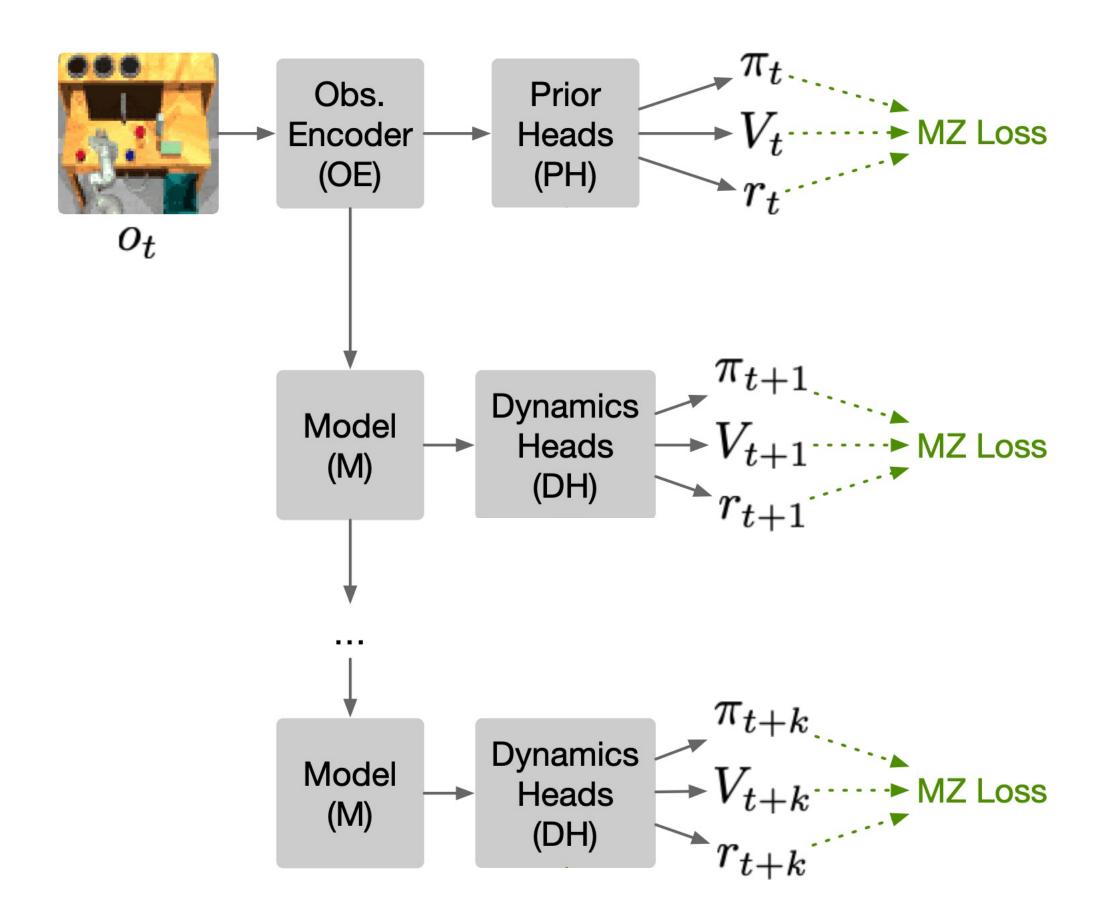
Anand, Walker et al. (2022). Procedural generalization by planning with self-supervised world models. ICLR.

Climber



MuZero

Improving MuZero with self-supervision

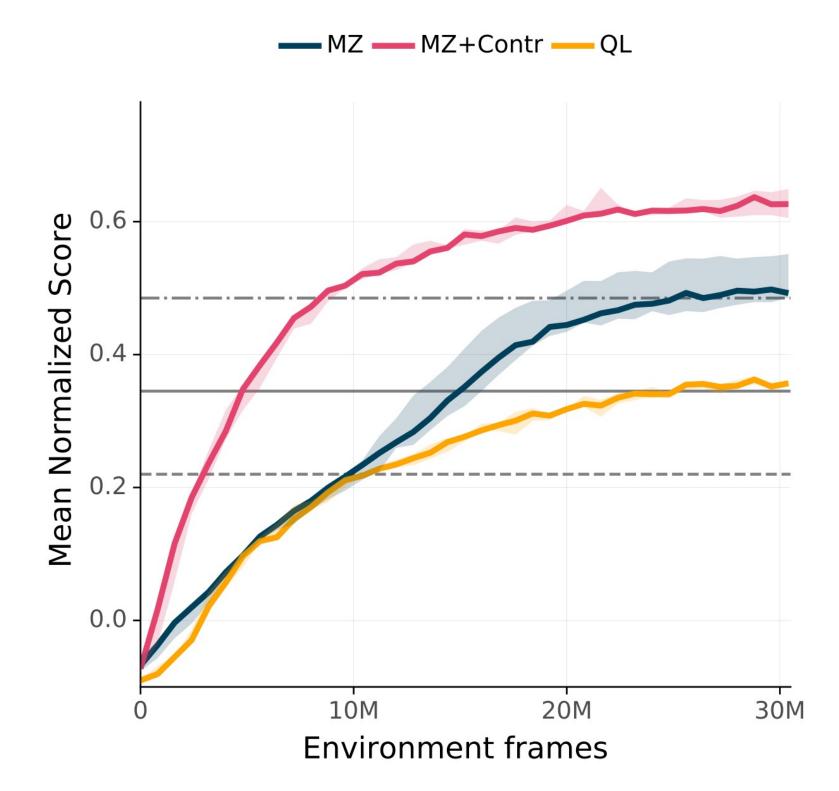


Self-supervised losses:

- *Reconstruction*: predict the obs. at time *t*+*k*
- SPR: predict the obs. embedding at time t+k
- *Contrastive:* classify whether a predicted obs. embedding at time *t*+*k* should correspond to the observation at time t+i

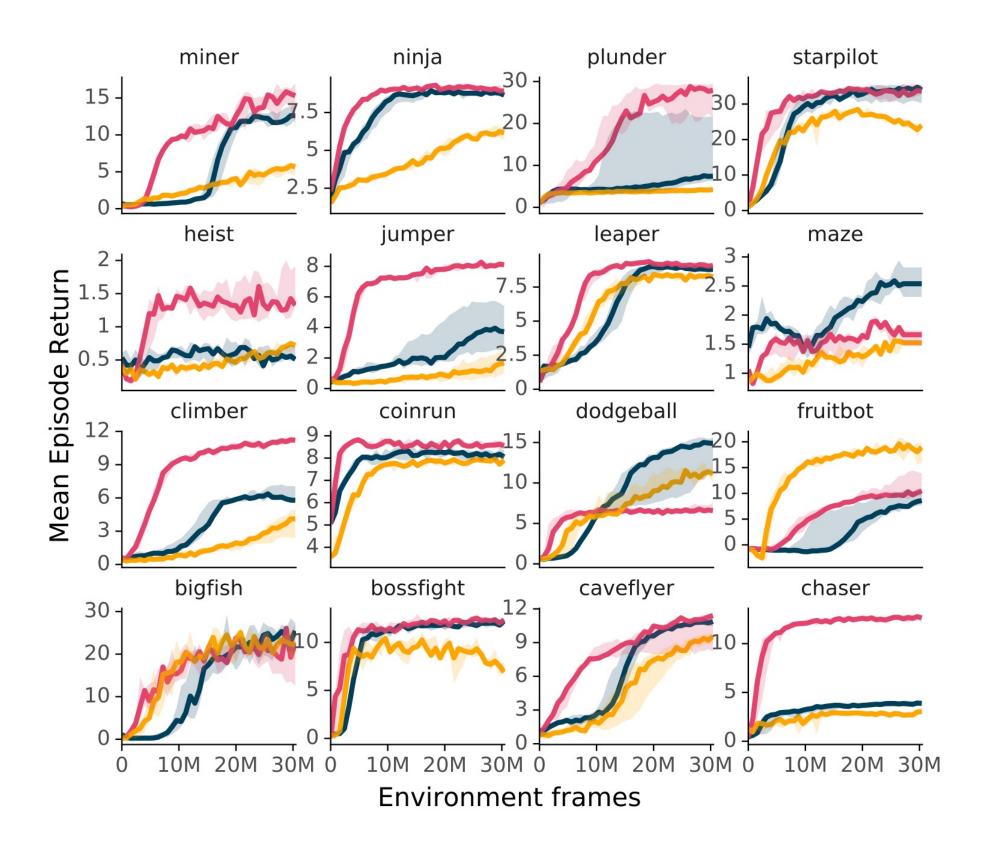
Procgen results (train on 500 levels)

—— PLR (200M) --- PPO (200M) — - UCB-DrAC+PLR (200M)

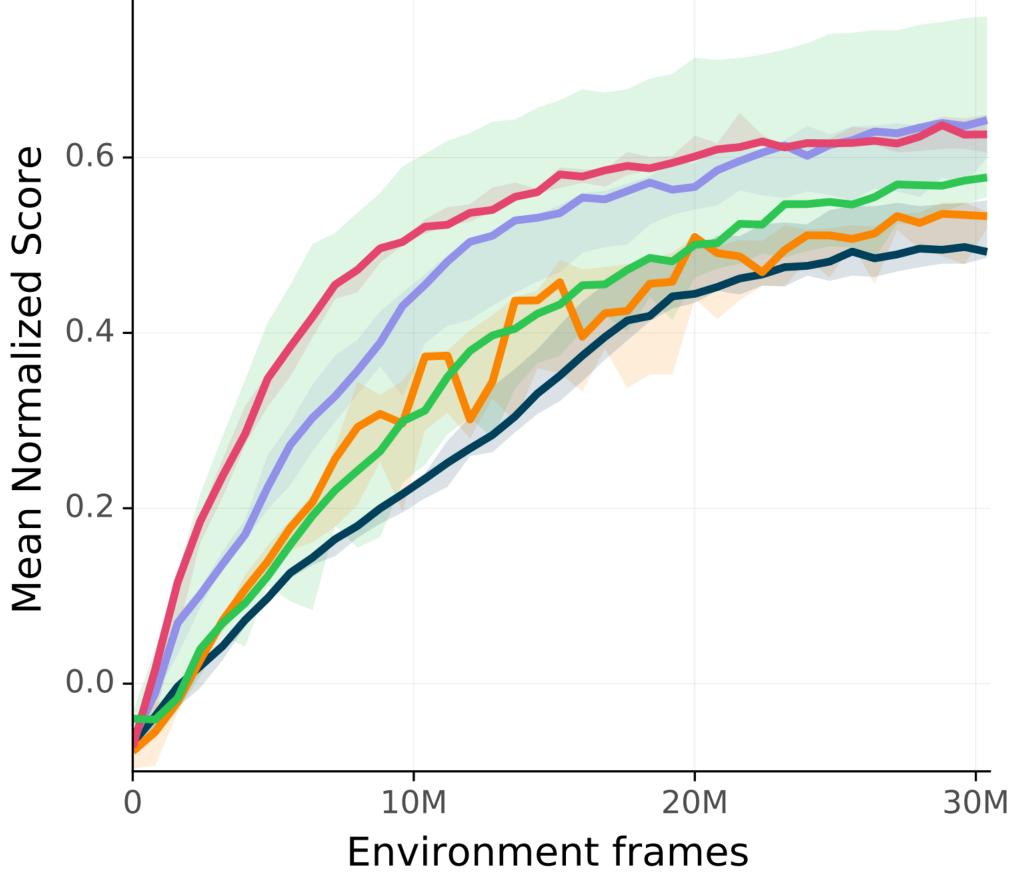


\rightarrow Self-supervision has a huge impact on generalization!

Anand, Walker et al. (2022). Procedural generalization by planning with self-supervised world models. ICLR.



Comparing methods of self-supervision



Anand, Walker et al. (2022). Procedural generalization by planning with self-supervised world models. ICLR.

- QL+Model+Recon
- MZ+SPR
- MZ+Contr
- MZ+Recon

 \rightarrow All methods of self-supervision are roughly comparable

Improved representations

k=0

Chaser

k=0

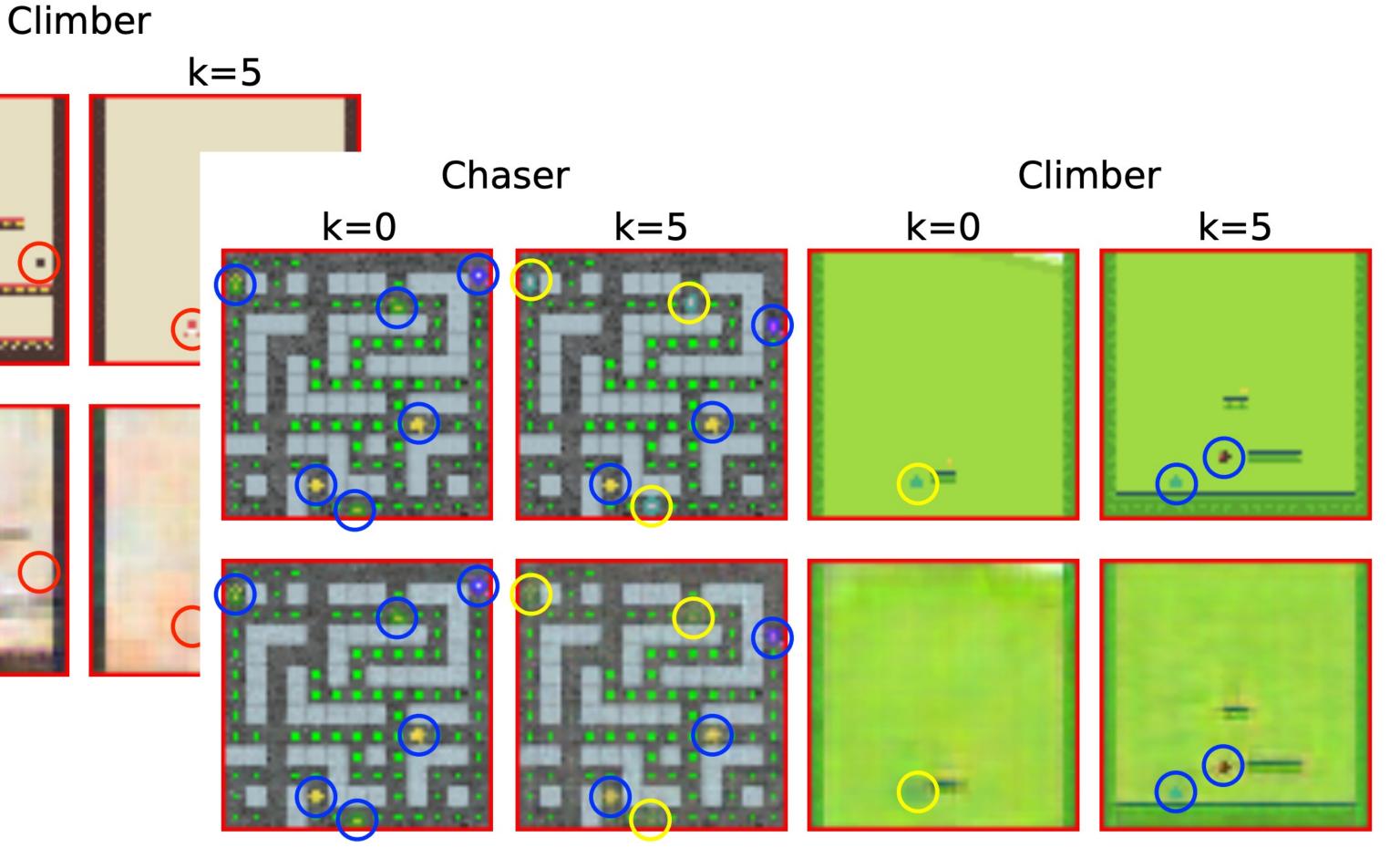
Observation

Decoding

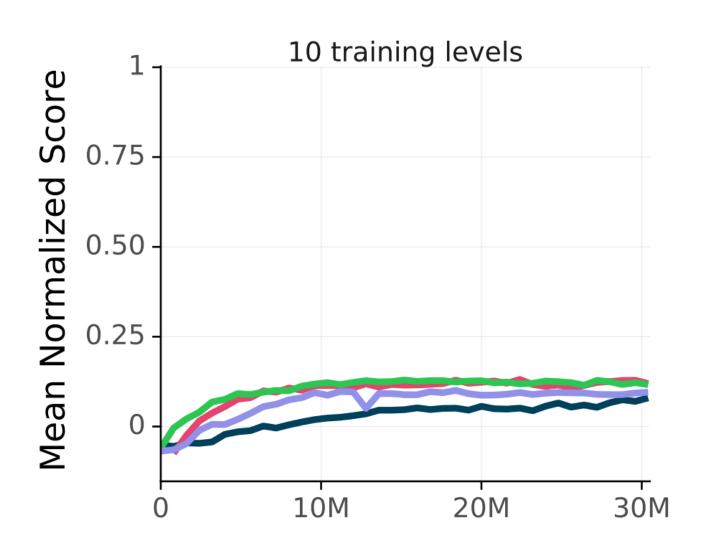
k=5

MuZero

Anand, Walker et al. (2022). Procedural generalization by planning with self-supervised world models. ICLR.



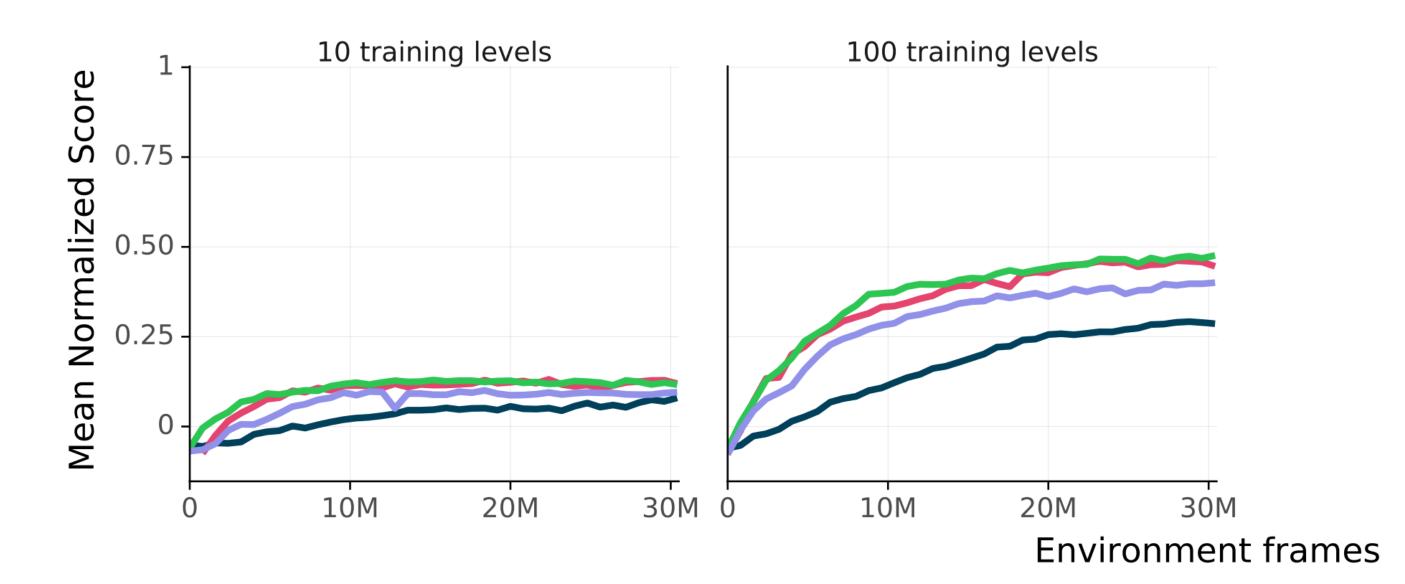
MuZero + Reconstruction



very little improvement w/ self-supervision

Anand, Walker et al. (2022). Procedural generalization by planning with self-supervised world models. ICLR.

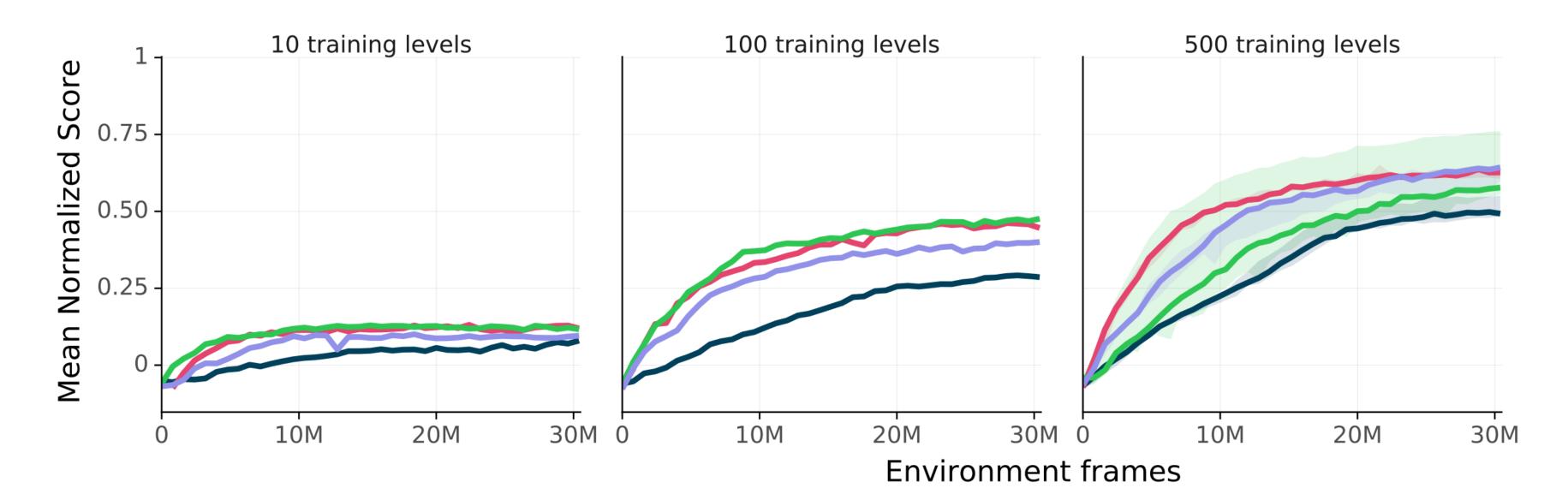
---- MZ+Contr ---- MZ+Recon ---- MZ+SPR ---- MZ



very little improvement w/ self-supervision

Anand, Walker et al. (2022). Procedural generalization by planning with self-supervised world models. ICLR.

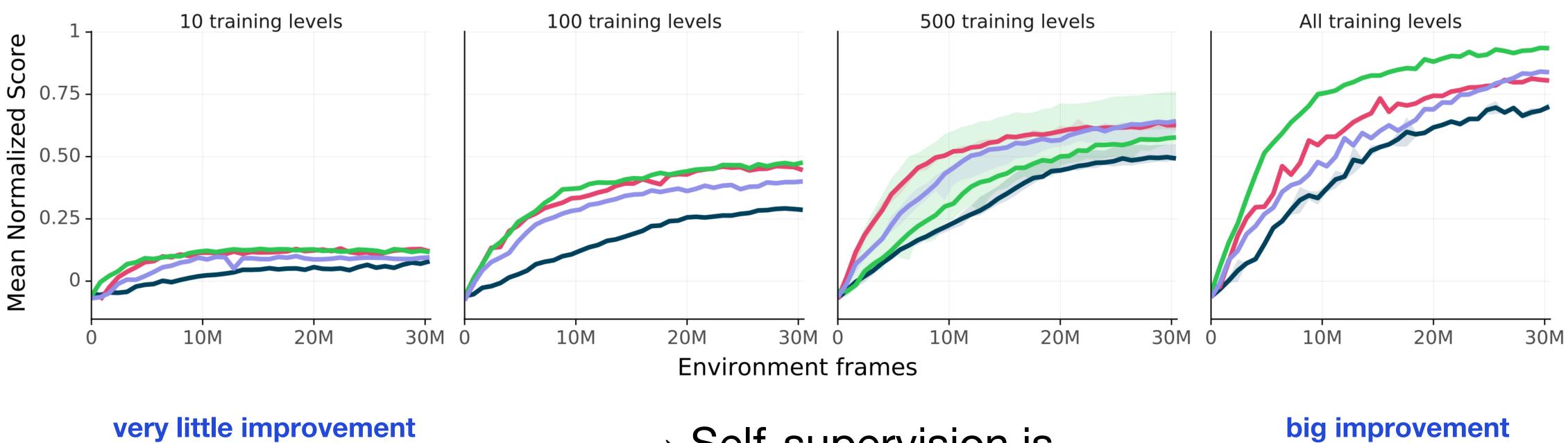
---- MZ+Contr ---- MZ+Recon ---- MZ+SPR ---- MZ



very little improvement w/ self-supervision

Anand, Walker et al. (2022). Procedural generalization by planning with self-supervised world models. ICLR.

---- MZ+Contr ---- MZ+Recon ---- MZ+SPR ---- MZ



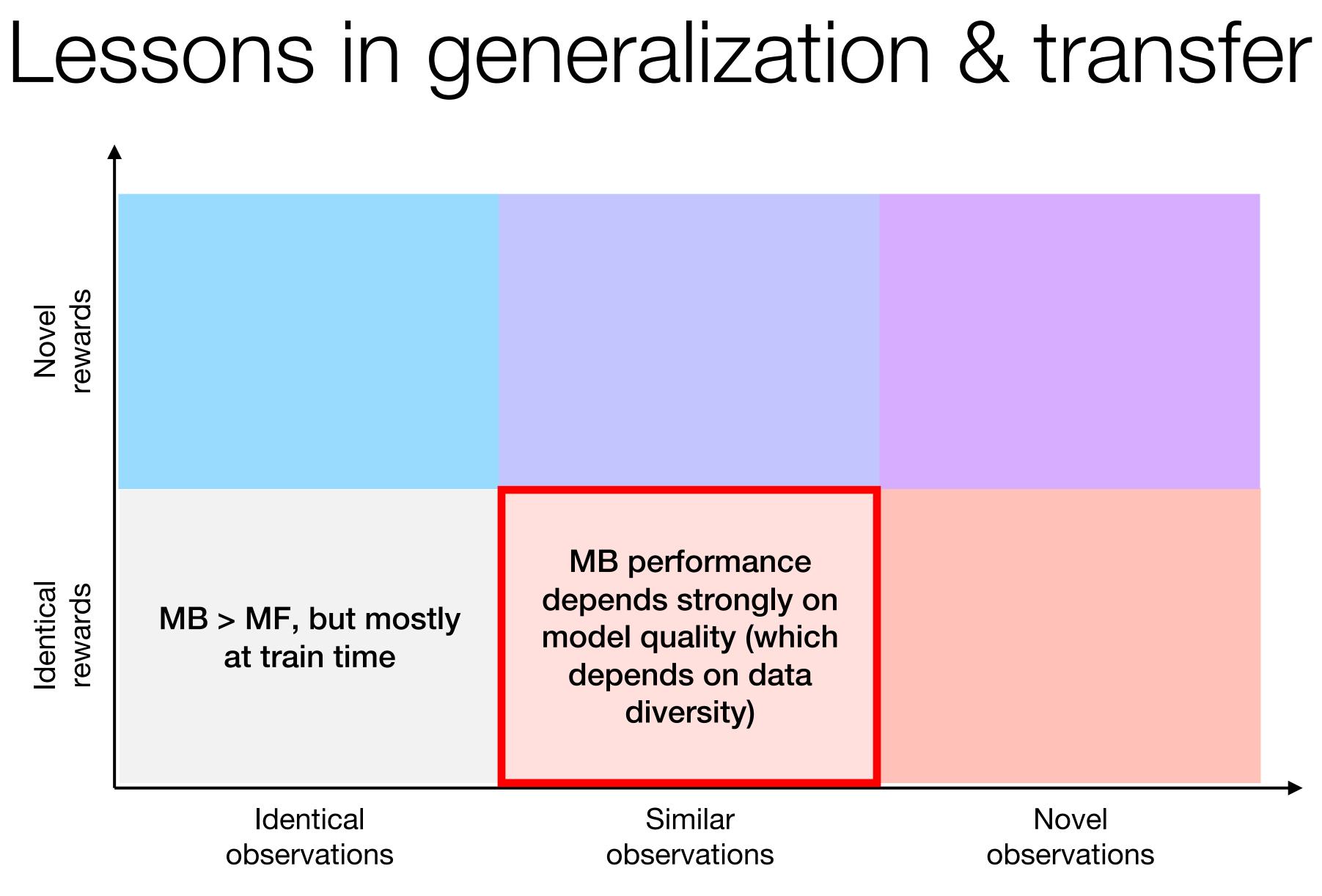
w/ self-supervision

 \rightarrow Self-supervision is more useful when training on more environments

Anand, Walker et al. (2022). Procedural generalization by planning with self-supervised world models. ICLR.

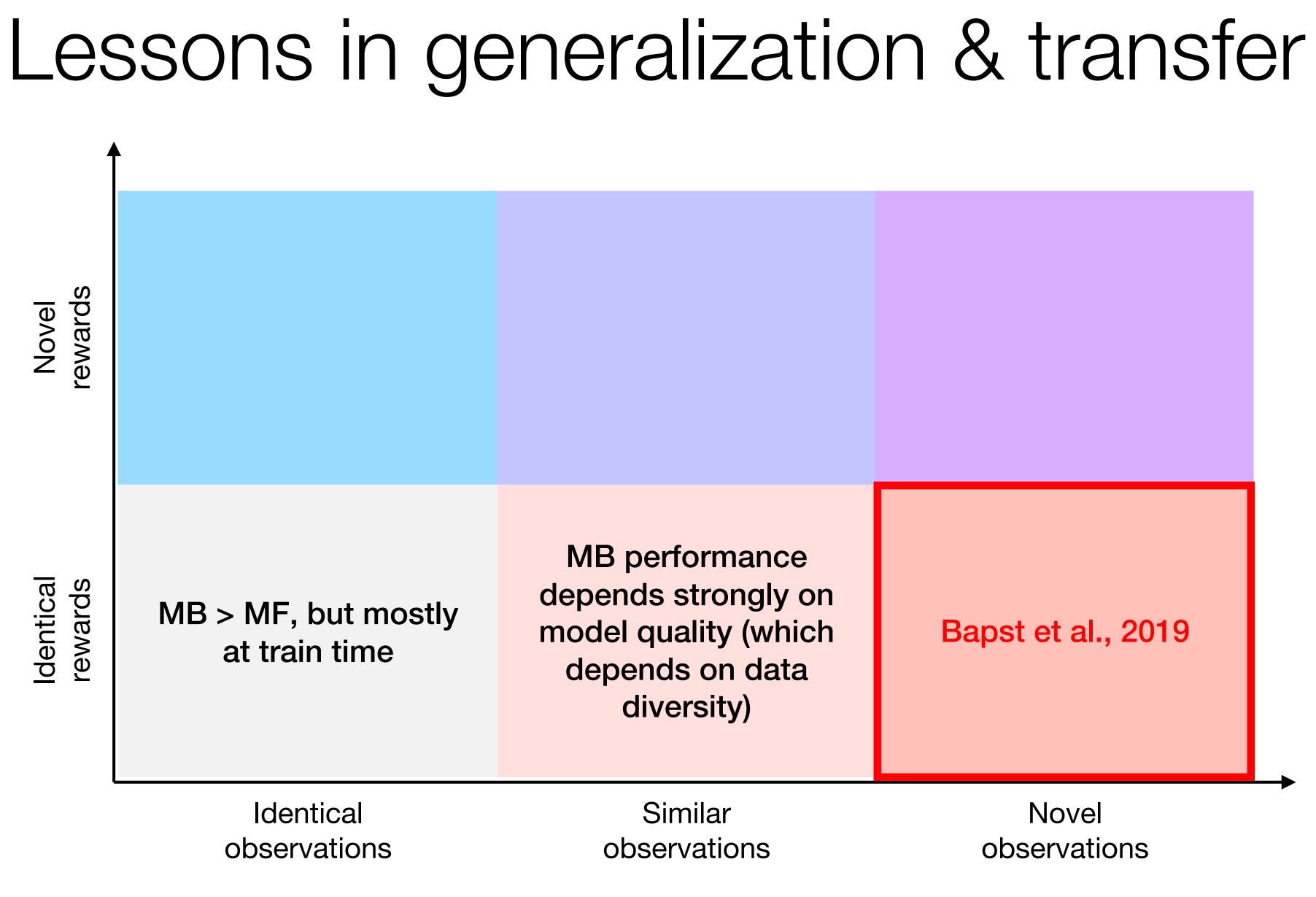
----- MZ+Contr ----- MZ+Recon ----- MZ+SPR ----- MZ

w/ self-supervision



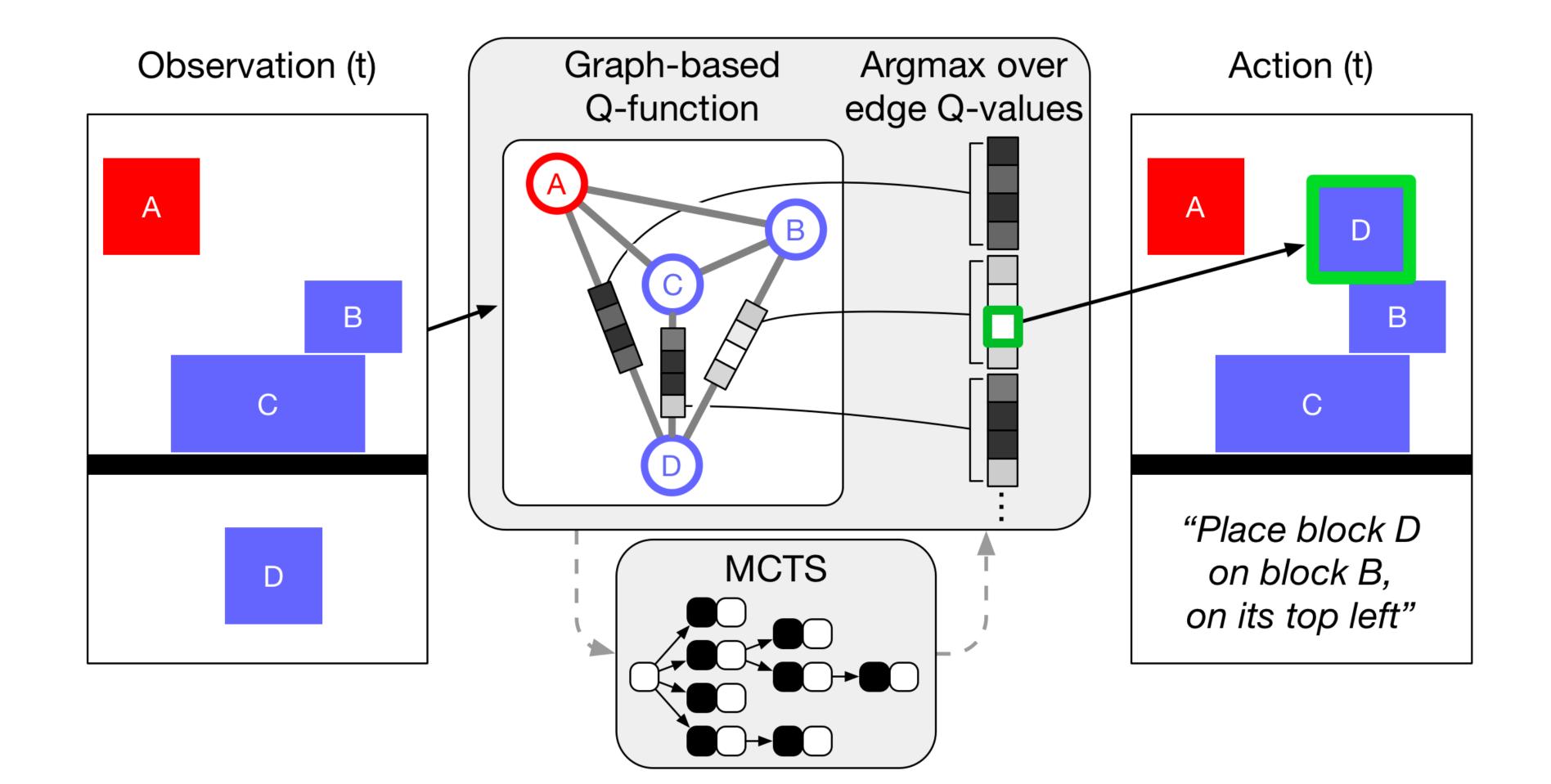
Degree of transfer

Degree of generalization



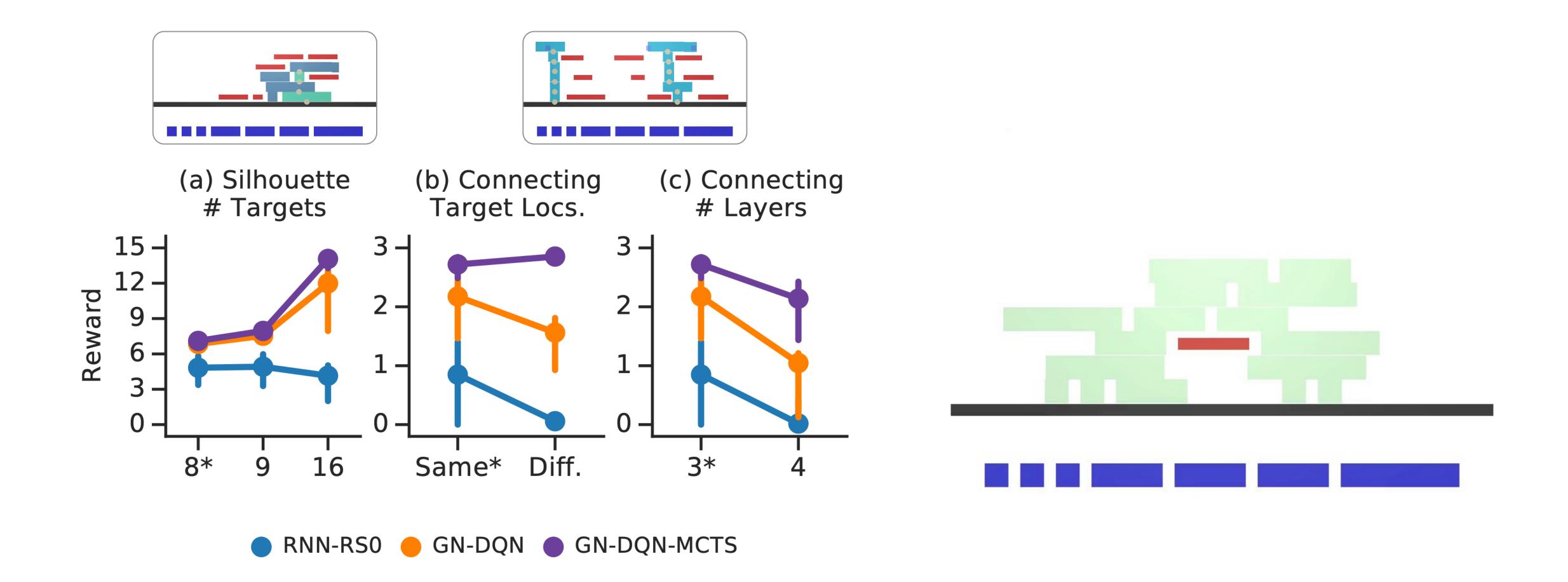
Degree of transfer

Degree of generalization



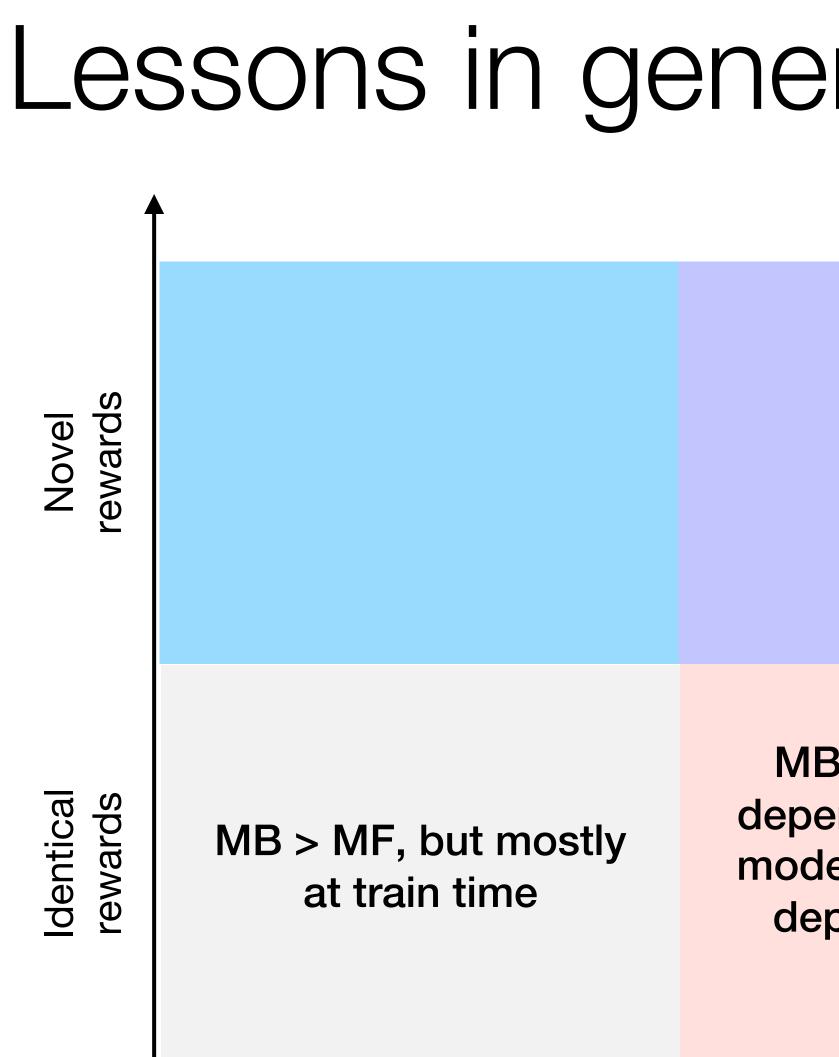
Bapst, Sanchez-Gonzalez et al. (2019). Structured agents for physical construction. ICML.

Generalizing to novel scenes



Bapst, Sanchez-Gonzalez et al. (2019). Structured agents for physical construction. ICML.

Generalizing to novel scenes



Identical observations

Degree of transfer

Degree of generalization

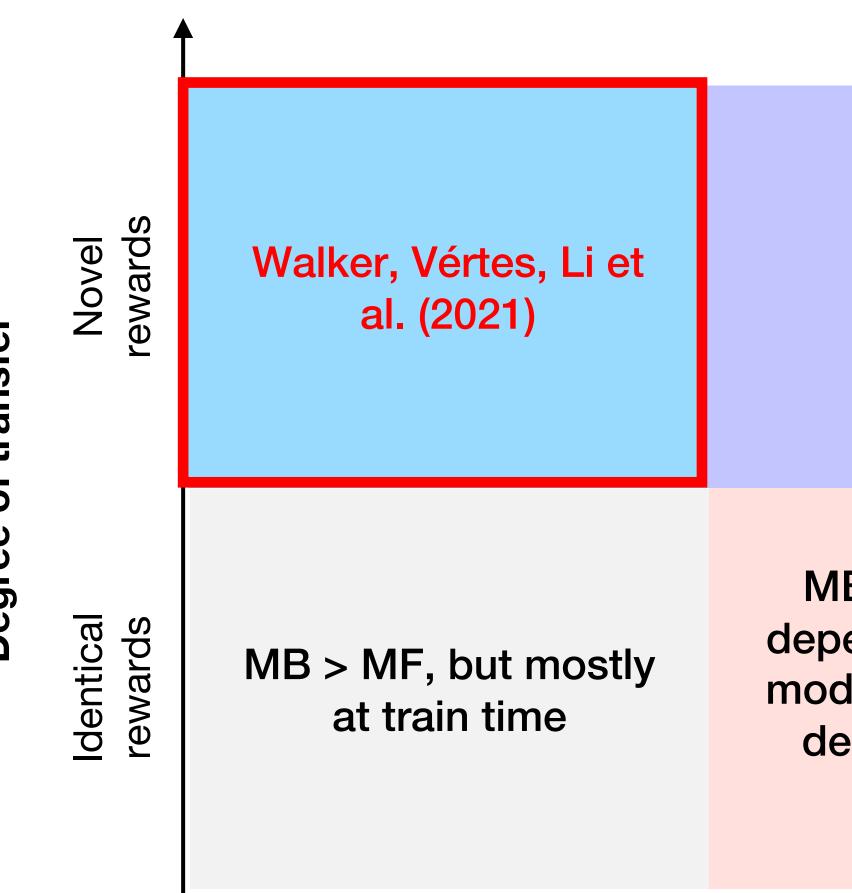
Lessons in generalization & transfer

MB performance depends strongly on model quality (which depends on data diversity)

Generalization requries strong prior knowledge (both policy & model)

Similar observations

Novel observations



Identical observations

Degree of transfer

Degree of generalization

MB performance depends strongly on model quality (which depends on data diversity)

Generalization requries strong prior knowledge (both policy & model)

Similar observations

Novel observations

Experimental setup

Unsupervised exploration phase:

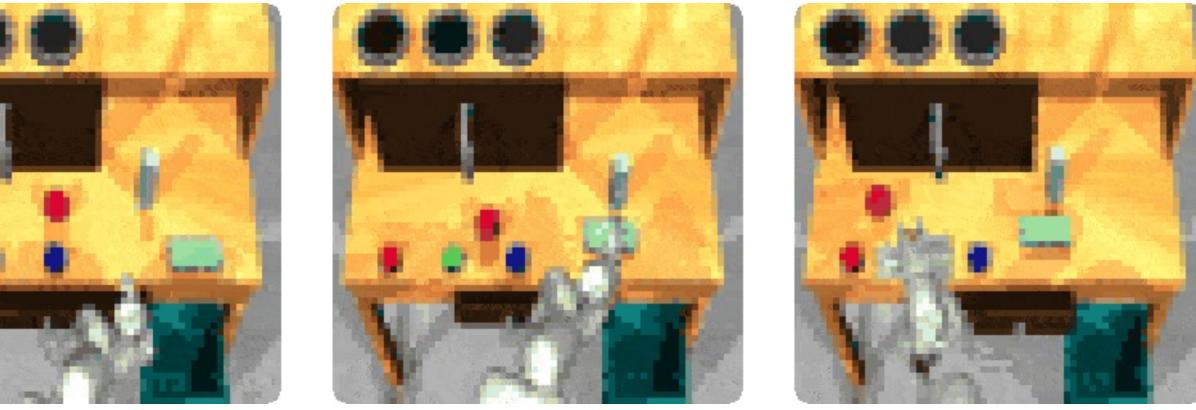
RL training with intrinsic rewards

Robodesk (Kannan et al., 2021)

Walker, Vértes, Li et al. (2023). Investigating the role of model-based learning in exploration and transfer. ICML.

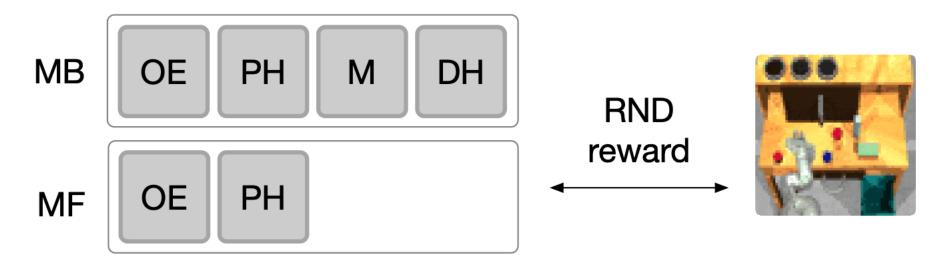
Transfer phase:

Transfer policy and/or model and continue training with real rewards

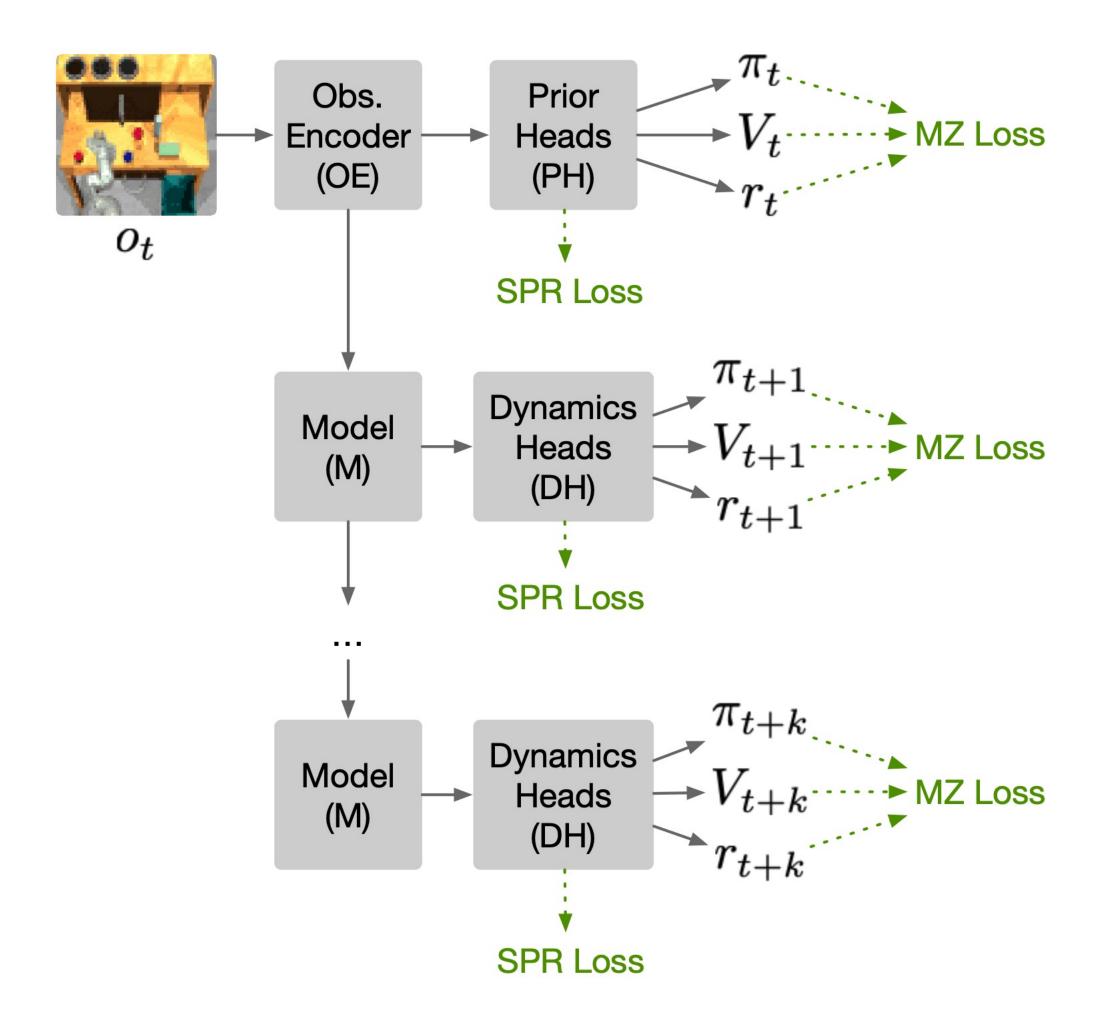


Experimental setup

Unsupervised exploration



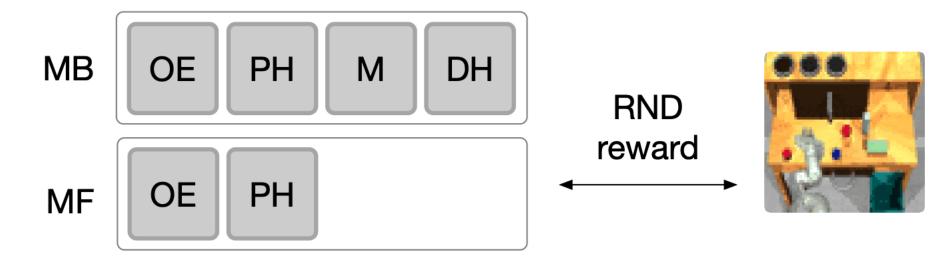
Walker, Vértes, Li et al. (2023). Investigating the role of model-based learning in exploration and transfer. ICML.

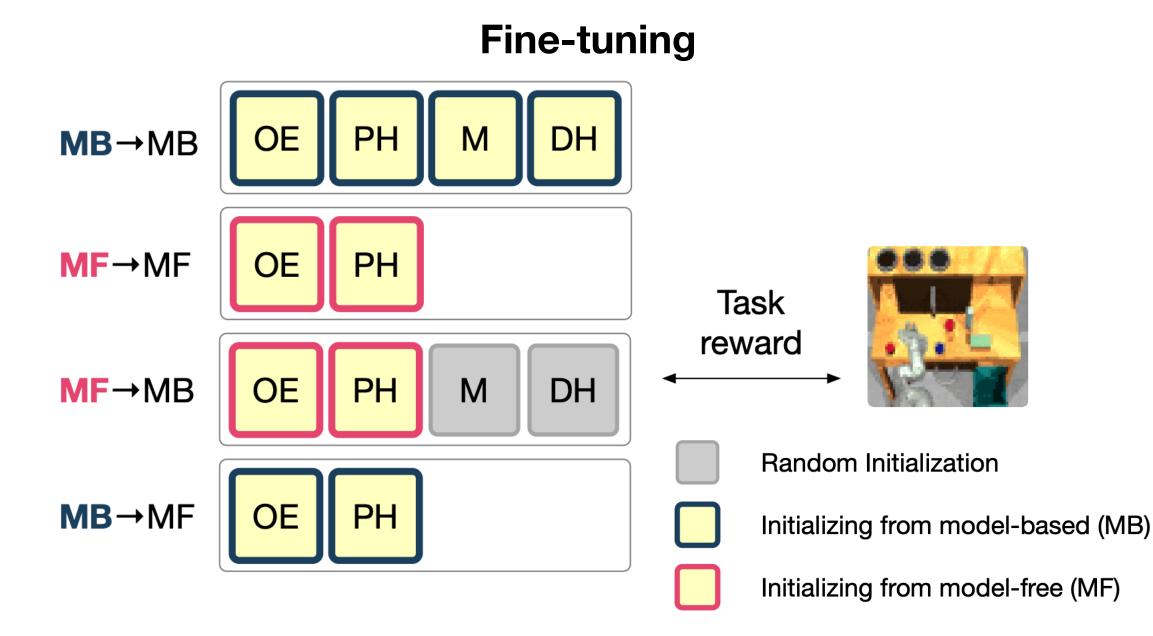




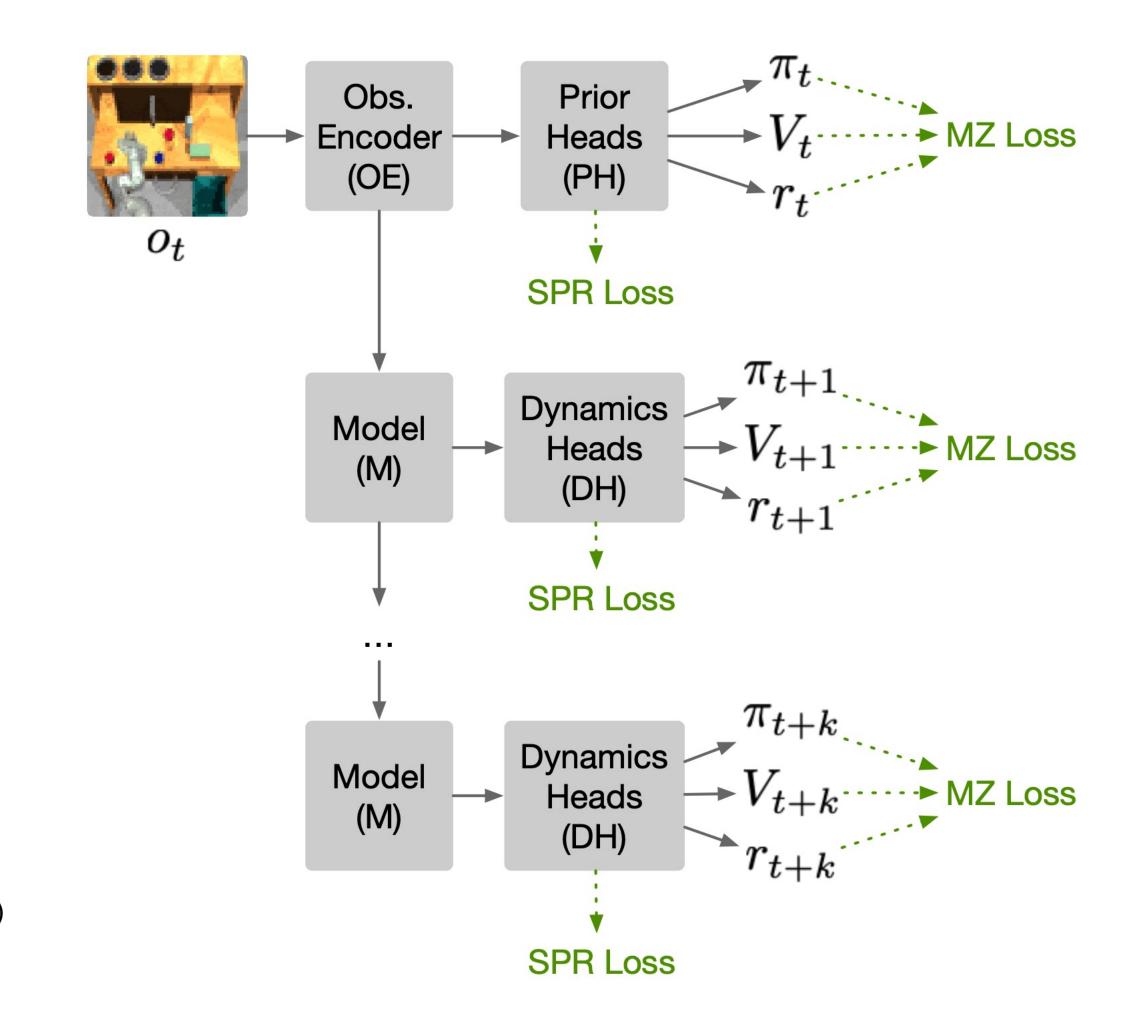
Experimental setup

Unsupervised exploration



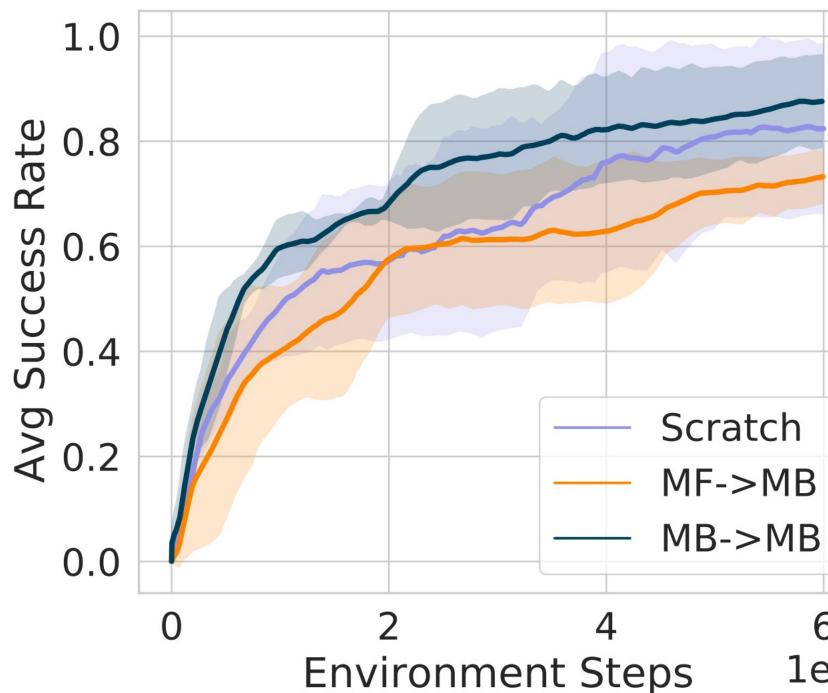


Walker, Vértes, Li et al. (2023). Investigating the role of model-based learning in exploration and transfer. ICML.

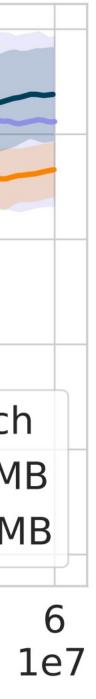




Transfer in Robodesk



Walker, Vértes, Li et al. (2023). Investigating the role of model-based learning in exploration and transfer. ICML.



 \rightarrow MB leads to slightly improved transfer performance, though the effect is weak

MB performance only ewards Novel weakly better than MF (likely b/c lack of data diversity) MB performance Generalization rewards Identica depends strongly on MB > MF, but mostly requries strong prior model quality (which knowledge (both at train time depends on data policy & model) diversity)

Identical observations

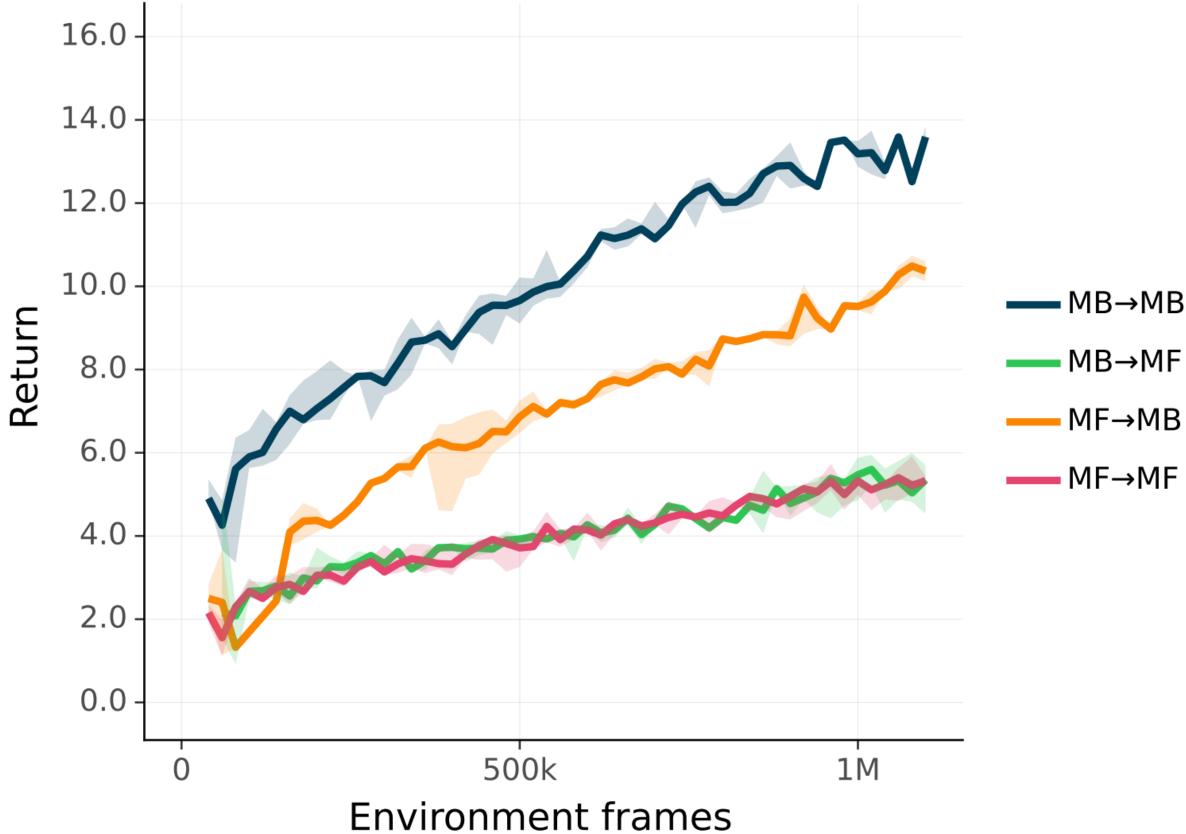
Degree of transfer

Degree of generalization

Similar observations

Novel observations

Transfer in Crafter

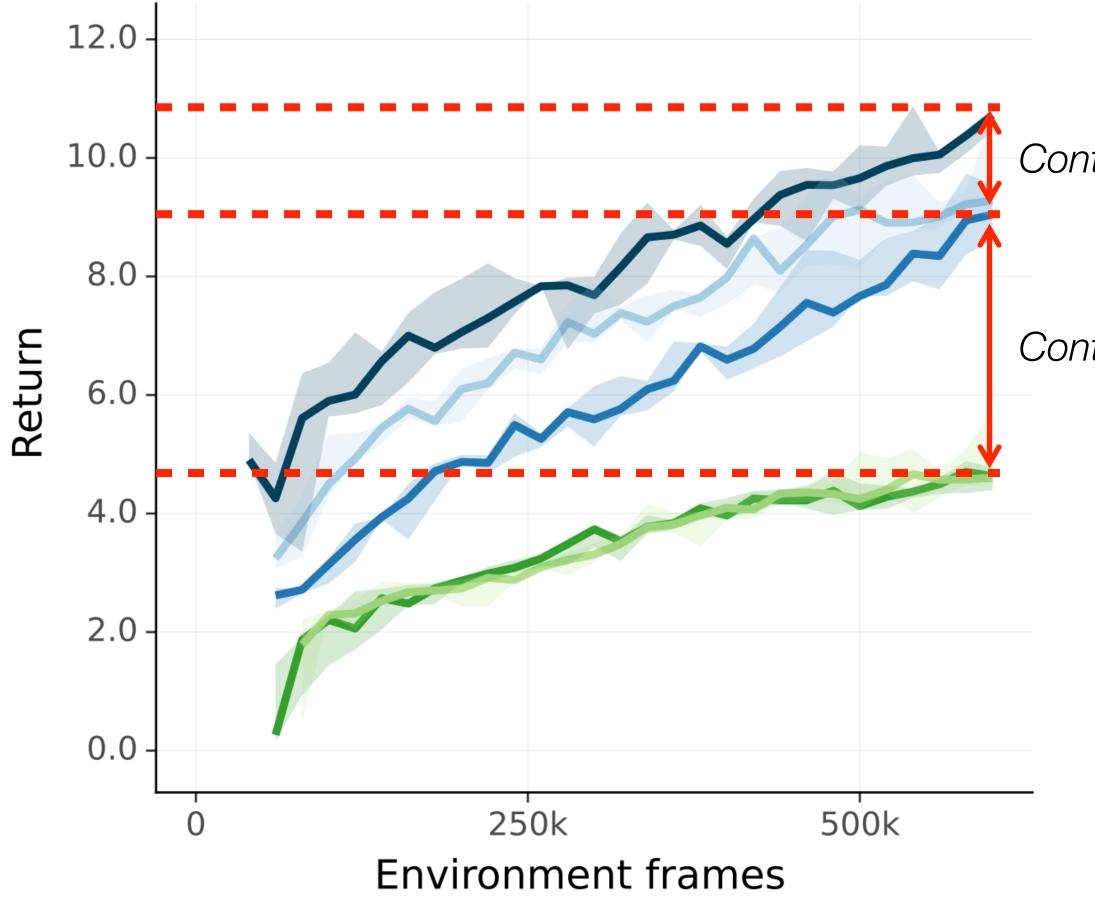


\rightarrow MB leads to improved transfer performance, and matters a lot for finetuning

Walker, Vértes, Li et al. (2023). Investigating the role of model-based learning in exploration and transfer. ICML.

Crafter (Hafner, 2021)

Contribution of different components



Walker, Vértes, Li et al. (2023). Investigating the role of model-based learning in exploration and transfer. ICML.

Contribution of the model

Contribution of the policy prior

→ The model is important for transfer, but so is the exploration policy!

Novel rewards	MB performance only weakly better than MF (likely b/c lack of data diversity)	MB performance depends strongly on exploration prior	
Identical rewards	MB > MF, but mostly at train time	MB performance depends strongly on model quality (which depends on data diversity)	Generalization requries strong prior knowledge (both policy & model)
	Identical observations	Similar observations	Novel observations

Degree of transfer

Degree of generalization

Transfer in MetaWorld

Train

sweep into

window open

0.8

Success Rate

0.2

0.0

push

button press dial turn

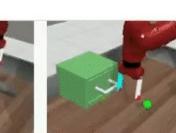
reach

60M 80M 40M 20M **Environment frames**

Walker, Vértes, Li et al. (2023). Investigating the role of model-based learning in exploration and transfer. ICML.

Test





door close

drawer open

lever pull

shelf place

sweep

MetaWorld (Yu et al., 2021)

MB→MB Scratch

 \rightarrow MBRL may not substantially improve transfer performance if there is a large environment shift

Novel rewards	MB performance only weakly better than MF (likely b/c lack of data diversity)	MB performance depends strongly on exploration prior	Need higher diversity & stronger prior knowledge for success
Identical rewards	MB > MF, but mostly at train time	MB performance depends strongly on model quality (which depends on data diversity)	Generalization requries strong prior knowledge (both policy & model)
	Identical observations	Similar observations	Novel observations

Degree of transfer

Degree of generalization

Novel rewards	MB performance only weakly better than MF (likely b/c lack of data diversity)	MB performance depends strongly on exploration prior	Nee &
Identical rewards	MB > MF, but mostly at train time	MB performance depends strongly on model quality (which depends on data diversity)	requ kr p

Identical observations

Degree of transfer

Degree of generalization

ed higher diversity & stronger **prior** knowledge for success

Generalization juries strong prior nowledge (both policy & model)

Similar observations

Novel observations

<u> </u>
Isfe
Sf
tra
Ę
of
O
egre
D
e

Identical rewards

ewards

Novel

MB performance only weakly better than MF (likely b/c lack of data diversity)

ME depe ex

MB > MF, but mostly at train time MB performance depends strongly on model quality (which depends on data diversity)

Identical observations

Degree of generalization

B performance
ends strongly on
ploration prior

Need higher diversity & stronger prior knowledge for success

Generalization requries strong prior knowledge (both policy & model)

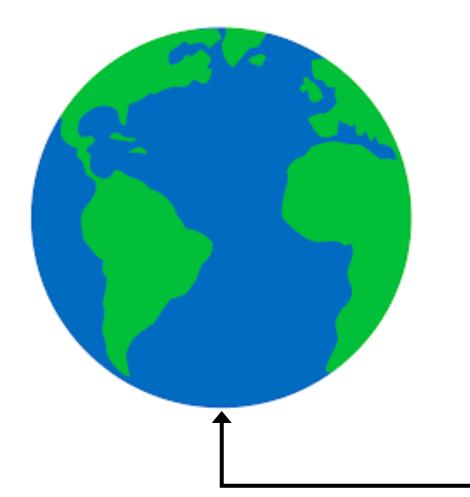
Similar observations

Novel observations

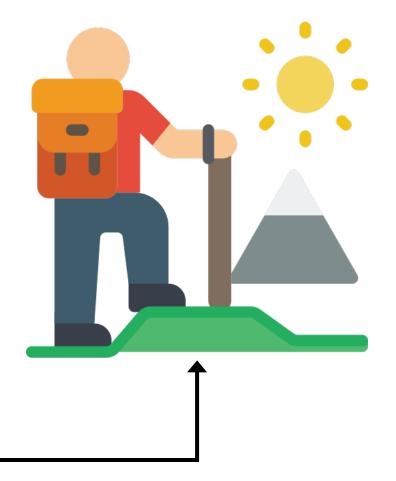
Ingredients for generalization & transfer

Model-based learning

High-quality world model



High-quality exploration prior



Missing ingredient: (Pre-)training on lots of high-quality, diverse data

Foundation models as the missing ingredient?

SayCan (Ahn et al., 2022)

... and yet ...

Hallucinate / make stuff up Get distracted by irrelevant context Struggle with symbolic/abstract reasoning

+

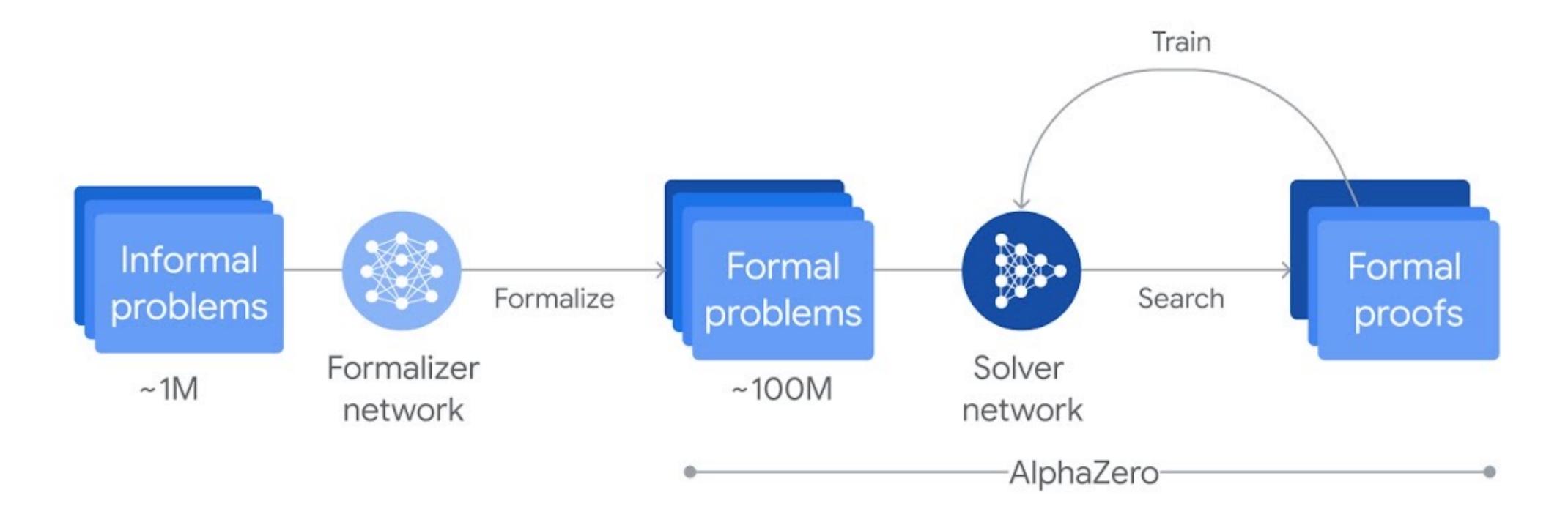
Model-based learning

Make simple calculation errors

Get stuck in loops

Foundation models

Model-based learning + foundation models



AlphaProof & AlphaGeometry 2 (2024) Together achieved silver medal standard at the IMO!

Model-based learning + foundation models

+

A golden age for neurosymbolic Al?

Thanks!

Kelsey Allen Ankesh Anand Victor Bapst Peter Battaglia Lars Buesing Thomas Anthony Feryal Behbahani Lars Buesing Carl Doersch Gabriel Dulac-Arnold Abe Friesen Arthur Guez Pushmeet Kohli

Yazhe Li Sherjil Ozair Tobias Pfaff Alvaro Sanchez-Gonzalez Julian Schrittwieser Kim Stachenfeld Petar Veličković Eszter Vértes Fabio Viola Jacob Walker Sims Witherspoon Theo Weber

Bapst*, Sanchez-Gonzalez*, Doersch, Stachenfeld, Kohli, Battaglia, Hamrick (2019). Structured agents for physical construction. *ICML.*

Hamrick, Friesen, Behbahani, Guez, Viola, Witherspoon, Anthony, Buesing, Veličković, & Weber (2021). On the role of planning in modelbased deep reinforcement learning. *ICLR*.

Anand*, Walker*, Li, Vértes, Schrittwieser, Ozair, Weber, & Hamrick (2022). Procedural generalization by planning with self-supervised world models. *ICLR*.

Walker*, Vértes*, Li*, Dulac-Arnold, Anand, Weber, & Hamrick (2023). Investigating the role of model-based learning in exploration and transfer. *ICML*.