
Luc De Raedt
Giuseppe Marra & Vincent Derkinderen & Sebastijan Dumancic &

Robin Manhaeve & Thomas Winters & Angelika Kimmig & Jaron Maene

How to make logics
neurosymbolic

AI MODEL = DATA + KNOWLEDGE

2

Giunchiglia, Eleonora, Mihaela Cătălina Stoian, Salman Khan, Fabio Cuzzolin, and Thomas
Lukasiewicz. "ROAD-R: The autonomous driving dataset with logical requirements." Machine
Learning (2023): 1-31.

The NeuroSymbolic
alphabet-soup

3

LTN

NeurASP

A-NeSI

ILPα

ILPδ

DeepProbLog

DeepStochLog

Slash

DiffLog

Neural MLNs

Neural PSL

DL2

LRNNsNeural ILP

NLog

NLProlog

NTP

RNM

SBR

SL

TensorLog

Scallop

SBR

DeepSeaLog

check our survey on AIJ — Marra, Dumancic, Manhaeve & De Raedt, 23

Neurosymbolic =
Neuro + Logic

LOGIC

NEURAL

Neurosymbolic =
Neuro + Logic + Probability

PROBABILITY

LOGIC

NEURAL

see Manhaeve et al. NeSy Book

interpret PROBABILITY broadly (including fuzzy)

Key Message 1

StarAI and NeSy share similar problems
and thus similar solutions apply

See also [De Raedt et al., IJCAI 20; Marra et al, AIJ 24]

LOGICLOGICLOGICNEURALLOGIC
PROBABI

LITYKey Message 2

Provide recipe for

Neural : : Symbolic

Kautz

Key Message 3

Provide recipe for

Neural : : Symbolic

“an interface layer (<> pipeline) between neural &
symbolic components”

Kautz

Key Message 3

Part 1: NeSy AI - a little Survey

Part 2: The Recipe

Part 3: DeepStochLog and
DeepProbLog

Part 1: NeSy AI - a little survey

check our survey on AIJ — Marra, Dumancic, Manhaeve & De Raedt, 23

Two types of probabilistic graphical
models and StarAI systems

0.1 :: burglary.

0.05 :: earthquake.

alarm :– earthquake.

alarm :– burglary.

0.7::calls(mary) :– alarm.

0.6::calls(john) :– alarm.

alarm

burglary. earthquake.

calls(mary) calls(john)

Markov LogicProbabilistic Logic Programs
ProbLog

undirected
Markov Net

model theoretic
directed

Bayesian Net

LOGIC
PROBABI

LITY key representatives

Two types of Neural
Symbolic Systems

Logic as a kind of neural
program

directed StarAI approach and
logic programs

11

Logic as the regularizer
(reminiscent of Markov Logic

Networks)

undirected StarAI approach and
(soft) constraints

Just like in StarAI

LOGICLOGICLOGICNEURAL

Also, many NeSy systems are doing
knowledge based model construction KBMC

where logic is used as a template
Just like in StarAI

• KBANN (Towell and Shavlik AIJ 94)

• Turn a (propositional) Prolog program into a
neural network and learn

12

A :− B, Z.
B :− C, D.
B :− E, F, G.
Z :− Y, not X.
Y :− S, T.

A :− B, Z.
B :− B’.
B :− B’’.
B’ :− C, D.
B’’ :− E, F, G.
Z :− Y, not X.
Y :− S, T.

REWRITE

directed StarAI approach and logic programs

Logic as a neural program

LOGICLOGICLOGICNEURAL

13

HIDDEN UNITADD LINKS — ALSO SPURIOUS ONES

and then learn
(Details of activation & loss functions not mentioned)LOGICLOGICLOGICNEURAL

directed StarAI approach and logic programs

Logic as a neural program

Neural Theorem Prover

[Rocktäschel Riedel, NeurIPS 17; Minervini et al.]
LOGICLOGICLOGICNEURAL

directed StarAI approach and logic programs

Two types of Neural
Symbolic Systems

Logic as a kind of neural
program

directed StarAI approach and
logic programs

15

Logic as the regularizer
(reminiscent of Markov Logic

Networks)

undirected StarAI approach and
(soft) constraints

Just like in StarAI

LOGICLOGICLOGICNEURAL

Also, many NeSy systems are doing
knowledge based model construction KBMC

where logic is used as a template

Logic as constraints

16

multi-class classification

figures and example from Xu et al., ICML 2018
LOGICLOGICLOGICNEURAL

undirected StarAI approach and (soft) constraints

Logic as constraints

16

multi-class classification

This constraint should be satisfied

(¬x1 ^ ¬x2 ^ x3)_ (1)

(¬x1 ^ x2 ^ ¬x3)_ (2)

(x1 ^ ¬x2 ^ ¬x3) (3)

<latexit sha1_base64="XbG4kwy4F1ZEo1s2e3tSfbPsnUI=">AAACynicbVHNa9swFJe9r877SrfjLo+FQXsJdtqxHst22A47dNC0hSgYWX52RGXJSHLaYHLbX7jbjvtPJicOtM0eCH76fSC997JaCuvi+E8QPnr85OmzvefRi5evXr8Z7L+9sLoxHCdcS22uMmZRCoUTJ5zEq9ogqzKJl9n1106/XKCxQqtzt6xxVrFSiUJw5jyVDv7SDEuhWo7KoVlF53NhgWtlnWFCObBz3cgcMgTrE7YQmEdRn2FSlGoVHVCFJdymCdAbzEuE9d0T4y1xmx4dAl0gUrrrvmvstaPDzgyd+56zl3ftEFFU+fZDm8u2o3QwjEfxumAXJD0Ykr7O0sFvmmveVD7PJbN2msS1m7XMOMElriLaWKwZv2YlTj1UrEI7a9erWMFHz+RQaOOPH9+avZtoWWXtssq8s2Jubh9qHfk/bdq44mTWClU3DhXfPFQ0EpyGbq+QC4PcyaUHjBvh/wp8zgzjfgi2G0LysOVdcDEeJcejTz/Hw9Mv/Tj2yHvygRyQhHwmp+Q7OSMTwoNvQRUsgpvwR2jCZdhurGHQZ96RexX++gdFktk3</latexit>

figures and example from Xu et al., ICML 2018
LOGICLOGICLOGICNEURAL

undirected StarAI approach and (soft) constraints

17

multi-class classification

Probability that constraint is satisfied

(1� x1)(1� x2)x3+

(1� x1)x2(1� x3)+

x1(1� x2)(1� x3)

<latexit sha1_base64="siUg7I1JwVFi32UgItD2G0F9eAQ=">AAACoHicbZFfb9MwFMWd8G+EPyvwiCZZq5BWEFXSgdjjxF72MEQn0W2iqaob56a15jiRfYNWRf1cfA/e+DY4TWCwcaVEx+fnIzsnSamkpTD86fl37t67/2DrYfDo8ZOn271nz89sURmBE1GowlwkYFFJjROSpPCiNAh5ovA8uTxq+Pk3NFYW+gutSpzlsNAykwLIWfPe9zjBhdS1QE1o1sHYFAkkUklacVoCcVFoSwakJi4tty5mM4lpEHRBUHKhX6+Dvegtv5pHA94Ip0YD99rnb+L4GvEN4Lw19gcb6kibaeHgmgYx6vTPAe3q9z3nvX44DDfDb4uoE33WzXje+xGnhahylxcKrJ1GYUmzGgxJoXAdxJXFEsQlLHDqpIYc7azeFLzmr5yT8qww7tFNJ879O1FDbu0qT9zOHGhpb7LG/B+bVpQdzGqpy4pQi/agrFKcCt78LZ5Kg4LUygkQRrq7crEEA8KVYJsSopuffFucjYbRu+H701H/8GNXxxZ7yXbZHovYB3bIjtmYTZjwdrwj78T75O/6x/5n/7Td6ntd5gX7Z/yvvwA6xMI4</latexit>

basis for SEMANTIC LOSS
 (weighted model counting)

Logic as constraints

LOGICLOGICLOGICNEURAL

undirected StarAI approach and (soft) constraints

Semantic Loss:

• Use logic as constraints (very much like
“propositional MLNs)

• Semantic loss

• Used as regulariser

• Use weighted model counting , close to
StarAI

18

SLoss(T) / � log
X

X|=T

Y

x2X

pi
Y

¬x2X

(1� pi)

<latexit sha1_base64="dER/6fh2D1SpLgkfxgf7GKJqOOM=">AAACRnicbZDPaxNBFMffRq01/op69PKwCKnQsFuUeix6EfRQMWkD2WWZnX1Jh84vZmaLYclf58WzN08ePHnxoIhXJ0kVbf3CwJfv9z1m5lNZKXxI049J59LlKxtXN691r9+4eet2787dQ28ax2nEjTRuXDFPUmgaBREkja0jpipJR9XJ82V/dErOC6OHYW6pUGymxVRwFmJU9orum1fG+/5wG3PrjA0GdzCXZoa5b1TZjjFXpibpcbhYTdRl+xZzoXG8QFuK31muaYZ/in6GO7HcLntb6SBdCS+a7Mxs7b/knz4/2qgPyt6HvDa8UaQDl8z7SZbaULTMBcElLbp548kyfsJmNIlWM0W+aFcYFvgwJjVOjYtHB1ylf2+0THk/V1WcVCwc+/PdMvxfN2nC9GnRCm2bQJqvL5o2EiOsJVOshSMe5Dwaxp2Ib0V+zBzjIZLvRgjZ+S9fNIe7g+zx4MnrSOMZrLUJ9+EB9CGDPdiHF3AAI+DwDr7AN/ievE++Jj+Sn+vRTnK2cw/+UQd+AQojsiM=</latexit>

Loss = TraditionalLoss+ w.SLoss

<latexit sha1_base64="+S53KnNUSBsAI7yKvOjzIEBijB0=">AAACDHicbZDLSsNAGIUn9dbGW9Wlm8EiCEJIRNGNUHTjwkXF3rANZTKZtEMnF2Ymagl9ADfufYpuXCji1gdw59PoJO1CWw8MfJzz/wz/cSJGhTTNLy03N7+wuJQv6Msrq2vrxY3NughjjkkNhyzkTQcJwmhAapJKRpoRJ8h3GGk4/fM0b9wSLmgYVOUgIraPugH1KEZSWZ1iSb8MhYCnsMqRS1MPMZhZ+/DOgNcpqinTMDPBWbAmUCoXoqeb0f13pVP8bLshjn0SSMyQEC3LjKSdIC4pZmSot2NBIoT7qEtaCgPkE2En2TFDuKscF3ohVy+QMHN/byTIF2LgO2rSR7InprPU/C9rxdI7sRMaRLEkAR5/5MUMyhCmzUCXcoIlGyhAmKsuMMQ9xBGWqj9dlWBNnzwL9QPDOjSOrlQbZ2CsPNgGO2APWOAYlMEFqIAawOABjMALeNUetWftTXsfj+a0yc4W+CPt4wf0Wp1n</latexit>

Logic as a regularizer

LOGICLOGICLOGICNEURAL

undirected StarAI approach and (soft) constraints

Logic Tensor Networks

Serafini & Garcez
LOGICLOGICLOGICNEURAL

undirected StarAI approach and (soft) constraints

Semantic Based Regularization

Diligenti et al. AIJ
LOGICLOGICLOGICNEURAL

undirected StarAI approach and (soft) constraints

Two types of Neural
Symbolic Systems

Logic as a kind of neural
program

directed StarAI approach and
logic programs

21

Logic as the regularizer
(reminiscent of Markov Logic

Networks)

undirected StarAI approach and
(soft) constraints

Just like in StarAI

LOGICLOGICLOGICNEURAL

Also, many NeSy systems are doing
knowledge based model construction KBMC

where logic is used as a template

Consequence :
the logic is encoded in the network
the ability to logically reason is lost

logic is not a special case

A different approach

A true integration T of X and Y should allow to
reconstruct X and Y as special cases of T

Thus, Neural Symbolic approaches should have
both logic and neural networks as special cases

Part 3 of the talk — illustration with DeepProbLog [NeurIPS 2018]
and DeepStochLog [AAAI 2022]

LOGICLOGICLOGICNEURAL

PROBABI
LITY

A different approach

A true integration T of X and Y should allow to
reconstruct X and Y as special cases of T

Thus, Neural Symbolic approaches should have
both logic and neural networks as special cases

Part 3 of the talk — illustration with DeepProbLog [NeurIPS 2018]
and DeepStochLog [AAAI 2022]

Our approach: “an interface layer (<> pipeline)
between neural & symbolic components”

will be illustrated with DeepProbLog
See also [Manhaeve et al., NeurIPS 18; arXiv: 1907.08194]

LOGICLOGICLOGICNEURAL

PROBABI
LITY

Part 2: The Recipe

check our survey on AIJ — Marra, Dumancic, Manhaeve & De Raedt, 24

Turning any logic into a neurosymbolic one

24

 Neural nets

zsignal-

analysis

image-

analysis

earthquake burglary

sign43 img55

& primitives defining semantics and computational graph
Neurosymbolic functions

© Luc De Raedt

25

 Neural nets

z

z

 Logic

signal-

analysis

image-

analysis

alarm(B,E) IF earthquake(E) OR burglary(B)
calls(B,E,P) IF alarm(B,E) AND hears_alarm(P)

hears_alarm(john)
hears_alarm(mary)

earthquake burglary

sign43 img55

calls(img55,sign43,john)

hears_alarm(john)

& primitives defining semantics and computational graph
Neurosymbolic functions

© Luc De Raedt

26

 Neural nets

z

z

 Logic

signal-

analysis

image-

analysis

alarm(B,E) IF earthquake(E) OR burglary(B)
calls(B,E,P) IF alarm(B,E) AND hears_alarm(P)

hears_alarm(john)
hears_alarm(mary)

earthquake burglary

sign43 img55

calls(img55,sign43,john)

hears_alarm(john)

Can we learn
calls END TO END ?

& primitives defining semantics and computational graph
Neurosymbolic functions

From

© Luc De Raedt

27

 Neural nets

z

z

 Logic

signal-

analysis

image-

analysis

alarm(B,E) IF earthquake(E) OR burglary(B)
calls(B,E,P) IF alarm(B,E) AND hears_alarm(P)

hears_alarm(john)
hears_alarm(mary)

earthquake burglary

sign43 img55

calls(img55,sign43,john)

hears_alarm(john)
0.3 0.8 0.01

0.2406

z

 Probability (or fuzzy)
0.8::earthquake
0.01::burglary
0.3::hears_alarm(john)

& primitives defining semantics and computational graph
Neurosymbolic functions

© Luc De Raedt

28

 Neural nets

z

z

 Logic

signal-

analysis

image-

analysis

alarm(B,E) IF earthquake(E) OR burglary(B)
calls(B,E,P) IF alarm(B,E) AND hears_alarm(P)

hears_alarm(john)
hears_alarm(mary)

earthquake burglary

sign43 img55

calls(img55,sign43,john)

hears_alarm(john)
0.3 0.8 0.01

0.2406

z

 Probability (or fuzzy)
0.8::earthquake
0.01::burglary
0.3::hears_alarm(john)

Neurosymbolic primitive = the neural predicate

burglary(B) = neural(image-analysis(B))
earthquake(E) = neural(signal-analysis(E)))

& primitives defining semantics and computational graph
Neurosymbolic functions

Deep bidirectional interface

© Luc De Raedt

29

 Neural nets

z

z

 Logic

signal-

analysis

image-

analysis

alarm(B,E) IF earthquake(E) OR burglary(B)
calls(B,E,P) IF alarm(B,E) AND hears_alarm(P)

hears_alarm(john)
hears_alarm(mary)

earthquake burglary

sign43 img55

calls(img55,sign43,john)

hears_alarm(john)
0.3 0.8 0.01

0.2406

z

 Probability (or fuzzy)
0.8::earthquake
0.01::burglary
0.3::hears_alarm(john)

Neurosymbolic primitive = the neural predicate

burglary(B) = neural(image-analysis(B))
earthquake(E) = neural(signal-analysis(E)))

& primitives defining semantics and computational graph
Neurosymbolic functions Semantics = Computational Graph

z

 Probability (or fuzzy)

+

1-x

*

*

Deep bidirectional interface

© Luc De Raedt

30

earthquake burglary

sign43 img55

calls(img55,sign43,john)

hears_alarm(john)
0.30.8 0.01

0.2406

+

1-x

*

*

Semantics = Computational Graph

Inference and learning (end-to-end)
Many variations, many challenges

Standard gradient descent applies

Explanations
due to the use of a probabilistic logic, quite natural

probabilistic abduction (cf David Poole)

if john calls then it is because
alarm
earthquake (and no burglary)
hears_alarm(john)

you can event edit these programs (knowledge)

alarm

Semantics
How to define semantics ?

Role of components ?

(logic, fuzzy / probability, neural nets)?
Many variations

alarm

© Luc De Raedt

A recipe for NeSy
From logic formulae to circuits

 ℓ(Q)ℓ((A ∧ B) → C)

The query Q determines
the structure

ℓ→

ℓ∧

A B

C

Where do the numbers come from ?

A recipe for NeSy
From logic formulae to circuits

What is the algebraic structure ? = Parametric circuit  

ℓ(Q)ℓF((A ∧ B) → C)

The query Q determines
the structure (potentially
after knowledge
compilation)

What operators ?

What labeling
functions ?

Where do the numbers come from ?

ℓ→

ℓ∧

A B

C

ℓ→

ℓ∧

ℓ(A) ℓ(B)

ℓ(C)

A recipe for NeSy

ℓF((A ∧ B) → C)

The query Q determines
the structure (potentially
after knowledge
compilation)

What operators ?

What labeling
functions ?

Boolean

Where do the numbers come from ?

ℓ→

ℓ∧

A B

C

ℓ→

ℓ∧

ℓ(A) ℓ(B)

ℓ(C)

A recipe for NeSy

What operators ?

What labeling
functions ?

Fuzzy
• t-norm extends conjunction to [0,1] interval

• Three fundamental t-norms:

• Lukasiewicz t-norm:

• Goedel t-norm:

• Product t-norm:

tL(x, y) = max(0,x + y − 1)
tG(x, y) = min(x, y)
tP(x, y) = x ⋅ y

Other operators derived from the t-norm

 
but a measure of

vagueness

not of uncertainty

continuous and
differentiable

Many problems
See [Van Krieken et al AIJ]

Where do the numbers come from ?

ℓ→

ℓ∧

ℓ(A) ℓ(B)

ℓ(C)

A recipe for NeSy
Probability

∨

¬A ∧

A ∨

¬B ∧

B C

+

1 − p(A) ×

p(A) +

1 − p(B) ×

p(B) p(C)

Knowledge Compilation (computationally expensive)

Probabilistic structure is explicit in compiled formula.

→

∧

A B

C

Where do the numbers come from ?

A recipe for NeSy
Probability

∨

A ∧

¬A B

+

p(A) ×

1-p(A) p(B)

Knowledge Compilation (computationally expensive)

Probabilistic structure is explicit in compiled formula.

∨

A B

Where do the numbers come from ?

Why Compile
P(A B) = P(A) + P(B) - P(A B)∨ ∧

From StarAI to NeSy
ℓ→

F

ℓ∧
F

ℓ̃F(A) ℓ̃F(B)

ℓ̃F(C)

+

1 − ℓP(A) ×

ℓP(A) +

1 − ℓP(B) ×

ℓP(B) ℓP(C)

ℓ→
F

ℓ∧
F

ℓ̃F(A) ℓ̃F(B)

ℓ̃F(C)

NN NN

NN

+

1 − ℓP(A) ×

ℓP(A) +

1 − ℓP(B) ×

ℓP(B) ℓP(C)

NN

NN

NN

NN NN

LOGIC NEURAL

PROBABI
LITYLOGIC

PROBABI
LITYLOGIC

NEURAL

LOGIC

REPARAMETERIZATION

StarAI

NeSy

Part 3: DeepStochLog and
DeepProbLog

PROBABI
LITY

LOGICLOGICLOGICNEURALLOGIC
PROBABI

LITYFROM TO

Two types of
probabilistic models / programs
• Based on a random graph model

• Bayesian Nets and ProbLog -> DeepProbLog [AIJ 21]

• Based on a random walk model

• Probabilistic grammars and Stochastic Logic Programs
[Muggleton] -> DeepStochLog [AAAI 22]

Our method/recipe:
Take an existing probabilistic logic and

inject neural predicates that act ako interface

DeepLog

DeepProbLog = ProbLog + Neural Network

40

Related work in NeSy DeepProbLog and DeepStochLog

Logic is made less expressive Full expressivity is retained

Logic is pushed into the neural network Maintain both logic and neural network

Fuzzy logic Probabilistic logic programming

Language semantics unclear Clear semantics

LOGICLOGICLOGICNEURAL

PROBABI
LITY

DeepStochLog = SLPs + Neural Network

DeepStochLog
• Little sibling of DeepProbLog [Winters, Marra, et al AAAI 22]

• Based on a different semantics

• probabilistic graphical models vs grammars

• random graphs vs random walks

• Underlying StarAI representation is Stochastic Logic Programs (Muggleton,
Cussens)

• close to Probabilistic Definite Clause Grammars, ako probabilistic unification
based grammar formalism

• again the idea of neural predicates

• Scales better, is faster than DeepProbLog

CFG: Context-Free Grammar

 E --> N  
 E --> E, P, N  
 
 P --> [“+”]

 N --> [“0”]  
 N --> [“1”]  
 …  
 N --> [“9”]

2 + 3 + 8

N

E

E

P N

E

P N

Useful for:
- Is sequence an element of the specified language?
- What is the “part of speech”-tag of a terminal
- Generate all elements of language

PCFG: Probabilistic Context-Free Grammar

0.5 :: E --> N  
0.5 :: E --> E, P, N  
 
1.0 :: P --> [“+”]

0.1 :: N --> [“0”]  
0.1 :: N --> [“1”]  
 …  
0.1 :: N --> [“9”]

2 + 3 + 8

N

E

E

P N

E

P N

Useful for:
- What is the most likely parse for this sequence of terminals? (useful for ambiguous grammars)

- What is the probability of generating this string?

0.5

0.1

1
1

0.1
0.1

0.5

0.5

Probability of this parse = 0.5*0.5*0.5*0.1*1*0.1*1*0.1
= 0.000125

A
lw

ay
s

su
m

s
to

 1
 p

er
 n

on
-

te
rm

in
al

DCG: Definite Clause Grammar

 e(N) --> n(N).  
 e(N) --> e(N1), p, n(N2),  
 {N is N1 + N2}.  
 p --> [“+”].

 n(0) --> [“0”].  
 n(1) --> [“1”].  
 …  
 n(9) --> [“9”].

2 + 3 + 8

n(2)

e(2)

e(5)

p n(3)

e(13)

p n(8)

Useful for:
- Modelling more complex languages (e.g. context-sensitive)
- Adding constraints between non-terminals thanks to Prolog power (e.g. through unification)
- Extra inputs & outputs aside from terminal sequence (through unification of input variables)

SDCG: Stochastic Definite Clause Grammar

0.5 :: e(N) --> n(N).  
0.5 :: e(N) --> e(N1), p, n(N2),  
 {N is N1 + N2}.  
1.0 :: p --> [“+”].

0.1 :: n(0) --> [“0”].  
0.1 :: n(1) --> [“1”].  
 …  
0.1 :: n(9) --> [“9”].

2 + 3 + 8

n(2)

e(2)

e(5)

p n(3)

e(13)

p n(8)

Useful for:
- Same benefits as PCFGs give to CFG (e.g. most likely parse)

- But: loss of probability mass possible due to failing derivations

0.5

0.1

1
1

0.1
0.1

0.5

0.5

Probability of this parse = 0.5*0.5*0.5*0.1*1*0.1*1*0.1
= 0.000125

Neural predicate

• Neural networks have uncertainty in
their predictions

• A normalized output can be
interpreted as a probability distribution

• Neural predicate models the output as
probabilistic facts

• No changes needed in the probabilistic
host language

46

Neural

PROBABI
LITY

LOGICLOGICLOGICNEURAL

Key Idea DeepProbLog

 unify the basic concepts in logic
and neural networks:

neural predicate ~ neural net

an interface between logic and
neural nets

0.04::digit(,0) XOR 0.35::digit(,1) XOR ... XOR
0.53::digit(,7) XOR ... XOR 0.014::digit(,9).

Neural predicate

• Neural networks have uncertainty in
their predictions

• A normalized output can be
interpreted as a probability distribution

• Neural predicate models the output as
probabilistic facts

• No changes needed in the probabilistic
host language

46

Neural

PROBABI
LITY

LOGICLOGICLOGICNEURAL

Key Idea DeepProbLog

 unify the basic concepts in logic
and neural networks:

neural predicate ~ neural net

an interface between logic and
neural nets

0.04::digit(,0) XOR 0.35::digit(,1) XOR ... XOR
0.53::digit(,7) XOR ... XOR 0.014::digit(,9).

NDCG: Neural Definite Clause Grammar (= DeepStochLog)

Useful for:
- Subsymbolic processing: e.g. tensors as terminals
- Learning rule probabilities using neural networks

0.5 :: e(N) --> n(N).  
0.5 :: e(N) --> e(N1), p, n(N2),  
 {N is N1 + N2}.  
1.0 :: p --> [“+”].

nn(number_nn,[X],[Y],[digit])::

 n(Y) —> [X].

digit(Y) :-

 member(Y,[0,1,2,3,4,5,6,7,8,9]).

2 + 3 + 8

n(2)

e(2)

e(5)

p n(3)

e(13)

p n(8)

0.5

pnumber_nn(=2)

1
1

0.5

0.5

pnumber_nn(=3)
pnumber_nn(=8)

Probability of this parse =
0.5*0.5*0.5*pnumber_nn(=2)*1*pnumber_nn(=3)*1*pnumber_nn(=8)

Mathematical expression outcome

T1: Summing MNIST numbers
with pre-specified # digits

T2: Expressions with images
representing operator or single
digit number.

+ = 137

= 19

Rules of Addition Known — Impose Strong Constraints on Neural Nets

addition(, ,8) IF and only IF digit(,N1), digit(,N2), 8 = N1 + N2.

Citation networks

T5: Given scientific paper set with only few labels & citation
network, find all labels

Applied to NL to SQL

Ying Jiao et al, NeSy 24

Soft-unification in
Deep Probabilistic Logic

Jaron Maene & LDR

DeepSoftLog: Reasoning over embeddings in
Problog with sound probabilistic semantics.

How can we reason symbolically
over distributed representations?

isIn(, france) ∧ isIn(, EU)
 -> isIn(eiffel_tower,)

DeepSoftLog (NeurIPS 23)

Theorem: If we interpret the soft-unification as a probability, we and take a
soft-unification function of the form with a distance, we get:

(1) Well-defined proof scores
(2) No redundancy in proofs
(3) Connected embedding space
(4) Non-sparse gradients

+ a source transformation of this to DeepProbLog

DeepSeaProbLog

PROBABI
LITY

LOGICLOGICLOGICNEURAL

discrete and continuous distributions [De Smet UAI 23]

length(Obj) ~ normal(dim(Obj,Image)).

large(Obj) :- length(Obj) > 100.

dim is neural net returning parameters of normal distribution.

useful for robotics and perception

determining order digits
to determine year

DeepSeaProbLog

PROBABI
LITY

LOGICLOGICLOGICNEURAL

discrete and continuous distributions [De Smet UAI 23]

generative model with variational autoencoders (see also [Misoni et al NeurIPS 22])

So far from input to output 11 so that SUM(,11) holds

In DeepSeaProblog, you can query SUM(, X, 5)

Probabilistic Logic Shield for Reinforcement Learning

π(𝚊𝚌𝚌𝚎𝚕𝚎𝚛𝚊𝚝𝚎 |s) = 0.5
π(𝚕𝚎𝚏𝚝 |s) = 0.3
π(𝚛𝚒𝚐𝚑𝚝 |s) = 0.2

Shield
Assuming noisy
sensors

𝟶 . 𝟻 :: 𝚊𝚌𝚝(𝚊𝚌𝚌𝚎𝚕);
𝟶 . 𝟹 :: 𝚊𝚌𝚝(𝚕𝚎𝚏𝚝);
𝟶 . 𝟸 :: 𝚊𝚌𝚝(𝚛𝚒𝚐𝚑𝚝)

P(𝚜𝚊𝚏𝚎 |a, s) =

What is a safer policy ?π+

π+(𝚊𝚌𝚌𝚎𝚕𝚎𝚛𝚊𝚝𝚎 |s) = 0.24
π+(𝚕𝚎𝚏𝚝 |s) = 0.48
π+(𝚛𝚒𝚐𝚑𝚝 |s) = 0.28

Will stay undamaged?

Pπ(𝚜𝚊𝚏𝚎 |s) = 0.576

𝚊𝚌𝚌𝚎𝚕𝚎𝚛𝚊𝚝𝚎 → 0.28
𝚕𝚎𝚏𝚝 → 0.92
𝚛𝚒𝚐𝚑𝚝 → 0.8

Probability of staying

safe if following ?π

𝟶 . 𝟾 :: 𝚘𝚋𝚜𝚝𝚌(𝚏𝚛𝚘𝚗𝚝) .
𝟶 . 𝟸 :: 𝚘𝚋𝚜𝚝𝚌(𝚕𝚎𝚏𝚝) .
𝟶 . 𝟻 :: 𝚘𝚋𝚜𝚝𝚌(𝚛𝚒𝚐𝚑𝚝) .

𝟶 . 𝟿 :: 𝚌𝚛𝚊𝚜𝚑:− 𝚘𝚋𝚜𝚝𝚌(𝚏𝚛𝚘𝚗𝚝), 𝚊𝚌𝚝(𝚊𝚌𝚌𝚎𝚕) .
𝟶 . 𝟺 :: 𝚌𝚛𝚊𝚜𝚑:− 𝚘𝚋𝚜𝚝𝚌(𝚕𝚎𝚏𝚝), 𝚊𝚌𝚝(𝚕𝚎𝚏𝚝) .
𝟶 . 𝟺 :: 𝚌𝚛𝚊𝚜𝚑:− 𝚘𝚋𝚜𝚝𝚌(𝚛𝚒𝚐𝚑𝚝), 𝚊𝚌𝚝(𝚛𝚒𝚐𝚑𝚝) .
𝚜𝚊𝚏𝚎:− ¬𝚌𝚛𝚊𝚜𝚑 .

DeepProbLog Theory
(Manhaeve et al. AĲ)

Wen-chi Yang et al, ĲCAI 23 Distinguished paper award

56

automated engineering assistant (IAAI 21)

 interpret and correct designs and maps

planning, reinforcement learning and
shielding (AAAI 24, IJCAI 23)

cognitive robotics (IJCAI 20, IEEE Trans)

reasoning and mathematical problem
solving (JAIR 23, IJCAI 2017, EMNLP 21)

Emerging applications

Intelligent OCR for chemical structures (ICLR 23)

and forms

NLP to SQL

Challenges
• For NeSy,

• scaling up (but serious progress !!)

• which models and which knowledge to use

• large scale life applications

• peculiarities of neural nets & fuzzy logic

• dynamics / continuous

• theory is largely missing !!!

• This is an excellent area for starting researchers / PhDs

Neurosymbolic =
Neuro + Logic + Probability

PROBABILITY

LOGIC

NEURAL

see Manhaeve et al. NeSy Book

interpret PROBABILITY broadly (including fuzzy)

Key Message 1

StarAI and NeSy share similar problems
and thus similar solutions apply

See also [De Raedt et al., IJCAI 20; Marra et al, arxiv]

LOGICLOGICLOGICNEURALLOGIC
PROBABI

LITYKey Message 2

Provide recipe for

Neural : : Symbolic

“an interface layer (<> pipeline) between neural &
symbolic components”

Kautz

Key Message 3

