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Abstract
Generalization across environments is critical
for the successful application of reinforcement
learning algorithms to real-world challenges. In
this paper, we consider the problem of learning
abstractions that generalize in block MDPs, fam-
ilies of environments with a shared latent state
space, and dynamics structure over that latent
space, but varying observations. We leverage
tools from causal inference to propose a method
of invariant prediction to learn state abstractions
that generalize to novel observations in the multi-
environment setting. We prove that for certain
classes of environments, this approach outputs
with high probability a state abstraction corre-
sponding to the causal feature set with respect
to the return. We further provide more general
bounds on model error and generalization er-
ror in the multi-environment setting in the pro-
cess showing a connection between causal vari-
able selection and the state abstraction frame-
work for MDPs. We give empirical evidence that
our methods work in both linear and nonlinear
settings, attaining improved generalization over
single- and multi-task baselines.

1. Introduction
The canonical reinforcement learning (RL) problem as-
sumes an agent interacting with a single MDP with a fixed
observation space and dynamics structure. This assump-
tion is difficult to ensure in practice, where state spaces
are often large and infeasible to explore entirely during
training. However, there is often a latent structure to be
leveraged to allow for good generalization. As an exam-
ple, a robot’s sensors may be moved, or the lighting con-
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ditions in a room may change, but the physical dynamics
of the environment are still the same. These are examples
of environment-specific characteristics that current RL al-
gorithms often overfit to. In the worst case, some training
environments may contain spurious correlations that will
not be present at test time, causing catastrophic failures
in generalization (Zhang et al., 2018a; Song et al., 2020).
To develop algorithms that will be robust to these sorts of
changes, we must consider problem settings that allow for
multiple environments with a shared dynamics structure.

Recent works (Amit and Meir, 2018; Yin et al., 2019) have
developed generalization bounds for the multi-task prob-
lem, but they depend on the number of tasks seen at train-
ing time, which can be prohibitively expensive given how
sample inefficient RL is even in the single task regime. To
obtain stronger generalization results, we propose to con-
sider a problem which we refer to as ‘multi-environment’
RL: like multi-task RL, the agent seeks to maximize return
on a set of environments, but only some of which it can
be trained on. We make the assumption that there exists
some latent causal structure that is shared among all of the
environments, and that the sources of variability between
environments do not affect the reward. This family of envi-
ronments is called a Block MDP (Du et al., 2019), in which
the observations may change, but the latent states, dynam-
ics, and reward function are the same. A formal definition
of this class of MDP will be presented in Section 3.

Though the setting we consider is a subset of the multi-task
RL problem, we show that the added assumption of shared
structure allows for much stronger generalization results
than have been obtained by multi-task approaches. Naive
application of generalization bounds to the multi-task rein-
forcement learning setting is very loose because the learner
is typically given access to only a few tasks relative to the
number of samples from each task. Indeed, Cobbe et al.
(2018); Zhang et al. (2018b) find that agents trained using
standard methods require many thousands of environments
before ‘generalizing’ to new environments.

The main contribution of this paper is to use tools from
causal inference to address generalization in the Block
MDP setting, proposing a new method based on the invari-

ant causal prediction literature. In certain linear function
approximation settings, we demonstrate that this method
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will, with high probability, learn an optimal state abstrac-
tion that generalizes across all environments using many
fewer training environments than would be necessary for
standard PAC bounds. We replace this PAC requirement
with requirements from causal inference on the type of en-
vironments seen at training time. We then draw a connec-
tion between bisimulation and the minimal causal set of
variables found by our algorithm, providing bounds on the
model error and sample complexity of the method. We fur-
ther show that using analogous invariant prediction meth-
ods for the nonlinear function approximation setting can
yield improved generalization performance over multi-task
and single-task baselines. We relate this method to pre-
vious work on learning representations of MDPs (Gelada
et al., 2019; Luo et al., 2019) and develop multi-task gener-
alization bounds for such representations. Code is available
at https://github.com/facebookresearch/
icp-block-mdp.

2. Background
2.1. State Abstractions and Bisimulation

State abstractions have been studied as a way to distinguish
relevant information from irrelevant one (Li et al., 2006)
to create a more compact representation for easier decision
making and planning. Bertsekas and Castanon (1989); Roy
(2006) provide bounds for approximation errors for various
aggregation methods, and Li et al. (2006) discuss the merits
of abstraction discovery as a way to solve related MDPs.

Bisimulation relations are a type of state abstraction that
offers a mathematically precise definition of what it means
for two environments to ‘share the same structure’ (Larsen
and Skou, 1989; Givan et al., 2003). We say that two states
are bisimilar if they share the same expected reward and
equivalent distributions over the next bisimilar states. For
example, if a robot is given the task of washing the dishes
in a kitchen, changing the wallpaper in the kitchen doesn’t
change anything relevant to the task. One then could de-
fine a bisimulation relation that equates observations based
on the locations and soil levels of dishes in the room and
ignores the wallpaper. These relations can be used to sim-
plify the state space for tasks like policy transfer (Castro
and Precup, 2010), and are intimately tied to state abstrac-
tion. For example, the model-irrelevance abstraction de-
scribed by Li et al. (2006) is precisely characterized as a
bisimulation relation.

Definition 1 (Bisimulation Relations (Givan et al., 2003)).
Given an MDP M, an equivalence relation B between

states is a bisimulation relation if for all states s1, s2 2 S

that are equivalent under B (i.e. s1Bs2), the following

conditions hold for all actions a 2 A:

R(s1, a) = R(s2, a)

P(G|s1, a) = P(G|s2, a), 8G 2 S/B

Where S/B denotes the partition of S under the relation

B, the set of all groups of equivalent states, and where

P(G|s, a) =
P

s02G P(s0|s, a).

This definition was originally designed for the single MDP
setting to find bisimilar states within an MDP. We are now
trying to find bisimilar states across different MDPs, or dif-
ferent experimental conditions. One can intuitively think of
this carrying over by imagining all experimental conditions
i mapped to a single super-MDP with state space S = [iSi

where we give up the irreducibility assumption, i.e. we
can no longer reach every state si from any other state sj .
Specifically, we say that two MDPs M1 and M2 are bisim-
ilar if there exist bisimulation relations B1 and B2 such
that M1/B1 is isomorphic to M2/B2. Bisimilar MDPs are
therefore MDPs which are behaviourally the same.

2.2. Causal Inference Using Invariant Prediction

Peters et al. (2016) introduced an algorithm, Invariant
Causal Prediction (ICP), to find the causal feature set, the
minimal set of features which are causal predictors of a
target variable, by exploiting the fact that causal models
have an invariance property (Pearl, 2009; Schölkopf et al.,
2012). Arjovsky et al. (2019) extend this work by propos-
ing invariant risk minimization (IRM, see Equation (1)),
augmenting empirical risk minimization to learn a data
representation free of spurious correlations. They assume
there exists some partition of the training data X into ex-

periments e 2 E , and that the model’s predictions take the
form Y

e = w>
�(Xe). IRM aims to learn a representa-

tion � for which the optimal linear classifier, w, is invari-
ant across e, where optimality is defined as minimizing the
empirical risk R

e. We can then expect this representation
and classifier to have low risk in new experiments e, which
have the same causal structure as the training set.

min
�:X!Rd

w2Rd

X

e2E
R

e(w>
�(Xe))

s.t. w 2 arg min
w̄2Rd

R
e(w̄>

�(Xe)) 8e 2 E .

(1)

The IRM objective in Equation (1) can be interpreted as
a constrained optimization problem, where the objective is
to learn a set of features � for which the optimal classi-
fier in each environment is the same. Conditioned on the
environments corresponding to different interventions on
the data-generating process, this is hypothesized to yield
features that only depend on variables that are causally re-
lated to the predicted value. Because the constrained opti-
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mization problem is not generally feasible to optimize, Ar-
jovsky et al. (2019) propose a penalized optimization prob-
lem with scheduled penalty term as a tractable alternative.

3. Problem Setup
We consider a family of environments ME =
{(Xe,A,Re, Te, �)| e 2 E}, where E is some index
set. For simplicity of notation, we drop the subscript e
when referring to the union over all environments E . Our
goal is to use a subset Etrain ⇢ E of these environments
to learn a representation � : X ! Rd which enables
generalization of a learned policy to every environment.
We denote the number of training environments as
N := |Etrain|. We assume that the environments share some
structure, and consider the different degrees to which this
structure may be shared.

3.1. The Block MDP

Block MDPs (Du et al., 2019) are described by a tuple
hS,A,X , p, q, Ri with a finite, unobservable state space
S , finite action space A, and possibly infinite, but observ-
able space X . p denotes the latent transition distribution
p(s0|s, a) for s, s0 2 S, a 2 A, q is the (possibly stochas-
tic) emission function that gives the observations from the
latent state q(x|s) for x 2 X , s 2 S , and R the reward
function. A graphical model of the interactions between
the various variables can be found in Figure 1.

Assumption 1 (Block structure (Du et al., 2019)). Each

observation x uniquely determines its generating state s.

That is, the observation space X can be partitioned into

disjoint blocks Xs, each containing the support of the con-

ditional distribution q(·|s).

This assumption gives us the Markov property in X . We
translate the block MDP to our multi-environment setting
as follows. If a family of environments ME satisfies the
block MDP assumption, then each e 2 E corresponds to
an emission function qe, with S,A,X and p shared for all
M 2 ME . We will move the potential randomness from
qe into an auxiliary variable ⌘ 2 ⌦, and write qe(⌘, s). Fur-
ther, we require that if range(qe(·, s)) \ range(qe0(·, s0)) 6=
;, then s = s

0. The objective is to learn a useful state
abstraction to promote generalization across the different
emission functions qe, given that only a subset is provided
for training. Song et al. (2020) also describes a similar
POMDP setting where there is an additional observation
function, but assume information can be lost. We note
that this problem can be made arbitrarily difficult if each
qe has a disjoint range, but will focus on settings where
the qe overlap in structured ways – for example, where
qe is the concatenation of the noise and state variables:
qe(⌘, s) = s� f(⌘).

Figure 1. Graphical model of a block MDP with stochastic, cor-
related observations, with an IRM goal to extract s from the
sequence of observations, and discard the spurious noise ⌘.
Red dashed ovals indicate the entire tangled latent state at each
timestep. Black dashed lines and grey lines indicate two addi-
tional tiers of difficulty to consider. (Best viewed in color.)

3.2. Relaxations

Spurious correlations. Our initial presentation of the
block MDP assumes that the noise variable ⌘ is sampled
randomly at every time step, which prevents multi-timestep
correlations (Figure 1 in black, solid lines). We therefore
also consider a more realistic relaxed block MDP, where
spurious variables may have different transition dynamics
across the different environments so long as these correla-
tions do not affect the expected reward (Figure 1, now in-
cluding black dashed lines). This is equivalent to augment-
ing each Block MDP in our family with a noise variable ⌘e,
such that the observation x = (qe(⌘e, s)), and

p(x0
|x, a) = p(q�1(x0)|s, a)pe(⌘

0
e|s, ⌘e).

We note that this section still satisfies Assumption 1.

Realizability. Though our analysis will require Assump-
tion 1, we claim that this is a reasonable requirement as
it makes the learning problem realizable. Relaxing As-
sumption 1 means that the value function learning problem
may become ill-posed, as the same observation can map
to entirely different states in the latent MDP with differ-
ent values, making our environment partially observable (a
POMDP, Figure 1 with grey lines). We provide a lower
bound on the value approximation error attainable in this
setting in the appendix (Proposition 2).

3.3. Assumptions on causal structure

State abstraction and causal inference both aim to eliminate
spurious features in a learning algorithm’s input. However,
these two approaches are applied to drastically different
types of problems. Though we demonstrate that causal in-
ference methods can be applied to reinforcement learning,
this will require some assumption on how causal mecha-
nisms are observed. Definitions of the notation used in this
section are deferred to the appendix, though they are stan-
dard in the causal inference literature.
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The key assumption we make is that the variables in the
environment state at time t can only affect the values of the
state at time t+ 1, and can only affect the reward at time t.
This assumption enables us to consider the state and action
at time t as the only candidate for causal parents of the state
at time t + 1 and of the reward at time t. This assumption
is crucial to the Markov behaviour of the Markov decision
process. We refer the reader to Figure 2 to demonstrate how
causal graphical models can be translated to this setting.
Assumption 2 (Temporal Causal Mechanisms). Let x

1
and

x
2

be components of the observation x. Then when no in-

tervention is performed on the environment, we have the

following independence.

X
1
t+1 ? X

2
t+1|xt (2)

Assumption 3 (Environment Interventions). Let X =
X1⇥ · · ·⇥Xn, and S = Xi1 ⇥ . . . Xik . Each environment

e 2 E corresponds to a do- (Pearl, 2009) or soft (Eberhardt

and Scheines, 2007) intervention on a single variable xi in

the observation space.

This assumption allows us to use tools from causal infer-
ence to identify candidate model-irrelevance state abstrac-
tions that may hold across an entire family of MDPs, rather
than only the ones observed, based on using the state at one
timestep to predict the values at the next timestep. In the
setting of Assumption 3, we can reconstruct the block MDP
emission function q by concatenating the spurious variables
from X \S to S . We discuss some constraints on interven-
tions necessary to satisfy the block MDP assumption in the
appendix.

4. Connecting State Abstractions to Causal
Feature Sets

Invariant Causal Prediction (Peters et al., 2016) aims to
identify a set S of causal variables such that a linear pre-
dictor with support on S will attain consistent performance
over all environments. In other words, ICP removes irrele-
vant variables from the input, just as state abstractions re-
move irrelevant information from the environment’s obser-
vations. An attractive property of the block MDP setting
is that it is easy to show that there does exist a model-
irrelevance state abstraction � for all MDPs in ME –
namely, the function mapping each observation x to its gen-
erating latent state �(x) = q

�1(x). The formalization and
proof of this statement are deferred to the appendix (see
Theorem 4).

We consider whether, under Assumptions 1-3, such a state
abstraction can be obtained by ICP. Intuitively, one would
then expect that the causal variables should have nice prop-
erties as a state abstraction. The following result confirms
this to be the case; a state abstraction that selects the set

Figure 2. Graphical causal models with temporal dependence –
note that while x2 (circled in blue) is the only causal parent of
the reward, because its next-timestep distribution depends on x1,
a model-irrelevance state abstraction must include both variables.
Shaded in blue: the graphical causal model of an MDP with states
s = (x1, x2) when ignoring timesteps.

of causal variables from the observation space of a block
MDP will be a model-irrelevance abstraction for every en-
vironment e 2 E .
Theorem 1. Consider a family of MDPs ME =
{(X , A,R, Pe, �)|e 2 E}, with X = Rk

. Let ME sat-

isfy Assumptions 1-3. Let SR ✓ {1, . . . , k} be the set

of variables such that the reward R(x, a) is a function

only of [x]SR (x restricted to the indices in SR). Then let

S = AN(R) denote the ancestors of SR in the (fully ob-

servable) causal graph corresponding to the transition dy-

namics of ME . Then the state abstraction �S(x) = [x]S is

a model-irrelevance abstraction for every e 2 E .

An important detail in the previous result is the model ir-
relevance state abstraction incorporates not just the parents
of the reward, but also its ancestors. This is because in RL,
we seek to model return rather than solely rewards, which
requires a state abstraction that can capture multi-timestep
interactions. We provide an illustration of this in Figure 2.
As a concrete example, we note that in the popular bench-
mark CartPole, only position x and angle ✓ are necessary to
predict the reward. However, predicting the return requires
✓̇ and ẋ, their respective velocities.

Learning a minimal � in the setting of Theorem 1 using
a single training environment may not always be possible.
However, applying invariant causal prediction methods in
the multi-environment setting will yield the minimal causal
set of variables when the training environment interven-
tions satisfy certain conditions necessary for the identifi-
ability of the causal variables (Peters et al., 2016).

5. Block MDP Generalization Bounds
We continue to relax the assumptions needed to learn a
causal representation and look to the nonlinear setting. As
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a reminder, the goal of this work is to produce represen-
tations that will generalize from the training environments
to a novel test environment. However, normal PAC gen-
eralization bounds require a much larger number of envi-
ronments than one could expect to obtain in the reinforce-
ment learning setting. The appeal of an invariant repre-
sentation is that it may allow for theoretical guarantees on
learning the right state abstraction with many fewer train-
ing environments, as discussed by Peters et al. (2016). If
the learned state abstraction is close to capturing the true
base MDP, then the model error in the test environment can
be bounded by a function of the distance of the test en-
vironment’s abstract state distribution to the training envi-
ronments’. Though the requirements given in the following
Theorem 2 are difficult to guarantee in practice, the result
will hold for any arbitrary learned state abstraction.
Theorem 2 (Model error bound). Let M1 and M2 be two

environments satisfying Assumption 1, and let � : X ! Z

be a model-irrelevance abstraction for M1 and M2. Let

the union of the environments’ state transition functions T1

and T2 be L-Lipschitz with respect to the state embedding

�(X), and T be an arbitrary learned transition function

defined on Z . Setting the expected error of T on M1 as

Ex⇠⇡(M1)[kT (�(x)) � �(T1(x))k = �, we have the fol-

lowing bound on the error of T in M2

Ex⇠M 0 [kT (�(x))��(T2(x))k]  �+2LW1(⇡�(M1),⇡�(M2)).
(3)

Proof provided in Appendix B.

Instead of assuming access to a bisimilar MDP M
0, we can

provide discrepancy bounds for an MDP M̄ produced by
a learned state representation �(x), dynamics function fs,
and reward function R using the distance in dynamics J1

D
and reward J

1
R of M̄ to the underlying MDP M . We first

define these distances,

J
1
R := sup

x2X ,a2A
|R(�(x), a,�(x0))� r(x, a)|

J
1
D := sup

x2X ,a2A
W1(fs(�(x), a),�P (x, a)).

(4)

Theorem 3. Let M be a block MDP and M̄ the learned

invariant MDP with a mapping � : X 7! Z . For any L-

Lipschitz valued policy ⇡ the value difference of that policy

is bounded by

|Q
⇡(x, a)� Q̄

⇡(�(x), a)| 
J
1
R + �LJ

1
D

1� �
, (5)

where Q
⇡

is the value function for ⇡ in M and Q̄
⇡

is the

value function for ⇡ in M̄ .

Proof provided in Appendix B. This gives us a bound on
generalization performance that depends on the supremum
of the dynamics and reward errors, which correspondingly

is a regression problem that will depend on
P

e2E ne, the
number of samples we have in aggregate over all training
environments rather than the number of training environ-
ments, |E|. Recent generalization bounds for deep neu-
ral networks using Rademacher complexity (Bartlett et al.,
2017a; Arora et al., 2018) scale with a factor of 1p

n
where

n is the number of samples. We can use n :=
P

e2E ne

for our setting, getting generalization bounds for the block
MDP setting that scale with the number of samples in ag-
gregate over all environments, an improvement over previ-
ous multi-task bounds that depend on |E|.

6. Methods
Given these theoretical results, we propose two methods
to learn invariant representations in the block MDP setting.
Both methods take inspiration from invariant causal predic-
tion, with the first being the direct application of linear ICP
to select the causal variables in the state in the setting where
variables are given. This corresponds to direct feature se-
lection, which with high probability returns the minimal
causal feature set. The second method is a gradient-based
approach akin to the IRM objective, with no assumption of
a linear causal relationship and a learned causal invariant
representation. Like the IRM goal (Equation (1)), we aim
to learn an invariant state abstraction from stochastic ob-
servations across different interventions i, and impose an
additional invariance constraint.

6.1. Variable Selection for Linear Predictors

The following algorithm (Algorithm 1) returns a model-
irrelevance state abstraction. We require the presence of a
replay buffer D, in which transitions are stored and tagged
with the environment from which they came. The algo-
rithm then applies ICP to find all causal ancestors of the re-
ward iteratively. This approach has the benefit of inheriting
many nice properties from ICP – under suitable identifia-
bility conditions, it will return the exact causal variable set
to a specified degree of confidence.

It also inherits inconvenient properties: the ICP algorithm
is exponential in the number of variables, and so this
method is not efficient for high-dimensional observation
spaces. We are also restricted to considering linear rela-
tionships of the observation to the reward and next state.
Further, because we take the union over iterative applica-
tions of ICP, the confidence parameter ↵ used in each call
must be adjusted accordingly. Given n observation vari-
ables, we give a conservative bound of ↵n .

While ICP is limited to linear relationships, Heinze-Deml
et al. (2018) extends the algorithm to the nonlinear setting,
and therefore can be substituted into Algorithm 1 in the
same way. However, it still is a feature selection method
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Algorithm 1 Linear MISA: Model-irrelevance State Ab-
stractions
Result: S ⇢ {1, . . . , k}, the causal state variables
Input: ↵, a confidence parameter, D, an replay buffer with

observations X .
S  ;

stack r
while stack is not empty do

v = stack.pop()
if v 62 S then

S
0
 ICP(v, D, ↵

dim(X ) )
S  S [ S

0

stack.push(S0)
end

end

that assumes the relevant features are given, and therefore
does not scale to pixel observations.

6.2. Learning a Model-irrelevance State Abstraction

We design an objective to learn a dynamics preserving state
abstraction Z , or model-irrelevance abstraction (Li et al.,
2006), where the similarity of the model is bounded by the
model error in the environment setting shown in Figure 1.
This requires disentangling the state space into a minimal
representation that causes reward st := �(xt) and every-
thing else ⌘t := '(xt). Our algorithm proceeds as follows.

We assume the existence of an invariant state embedding,
whose mapping function we denote by � : X 7! Z . We
also assume an invariant dynamics model fs : A⇥Z 7! Z ,
a task-specific dynamics model f⌘ : A ⇥ H 7! H, and
an invariant reward model r : Z ⇥ A ⇥ Z 7! R in the
embedding space. To incorporate a meaningful objective
and ground the learned representation, we need a decoder
�
�1 : Z ⇥ H 7! X . We assume N > 1 training en-

vironments are given. The overall dynamics and reward
objectives become

JD(�, , fs, f⌘) =
X

i

E⇡bi

⇥
(��1(fs(a,�(xi)),

f⌘(a, (xi)))� x
0
i)

2
⇤
,

JR(�, R) =
X

i

E⇡bi

⇥
(R(�(xi), a,�(x

0
i))� r

0
i)

2
⇤
,

under data collected from behavioral policies ⇡bi for each
experimental setting.

Of course, this does not guarantee that the representation
learned by � will be minimal, so we incorporate additional
regularization as an incentive. We train a task classifier
on the shared latent representation C : Z 7! [0, 1]N with
cross-entropy loss and employ an adversarial loss (Tzeng

Algorithm 2 Nonlinear Model-irrelevance State Abstrac-
tion (MISA) Learning
Result: �, an invariant state encoder
⇡  ⇡0

�, fs  �0, fs,0

 
e
, f

e
⌘   

e
0, f

e
⌘,0 for e 2 E

De  ; for e 2 E

while forever do
for e 2 E do

a ⇡(xe)
x
0
e, r  step(xe, a)
store(xe, a, r, x

0
e)

end
for e 2 E do

Sample batch Xe from De

f
e
⌘ , 

e
 rfe

⌘ , 
e [JD(Xe)]

end
fs,�, r  

P
Xe
rfs,�[JALL(Xe)]

C  rC CE loss(C(�({xe}e2E), {e}e2E)

end

et al., 2017) on � to maximize the entropy of the classi-
fier output to ensure task specific information is not passing
through to Z .

This gives us a final objective

JALL(�, , fs, f⌘, r) =

JD(�, , fs, f⌘) + ↵RJR(�, r)� ↵CH(C(�)),
(6)

where ↵R and ↵C are hyperparameters and H denotes en-
tropy (Algorithm 2).

7. Results
We evaluate both linear and non-linear versions of MISA,
in corresponding Block MDP settings with both linear and
non-linear dynamics. First, we examine model error in en-
vironments with low-dimensional (Section 7.1.1) and high-
dimensional (Section 7.1.2) observations and demonstrate
the ability for MISA to zero-shot generalize to unseen en-
vironments. We next look to imitation learning in a rich ob-
servation setting (Section 7.2) and show non-linear MISA
generalize to new camera angles. Finally, we explore end-
to-end reinforcement learning in the low-dimensional ob-
servation setting with correlated noise (Section 7.3) and
again show generalization capabilities where single task
and multi-task methods fail.
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7.1. Model Learning

7.1.1. LINEAR SETTING

We first evaluate the linear MISA algorithm in Algorithm 1.
To empirically evaluate whether eliminating spurious vari-
ables from a representation is necessary to guarantee gen-
eralization, we consider a simple family of MDPs with
state space X = {(x1, x2, x3)}, with a transition dynam-
ics structure such that xt+1

1 = x
t
1 + ✏

e
1, xt+1

2 = x
t
1 + ✏

e
2,

and x
t+1
3 = x

t
2 + ✏

e
3. We train on 3 environments with

soft interventions on each noise variable. We then run the
linear MISA algorithm on batch data from these 3 environ-
ments to get a state abstraction �(x) = {x1, x2}, and then
train 2 linear predictors on �(x) and x. We then evalu-
ate the generalization performance for novel environments
that correspond to different hard interventions on the value
of the x3 variable. We observe that the predictor trained
on �(x) attains zero generalization error because it zeros
out x3 automatically. However, any nonzero weight on x3

in the least-squares predictor will lead to arbitrarily large
generalization error, which is precisely what we observe in
Figure 3.

Figure 3. The presence of spurious uncorrelated variables in the
state can still lead to poor generalization of linear function ap-
proximation methods. Invariant Causal Prediction methods can
eliminate these spurious variables altogether.

7.1.2. RICH OBSERVATION SETTING

We next test the gradient-based MISA method (Algo-
rithm 2) in a setting with nonlinear dynamics and rich ob-
servations. Instead of having access to observation vari-
ables and selecting the minimal causal feature set, we are
tasked with learning the invariant causal representation. We
randomly initialize the background color of two train envi-
ronments from Deepmind Control (Tassa et al., 2018) from
range [0, 255]. We also randomly initialize another two
backgrounds for evaluation. The orange line in Figure 4
shows performance on the evaluation environments in com-
parison to three baselines. In the first, we only train on a
single environment and test on another with our method,

(MISA - 1 env). Without more than a single experi-
ment to observe at training time, there is no way to disen-
tangle what is causal in terms of dynamics, and what is not.
In the second baseline, we combine data from the two envi-
ronments and train a model over all data (Baseline - 1
decoder). The third is another invariance-based method
which uses a gradient penalty, IRM (Arjovsky et al., 2019).
In the second case the error is tempered by seeing variance
in the two environments at training time, but it is not as
effective as MISA with two environments at disentangling
what is invariant, and therefore causal with respect to dy-
namics, and what is not. With IRM, the loss starts much
higher but very slowly decreases, and we find it is very
brittle to tune in practice. Implementation details found in
Appendix C.1.

Figure 4. Model error on evaluation environments on Cheetah
Run from Deepmind Control. 10 seeds, with one standard error
shaded.

7.2. Imitation Learning

In this setup, we first train an expert policy using the pro-
prioceptive state of Cheetah Run from (Tassa et al., 2018).
We then use this policy to collect a dataset for imitation
learning in each of two training environments. When ren-
dering these high dimensional images, we alter the camera
angles in the different environments (Figure 5). We report
the generalization performance as the test error when pre-
dicting actions in Figure 6. While we see test error does
increase with our method, MISA, the error growth is sig-
nificantly slower compared to single task and multi-task
baselines. We note that after significant tuning, the IRM
baseline performs better than the proposed baseline. One
reason for the better performance of the IRM baseline in
this setup (and not other setups) could be that this setup
uses a stationary data distribution (because of the use of a
fixed replay buffer).

7.3. Reinforcement Learning

We go back to the proprioceptive state in the
cartpole swingup environment in Deepmind Con-
trol (Tassa et al., 2018) to show that we can learn MISA
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Figure 5. The Cheetah Run environment from Deepmind Control
with different camera angles. The first two images are from the
training environments and the last image is from evaluation envi-
ronment.

Figure 6. Actor error on evaluation environments on Cheetah Run
from Deepmind Control. 10 seeds, with one standard error
shaded.

while training a policy. We use Soft Actor Critic (Haarnoja
et al., 2018) with an additional linear encoder, and add
spurious correlated dimensions which are a multiplicative
factor of the original state space. We also add an additional
environment identifier to the observation. This multiplica-
tive factor varies across environments, and we train on
two environments with 1⇥ and 2⇥, and test on 3⇥. Like
Arjovsky et al. (2019), we also incorporate noise on the
causal state to make the task harder, specifically Gaus-
sian noise N (0, 0.01) to the true state dimension. This
incentivizes the agent to attend to the spuriously correlated
dimension instead, which has no noise. In Figure 7 we
see the generalization gap drastically improve with our
method in comparison to training SAC with data over all
environments in aggregate and with IRM (Arjovsky et al.,
2019) implemented on the critic loss. Implementation
details and more information about Soft Actor Critic can
be found in Appendix C.2. Additional plots with the
hyperparameter sweep done to find a good penalty weight
for IRM can also be found Appendix C.3.

8. Related Work
8.1. Prior Work on Generalization Bounds

Generalization bounds provide guarantees on the test set
error attained by an algorithm. Most of these bounds are
probabilistic and targeted at the supervised setting, falling
into the PAC (Probably Approximately Correct) frame-

Figure 7. Generalization gap in SAC performance with 2 training
environments on cartpole swingup from DMC. Evaluated
with 10 seeds, standard error shaded.

work. PAC bounds give probabilistic guarantees on a
model’s true error as a function of its train set error and
the complexity of the function class encoded by the model.
Many measures of hypothesis class complexity exist: the
Vapnik-Chernovenkis (VC) dimension (Vapnik and Cher-
vonenkis, 1971), the Lipschitz constant, and classification
margin of a neural network (Bartlett et al., 2017b), and
second-order properties of the loss landscape (Neyshabur
et al., 2019) are just a few of many.

Analogous techniques can be applied to Bayesian meth-
ods, giving rise to PAC-Bayes bounds (McAllester, 1999).
This family of bounds can be optimized to yield non-
vacuous bounds on the test error of over-parametrized neu-
ral networks (Dziugaite and Roy, 2017), and have demon-
strated strong empirical correlation with model generaliza-
tion (Jiang* et al., 2020). More recently, Amit and Meir
(2018); Yin et al. (2019) introduce a PAC-Bayes bound for
the multi-task setting dependent on the number of tasks
seen at training time.

Strehl et al. (2006) extend PAC framework to reinforcement
learning, defining a new class of bounds called PAC-MDP.
An algorithm is PAC-MDP if for any ✏ and �, the sample
complexity of the algorithm is less than some polynomial
in (S,A, 1/✏, 1/�, 1/(1��)) with probability at least 1��.
The authors provide a PAC-MDP algorithm for model-free
Q-learning. Lattimore and Hutter (2012) offers lower and
upper bounds on the sample complexity of learning near-
optimal behavior in MDPs by modifying the Upper Confi-
dence RL (UCRL) algorithm (Jaksch et al., 2010).

8.2. Multi-Task Reinforcement Learning

Teh et al. (2017); Borsa et al. (2016) handle multi-task re-
inforcement learning with a shared “distilled” policy (Teh
et al., 2017) and shared state-action representation (Borsa
et al., 2016) to capture common or invariant behavior
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across all tasks. No assumptions are made about how
these tasks relate to each other other than a shared state
and action space. D’Eramo et al. (2020) show the bene-
fits of learning a shared representation in multi-task set-
tings with an approximate value iteration bound and Brun-
skill and Li (2013) also demonstrate a PAC-MDP algorithm
with improved sample efficiency bounds through transfer
across similar tasks. Again, none of these works look to
the multi-environment setting to explicitly leverage envi-
ronment structure. Barreto et al. (2017) exploit successor
features for transfer, making the assumption that the dy-
namics across tasks are the same, but the reward changes.
However, they do not handle the setting where states are
latent, and observations change.

9. Discussion
This work has demonstrated that given certain assump-
tions, we can use causal inference methods in reinforce-
ment learning to learn an invariant causal representation
that generalizes across environments with a shared causal
structure. We have provided a framework for defining fam-
ilies of environments, and methods, for both the low di-
mensional linear value function approximation setting and
the deep RL setting, which leverage invariant prediction to
extract a causal representation of the state. We have further
provided error bounds and identifiability results for these
representations. We see this paper as a first step towards
the more significant problem of learning useful representa-
tions for generalization across a broader class of environ-
ments. Some examples of potential applications include
third-person imitation learning, sim2real transfer, and, re-
lated to sim2real transfer, the use of privileged information
in one task (the simulation) as grounding and generaliza-
tion to new observation spaces (Salter et al., 2019).

10. Acknowledgements
MK has received funding from the European Research
Council (ERC) under the European Union’s Horizon
2020 research and innovation programme (grant agreement
No. 834115). The authors would also like to thank Marlos
Machado for helpful feedback in the writing process.

References
Amit, R. and Meir, R. (2018). Meta-learning by adjust-

ing priors based on extended PAC-Bayes theory. In Dy,
J. and Krause, A., editors, Proceedings of the 35th Inter-

national Conference on Machine Learning, volume 80 of
Proceedings of Machine Learning Research, pages 205–
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A. Notation

We provide a summary of key notation used throughout the paper here.

PAG(X) : the parents of node X in the causal graph G. When G is clear from the setting, abbreviate this notation to PA(X).
ANG(X) : the ancestors of node X in G (again, G omitted when unambiguous).

[x]S : [xi1 , . . . , xik |ij 2 S]

⇡M : the stationary distribution given by some fixed policy in an MDP M .
q : the emission function of a block MDP.
E : a set of environments.

B. Proofs

Technical notes and assumptions. In order for the block MDP assumption to be satisfied, we will require that the
interventions defining each environment only occur outside of the causal ancestors of the reward. Otherwise, the different
environments will have different latent state dynamics, which violates our assumption that the environments are obtained
by an noisy emission function from the latent state space S . Although ICP will still find the correct causal variables in this
setting, this state abstraction will no longer be a model irrelevance state abstraction over the union of the environments.

Theorem 1. Consider a family of MDPs ME = {(X , A,R, Pe, �)|e 2 E}, with X = Rk
. Let ME satisfy Assumptions

1-3. Let SR ✓ {1, . . . , k} be the set of variables such that the reward R(x, a) is a function only of [x]SR (x restricted to

the indices in SR). Then let S = AN(R) denote the ancestors of SR in the (fully observable) causal graph corresponding

to the transition dynamics of ME . Then the state abstraction �S(x) = [x]S is a model-irrelevance abstraction for every

e 2 E .

Proof. To prove that �S is a model-irrelevance abstraction, we must first show that r(x) = r(x0) for any x, x
0 : �S(x) =

�S(x0). For this, we note that E[R(x)] =
R
r2R rdp(r|x) =

R
r2R rdp(r|[x]S , [x]SC ) and, because by definition S

C
⇢

PA(R)C , we have that R ? [x]SC . Therefore,

E[R(x)] =

Z

r2R
rdp(r|[x]S) =

Z

r2R
rdp(r|[x0]S) = E[R(x0)]. (7)

To show that [x]S is a MISA, we must also show that for any x1, x2 such that �(x1) = �(x2), and for any e 2 E , the
distribution over next state equivalence classes will be equal for x1 and x2.

X

x02��1(X̄)

P
e
x1x0 =

X

x02��1(X̄)

P
e
x2x0 .

For this, it suffices to observe that S is closed under taking parents in the causal graph, and that by construction environ-
ments only contain interventions on variables outside of the causal set. Specifically, we observe that the probability of
seeing any particular equivalence class [x0]S after state x is only a function of [x]S .

P ([x0]S |x) = f([x]S , [x
0]S)

This allows us to define a natural decomposition of the transition function as follows.

P (x0
|x) = P

✓
[x]S � [x]SC

����[x
0]S � [x0]SC

◆
which by the independent noise assumption gives

P (x0
|x) = f([x0]S , [x]S)P ([x0]Sc |x)

We further observe that since the components of x are independent,
P

[x0]SC
P ([x0]SC |x) = 1. We now return to the
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property we want to show:
X

x02��1(x̄)

P
e
x1x0 =

X

x02��1(x̄)

f([x1]S , [x
0]S)P (x0

|x1)

= f(�(x1), x̄)
X

[x0]SC

P

✓
[x0]SC

����x1

◆

= f(�(x1), x̄)

and because �(x1) = �(x2), we have

= f(�(x2), x̄)

for which we can apply the previous chain of equalities backward to obtain

=
X

x02��1(x̄)

P
e
x2x0

Proposition 1 (Identifiability and Uniqueness of Causal State Abstraction). In the setting of the previous theorem, assume

the transition dynamics and reward are linear functions of the current state. If the training environment set Etrain satisfies

any of the conditions of Theorem 2 (Peters et al., 2016) with respect to each variable in AN(R), then the causal feature set

�S is identifiable. Conversely, if the training environments don’t contain sufficient interventions, then it may be that there

exists a � such that � is a model irrelevance abstraction over Etrain, but not over E globally.

Proof. The proof of the first statement follows immediately from the iterative application of the identifiability result of
Peters et al. (2016) to each variable in the causal variables set.

For the converse, we consider a simple counterexample in which one variable xm is constant in every training environment,
with value vm. Then letting S = AN(R), we observe that S [ {m} is also a model-irrelevance state abstraction. First, we
show r(x1) = r(x2) for any x1, x2 : �S[{m}(x1) = �S[{m}(x2).

p(R|x1, a) = p(R|x1|S , a)

= p(R|x1|S[{m}, a,m = vm)

= p(R|(x2|S[{m}, a,m = vm)

= p(R|x2, a)

Finally, we must show that X

x02��1
S[{m}(X̄)

Px1x0 =
X

x02��1
S[{m}(X̄)

Px2x0 .

Again starting from the result of Theorem 1 we have:
X

x02��1
S[{m}(x̄)

Px1x0 =
X

x02��1
S[{m}(x̄)

f(x1|S[{m}, x
0
|S[{m})p(x

0
|x1|(S[{m})C ,m = vm)

= f(�S[{m}(x1), x̄)
X

x02��1
S[{m}(x̄)

p(x0
|x1,m = vm)

= f(�S[{m}(x1), x̄)
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and because �S[{m}(x1) = �S[{m}(x2), we have

= f(�S[{m}(x2), x̄)

for which we can apply the previous chain of equalities backward to obtain

=
X

x02��1
S[{m}(x̄)

Px2x0

However, if one of the test environments contains the intervention xm  vm + N (0,�2), then the distribution over
next-states in the new environment will violate the conditions for a model-irrelevance abstraction.

Theorem 2. Consider an MDP M , with M
0
denoting a coarser bisimulation of M . Let � denote the mapping from states of

M to states of M
0
. Suppose that the dynamics of M are L-Lipschitz w.r.t. �(X) and that T is some approximate transition

model satisfying maxs EkT (�(s))� �(TM (s))k < �, for some � > 0. Let W1(⇡1,⇡2) denote the 1-Wasserstein distance.

Then

Ex⇠M 0 [kT (�(x))� �(TM 0(x))k]  � + 2LW1(⇡�(M),⇡�(M 0)). (8)

We will use the shorthand ⇡ for ⇡�(M), the distribution of state embeddings �(M) corresponding to the behaviour policy,
and ⇡

0 for ⇡�(M 0) for the distribution of state embeddings �(M 0) given by the behaviour policy.

Proof.

Ex⇠M 0 [kT (�(x))� �(TM 0(x))k] = Ex⇠M 0 [ min
y2XM

kT (�(x))� T (�(y)) + T (�(y))� �(TM (x))k]

 Ex⇠M 0 [ min
y2XM

kT (�(x))� T (�(y))k

+ kT (�(y))� �(TM (y))k+ k�(TM (y))� �(TM (x))k]

Let � be a coupling over the distributions of �(M 0) and �(M) such that E�(�(x),�(y))k�(x)� �(y)k = W1(⇡,⇡0)

 Ex⇠M 0 [E�(�(y)|�(x))kT (�(x))� T (�(y))k] + � + Lkx� yk]

 Ex⇠M 0 [E�(�(y)|�(x))Lk�(x)� �(y)k+ � + Lk�(x)� �(y)k]

= E�(�(x),�(y))[Lk�(x)� �(y)k+ � + Lk�(x)� �(y)k]

= 2LW1(⇡,⇡
0) + �

Theorem 4 (Existence of model-irrelevance state abstractions). Let E denote some family of bisimilar MDPs with joint

state space XE = [e2EXe. Let the mapping from states in Me to the underlying abstract MDP M̄ be denoted by fe. Then

if the states in XE satisfy x 2 Xe0 \Xe =) fe(x) = fe0(x), then � = [fe is a model-irrelevance state abstraction for

E .

Proof. First, note that [fe is well-defined (because each f agrees with the rest on the value of all states appearing in
multiple tasks). Then � will be a model-irrelevance abstraction for every MDP Me because it agrees with fe (a model-
irrelevance abstraction).

Theorem 3. Let M be our block MDP and M̄ the learned invariant MDP with a mapping � : X 7! Z . For any L-Lipschitz

valued policy ⇡ the value difference is bounded by

|Q
⇡(x, a)� Q̄

⇡(�(x), a)| 
J
1
R + �LJ

1
D

1� �
. (9)
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Proof.

sup
xt2X ,at2A

|Q
⇡(xt, at)� Q̄

⇡(�(xt), at)|

 sup
xt2X ,at2A

|R(�(xt), a,�(xt+1))� r(x, a)|+ � sup
xt2X ,at2A

|Ext+1⇠P (·|xt,at)V
⇡(xt+1)� Ezt+1⇠f(·|�(xt),at)V̄

⇡(zt+1)|

= J
1
R + � sup

xt2X ,at2A

��Ext+1⇠P (·|xt,at)[V
⇡(xt+1)� V̄

⇡(�(xt+1))] + E xt+1⇠P (·|xt,at)
zt+1⇠f(·|�(xt),at)

[V̄ ⇡(�(xt+1))� V̄
⇡(zt+1)]

��

 J
1
R + � sup

xt2X ,at2A

��Ext+1⇠P (·|xt,at)[V
⇡(xt+1)� V̄

⇡(�(xt+1))]
��

+ � sup
xt2X ,at2A

��E xt+1⇠P (·|xt,at)
zt+1⇠f(·|�(xt),at)

[V̄ ⇡(�(xt+1))� V̄
⇡(zt+1)]

��

 J
1
R + � sup

xt2X ,at2A

��Ext+1⇠P (·|xt,at)[V
⇡(xt+1)� V̄

⇡(�(xt+1))]
��+ �L sup

xt2X ,at2A
W (�(P (·|xt, at)), f(·|�(xt), at))

= J
1
R + � sup

xt2X ,at2A

��Ext+1⇠P (·|xt,at)[V
⇡(xt+1)� V̄

⇡(�(xt+1))]
��+ �LJ

1
D

 J
1
R + � sup

xt2X ,at2A
Ext+1⇠P (·|xt,at)

��[V ⇡(xt+1)� V̄
⇡(�(xt+1))]

��+ �LJ
1
D

 J
1
R + � sup

xt2X ,at2A

��[V ⇡(xt)� V̄
⇡(�(xt))]

��+ �LJ
1
D

 J
1
R + � sup

xt2X ,at2A

��[Q⇡(xt�1, at�1)� Q̄
⇡(�(xt�1), at�1)]

��+ �LJ
1
D

=
J
1
R + �LJ

1
D

1� �

Proposition 2 (Lower bound on abstraction error). Let fe be a mapping from S ! X . Fix some arbitrary policy ⇢ and

let v(s) denote the value of state s under ⇢, with ⇡ its stationary distribution. If 9 e, e
0
, s, s

0
such that fe(s) = fe0(s0) (i.e.

different states induce the same observation), then the following bound is a lower bound on the error obtained by a joint

state abstraction over all environments.

min
v̂

1

|E|

X

e2E
err(�(Xe), v̂) � min

s,s0:v(s) 6=v(s0)

✓
|v(s)� v(s0)|

◆
PE

✓
(�(x) 6= f

�1
e (x)

◆
� �

H(V (S)|X)� 1

log |V (S)|
(10)

Where

err(�(Xe), v̂) := E⇡(Xe)|v̂(�(x))� v(f�1
e (x))|

and

� = min
s,s0:v(s) 6=v(s0)

✓
|v(s)� v(s0)|

◆

Proof. (Sketch) The error obtained by state abstraction will be at least the decoding error of values from abstract states
scaled by �. This in turn depends on how effectively it is possible to decode a potentially lossy mapping from observations
back to states. This leads to the second inequality, due to Fano, where the entropy H(V (S)|X) is given by marginalizatiion
with respect to v(s) of the following probability distributions.

p(x) =
1

|E|

X

s,e

[fe(s) = x]⇡(s)

p(s|x) =
1

p(x)

1

|E|

X

e

⇡(s)
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C. Implementation Details

C.1. Model Learning: Rich Observations

For the model learning experiments we use an almost identical encoder architecture as in Tassa et al. (2018), with two
more convolutional layers to the convnet trunk. Secondly, we use ReLU activations after each convolutional layer, instead
of ELU. We use kernels of size 3 ⇥ 3 with 32 channels for all the convolutional layers and set stride to 1 everywhere,
except of the first convolutional layer, which has stride 2. We then take the output of the convolutional net and feed it into
a single fully-connected layer normalized by LayerNorm (Ba et al., 2016). Finally, we add tanh nonlinearity to the 50
dimensional output of the fully-connected layer.

The decoder consists of one fully-connected layer that is then followed by four deconvolutional layers. We use ReLU
activations after each layer, except the final deconvolutional layer that produces pixels representation. Each deconvolutional
layer has kernels of size 3⇥ 3 with 32 channels and stride 1, except of the last layer, where stride is 2.

The dynamics and reward models are all MLPs with two hidden layers with 200 neurons each and ReLU activations.

C.2. Reinforcement Learning

For the reinforcement learning experiments we modify the Soft Actor-Critic PyTorch implementation by Yarats and
Kostrikov (2020) and augment with a shared encoder between the actor and critic, the general model fs and task-specific
models fe

⌘ . The forward models are multi-layer perceptions with ReLU non-linearities and two hidden layers of 200 neu-
rons each. The encoder is a linear layer that maps to a 50-dim hidden representation. We also use L1 regularization on
the S latent representation. We add two additional dimensions to the state space, a spurious correlation dimension that is a
multiplicative factor of the last dimension of the ground truth state, as well as an environment id. We add Gaussian noise
N (0, 0.01) to the original state dimension, similar to how Arjovsky et al. (2019) incorporate noise in the label to make the
task harder for the baseline.

Soft Actor Critic (SAC) (Haarnoja et al., 2018) is an off-policy actor-critic method that uses the maximum entropy frame-
work to derive soft policy iteration. At each iteration, SAC performs soft policy evaluation and improvement steps. The
policy evaluation step fits a parametric soft Q-function Q(xt, at) using transitions sampled from the replay buffer D by
minimizing the soft Bellman residual,

J(Q) = E(xt,xt,rt,xt+1)⇠D

✓
Q(xt, at)� rt � �V̄ (xt+1)

◆2�
.

The target value function V̄ is approximated via a Monte-Carlo estimate of the following expectation,

V̄ (xt+1) = Eat+1⇠⇡

⇥
Q̄(xt+1, at+1)� ↵ log ⇡(at+1|xt+1)

⇤
,

where Q̄ is the target soft Q-function parameterized by a weight vector obtained from an exponentially moving average
of the Q-function weights to stabilize training. The policy improvement step then attempts to project a parametric pol-
icy ⇡(at|xt) by minimizing KL divergence between the policy and a Boltzmann distribution induced by the Q-function,
producing the following objective,

J(⇡) = Ext⇠D


Eat⇠⇡[↵ log(⇡(at|xt))�Q(xt, at)]

�
.

We provide the hyperparameters used for the RL experiments in Table 1.

D. Additional Results

D.1. Reinforcement Learning

We find that even without noise on the ground truth states, with only two environments, baseline SAC fails (Figure 8).
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Figure 8. Generalization gap in SAC performance with 2 training environments on Cartpole Swingup from DMC. Evaluated with 10
seeds, standard error shaded.

Parameter name Value
Replay buffer capacity 1000000
Batch size 1024
Discount � 0.99
Optimizer Adam
Critic learning rate 10�5

Critic target update frequency 2
Critic Q-function soft-update rate ⌧Q 0.005
Critic encoder soft-update rate ⌧enc 0.005
Actor learning rate 10�5

Actor update frequency 2
Actor log stddev bounds [�5, 2]
Encoder learning rate 10�5

Decoder learning rate 10�5

Decoder weight decay 10�7

L1 regularization weight 10�5

Temperature learning rate 10�4

Temperature Adam’s �1 0.9
Init temperature 0.1

Table 1. A complete overview of used hyper parameters.


