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Abstract

Most methods for neural network verification focus on bounding the image, i.e., set of
outputs for a given input set. This can be used to, for example, check the robustness
of neural network predictions to bounded perturbations of an input. However, verifying
properties concerning the preimage, i.e., the set of inputs satisfying an output property,
requires abstractions in the input space. We present a general framework for preimage
abstraction that produces under- and over-approximations of any polyhedral output set.
Our framework employs cheap parameterised linear relaxations of the neural network, to-
gether with an anytime refinement procedure that iteratively partitions the input region
by splitting on input features and neurons. The effectiveness of our approach relies on
carefully designed heuristics and optimization objectives to achieve rapid improvements
in the approximation volume. We evaluate our method on a range of tasks, demonstrat-
ing significant improvement in efficiency and scalability to high-input-dimensional image
classification tasks compared to state-of-the-art techniques. Further, we showcase the appli-
cation to quantitative verification and robustness analysis, presenting a sound and complete
algorithm for the former and providing sound quantitative results for the latter.

Keywords: preimage approximation, abstraction and refinement, linear relaxation, for-
mal verification, neural network

1 Introduction

Despite the remarkable empirical success of neural networks, ensuring their safety against
potentially adversarial behaviour, especially when using them as decision-making compo-
nents in autonomous systems (Bojarski et al., 2016; Codevilla et al., 2018; Yun et al., 2017),
is an important and challenging task. Towards this aim, various approaches have been de-
veloped for the verification of neural networks, with extensive effort devoted, in particular,
to the problem of local robustness verification, which focuses on deciding the presence or
absence of adversarial examples (Szegedy et al., 2013; Biggio et al., 2013) within an ϵ-
perturbation neighbourhood (Huang et al., 2017; Katz et al., 2017; Zhang et al., 2018;
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Bunel et al., 2018; Tjeng et al., 2019; Singh et al., 2019; Xu et al., 2020, 2021; Wang et al.,
2021b).

While local robustness verification is useful for certifying that a neural network has the
same prediction in a neighbourhood of an input, it does not provide finer-grained infor-
mation on the behaviour of the network in the input domain. An alternative and more
general approach for neural network analysis is to construct the preimage abstraction of its
predictions (Matoba and Fleuret, 2020; Dathathri et al., 2019). Given a set of outputs, the
preimage is defined as the set of all inputs mapped by the neural network to that output
set. For example, given a particular action for a neural network controller (e.g., drive left),
the preimage captures the set of percepts (e.g., car positions) that cause the neural network
to take this action. By characterizing the preimage symbolically in an abstract representa-
tion, e.g., polyhedra, one can perform more complex analysis for a wider class of properties
beyond local robustness, such as computing the proportion of inputs satisfying a property
(Webb et al., 2019b; Mangal et al., 2019), or performing downstream reasoning tasks.

Unfortunately, exact preimage generation (Matoba and Fleuret, 2020) is intractable at
scale, as it requires splitting into input subregions where the neural network is linear. Each
such subregion corresponds to a set of determined activation patterns of the nonlinear neu-
rons, the number of which grows exponentially with the number of neurons. Therefore, we
focus on the problem of preimage approximation, that is, constructing symbolic abstractions
for the preimage. In this work, we propose a general framework for preimage approxima-
tion that computes under-approximations and over-approximations represented as disjoint
unions of polytopes (DUP).

Our method leverages recent progress in local robustness verification, which uses param-
eterized linear relaxations of neural networks together with branch-and-bound refinement
strategies to analyze the input space in an efficient and GPU-friendly manner (Zhang et al.,
2018; Wang et al., 2021b). We observe that, unlike robustness verification, where the goal is
to determine the behaviour of the neural network at the worst-case point in the input space
(and thus verify or falsify the property), in preimage approximation we instead aim to mini-
mize the overall difference in volume between the approximation and the (intractable) exact
preimage. Thus, we design a methodology that focuses on effectively optimising this new
volume-based objective, while maintaining the GPU parallelism, efficiency, and flexibility
drawn from the state-of-the-art robustness verifiers.

In more detail, this paper makes the following novel contributions:

1. the first unifying framework capable of efficiently generating symbolic under- and
over-approximations of the preimage abstraction of any polyhedron output set;

2. an efficient and anytime preimage refinement algorithm, which iteratively partitions
the input region into subregions using input and/or intermediate (ReLU) splitting
(hyper)planes;

3. carefully-designed heuristics for selecting input features and neurons to split on, which
(i) take advantage of GPU parallelism for efficient evaluation; and (ii) significantly
improve approximation quality compared to näıve baselines;
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4. a novel differentiable optimisation objective for improving preimage approximation
precision, with respect to (i) convex bounding parameters of nonlinear neurons and
(ii) Lagrange multipliers for neuron splitting constraints;

5. empirical evaluation of preimage approximation on a range of datasets, and an appli-
cation to the problem of quantitative verification;

6. a publicly-available software implementation of our preimage approximation frame-
work1.

This work significantly extends the preliminary version in Zhang et al. (2024) in the
following ways: (i) introducing an over-approximation algorithm within the framework,
with accompanying empirical results; (ii) improving the refinement procedure through new
heuristics for selecting input features to split on, using only 49.7% (avg.) computation time
of the prior method to achieve the same precision (Sections 4.3, 5.2.2); (iii) introducing
Lagrangian relaxation to enforce neuron splitting constraints, enabling further optimisation
of the approximations with precision gains of up to 58.6% (avg.) for a MNIST preimage
approximation task (Sections 4.5, 5.2.3); and (iv) an extended empirical evaluation of the
framework.

The paper is organized as follows. Section 2 introduces the notation and preliminary
definitions of neural networks, linear relaxation and polyhedra representations. In Section
3, we present the formulation of the problems studied, namely preimage approximation and
quantitative analysis of neural networks. Our preimage approximation method is provided
in Section 4, together with the application to quantitative verification of neural networks
and proofs of soundness and completeness. In Section 5, we present the experimental
evaluation of our approach and demonstrate its effectiveness and scalability compared to
the state-of-the-art techniques, and applications in quantitative verification and robustness
analysis. Finally, we discuss related works in Section 6 and conclude the paper in Section
7.

2 Preliminaries

We use f : Rd → Rm to denote a feed-forward neural network. For layer i, we use W(i) to
denote the weight matrix, b(i) the bias, z(i) the pre-activation neurons, and ẑ(i) the post-
activation neurons, such that we have z(i) = W(i)ẑ(i−1)+b(i). We use h(i)(x) to denote the
function from input to pre-activation neurons, and a(i)(x) the function from input to the
post-activation neurons, i.e., z(i) = h(i)(x) and ẑ(i) = a(i)(x). In this paper, we focus on
ReLU neural networks with a(i)(x) = ReLU(h(i)(x)), where ReLU(h) := max(h, 0) is applied
element-wise. However, our method can be generalized to other activation functions that
can be bounded by linear functions, similarly to Zhang et al. (2018).

Linear Relaxation of Neural Networks. Nonlinear activation functions lead to the
NP-completeness of the neural network verification problem as proved in Katz et al. (2017).
To address such intractability, linear relaxation is often used to transform the nonconvex
constraints into linear programs. As shown in Figure 2, given concrete lower and upper
bounds l(i) ≤ h(i)(x) ≤ u(i) on the pre-activation values of layer i, there are three cases to

1. https://github.com/Zhang-Xiyue/PreimageApproxForNNs
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C C

(a) Standard NN Verification: decide whether f(x) ∈ O, ∀x ∈ C.

C

(b) NN Preimage Approximation:
characterize f−1(O) := {x ∈ C |
f(x) ∈ O}.

Figure 1: Illustration of the preimage approximation problem. In contrast to NN robustness ver-
ification, where the goal is to answer Yes or No for the statement f(x) ∈ O,∀x ∈ C, in preimage
approximation the goal is to find a bounding under-approximation and over-approximation to
the preimage f−1(O). indicates the region where f(x) ∈ O.
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Figure 2: Linear bounding functions for inactive, active, unstable ReLU neurons.

consider. In the inactive (u
(i)
j ≤ 0) and active (l

(i)
j ≥ 0) cases, the post-activation neurons

a
(i)
j (x) are linear functions a

(i)
j (x) = 0 and a

(i)
j (x) = h

(i)
j (x) respectively. In the unstable

case, a
(i)
j (x) can be bounded by α

(i)
j h

(i)
j (x) ≤ a

(i)
j (x) ≤ − u

(i)
j l

(i)
j

u
(i)
j −l

(i)
j

+
u
(i)
j

u
(i)
j −l

(i)
j

h
(i)
j (x), where

α
(i)
j is a configurable parameter that produces a valid lower bound for any value in [0, 1].

Linear bounds can also be obtained for other non-piecewise linear activation functions by
considering the characteristics of the activation function, such as the S-shape activation
functions (Zhang et al., 2018; König et al., 2024).

Linear relaxation can be used to compute linear lower and upper bounds of the form
Ax+b ≤ f(x) ≤ Ax+b on the output of a neural network, for a given bounded input region
C. These methods are known as linear relaxation based perturbation analysis (LiRPA)
algorithms (Xu et al., 2020, 2021; Singh et al., 2019). In particular, backward-mode LiRPA
computes linear bounds on f by propagating linear bounding functions backward from the
output, layer by layer, to the input layer.

Polytope Representations. Given an Euclidean space Rd, a polyhedron T is defined
to be the intersection of a set of half spaces. More formally, suppose we have a set of
linear constraints defined by ψi(x) := cTi x + di ≥ 0 for i = 1, ...K, where ci ∈ Rd, di ∈ R
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are constants, and x = (x1, ..., xd) is a tuple of variables. Then a polyhedron is defined
as T = {x ∈ Rd|

∧K
i=1 ψi(x)}, where T consists of all values of x satisfying the first-order

logic (FOL) formula α(x) :=
∧K

i=1 ψi(x). We use the term polytope to refer to a bounded
polyhedron, that is, a polyhedron T such that ∃R ∈ R>0 : ∀x1, x2 ∈ T , ∥x1 − x2∥2 ≤ R
holds. The abstract domain of polyhedra has been widely used for the verification of neural
networks and computer programs as in Singh et al. (2019); Benoy (2002); Boutonnet and
Halbwachs (2019). An important type of polytope is the hyperrectangle (box), which is
a polytope defined by a closed and bounded interval [xi, xi] for each dimension, where
xi, xi ∈ Q. More formally, using the linear constraints ϕi := (xi ≥ xi) ∧ (xi ≤ xi) for each

dimension, the hyperrectangle takes the form C = {x ∈ Rd|x |=
∧d

i=1 ϕi}.

3 Problem Formulation

3.1 Preimage Approximation

In this work, we are interested in the problem of computing preimages for neural networks.
Given a subset O ⊂ Rm of the codomain, the preimage of a function f : Rd → Rm is
defined to be the set of all inputs x ∈ Rd that are mapped to an element of O by f . For
neural networks in particular, the input is typically restricted to some bounded input region
C ⊂ Rd. In this work, we restrict the output set O to be a polyhedron, and the input set C
to be an axis-aligned hyperrectangle region C ⊂ Rd, as these are commonly used in neural
network verification. We now define the notion of a restricted preimage.

Definition 1 (Restricted Preimage) Given a neural network f : Rd → Rm, and an
input set C ⊂ Rd, the restricted preimage of an output set O ⊂ Rm is defined to be the set
f−1
C (O) := {x ∈ Rd|f(x) ∈ O ∧ x ∈ C}.

Example 1 To illustrate our problem formulation and approach, we introduce a vehicle
parking task from Ayala et al. (2011) as a running example. In this task, there are four
parking lots, located in each quadrant of a 2× 2 grid [0, 2]2, and a neural network with two
hidden layers of 10 ReLU neurons f : R2 → R4 is trained to classify which parking lot an
input point belongs to. To analyze the behaviour of the neural network in the input region
[0, 2] × [0, 2], we set C = {x ∈ R2|(0 ≤ x1 ≤ 2) ∧ (0 ≤ x2 ≤ 2)}. Then the restricted
preimage f−1

C (O) of the set O = {y ∈ R4|
∧

i∈{2,3,4} y1−yi ≥ 0} is the subspace of the region
[0, 2]× [0, 2] that is labelled as parking lot 1 by the neural network.

We focus on provable approximations of the preimage. Given a first-order formula A, α is
an under-approximation (resp. over-approximation) of A if it holds that ∀x.α(x) =⇒ A(x)
(resp. ∀x.A(x) =⇒ α(x)). In our context, the restricted preimage is defined by the
formula A(x) = (f(x) ∈ O) ∧ (x ∈ C), and we restrict to approximations α that take the
form of a disjoint union of polytopes (DUP). The goal of our method is to generate a DUP
approximation T that is as tight as possible; that is, we aim to maximize the volume vol(T )
of an under-approximation, or minimize the volume vol(T ) of an over-approximation.

Definition 2 (Disjoint Union of Polytopes) A disjoint union of polytopes (DUP) is
a FOL formula α of the form α(x) :=

∨D
i=1 αi(x), where each αi is a polytope formula

(conjunction of a finite set of linear half-space constraints), with the property that αi ∧ αj

is unsatisfiable for any i ̸= j.
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3.2 Quantitative Properties

One of the most important verification problems for neural networks is that of proving
guarantees on the output of a network for a given input set (Gehr et al., 2018; Gopinath
et al., 2020; Ruan et al., 2018). This is often expressed as a property of the form (I,O)
such that ∀x ∈ I =⇒ f(x) ∈ O. We can generalize this to quantitative properties:

Definition 3 (Quantitative Property) Given a neural network f : Rd → Rm, a mea-
surable input set with non-zero measure (volume) I ⊆ Rd, a measurable output set O ⊆ Rm,
and a rational proportion p ∈ [0, 1], we say that the neural network satisfies the property

(I,O, p) if
vol(f−1

I (O))

vol(I) ≥ p. 2

Neural network verification algorithms can be characterized by two main properties:
soundness, which states that the algorithm always returns correct results, and completeness,
which states that the algorithm always reaches a conclusion on any verification query (Liu
et al., 2021). We now define the soundness and completeness of verification algorithms for
quantitative properties.

Definition 4 (Soundness) A verification algorithm QV is sound if, whenever QV outputs
True, the property (I,O, p) holds.

Definition 5 (Completeness) A verification algorithm QV is complete if (i) QV never
returns Unknown, and (ii) whenever QV outputs False, the property (I,O, p) does not hold.

If the property (I,O) holds, then the quantitative property (I,O, 1) holds, while quan-
titative properties for 0 ≤ p < 1 provide more information when (I,O) does not hold.
Most neural network verification methods produce approximations of the image of I in
the output space, which cannot be used to verify quantitative properties. Preimage over-
approximations include points outside of the true preimage; thus, they cannot be applied
for sound quantitative verification. In contrast, preimage under-approximations provide
a lower bound on the volume of the preimage, allowing us to soundly verify quantitative
properties.

4 Methodology

4.1 Overview.

In this section, we present the main components of our methodology. Figure 3 shows
the workflow of our preimage approximation method (using under-approximation as an
illustration).

In Section 4.2, we introduce how to cheaply and soundly under-approximate (or over-
approximate) the (restricted) preimage with a single polytope by means of the linear relax-
ation methods (Algorithm 2), which offer greater scalability than the exact method (Matoba

2. In particular, the restricted preimage of a polyhedron under a neural network is Lebesgue measurable
since polyhedra (intersection of a finite set of half-spaces) are Borel measurable and NNs are continuous
functions.
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Figure 3: Illustration of the workflow for preimage under-approximation (shown in 2D for clarity).
Given a neural network f : Rd → Rm and output specification O ⊂ Rm, our algorithm generates an
under-approximation C to the preimage in the input region C. Starting from the input region C, the
procedure repeatedly splits the selected region into smaller subregions C1 and C2 with tighter input
bounds, and then optimises the bounding and Lagrangian parameters to increase the volume and
thus improve the quality of the under-approximation. The refined under-approximation is combined
into a union of polytopes.

and Fleuret, 2020). To handle the approximation loss caused by linear relaxation, in Sec-
tion 4.3 we propose an anytime refinement algorithm that improves the approximation by
partitioning a (sub)region into subregions with splitting (hyper)planes, with each subregion
then being approximated more accurately in parallel. In Section 4.4, we propose a novel
differentiable objective to optimise the bounding parameters of linear relaxation to tighten
the polytope approximation. Next, in Section 4.5, we propose a refinement scheme based
on intermediate ReLU splitting planes and derive a preimage optimisation method using
Lagrangian relaxation of the splitting constraints. The main contribution of this paper
(Algorithm 1) integrates these four components and is described in Section 4.6. Finally, in
Section 4.7, we apply our method to quantitative verification (Algorithm 3) and prove its
soundness and completeness.

To simplify the presentation, we focus on computing under-approximations and explain
the necessary changes to compute over-approximations in highlight boxes throughout.

4.2 Polytope Approximation via Linear Relaxation

We first show how to adapt linear relaxation techniques to efficiently generate valid under-
approximations and over-approximations to the restricted preimage for a given input region
C as a single polytope. Recall that LiRPA methods enable us to obtain linear lower and
upper bounds on the output of a neural network f , that is, Ax+b ≤ f(x) ≤ Ax+b, where
the linear coefficients depend on the input region C.

Suppose that we are given the input hyperrectangle C = {x ∈ Rd|x |=
∧d

i=1 ϕi}, and
the output polytope specified using the half-space constraints ψi(y) = (cTi y + di ≥ 0) for
i = 1, ...,K over the output space. Let us first consider generating a guaranteed under-
approximation. Given a constraint ψi, we append an additional linear layer at the end of
the network f , which maps y 7→ cTi y + di, such that the function gi : Rd → R represented
by the new network is gi(x) = cTi f(x) + di. Then, applying LiRPA lower bounding to each

7
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Algorithm 1: Preimage Approximation

Input: Neural network f , Input region C, Output region O, Volume threshold v, Maximum
iterations R, Number of samples N , Boolean Under, Boolean SplitOnInput

Output: Disjoint union of polytopes TDom

1 T ← GenApprox(C, O, N , Under) ; // Initial preimage polytope

2 Dom ← {(C, T,CalcPriority(T,Under))} ; // Priority queue

// TDom is the union of the under/over-approximating polytopes in Dom

3 while ((Under and EstimateVolume(TDom) < v) or
(¬Under and EstimateVolume(TDom) > v)) and Iterations ≤ R do

4 Csub, T,Priority ← Pop(Dom) ; // Subregion with highest priority

5 if SplitOnInput then
6 id ← SelectInputFeature(FeatureI , Under) ; // FeatureI is the set of input

features/dimensions

7 else
8 id← SelectReLUNode(NodeZ , Under); // NodeZ is the set of unstable ReLU

nodes

9 [Clsub,Cusub] ← SplitOnNode(Csub, id); // Split on the selected node

10 T l, Tu← GenApprox([Clsub,Cusub], O, N,Under) ; // Generate preimage

11 Dom ← Dom ∪ {(Clsub, T l,CalcPriority(T l, Under)),
(Cusub, T r,CalcPriority(T r, Under))}; // Disjoint polytope

12 return TDom

gi, we obtain a lower bound gi(x) = aTi x+ bi for each i, such that gi(x) ≥ 0 =⇒ gi(x) ≥ 0

for x ∈ C. Notice that, for each i = 1, ...,K, aTi x + bi ≥ 0 is a half-space constraint in the
input space. We conjoin these constraints, along with the restriction to the input region C,
to obtain a polytope:

TC(O) := {x|
K∧
i=1

(gi(x) ≥ 0) ∧
d∧

i=1

ϕi(x)} (1)

Over-Approximation Alternatively, to generate a guaranteed over-
approximation, we can instead apply LiRPA upper bounding to each gi, obtaining
upper bounds gi(x) = aTi x + bi for each i, such that gi(x) ≥ 0 =⇒ gi(x) ≥ 0 for
x ∈ C, and defining the polytope:

TC(O) := {x|
K∧
i=1

(gi(x) ≥ 0) ∧
d∧

i=1

ϕi(x)} (2)

Proposition 6 TC(O), TC(O) are respectively under- and over-approximations to the re-

stricted preimage f−1
C (O).

Proof For the under-approximation, the LiRPA bound gi(x) ≤ gi(x) holds for any x ∈ C
and i = 1, ...,K, and so we have

∧K
i=1(gi(x) ≥ 0) ∧ x ∈ C =⇒

∧K
i=1(gi(x) ≥ 0) ∧ x ∈ C,

i.e., TC(O) is an under-approximation to f−1
C (O). Similarly, for the over-approximation,

8
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1.0

1.2

x 2

x2=4.12x1-2.98
x2=0.33x1+0.63
x2=-12.23x1+15.18
x2=-0.01x1+1.18
x2=-1.06x1+2.24

Figure 4: Illustration of initial preimage under- and over-approximation for output specification
∧i∈{2,3,4}(y1 − yi ≥ 0) in the vehicle parking task (for more details see Example 2). The under-
approximation is the polytope in grey, bounded by dotted half-planes, and the over-approximation
is the polytope in blue, bounded by solid half-planes.

gi(x) ≤ gi(x) holds for any x ∈ C and i = 1, ...,K, and so
∧K

i=1(gi(x) ≥ 0) ∧ x ∈ C =⇒∧K
i=1(gi(x) ≥ 0) ∧ x ∈ C, i.e. TC(O) is an over-approximation to f−1

C (O).

Example 2 Returning to Example 1, the output constraints (for i = 2, 3, 4) are given by
ψi = (y1 − yi ≥ 0) = (cTi y + di ≥ 0), where ci := e1 − ei (we use ei to denote the
ith standard basis vector) and di := 0. Applying LiRPA bounding, we obtain the linear
lower bounds g2(x) = −4.12x1 + x2 + 2.98 ≥ 0; g3(x) = 0.33x1 − x2 + 0.63 ≥ 0; and
g4(x) (not shown). The intersection of these constraints, shown in Figure 4 (region in
grey), represents an under-approximation to the preimage. Similarly, we can obtain linear
upper bounds g2(x) = −12.23x1 − x2 + 15.18 ≥ 0; g3(x) = −0.01x1 − x2 + 1.18 ≥ 0; and
g4(x) = −1.06x1 − x2 + 2.24 ≥ 0; the intersection of those constraints represents an over-
approximation to the preimage, as shown in Figure 4 (region in blue).

We generate the linear bounds in parallel over the output polyhedron constraints i =
1, ...,K using the backward mode LiRPA (Zhang et al., 2018), and store the resulting ap-
proximating polytope as a list of constraints. This highly efficient procedure is used as a
sub-routine LinearBounds when generating either preimage under-approximations or over-
approximations in Algorithm 2 (Lines 6, 11).

4.3 Global Branching and Refinement

As LiRPA performs crude linear relaxation, the resulting bounds can be quite loose, even
with optimisation over bounding parameters (as we will see in Section 4.4), meaning that

9
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Algorithm 2: GenApprox

Input: List of subregions C, Output set O, Number of samples N , Boolean Under
Output: List of polytopes T

1 T = [];
2 for subregion Csub ∈ C // Parallel over subregions

3 do
4 x1, ..., xN ← Sample(Csub, N);
5 if Under then
6 [g1(x,α1,β1), ..., gK(x,αK ,βK)]← LinearLowerBound(Csub, O) ;

7 Loss(α1, ...,αK ,β1, ...,βK)←
−vol(Csub)

N

∑
j=1,...,N σ(−LSE(−g1(xj ,α1,β1), ...,−gK(xj ,αK ,βK)));

8 α∗
1, ...,α

∗
K ,β

∗
1, ...,β

∗
K ← argmin(Loss(α1, ...,αK ,β1, ...,βK));

9 T = Append(T, [g1(x,α
∗
1,β

∗
1) ≥ 0, ..., gK(x,α∗

K ,β
∗
K) ≥ 0, x ∈ Csub])

10 else
11 [g1(x,α1,β1), ..., gK(x,αK ,βK)]← LinearUpperBound(Csub, O) ;
12 Loss(α1, ...,αK ,β1, ...,βK)←

vol(Csub)
N

∑
j=1,...,N σ(−LSE(−g1(xj ,α1,β1), ...,−gK(xj ,αK ,βK)));

13 α∗
1, ...,α

∗
K ,β

∗
1, ...,β

∗
K ← argmin(Loss(α1, ...,αK ,β1, ...,βK));

14 T = Append(T, [g1(x,α
∗
1,β

∗
1) ≥ 0, ..., gK(x,α∗

K ,β
∗
K) ≥ 0, x ∈ Csub])

15 return T

the (single) polytope under-approximation or over-approximation is unlikely to be a good
approximation to the preimage by itself. To address this challenge, we employ a divide-
and-conquer approach that iteratively refines our approximation of the preimage. Starting
from the initial region C at the root, our method generates a tree by iteratively partitioning
a subregion Csub represented at a leaf node into two smaller subregions Clsub, Cusub, which are
then attached as children to that leaf node. In this way, the subregions represented by all
leaves of the tree are disjoint, such that their union is the initial region C.

In order to under-approximate (resp. over-approximate) the preimage, for each leaf
subregion Csub we compute, using LiRPA bounds, an associated polytope that under-
approximates (resp. over-approximates) the preimage in Csub. Thus, irrespective of the num-
ber of refinements performed, the union of the under-approximating polytopes (resp. over-
approximating) corresponding to all leaves forms an anytime DUP under-approximation
(resp. over-approximation) T to the preimage in the original region C. The process of
refining the subregions continues until an appropriate termination criterion is met.

Unfortunately, even with a moderate number of input dimensions or unstable ReLU
nodes, näıvely splitting along all input- or ReLU-planes quickly becomes computationally
intractable. For example, splitting a d-dimensional hyperrectangle using bisections along
each dimension results in 2d subdomains to approximate. It thus becomes crucial to pri-
oritise the subregions to split, as well as improve the efficiency of the splitting procedure
itself. We describe these in turn.

10
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Subregion Selection. We propose a subregion selection strategy that prioritises splitting
subregions with the largest difference in volume between the exact preimage f−1

Csub(O) and
the (already computed) polytope approximation TCsub(O) on that subdomain: this indicates
“how much improvement” can be achieved on this subdomain and is implemented as the
CalcPriority function in Algorithm 1. Unfortunately, computing the volume of a polytope
exactly is a computationally expensive task, requiring specialised tools (Chevallier et al.,
2022). To overcome this, we employ Monte Carlo estimation of volume computation by
sampling N points x1, ..., xN uniformly from the input subdomain Csub. For an under-
approximation, we have:

Priority(Csub) :=
vol(Csub)

N
×

 N∑
i=1

1xi∈f−1
Csub

(O) −
N∑
i=1

1xi∈TCsub (O)

 (3)

≈ vol(f−1
Csub(O))− vol(TCsub(O)) (4)

This measures the gap between the polytope under-approximation and the optimal
approximation, namely, the preimage itself.

Over-Approximation Similarly, in the case of an over-approximation, we define:

Priority(Csub) :=
vol(Csub)

N
×

 N∑
i=1

1xi∈TCsub (O) −
N∑
i=1

1xi∈f−1
Csub

(O)

 (5)

≈ vol(TCsub(O))− vol(f−1
Csub(O)) (6)

We then choose the leaf subdomain with the maximum priority. This leaf subdomain
is then partitioned into two subregions Clsub, Cusub, each of which we then approximate with
polytopes TCl

sub
(O), TCu

sub
(O). As tighter intermediate concrete bounds, and thus linear

bounding functions, can be computed on the partitioned subregions, the polytope approxi-
mation on each subregion will be refined compared with the polytope approximation on the
original subregion.

In the rest of this subsection, we consider how to split a leaf subregion into two subregions
to optimise the volume of the preimage approximation. In particular, we propose two
approaches: input splitting and ReLU splitting.

Input Splitting. Given a subregion (hyperrectangle) defined by lower and upper bounds
xi ∈ [xi, xi] for all dimensions i = 1, ..., d, input splitting partitions it into two subregions by
cutting along some feature i. This splitting procedure will produce two subregions that are
similar to the original subregion, but have updated bounds [xi,

xi+xi

2 ], [
xi+xi

2 , xi] for feature i
instead. A commonly-adopted splitting heuristic is to select the dimension with the longest
edge (Bunel et al., 2020), that is, to select feature i with the largest range: argmaxi(xi−xi).
However, this method does not perform well in terms of per-iteration volume improvement
of the preimage approximation.

Thus, we propose to greedily select a dimension instead according to a volume-aware
heuristic. Specifically, for each feature, we generate approximating polytopes T l, T r for the
two subregions resulting from the split, and choose the feature that maximises the following

11
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(c) ReLU split

Figure 5: Refinement of the initial preimage under-approximation with input and ReLU splitting.
Figure 5b and 5c display the refined preimage, i.e., larger volume, after adding input and ReLU
splitting planes, where the dotted and solid bounding planes are used to form the polytope on each
subregion, respectively.

priority metric. In the case of under-approximation, when T l consists of linear lower bounds
g1

l, . . . , gK
l and T r consists of linear lower bounds g1

r, . . . , gK
r, we define:

InputPriority(T l, T r) :=
vol(Csub)

N

 N∑
j=1

σ

(
min

i=1,...K
gli(xj)

)
+

N∑
j=1

σ

(
min

i=1,...K
gri (xj)

) (7)

where σ is the sigmoid function σ(y) := 1
1+e−y . Intuitively, this is an approximation to

the (total) volume of the under-approximating polytopes (e.g., xj is in the polytope Tl
iff mini=1,...K gli(xj) > 0); we should prefer to split on input features that maximise the
total volume. However, we found empirically that, in early iterations of the refinement, the
under-approximation could often be empty (as the set {mini=1,...,K gli(xj) > 0} for all i lies
outside the subregion Csub), leading to zero priority for all features. For this reason, we
propose to instead use the smooth sigmoid function to measure “how close” the constraints
are to being satisfied for the sampled points, in order to provide signal for the best feature
to split on.

Over-Approximation Similarly, if we are generating an over-approximation, then
we prioritise according to the following (i.e., minimising volume):

InputPriority(T l, T r) := −vol(Csub)
N

 N∑
j=1

σ

(
min

i=1,...K
gli(xj)

)
+

N∑
j=1

σ

(
min

i=1,...K
gri (xj)

)
(8)

Example 3 We revisit Example 1. Figure 5a shows the initial polytope under-approximation
computed on the input region C before refinement, where each solid line represents the bound-
ing plane for each output specification (y1 − yi ≥ 0). Figure 5b depicts the refined approx-
imation by splitting the input region along the vertical axis, where the solid and dashed
lines represent the bounding planes for the two resulting subregions. It can be seen that the
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(c) ReLU split

Figure 6: Refinement of the initial preimage over-approximation with input and ReLU splitting.
Figure 6b and 6c display the refined preimage, i.e., smaller volume, after adding input and ReLU
splitting planes, where the dotted and solid bounding planes are used to form the polytope on each
subregion, respectively.

total volume of the under-approximation has improved significantly. Similarly, in Figure
6a, we show the initial polytope over-approximation before refinement, and in Figure 6b the
improved over-approximation after greedy input splitting.

Intermediate ReLU Splitting. Refinement through splitting on input features is
adequate for low-dimensional input problems such as reinforcement learning agents. How-
ever, it may be infeasible to generate sufficiently fine subregions for high-dimensional do-
mains. We thus propose an algorithm for ReLU neural networks that uses intermediate
ReLU splitting for preimage refinement. After determining a subregion for refinement, we
partition the subregion based upon the pre-activation value of an intermediate unstable

neuron z
(i)
j = 0. As a result, the original subregion Csub is split into two new subregions

C+
z
(i)
j

= {x ∈ Csub | z
(i)
j = h

(i)
j (x) ≥ 0} and C−

z
(i)
j

= {x ∈ Csub | z
(i)
j = h

(i)
j (x) < 0}.3

In this procedure, the order of splitting unstable ReLU neurons can greatly influence the
quality and efficiency of the refinement. Existing heuristic methods of ReLU prioritisation
select ReLU nodes that lead to greater improvement in the final bound (maximum or
minimum value) of the neural network on the input domain (Bunel et al., 2020), e.g.,
minx∈C f(x). However, these ReLU prioritisation methods are not effective for preimage
analysis, because our objective is instead to refine the overall preimage approximation.
Thus, we compute (an estimate of) the volume difference between the split subregions
|vol(C+

z
(i)
j

)− vol(C−
z
(i)
j

)|, using a single forward pass for a set of sampled data points from the

input domain; note that this is bounded above by the total subregion volume vol(Csub). We
then propose to select the ReLU node that minimises this difference. Intuitively, this choice
results in balanced subdomains after splitting.

A key advantage of ReLU splitting is that we can replace the unstable neuron bound

ch
(i)
j (x) + d ≤ a

(i)
j (x) ≤ ch

(i)
j (x) + d with the exact linear function a

(i)
j (x) = h

(i)
j (x) and

a
(i)
j (x) = 0, respectively, as shown in Figure 2 (unstable to stable). This can typically

tighten the approximation on each subdomain as the linear relaxation errors for this unstable

3. To obtain the polytope approximation, we can utilise linear lower/upper bounds on h
(i)
j (x) as an ap-

proximation to the subregion boundary.
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neuron are removed for each subdomain and substituted with the exact symbolic function
for backward propagation.

Example 4 We now apply our algorithm with ReLU splitting to the problem in Example 1.
Figure 5c shows the refined preimage polytope by adding the splitting plane (black solid line)
along the direction of a selected unstable ReLU node. Compared with Figure 5a, we can see
that the volume of the approximation increased. Similarly, in Figure 6c, we show the im-
proved over-approximation after ReLU splitting, compared to the initial over-approximation
6a.

Combining Preimage Polytopes. As the final step, we combine the refined symbolic
approximations on each subregion to compute the disjoint polytope union for the desired
preimage of the output property. Note that the input splitting (hyper)planes naturally yield
disjoint subregions. We can directly compute the final disjoint polytope union by combining
the preimage polytopes of each subregion, where the splitting planes serve as part of the
constraints that form the preimage polytope, e.g., two disjoint polytopes with the splitting
constraints x2 − 0.5 ≥ 0 and −x2 + 0.5 ≥ 0, respectively, partitioned by x2 = 0.5 in Figure
5b. In the case of ReLU splitting, as each ReLU neuron represents a complex non-linear
function with respect to the input, we cannot directly add the constraints introduced by
ReLU splitting to the polytope representation. Instead, we compute the linear upper or
lower bounding functions of the non-linear constraint represented by the ReLU neuron, i.e.,

h
(i)
j (x) ≤ h

(i)
j (x) ≤ h

(i)
j (x). The constraints introduced by the linear bounding functions,

i.e., h
(i)
j (x) ≥ 0 and −h(i)j (x) ≥ 0, can then be added to form disjoint polytopes. For

instance, as shown in Figure 5c, two disjoint polytopes are formed with the additional
splitting constraints −0.99x1 − x2 + 0.97 ≥ 0 and 0.99x1 + x2 − 0.97 ≥ 0, respectively,
partitioned by the linear splitting plane x2 = −0.99x1 + 0.97 (exact linear function of the
selected ReLU neuron in this case). In fact, any linear function between the linear upper
and lower bounding functions of the ReLU neuron serves as a valid splitting (hyper)plane
to form disjoint polytopes.

4.4 Local Optimization

One of the key components behind the effectiveness of LiRPA-based bounds is the ability
to efficiently improve the tightness of the bounding function by optimising the relaxation
parameters α via projected gradient descent. In the context of local robustness verification,
the goal is to optimise the concrete (scalar) lower or upper bounds over the (sub)region
Csub (Xu et al., 2020), i.e., minx∈Csub A(α)x + b(α) in the case of lower bounds, where
we explicitly note the dependence of the linear coefficients on α. In our case, we are
instead interested in optimising α to refine the polytope approximation, that is, increase
the volume of under-approximations and decrease the volume of over-approximations (to
the exact preimage).

As before, we employ statistical estimation; we sample N points x1, ..., xN uniformly
from the input domain Csub then employ Monte Carlo estimation for the volume of the
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approximating polytope. In the case of under-approximation, we have:

v̂ol(TCsub,α(O)) =
vol(Csub)

N
×

N∑
i=1

1xi∈TCsub,α(O) (9)

where we highlight the dependence of TCsub(O) = {x|
∧K

i=1 gi(x,αi) ≥ 0 ∧
∧d

i=1 ϕi(x)} on
α = (α1, ...,αK), and αi are the α-parameters for the linear relaxation of the neural network
gi corresponding to the i

th half-space constraint in O. However, this is still non-differentiable
w.r.t. α due to the identity function. We now show how to derive a differentiable relaxation,
which is amenable to gradient-based optimization:

v̂ol(TCsub,α(O)) =
vol(Csub)

N

N∑
j=1

1xj∈TCsub,α(O) =
vol(Csub)

N

N∑
j=1

1mini=1,...K gi(xj ,αi)≥0 (10)

≈ vol(Csub)
N

N∑
j=1

σ

(
min

i=1,...K
gi(xj ,αi)

)
(11)

≈ vol(Csub)
N

N∑
j=1

σ
(
−LSE(−g1(xj ,α1), ...,−gK(xj ,αK))

)
(12)

As before, we use a sigmoid relaxation to approximate the volume. However, the min-
imum function is still non-differentiable. Thus, we approximate the minimum over spec-
ifications using the log-sum-exp (LSE) function. The log-sum-exp function is defined by
LSE(y1, ..., yK) := log(

∑
i=1,...,K eyi), and is a differentiable approximation to the maxi-

mum function; we employ it to approximate the minimisation by adding the appropriate
sign changes. The final expression is now a differentiable function of α.

Then the goal is to maximise the volume of the under-approximation with respect to α:

Loss(α) = −v̂ol(TCsub,α(O)) (13)

We employ this as the loss function in Algorithm 2 (Line 7) for generating a polytope
approximation, and optimise volume using projected gradient descent.

Over-Approximation In the case of an over-approximation (Line 12 of Algorithm
2), we instead aim to minimise the volume of the approximation:

Loss(α) = v̂ol(TCsub,α(O)) (14)

Example 5 We revisit Example 1. Figure 7a and 7b show the computed under-approximations
before and after local optimisation. We can see that the bounding planes for all three speci-
fications are optimised, such that the volume of the approximation has increased. Similarly,
in Figure 8a and 8b we show the over-approximations before and after optimisation; it can
be seen that the volume of the over-approximation has decreased.
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(b) After optimisation

Figure 7: Local optimisation for preimage under-approximation. The preimage polytope in blue in
Figure 7a represents the under-approximation before optimisation. The yellow region in Figure 7b
indicates the expanded polytope volume after optimisation.
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Figure 8: Local optimisation for preimage over-approximation. The preimage polytope in blue
represents the over-approximation before and after optimisation in Figure 8a and 8b. The yellow
region shows the reduced polytope volume after optimisation.

4.5 Optimisation of Lagrangian Relaxation

Previously, in Section 4.3, we proposed a preimage refinement method that adds intermedi-
ate ReLU splitting planes to tighten the bounds of a selected individual neuron. However,
intermediate bounds for other neurons are not updated based on the newly added splitting
constraint. In the following, we first discuss the impact of stabilising an intermediate ReLU
neuron from two different perspectives. We then present an optimisation approach leverag-
ing Lagrangian relaxation to enforce the splitting constraint on refining the preimage.

Effect of Stabilisation of Intermediate Neurons. Our previous approach of Zhang
et al. (2024) exploits one level of bound tightening after ReLU splitting: the substitution
of relaxation functions with exact linear functions for the individual neuron. Specifically,

assume an intermediate (unstable) neuron z
(i)
j (= h

(i)
j (x)) is selected to split the input

(sub)region C into two subregions C+
z
(i)
j

= {x ∈ C | z(i)j ≥ 0} and C−
z
(i)
j

= {x ∈ C | z(i)j <

0}. For each subregion, the linear bounding functions of the nonlinear activation function
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a
(i)
j (z

(i)
j ), as shown in Figure 2 (unstable mode), are then substituted with the exact ones,

eliminating relaxation errors on the particular neuron. Another effect, potentially more
impactful, is the bound tightening of every other intermediate neuron. Intuitively, one can
tighten the intermediate bounds of (and thus stabilise) the other unstable neurons, since we
are restricted to a smaller input region with the added splitting plane. A straightforward
solution to enforce the effect of the splitting constraint is to call a regular LP solver to
compute the new lower and upper bounds for every intermediate ReLU neuron under the
splitting constraints. Naturally, this is computationally expensive (2N LP calls where N is
the number of ReLU neurons).

Refinement with Optimisation of Lagrangian Relaxation. In order to derive
tighter preimage approximations without explicitly introducing LP solver calls, we propose
to adapt Lagrangian optimisation techniques (Wang et al., 2021b) to preimage generation.
Consider first the case of generating under-approximations. Without loss of generality, we
focus on preimage generation for the k-th output specification constraint, gk(x) = aTk x+ bk.
We will drop the subscript k for simplicity.

Consider the subregion where we have z
(i)
j ≤ 0. To tighten the bounding plane g(x) of

the preimage under the splitting constraint z
(i)
j ≤ 0, we introduce the Lagrange multiplier,

parameterized as β
(i)
j (≥ 0), to enforce its effect throughout the neuron network. When

propagating through layer i, we initially have:

g(z(i)) ≥ A(i)z(i) + b(i) (15)

Now, we add the splitting constraint using a Lagrange multiplier and obtain a Lagrangian
relaxation of the original problem as follows:

g(z(i)) ≥ max
β
(i)
j ≥0

A(i)z(i) + b(i) + β
(i)
j z

(i)
j (16)

Note that max
β
(i)
j ≥0

β
(i)
j z

(i)
j = 0, and thus Equation 16 holds in the universally quantified

region. For the other case where z
(i)
j ≥ 0, we can obtain a sound lower bound similarly by

changing the sign for the additional splitting constraint:

g(z(i)) ≥ max
β
(i)
j ≥0

A(i)z(i) + b(i) − β(i)j z
(i)
j (17)

We then propagate this backwards through the network to obtain a valid lower bound
with respect to the input layer x:

g(x) ≥ g(x) = max
β≥0

A(α,β)x+ b(α,β) (18)

Here, we explicitly note the dependence of the linear coefficients on β, which denotes the

vector of β
(i)
j introduced for all split neurons. Once we obtain the bounding plane for

each half-space constraint in O, the preimage polytope can be formulated as TC(O) =
{x|

∧K
i=1 gi(x,αi,βi) ≥ 0 ∧

∧d
i=1 ϕi(x)}.
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Figure 9: Optimisation of Lagrangian relaxation for preimage refinement. The preimage polytope
in blue represents the under-approximation before Lagrangian optimisation and the yellow region
displays the expanded polytope after optimisation. Details in Example 6.

Similarly to the optimisation over relaxation parameters α, we can then optimise β to
maximise the preimage volume. Our differentiable preimage volume estimate is given by:

v̂ol(TCsub,α,β(O)) =
vol(C)
N

N∑
j=1

σ
(
−LSE(−g1(xj ,α1,β1), ...,−gK(xj ,αK ,βK))

)
(19)

where we have added the dependence on the Lagrange multipliers β to Equation 12. Intu-
itively, the additional splitting constraint enforced by the Lagrangian relaxation reduces the
input space for maximising the preimage volume, which allows a tighter preimage bounding
plane for the subregion. In the case where all β coefficients are zero, this corresponds pre-
cisely to the previous standard LiRPA bound with α parameters from Section 4.4. We then
maximise the volume estimate of the under-approximation with the following loss function
in Algorithm 2 (Line 7):

Loss(α,β) = −v̂ol(TCsub,α,β(O)) (20)

Over-Approximation In the case of an over-approximation (Line 12 of Algorithm
2 ), we instead aim to minimise the volume of the approximation:

Loss(α,β) = v̂ol(TCsub,α,β(O)) (21)

Example 6 We now apply our optimisation method over Lagrangian relaxation to Exam-
ple 1. Figure 9a and 9b show the preimage polytope before and after Lagrangian optimisa-
tion, respectively, where the splitting plane of the selected unstable ReLU node is marked
with a black solid line. Note that the preimage in Figure 9a is computed by removing the re-
laxation errors of the selected unstable ReLU node, where the symbolic upper/lower bounding
functions are substituted with the exact linear functions. The preimage is further refined,

as in Figure 9b, by enforcing the added splitting constraint z
(i)
j ≤ 0 for one subdomain

throughout the neuron network, which allows tighter preimage approximation (vs tightening
via stabilizing a single neuron in Figure 9a).
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Algorithm 3: Quantitative Verification

Input: Neural network f , Property (I,O, p), Maximum iterations R
Output: Verification result ∈ {True, False, Unknown}

1 vol(I)← EstimateVolume(I);
2 C ← OuterBox(I) ; // For general polytopes I
3 T ← InitialRun(f, C, O);
4 while Iterations ≤ R do
5 T ← Refine(f, T , C, O);
6 if EstimateVolume(T ) ≥ p× vol(I) then
7 return True

8 if AllReLUSplit then
9 return False

10 return Unknown

4.6 Overall Algorithm

Our overall preimage approximation method is summarised in Algorithm 1. It takes as input
a neural network f , input region C, output region O, target polytope volume threshold v (a
proxy for approximation precision), maximum number of iterations R, number of samples N
for statistical estimation, and Boolean variables indicating (i) whether to return an under-
approximation or over-approximation and (ii) whether to use input or ReLU splitting, and
returns a disjoint polytope union TDom representing a guaranteed under-approximation (or
over-approximation) to the preimage.

The algorithm initiates and maintains a priority queue of (sub)regions according to
Equation 7. The initialisation step (Lines 1-2) generates an initial polytope approximation
of the whole region using Algorithm 2 (Sections 4.2, 4.4, 4.5), with priority calculated
(CalcPriority) according to Equations 4, 6. Then, the preimage refinement loop (Lines
3-11) partitions a subregion in each iteration, with the preimage restricted to the child
subregions then being re-approximated (Line 9-10). In each iteration, we choose the region
to split (Line 4) and the splitting plane to cut on (Line 6 for input split and Line 8 for
ReLU split), as detailed in Section 4.3. The preimage subregion queue is then updated by
computing the priorities for each subregion by approximating their volume (Line 11). The
loop terminates and the approximation is returned when the target volume threshold v or
maximum iteration limit R is reached.

4.7 Quantitative Verification

We now show how to use our efficient preimage under-approximation method (Algorithm
1) to verify a given quantitative property (I,O, p), where O is a polyhedron, I a polytope
and p the desired proportion threshold, summarised in Algorithm 3. Note that preimage
over-approximation cannot be applied for sound quantitative verification as the approxi-
mation may contain false regions outside the true preimage. To simplify, assume that I
is a hyperrectangle, so that we can take C = I. We discuss the case of general polytopes
at the end of this section. We utilise Algorithm 1 by setting the volume threshold v to

19



Zhang, Wang, Kwiatkowska and Zhang

p × vol(I), such that we have vol(T )
vol(I) ≥ p if the algorithm terminates before reaching the

maximum number of iterations. If the final preimage polytope volume vol(T ) ≥ p× vol(I),
then the property is verified. Otherwise, we continue running the preimage refinement. If
the refinement loop has stabilised all ReLU neurons and the volume threshold is still not
achieved, the property is falsified.

In Algorithm 3, InitialRun generates an initial under-approximation to the preimage as
in Lines 1-2 of Algorithm 1, and Refine performs one iteration of approximation refinement
(Lines 4-11). Termination occurs when we have verified or falsified the quantitative property,
or when the maximum number of iterations has been exceeded.

Proposition 7 Algorithm 3 is sound for quantitative verification with input splitting.

Proposition 8 Algorithm 3 is sound and complete for quantitative verification on piecewise
linear neural networks with ReLU splitting.

Proofs of the propositions are presented in Appendix B.
General Input Polytopes. Previously we detailed how to use our preimage under-

approximation method to verify quantitative properties (I,O, p), where I is a hyperrectan-
gle. We now discuss how to extend our method for a general polytope I.

Firstly, in Line 2 of Algorithm 3, we derive a hyperrectangle C such that I ⊆ C, by
converting the polytope I into its V-representation (Grünbaum et al., 2003), that is, a
list of the vertices (extreme points) of the polytope, which can be computed as in Avis
and Fukuda (1991); Barber et al. (1996). Once we have a V-representation, obtaining a
bounding box can be achieved simply by computing the minimum and maximum value
xi, xi of each dimension among all vertices.

Once we have the input region C, we can then run the preimage refinement as usual, but
with the modification that, when defining the polytopes and restricted preimages, we must
additionally include the polytope constraints from I. Practically, this means that, during
every call to EstimateVolume in Algorithm 3, we add these polytope constraints, and in
Line 9 of Algorithm 2 we add the polytope constraints from I, in addition to those derived
from the output O and the box constraints from Csub.

5 Experiments

We have implemented our approach as a tool4 for preimage approximation for polyhedral
output sets/specifications. In this section, we report on experimental evaluation of the
proposed approach, and demonstrate its effectiveness in approximation generation and the
application to quantitative analysis of neural networks.

5.1 Benchmark and Evaluation Metric

We evaluate our preimage analysis approach on a benchmark of reinforcement learning and
image classification tasks. Besides the vehicle parking task of Ayala et al. (2011) shown in
the running example, we consider the following tasks: (1) aircraft collision avoidance system

4. The source code is at https://github.com/Zhang-Xiyue/PreimageApproxForNNs.
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Table 1: Performance comparison on preimage generation, for four different specifications on the ve-
hicle parking task. Over-approximation results are highlighted with grey background in subcolumns
labelled by ox, whereas under-approximation is shown with white background in subcolumns labelled
by ux.

Vehicle
Parking

Exact Invprop Our

#Poly Time(s) Time(s) Cov #Poly Time(s) Cov

exact exact ux ox ux ox ux ox ux ox ux ox

∧i∈{2,3,4}y1 ≥ yi 10 3110.979 2.642 0.907 0.921 1.043 4 4 1.116 1.121 0.957 1.092
∧i∈{1,3,4}y2 ≥ yi 20 3196.561 2.242 0.793 0.895 1.051 4 4 1.235 1.336 0.948 1.074
∧i∈{1,2,4}y3 ≥ yi 7 3184.298 2.325 0.865 0.906 1.083 3 4 1.074 1.129 0.952 1.098
∧i∈{1,2,3}y4 ≥ yi 15 3206.998 2.402 0.793 0.915 1.058 3 3 1.055 1.004 0.922 1.061

Table 2: Performance comparison on preimage generation (average performance) on vehicle parking
and VCAS, with over-approximation shown in grey background (subcolumns labelled by ox) and
under-approximation in white background (subcolumns labelled by ux).

Tasks
Exact Invprop Our

#Poly Time(s) Time(s) Cov #Poly Time(s) Cov

exact exact ux ox ux ox ux ox ux ox ux ox

Vehicle 13 3174.709 2.403 0.840 0.909 1.059 4 4 1.120 1.148 0.945 1.081

VCAS 131 6363.272 - - - - 15 1 10.775 1.045 0.908 1.041

(VCAS) from Julian and Kochenderfer (2019) with 9 feed-forward neural networks (FNNs);
(2) neural network controllers 5 from Müller et al. (2022) for three reinforcement learning
tasks (Cartpole, Lunarlander, and Dubinsrejoin) as in Brockman et al. (2016); and (3) the
neural network from VNN-COMP 2022 for MNIST classification. Details of the benchmark
tasks and neural networks are summarised in Appendix A.

Evaluation Metric. To evaluate the quality of the preimage approximation, we define
the coverage ratio to be the ratio of volume covered by the approximation to the volume of
the exact preimage, i.e., cov(T , f−1

C (O)) := vol(T )

vol(f−1
C (O))

. Note that this is a normalised mea-

sure for assessing the quality of the approximation, as used in Algorithm 3 when comparing
with target coverage proportion p for termination of the refinement loop. In practice, we use
Monte Carlo estimation to compute vol(f−1

C (O)) as v̂ol(f−1
C (O)) = vol(C)× 1

N

∑N
i=1 1f(xi)∈O,

where x1, ...xN are samples from C. In Algorithm 1, the target volume (stopping criterion)

is set as v = r × v̂ol(f−1
C (O), where r is the target coverage ratio.

5.2 Evaluation

5.2.1 Effectiveness on Preimage Approximation with Input Split

We apply Algorithm 1 with input splitting to the preimage approximation problem for low-
dimensional reinforcement learning tasks. For comparison, we also run the exact preim-
age generation method (Exact) from Matoba and Fleuret (2020) and the preimage over-
approximation method (Invprop) from Kotha et al. (2023, accessed October, 2023).

5. The benchmark can be accessed at https://github.com/ChristopherBrix/vnncomp2022 benchmarks.
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Figure 10: Preimage approximation results over the 9 VCAS neural networks. Results for under-
approximation are indicated with metric U and over-approximation with metric O. The scale for
both the number of polytopes and time is indicated on the vertical axis on the left.

Vehicle Parking & VCAS. Table 1 and 2 present the comparison results with state-of-
the-art exact and approximate preimage generation methods. In the table, we show the
number of polytopes (#Poly) in the preimage, computation time (Time(s)), and the ap-
proximate coverage ratio (Cov) when the preimage approximation algorithm terminates
with target coverage of 0.90 (the larger, the better) for under-approximation and 1.10
(the lower, the better) for over-approximation. Note that the Exact method computes the
exact preimage (i.e., coverage ratio 1.0), while our method computes the under- and over-
approximation of the exact preimage. The results for over-approximation are highlighted
with grey background, whereas under-approximation is shown with white background. In-
vprop only supports computing over-approximations natively; thus, we adapt it to produce
an under-approximation by computing over-approximations for the complement of each
output constraint; note that the resulting approximation is then the complement of a union
of polytopes, rather than a DUP.

Compared with the exact method, our approach yields orders-of-magnitude improve-
ment in efficiency (see Table 1 and Table 2). It can also characterise the preimage with
much fewer (and also disjoint) polytopes, achieving an average reduction of 69.2% for vehicle
parking (both under- and over-approximation) and 88.5% (under-approximation) and 99.2%
(over-approximation) for VCAS. Compared with Invprop, our method produces comparable
results in terms of time and approximation coverage on the 2D vehicle parking task.

While Table 2 shows average performance on VCAS, Figure 10 plots more detailed
results of our method for the nine neural networks in the VCAS task in terms of the number
of polytopes (y-axis on the left), time cost (y-axis on the left) and approximation coverage
(y-axis on the right) for both under- (indicated with metric U) and over-approximation
(indicated with metric O). As shown in the figure, our method is able to reach the targeted
approximation coverage (0.90 for under-approximation and 1.10 for over-approximation)
for all networks. The median number of polytopes for the preimage under-approximation
for property O = {y ∈ R9 | ∧i∈[1,9] y1 ≥ yi} is 15 and the median time cost is 10.492s.
The over-approximation shows higher variability in the number of generated polytopes and
computation time for property O = {y ∈ R9 |∧i∈[1,9]\3 y3 ≥ yi}, with the maximum reaching
191 polytopes and computation time of 107.758s for VCAS model 3.
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Table 3: Performance of preimage approximation for reinforcement learning tasks, with over-
approximation shown in grey background (marked in subcolumns ox) and under-approximation
in white background (marked in subcolumns ux).

Task Property Config
#Poly Cov Time(s)

ux ox ux ox ux ox

Cartpole
(FNN 2× 64)

{y ∈ R2| y1 ≥ y2}
θ̇ ∈ [−2,−1] 25 1 0.766 1.213 13.337 2.149

θ̇ ∈ [−2,−0.5] 42 8 0.750 1.242 19.732 5.778

θ̇ ∈ [−2, 0] 66 22 0.755 1.246 30.563 11.476

Lunarlander
(FNN 2× 64)

{y ∈ R4| ∧i∈{1,3,4} y2 ≥ yi}
v̇ ∈ [−1, 0] 18 1 0.754 1.068 14.453 2.381
v̇ ∈ [−2, 0] 67 23 0.751 1.246 48.455 19.210
v̇ ∈ [−4, 0] 97 90 0.751 1.249 76.234 72.285

Dubinsrejoin
(FNN 2× 256)

{y ∈ R8| ∧i∈[2,4] y1 ≥ yi∧
∧i∈[6,8] y5 ≥ yi}

xv ∈ [−0.1, 0.1] 211 20 0.751 1.242 182.821 18.666
xv ∈ [−0.2, 0.2] 409 23 0.750 1.241 323.839 24.788
xv ∈ [−0.3, 0.3] 677 43 0.750 1.244 589.939 41.502
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Figure 11: Number of polytopes in preimage approximation for a range of target coverage values.
Left: under-approximation. Right: over-approximation.

Neural Network Controllers. In this experiment, we consider preimage approximation for
neural network controllers in reinforcement learning tasks. Note that the Exact method in
Matoba and Fleuret (2020) is unable to deal with neural networks of these sizes and Invprop
in Kotha et al. (2023) is not capable of characterising the preimage under-approximation
in the form of disjoint polytopes. Table 3 summarises the experimental results obtained by
our method, where the columns for over-approximations are marked with grey background
and under-approximations marked with a white background.

We evaluate Algorithm 1 (with input splitting) with respect to a range of different con-
figurations of the input region (e.g., angular velocity θ̇ for Cartpole). For comparison, we set
the same target coverage ratio for different input region sizes (0.75 for under-approximation
and 1.25 for over-approximation) and an iteration limit of 1000. In Table 3, we see that
our method successfully generates preimage approximations for all configurations, reach-
ing the targeted approximation coverage. Empirically, for the same coverage ratio, our
method requires a number of polytopes and time roughly linear in the input region size for
the preimage under-approximation. For over-approximations, the bounding constraints of
the input region are added as additional constraints to form the polytope approximation
on each subregion, which affects the linear trend in the number of polytopes and com-
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Figure 12: Effectiveness of smooth splitting for preimage under-approximation. Baseline method
from Zhang et al. (2024).
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Figure 13: Effectiveness of smooth splitting for preimage over-approximation.

putation time as the input region size increases. For example, the constraint brought by
the input configuration of −2 ≤ θ̇ ≤ −1 for Cartpole, together with the single polytope
over-approximation, already reaches the target coverage, while for a larger input region of
−2 ≤ θ̇ ≤ 0, 22 preimage polytopes are needed together with input bounding constraints
for each input subregion.

In Figure 11, we show the number of polytopes needed to reach different target coverage
ratios for both under-approximation (left) and over-approximation (right). Our evaluation
results indicate that the number of refinement iterations taken is influenced by the number
of output constraints and the size of the neural network. For instance, the neural network
controller for Cartpole, which has a single output constraint, shows a roughly linear increase
in the number of polytopes as the target coverage increases for under-approximation (resp.
decreases for over-approximation). In contrast, accommodating multiple output constraints
for larger neural networks, e.g., Dubinsrejoin, requires a significant increase in refinement
iterations as the target coverage approaches 1.
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Table 4: Preimage under-approximation refinement with ReLU split (L∞ attack). Results with
Lagrangian optimisation are marked in grey background in columns w/ LagOpt.

L∞ attack
(FNN 6× 100)

#Poly Cov Time(s)

w/o w/ LagOpt w/o w/ LagOpt w/o w/ LagOpt

0.06 2 2 1.0 1.0 3.183 3.237
0.07 247 40 0.752 0.756 130.746 29.019
0.08 522 290 0.751 0.751 305.867 218.455
0.09 733 563 0.165 0.751 507.116 365.552

Table 5: Preimage under-approximation refinement with ReLU split (patch attack). Results with
Lagrangian optimisation are marked in grey background in columns w/ LagOpt.

Patch attack
(FNN 6× 100)

#Poly Cov Time(s)

w/o w/ LagOpt w/o w/ LagOpt w/o w/ LagOpt

3× 3(center) 1 1 1.0 1.0 2.611 2.637
4× 4(center) 678 678 0.382 0.427 455.988 514.272
7× 7(corner) 7 7 0.842 0.861 6.065 6.217
8× 7(corner) 956 954 0.033 0.214 488.849 676.666

5.2.2 Effectiveness of Smoothed Input Splitting

We now analyse the effectiveness of the smoothed splitting method described in Section
4.3 (Equation 7 and 8), in comparison to a volume-guided splitting method that chooses
the input feature leading to the greatest improvement in approximation volume. From
Figures 12 and 13, we observe that the smoothed splitting method requires significantly
fewer refinement iterations for all reinforcement learning controllers to achieve the target
coverage, thus reducing the number of polytopes and computation time, than the volume-
guided splitting method. More specifically, the smoothed splitting method achieves an
average reduction of 43.6% in the number of polytopes and 51.0% in computation time for
under-approximation across the neural network controllers, up to 80.8%/81.2% reduction for
the Lunarlander task. Similar improvements in computation efficiency and size of polytope
union are also achieved for over-approximations, with an average reduction of 50.8%/49.6%
across all reinforcement learning tasks.

Recall that the smoothed input splitting heuristic relaxes the volume-based heuristic,
such that, for each sampled input point in the input region, we take into account not only
whether the point lies in the polytope approximation, but also how far away the point is from
the approximation. This is particularly crucial in early iterations, where the approximation
may be too loose; for example, an under-approximation may have no overlap with the input
region (thus zero volume). Therefore, computing the approximation volume (after splitting
on each input feature) provides very little signal. In such cases, the smoothed splitting
heuristic is able to capture promising input features that, while not immediately improving
the approximation volume, can bring the preimage bounding planes closer to the exact
preimage, which is beneficial for future iterations.
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5.2.3 Effectiveness of Preimage Approximation with ReLU Split

In this subsection, we evaluate the scalability of Algorithm 1 with ReLU splitting by ap-
plying it to MNIST image classifiers. In particular, we consider input regions defined by
bounded perturbations to a given MNIST image. Table 4 and 5 summarise the evaluation
results for two types of image perturbations commonly considered in the adversarial robust-
ness literature (L∞ and patch attack, respectively). For L∞ attacks, bounded perturbation
noise is applied to all image pixels. The patch attack applies only to a smaller patch area of
n ×m pixels but allows arbitrary perturbations covering the whole valid range [0, 1]. The
task is then to produce a DUP approximation of the subset of the perturbation region that
is guaranteed to be classified correctly.

For L∞ attack, we evaluate our method over perturbations of increasing size, from 0.06
to 0.09. It is worth noting that for this size of preimage, e.g., from 0.06 to 0.07, the volume
of the input region increases by tens of orders of magnitude due to the high dimensionality,
making effective preimage approximation significantly more challenging. Table 4 shows that
our approach (Algorithm 1) without Lagrangian optimisation (marked in columns w/o) is
able to generate a preimage under-approximation that achieves the targeted coverage of
0.75 for L∞ noise up to 0.08. The fact that the number of polytopes and computation time
remain manageable is due to the effectiveness of ReLU splitting. In Table 5, for the patch
attack, we observe that the number of polytopes and time required increase sharply when
increasing the patch size for both the centre and corner area of the image, suggesting that
the model is more sensitive to larger local perturbations. It is also interesting that our
method can generate preimage approximations for larger patches in the corner as opposed
to the centre of the image; we hypothesize this is due to the greater influence of central
pixels on the neural network output, and correspondingly a greater number of unstable
neurons over the input perturbation space.

Table 6 shows the preimage refinement results for over-approximations in the context
of patch attack. The results of our approach (Algorithm 1) without Lagrangian optimi-
sation are summarised in columns w/o. As shown in the table, our refinement method
can effectively tighten the over-approximation to the targeted coverage of 1.25 for differ-
ent attack configurations. For patch size 10 × 10 (centre) and 16 × 15 (corner), we found
that the perturbation region is a trivial over-approximation itself for the target coverage of
1.25; thus, we demonstrate the results with a target coverage of 1.1 and 1.05. Similarly to
under-approximations, a patch attack in the centre with a smaller patch size requires more
refinement iterations than the patch attack in the corner, demonstrating a greater influence
of central pixels.

Effectiveness of Lagrangian Optimisation. The results of evaluation of our approach
(Algorithm 1) for under-approximation with Lagrangian optimisation are shown in Table 4
and 5 (marked in columns w/ LagOpt with grey background). For L∞ attack, the refinement
method with Lagrangian optimisation generates preimage approximations that achieve the
target coverage of 0.75 for all perturbation settings, including perturbation noise 0.09 where
the refinement without Lagrangian optimisation fails (0.751 vs 0.165 in Table 4). The new
refinement method also leads to a significant reduction in the number of polytopes and
computation cost. For the patch attack, the refinement method with Lagrangian optimisa-
tion effectively improves the preimage approximation precision for all configuration settings.
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Table 6: Preimage over-approximation refinement with ReLU split (patch attack). Results with
Lagrangian optimisation are marked in grey background in columns w/ LagOpt.

Patch attack
(FNN 6× 100)

#Poly Cov Time(s)

w/o w/ LagOpt w/o w/ LagOpt w/o w/ LagOpt

10× 10(center) 387 387 1.099 1.099 261.826 281.916
11× 11(center) 317 317 1.249 1.249 192.954 212.735
16× 15(corner) 616 616 1.050 1.050 328.589 350.092
16× 16(corner) 285 285 1.249 1.249 165.250 175.605

Table 7: Comparison with a robustness verifier.

Task
α, β-CROWN Our

Result Time Cov(%) #Poly Time

Cartpole (θ̇ ∈ [−1.642,−1.546]) yes 3.349 100.0 1 1.137

Cartpole (θ̇ ∈ [−1.642, 0]) no 6.927 94.9 2 3.632

MNIST (L∞ 0.026) yes 3.415 100.0 1 2.649

MNIST (L∞ 0.04) unknown 267.139 100.0 2 3.019

Since the patch attack allows arbitrary perturbations covering the whole valid range [0, 1], it
leads to a rapid increase in the number of unstable neurons and exhausts the iteration limit
when increasing the patch size. Nonetheless, the resulting preimage approximation coverage
obtained with Lagrangian optimisation shows better per-iteration precision improvement,
while introducing marginal computation overhead compared to the previous method.

Columns w/ LagOpt in Table 6 summarises the over-approximation results with La-
grangian optimisation. In this case, we introduce the Lagrange multipliers with the op-
posite signs to the under-approximation to guarantee the validity of the symbolic over-
approximation. Intriguingly, in contrast to under-approximation, we find that the opti-
mised β parameters are almost always close to 0, meaning that the results are similar to
not using Lagrangian optimisation. We hypothesize that, for over-approximations, the ob-
jective function is relatively flat in the vicinity of 0, which makes the parameters difficult
to optimise.

Comparison with Robustness Verifiers. We now illustrate empirically the utility of
preimage computation in robustness analysis compared to robustness verifiers. Table 7
shows comparison results with α, β-CROWN, winner of the VNN competition (Müller et al.,
2022). We set the tasks according to the problem instances from VNN-COMP 2022 for lo-
cal robustness verification (localised perturbation regions). For Cartpole, α, β-CROWN
can provide a verification guarantee (yes/no or safe/unsafe) for both problem instances.
However, in the case where the robustness property does not hold, our method explic-
itly generates a preimage under-approximation in the form of a disjoint polytope union
(which guarantees the satisfaction of the output properties), and covers 94.9% of the ex-
act preimage. For MNIST, while the smaller perturbation region is successfully verified,
α, β-CROWN with tightened intermediate bounds by MIP solvers returns unknown with
a timeout of 300s for the larger region. In comparison, our algorithm provides a concrete
union of polytopes where the input is guaranteed to be correctly classified, which we find
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Table 8: Quantitative verification results with preimage under-approximation.

Task Property #Poly Time(s) QuantProp(%)

VCAS O = {y ∈ R9|
∧9

i=2 y1 − yi ≥ 0} 6 5.620 90.8

Cartpole O = {y|y1 − y2 ≥ 0} 11 12.1 90.0

Lunarlander O = {y ∈ R4| ∧i∈{1,3,4} y2 ≥ yi} 120 429.480 90.0

covers 100% of the input region (up to sampling error). Note also, as shown in Table 4, our
algorithm can produce non-trivial under-approximations for input regions far larger than
α, β-CROWN can verify.

5.2.4 Quantitative Verification

We now demonstrate the application of our preimage under-approximation to quantitative
verification of the property (I,O, p); that is, we aim to check whether f(x) ∈ O for at least
proportion p of input values x ∈ I. Table 8 summarises the quantitative verification results,
which leverage the disjointness of our under-approximation, such that we can compute the
total volume covered by computing the volume of each individual polytope.

Vertical Collision Avoidance System. In this example, we consider the VCAS system and
a scenario where the two aircraft have negative relative altitude from intruder to ownship
(h ∈ [−8000, 0]), the ownship aircraft has a positive climbing rate ḣA ∈ [0, 100] and the
intruder has a stable negative climbing rate ḣB = −30, and time to the loss of horizontal
separation is t ∈ [0, 40], which defines the input region I. For this scenario, the correct
advisory is “Clear Of Conflict” (COC). We apply Algorithm 3 to verify the quantitative
property where O = {y ∈ R9|

∧9
i=2 y1−yi ≥ 0} and the proportion p = 0.9, with an iteration

limit of 1000. The quantitative proportion reached by the generated under-approximation
is 90.8%, which verifies the quantitative property in 5.620s.

Cartpole. In the Cartpole problem, the objective is to balance the pole attached to a
cart by pushing the cart either left or right. We consider a scenario where the cart position
is to the right of the centre (x ∈ [0, 1]), the cart is moving right (ẋ ∈ [0, 0.5]), the pole
is slightly tilted to the right (θ ∈ [0, 0.1]) and pole is moving to the left (θ̇ ∈ [−0.2, 0]).
To balance the pole, the neural network controller needs to determine “pushing left”. We
apply Algorithm 3 to verify the quantitative property, where O = {y|y1 − y2 ≥ 0} and the
proportion p = 0.9, with an iteration limit of 1000. The under-approximation algorithm
takes 12.1s to reach the target proportion 90.0%.

Lunarlander. In the Lunarlander task, the objective of the neural networks controller is
to achieve a safe landing of the lander. Consider a scenario where the lander is slightly to
the left of the centre of the landing pad (x ∈ [−1, 0]), the lander is above the landing pad
sufficient for descent correction (h ∈ [0, 1]), and it is moving to the right (ẋ ∈ [1, 2]) but
descending rapidly (ḣ ∈ [−2,−1]). To avoid a hard landing, the neural network controller
needs to reduce the descent speed by taking the action “fire main engine”. We formulate
the quantitative property for this task, where O = {y ∈ R4| ∧i∈{1,3,4} y2 ≥ yi} and the
proportion p = 0.9. To compute preimage under-approximation for this more complex task
takes 429.480s to reach the target proportion 90.0%.
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6 Related Work

Our paper is related to a series of works on robustness verification of neural networks.
To address the scalability issues with complete verifiers (Huang et al., 2017; Katz et al.,
2017; Tjeng et al., 2019) based on constraint solving, convex relaxation (Salman et al.,
2019) has been used for developing highly efficient incomplete verification methods (Zhang
et al., 2018; Wong and Kolter, 2018; Singh et al., 2019; Xu et al., 2020). Later works
employed the branch-and-bound (BaB) framework (Bunel et al., 2018, 2020) to achieve
completeness, using incomplete methods for the bounding procedure (Xu et al., 2021; Wang
et al., 2021b; Ferrari et al., 2022). In this work, we adapt convex relaxation for efficient
preimage approximation. Further, our divide-and-conquer procedure is analogous to BaB,
but focuses on maximising covered volume for under-approximation (resp. minimising for
over-approximation) rather than maximising or minimising a function value. There are also
works that have sought to define a weaker notion of local robustness known as statistical
robustness (Webb et al., 2019b; Mangal et al., 2019; Wang et al., 2021a), which requires
that a proportion of points under some perturbation distribution around an input point
are classified in the same way. Verification of statistical robustness is typically achieved
by sampling and statistical guarantees (Webb et al., 2019b; Baluta et al., 2021; Tit et al.,
2021; Yang et al., 2021). In this paper, we apply our symbolic approximation approach
to quantitative analysis of neural networks, while providing exact quantitative rather than
statistical evaluation (Webb et al., 2019a).

Another line of related works considers deriving exact or approximate abstractions of
neural networks, which are applied for explanation (Sotoudeh and Thakur, 2021), veri-
fication (Elboher et al., 2020; Pulina and Tacchella, 2010), reachability analysis (Prab-
hakar and Afzal, 2019), and preimage approximation (Dathathri et al., 2019; Kotha et al.,
2023). Dathathri et al. (2019) leverages symbolic interpolants (Albarghouthi and McMil-
lan, 2013) for preimage approximations, facing exponential complexity in the number of
hidden neurons. Kotha et al. (2023) considers the preimage overapproximation problem via
inverse bound propagation, but their approach cannot be directly extended to the under-
approximation setting. They also do not consider any strategic branching and refinement
methodologies like those in our unified framework. Our anytime algorithm, which combines
convex relaxation with principled splitting strategies for refinement, is applicable for both
under- and over-approximations. Their work may benefit from our splitting strategies to
scale to higher dimensions.

7 Conclusion

We present an efficient and unifying algorithm for preimage approximation of neural net-
works. Our anytime method derives from the observation that linear relaxation can be used
to efficiently produce approximations, in conjunction with custom-designed strategies for
iteratively decomposing the problem to rapidly improve the approximation quality. We for-
mulate the preimage approximation in each refinement iteration as an optimisation problem
and propose a differentiable objective to derive tighter preimages via optimising over convex
bounding parameters and Lagrange multipliers. Unlike previous approaches, our method is
designed for, and scales to, both low and high-dimensional problems. Experimental eval-
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uation on a range of benchmark tasks shows significant advantages in runtime efficiency
and scalability, and the utility of our method for important applications in quantitative
verification and robustness analysis.
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Appendix A. Experiment Setup

In this section, we present the detailed configuration of neural networks in the benchmark
tasks.

A.1 Vehicle Parking.

For the vehicle parking task, we train a neural network with one hidden layer of 20 neurons,
which is computationally feasible for exact preimage computation for comparison. We
consider computing the preimage approximation with input region corresponding to the
entire input space C = {x ∈ R2|x ∈ [0, 2]2}, and output sets Ok, which correspond to
the neural network outputting label k: Ok = {y ∈ R4 |

∧
i∈{1,2,3,4}\k yk − yi ≥ 0}, k ∈

{1, 2, 3, 4}.

A.2 Aircraft Collision Avoidance

The aircraft collision avoidance (VCAS) system (Julian and Kochenderfer, 2019) is used
to provide advisory for collision avoidance between the ownship aircraft and the intruder.
VCAS uses four input features (h, ḣA, ḣB, t) representing the relative altitude of the air-
crafts, vertical climbing rates of the ownship and intruder aircrafts, respectively, and time
to the loss of horizontal separation. VCAS is implemented by nine feed-forward neural
networks built with a hidden layer of 21 neurons. In our experiment, we use the follow-
ing input region for the ownship and intruder aircraft as in Matoba and Fleuret (2020):
h ∈ [−8000, 8000], ḣA ∈ [−100, 100], ḣB = 30, and t ∈ [0, 40]. In the training, the input
configurations are normalized into a range of [−1, 1]. We consider the output property
O = {y ∈ R9 | ∧i∈[2,9] y1 ≥ yi} and generate the preimage approximation for the VCAS
neural networks.

A.3 Neural Network Controllers

A.3.1 Cartpole

The cartpole control problem considers balancing a pole atop a cart by controlling the
movement of the cart. The neural network controller has two hidden layers with 64 neurons,
and uses four input variables representing the position and velocity of the cart, the angle
and angular velocity of the pole. The controller outputs are pushing the cart left or right.
In the experiments, we set the following input region for the Cartpole task: (1) cart position
[−1, 1], (2) cart velocity [0, 2], (3) angle of the pole [−0.2, 0], and (4) angular velocity of the
pole [−2, 0] (with varied feature length in the evaluation). We consider the output property
for the action pushing left.

A.3.2 Lunarlander

The Lunarlander problem considers the task of correct landing of a moon lander on a landing
pad. The neural network for Lunarlander has two hidden layers with 64 neurons, and eight
input features addressing the lander’s coordinate, orientation, velocities, and ground contact
indicators. The outputs represent four actions. For the Lunarlander task, we set the input
region as: (1) horizontal and vertical position [−1, 0] × [0, 1], (2) horizontal and vertical
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velocity [0, 2] × [−2, 0] (with varied feature length for evaluation), (3) angle and angular
velocity [−1, 0]× [−0.1, 0.1], (4) left and right leg contact [0.9, 1]2. We consider the output
specification for the action “fire main engine”, i.e., {y ∈ R4 | ∧i∈{1,3,4} y2 ≥ yi}.

A.3.3 Dubinsrejoin.

The Dubinsrejoin problem considers guiding a wingman craft to a certain radius around a
lead aircraft. The neural network controller has two hidden layers with 256 neurons. The
input space of the neural network controller is eight-dimensional, with the input variables
capturing the position, heading, velocity of the lead and wingman crafts, respectively. The
outputs are also eight dimensional representing controlling actions of the wingman. Note
that the eight neural network outputs are processed further as tuples of actuators (rudder,
throttle) for controlling the wingman where each actuator has 4 options. The control action
tuple is decided by taking the action with the maximum output value among the first four
network outputs (the first actuator options) and the action with the maximum value among
the second four network outputs (the second actuator options). In the experiments, we
set the following input region: (1) horizontal and vertical position [−0.2, 0] × [0, 0.5], (2)
heading and velocity [−1, 0] × [0, 0.2] for the lead aircraft, and (3) horizontal and vertical
position [0.4, 0.6] × [−0.3, 0.3] (with varied feature length for evaluation), (4) heading and
velocity [0.2, 0.5] × [−0.5, 0.5] for the wingman aircraft. We consider the output property
that both actuators (rudder, throttle) take the first option, i.e., {y ∈ R8 | ∧i∈{2,3,4} y1 ≥
yi
∧
∧i∈{6,7,8} y5 ≥ yi}.

A.4 MNIST Classification

We use the trained neural network from VNN-COMP 2022 (Müller et al., 2022) for digit
image classification. The neural network has six layers with a hidden neuron size of 100 for
each hidden layer. We consider two types of image attacks: l∞ and patch attack. For L∞
attack, a perturbation is applied to all pixels of the image. For the patch attack, it applies
arbitrary perturbations to the patch area, i.e., the perturbation noise covers the whole valid
range [0, 1], for which we set the patch area at the centre and (upper-left) corner of the
image with different sizes.

Appendix B. Proofs

We present the propositions and proofs on guaranteed polytope volume improvement with
each refinement iteration, noting that these propositions are valid without stochastic opti-
misation. Subsequently, we provide proofs for Propositions 7 and 8.

Proposition 9 Given any subregion Csub with polytope under-approximation TCsub(O), and
its children Clsub, Cusub with polytope under-approximations TCl

sub
(O), TCu

sub
(O) respectively, it

holds that:

TCl
sub

(O) ∪ TCu
sub

(O) ⊇ TCsub(O) (22)

Proof We define TCsub(O)|l, TCsub(O)|r to be the restrictions of TCsub(O) to Clsub and Crsub
respectively, that is:
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TCsub(O)|l = {x ∈ Rd|
K∧
i=1

(gi(x) ≥ 0) ∧ (x ∈ Clsub)} (23)

TCsub(O)|r = {x ∈ Rd|
K∧
i=1

(gi(x) ≥ 0) ∧ (x ∈ Crsub)} (24)

where we have replaced the constraint x ∈ Csub with x ∈ Clsub (resp. x ∈ Crsub), and gi(x) is
the LiRPA lower bound for the ith specification on the input region Csub.

On the other hand, we also have:

TCl
sub

(O) = {x ∈ Rd|
K∧
i=1

(gl,i(x) ≥ 0) ∧ (x ∈ Clsub)} (25)

TCr
sub

(O) = {x ∈ Rd|
K∧
i=1

(gr,i(x) ≥ 0) ∧ (x ∈ Crsub)} (26)

where gl,i(x) (resp. gr,i(x)) is the LiRPA lower bound for the ith specification on the input

region Clsub (resp. Crsub). Now, it is sufficient to show that TCl
sub

(O) ⊇ TCsub(O)|l and

TCr
sub

(O) ⊇ TCsub(O)|r to prove Equation 22. We will now show that TCl
sub

(O) ⊇ TCsub(O)|l
(the proof for TCr

sub
(O) ⊇ TCsub(O)|r is entirely similar).

Before proving this result in full, we outline the approach and a sketch proof. It suffices
to prove (for all i) that gl,i(x) is a tighter bound than gi(x) on Clsub. That is, to show that

gl,i(x) ≥ gi(x) for inputs x in Clsub, as then gi(x) ≥ 0 =⇒ gl,i(x) ≥ 0 for inputs x in Clsub,
and so TCl

sub
(O) ⊇ TCsub(O)|l. The bound gl,i(x) is tighter than gi(x) because the input

region for LiRPA is smaller for gl,i(x), leading to tighter concrete neuron bounds, and thus
tighter bound propagation through each layer of the neural network gi. We present the
formal proof of greater bound tightness for input and ReLU splitting in the following.

Input split: We show gl,i(x) ≥ gi(x) for all x ∈ Clsub by induction (dropping the index

i in the following as it is not important). Recall that LiRPA generates symbolic upper and
lower bounds on the pre-activation values of each layer in terms of the input (i.e. treating
that layer as output), which can then be converted into concrete bounds.

A(j)x+ b(j) ≤ h(j)(x) ≤ A
(j)
x+ b

(j)
(27)

A(l,j)x+ b(l,j) ≤ h(j)(x) ≤ A
(l,j)

x+ b
(l,j)

(28)

where h(j)(x) are the pre-activation values for the jth layer of the network gi, andA(j),b(j),A
(j)
,b

(j)

(resp. A(l,j),b(l,j),A
(l,j)

,b
(l,j)

) are the linear bound coefficients, for input regions Csub (resp.
Clsub).

Inductive Hypothesis For all layers j = 1, ..., L in the network, and for all x ∈ Clsub, it
holds that:

A(j)x+ b(j) ≤ A(l,j)x+ b(l,j) ≤ A
(l,j)

x+ b
(l,j) ≤ A

(j)
x+ b

(j)
(29)
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Base Case For the input layer, we have the trivial bounds Ix ≤ x ≤ Ix for both regions.
Inductive Step Suppose that the inductive hypothesis is true for layer j − 1 < L. Using

the symbolic bounds in Equations 27, 28, we can derive concrete bounds l(j−1) ≤ h(j−1)(x) ≤
u(j−1) and l(l,j−1) ≤ h(l,j−1)(x) ≤ u(l,j−1) on the values of the pre-activation layer. By the
inductive hypothesis, the bounds for region Clsub will be tighter, i.e. l(j−1) ≤ l(l,j−1) ≤
u(l,j−1) ≤ u(j−1). Now, consider the backward bounding procedure for layer j as output.
We begin by encoding the linear layer from post-activation layer j − 1 to pre-activation
layer j as:

W(j)a(j−1)(x) + b(j) ≤ h(j)(x) ≤W(j)a(j−1)(x) + b(j) (30)

Then, we bound a(j−1)(x) in terms of h(j−1)(x) using linear relaxation. Consider the three

cases in Figure 2 (reproduced from main paper), where we have a bound ch
(j−1)
k (x) + d ≤

a
(j−1)
k (x) ≤ ch(j−1)

k (x)+d, for some scalars c, d, c, d. If the concrete bounds (horizontal axis)
are tightened, then an unstable neuron may become inactive or active, but not vice versa.

It can thus be seen that the new linear upper and lower bounds on h
(j−1)
k (x) will also be

tighter.
Substituting the linear relaxation bounds in Equation 30 as in Xu et al. (2021), we

obtain bounds of the form

A
(j)
j h(j−1)(x) + b

(j)
j ≤ h

(j)(x) ≤ A
(j)
j h(j−1)(x) + b

(j)
j (31)

A
(l,j)
j h(j−1)(x) + b

(l,j)
j ≤ h(j)(x) ≤ A

(l,j)
j h(j−1)(x) + b

(l,j)
j (32)

such thatA
(j)
j h(j−1)(x)+b

(j)
j ≤ A

(l,j)
j h(j−1)(x)+b

(l,j)
j ≤ A

(l,j)
j h(j−1)(x)+b

(l,j)
j ≤ A

(j)
j h(j−1)(x)+

b
(j)
j for all l(l,j−1) ≤ h(j−1)(x) ≤ l(l,j−1), by the fact that the concrete bounds are tighter

for Clsub.
Finally, substituting the bounds in Equations 27 and 28 (for h(j−1)), and using the

tightness result in the inductive hypothesis for j − 1, we obtain linear bounds for h(j)(x) in
terms of of the input x, such that the inductive hypothesis for j holds.

ReLU split: We use Clsub and Crsub to denote the input subregions when fixing unstable

ReLU neuron z
(j−1)
k = h

(j−1)
k (x), i.e., Clsub = {x | h

(j−1)
k (x) ≥ 0} and Crsub = {x | h

(j−1)
k (x) <

0}.
In the following, we prove that gl,i(x) ≥ gi(x) for all x ∈ Clsub. Assume we fix one

unstable ReLU neuron of layer j − 1, then for all layers 1 ≤ m ≤ j − 1, for all x ∈ Clsub, it
holds that:

A(m)x+ b(m) ≤ A(l,m)x+ b(l,m) ≤ A
(l,m)

x+ b
(l,m) ≤ A

(m)
x+ b

(m)
(33)

where A(m) = A(l,m), b(m) = b(l,m) and same for the upper bounding parameters.
Now consider the bounding procedure for layer j. The linear layer from post-activation

layer j − 1 to pre-activation layer j can be encoded as:

W(j)a(j−1)(x) + b(j) ≤ h(j)(x) ≤W(j)a(j−1)(x) + b(j) (34)

Consider the post activation function a(j−1)(x) of the unstable neuron z
(j−1)
k , before splitting

we have ch
(j−1)
k (x)+d ≤ a(j−1)

k (x) ≤ ch(j−1)
k (x)+d, for some scalars c, d, c, d. After splitting,
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we now have a
(j−1)
k (x) = h

(j−1)
k (x) for Clsub where c = c = 1, d = d = 0, since the unstable

neuron is fixed to be active. By substituting the linear relaxation bounds before and after
splitting in Equation 30, we obtain the bounding functions with regard to h(j−1)(x) in the
following form:

A
(j)
j h(j−1)(x) + b

(j)
j ≤ h

(j)(x) ≤ A
(j)
j h(j−1)(x) + b

(j)
j (35)

A
(l,j)
j h(j−1)(x) + b

(l,j)
j ≤ h(j)(x) ≤ A

(l,j)
j h(j−1)(x) + b

(l,j)
j (36)

By the fact the relaxation is fixed to be exact for a
(j−1)
k (x), it holds that A

(j)
j h(j−1)(x) +

b
(j)
j ≤ A

(l,j)
j h(j−1)(x) + b

(l,j)
j ≤ A

(l,j)
j h(j−1)(x) + b

(l,j)
j ≤ A

(j)
j h(j−1)(x) + b

(j)
j for Clsub.

Finally, for the bound propagation procedure of layer L, substituting the tightened
bounding for h(j−1)(x), we obtain that gl,i(x) = A(l,L)x+ b(l,L) ≥ A(L)x+ b(L) = gi(x).

Corollary 10 In each refinement iteration, the volume of the polytope under-approximation
TDom does not decrease.

Proof In each iteration of Algorithm 1, we replace the polytope TCsub(O) in a leaf subregion
with two polytopes TCl

sub
(O), TCr

sub
(O) in the DUP under-approximation. By Proposition 9,

the total volume of the two new polytopes is at least that of the removed polytope. Thus
the volume of the DUP approximation does not decrease.

Similarly, for ReLU splitting, we replace the polytope TCsub(O) in a leaf subregion with
two polytopes TCl

sub
(O), TCr

sub
(O) where the relaxed bounding functions for one unstable

neuron are replaced with exact linear functions, i.e., ch
(i)
j (x) + d ≤ a

(i)
j (x) ≤ ch

(i)
j (x) + d

is replaced with the exact linear function a
(i)
j (x) = h

(i)
j (x) and a

(i)
j (x) = 0, respectively,

as shown in Figure 2 (from unstable to stable). By Proposition 9, the total volume of the
two new polytopes is at least that of the removed polytope. Thus the volume of the DUP
approximation does not decrease.

Proposition 7 Algorithm 3 is sound for quantitative verification with input splitting.

Proof Algorithm 3 outputs True only if, at some iteration, we have that the exact volume
vol(T ) ≥ p× vol(I). Since T is an under-approximation to the restricted preimage f−1

I (O),

we have that
vol(f−1

I (O))

vol(I) ≥ vol(T )
vol(I) ≥ p, i.e. the quantitative property (I,O, p) holds.

Proposition 8 Algorithm 3 is sound and complete for quantitative verification on piecewise
linear neural networks with ReLU splitting.

Proof The proof for the soundness of Algorithm 3 with ReLU splitting is similar to
input splitting. Regarding the completeness, when all unstable neurons are fixed with one
activation status, for each subregion Csub, we have gi(x) = gi(x). It then holds that for any
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Csub ⊂ C where
⋃
Csub = C, (gi(x) ≥ 0) ∧ x ∈ Csub ⇐⇒ (gi(x) ≥ 0) ∧ x ∈ Csub, i.e., the

polytope is the exact preimage. Hence, when all unstable neurons are fixed to an activation
status, we have T = f−1

I (O). Algorithm 3 returns False only if the volume of the exact

preimage
vol(f−1

I (O))

vol(I) = vol(T )
vol(I) < p.
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