
Robustness Evaluation of Deep Neural
Networks with Provable Guarantees

Min Wu
Magdalen College

University of Oxford

A thesis submitted for the degree of
Doctor of Philosophy

Hilary Term 2020

To my parents,
Jingen Wu and Yuewen Wu.

In memory of my grandparents,
Pinsheng Wu and Meijin Zhu.

Acknowledgements

Personal

I would like to express my gratitude towards my supervisor, Professor Marta
Kwiatkowska, without whose guidance, patience, and support this research would
never have been completed. I also thank my Oxford collaborators for inspiring me
to delve into the direction of verifying deep neural networks. I had such a great
pleasure to work with them. Besides, to my friends at Oxford, thanks a lot for
their kindness and tenderness. The past four years at Magdalen College shall be
the summer of my life forever. Floreat Magdalena. Finally, I would like to thank
my family for their everlasting love, especially my parents, Jingen and Yuewen,
who have always supported and encouraged me to see the world.

Institutional

Some of the outcomes reported in this thesis are aligned with ongoing research
projects led by my supervisor Marta Kwiatkowska, the EPSRC Programme Grant on
Mobile Autonomy (EP/M019918/1) and FUN2MODEL (grant agreement No. 834115),
funded by the European Research Council (ERC) under the European Union’s
Horizon 2020 research and innovation programme. Meanwhile, my doctoral research
is funded by the CSC-PAG Oxford Scholarship (GAF1516_CSCUO_842704).

Abstract

This thesis presents methodologies to guarantee the robustness of deep neural
networks, thus facilitating the deployment of deep learning techniques in safety-
critical real-world systems. We study the maximum safe radius of a network with
respect to an input, such that all the points within the radius are guaranteed to be
safe, while, if exceeding the radius, there must exist an adversarial example. We
extend the maximum safe radius to two variants: the expected maximum safe radius
to evaluate global robustness of a dataset, and the maximum safe radius w.r.t.
optical flow when the input is a video. We also study the feature robustness problem
to quantify the robustness of features, extracted from an input, to adversarial
perturbations. Specifically, we develop tensor-based parallelisation algorithms to
compute the (expected) maximum safe radius of networks on (a set of) pixel-level
images. For features of an image, we propose a game-based framework to compute
the maximum safe radius and the feature robustness properties, where Player I
selects features and Player II determines pixels within the feature to manipulate.
Subsequently, we extend this game framework to video inputs to compute the
maximum safe radius w.r.t. optical flow, with Player I choosing flows and Player
II imposing modifications within the flow. As our work applies to large neural
networks and high-dimensional inputs, we calculate the upper and lower bounds to
approximate the maximum safe radius and the feature robustness, and guarantee
that they converge to the optimal value, by utilising Lipschitz continuity. We
implement the algorithms into three tools, DeepTRE, DeepGame, and DeepVideo,
and demonstrate their effectiveness on benchmark image and video datasets.

Contents

List of Figures xiii

1 Introduction 1

2 Related Work 11
2.1 Verification of Deep Neural Networks 12

2.1.1 Approaches with Deterministic Guarantees 13
2.1.2 Approaches to Compute an Approximate Bound 16
2.1.3 Approaches to Compute Converging Bounds 19
2.1.4 Approaches with Statistical Guarantees 21
2.1.5 Computational Complexity of Verification 22

2.2 Adversarial Attacks . 22
2.3 Summary . 27

3 Background 31
3.1 Deep Neural Networks . 32

3.1.1 Feed-Forward Neural Networks 32
3.1.2 Convolutional Neural Networks 34
3.1.3 Recurrent Neural Networks 37
3.1.4 Classification . 41

3.2 Distance Metrics and Lipschitz Continuity 42
3.2.1 Distance Metrics . 42
3.2.2 Lipschitz Continuity . 43

3.3 Safety of Deep Neural Networks . 44
3.3.1 Adversarial Examples . 45
3.3.2 Safety Properties of Neural Networks 45

3.4 Images and Videos . 49
3.4.1 Tensors . 49
3.4.2 Feature Extraction . 50
3.4.3 Optical Flow . 51
3.4.4 Datasets . 53

3.5 Summary . 55

ix

x Contents

4 Robustness of Deep Neural Networks on Pixel-Level Images 57
4.1 Robustness on Pixel-Level Images 59
4.2 Subspace Sensitivity . 62

4.2.1 Subspace for an Input . 63
4.2.2 Computation of Subspace Sensitivity 66

4.3 Tensor-Based Algorithms for Upper and Lower Bounds 70
4.3.1 Computation of Lower and Upper Bounds 71
4.3.2 Anytime Robustness Evaluation 75
4.3.3 Convergence Analysis . 77

4.4 Experimental Results . 78
4.4.1 Saliency Maps and Local Robustness 79
4.4.2 Convergence of Bounds and Global Robustness 81
4.4.3 Competitive Adversarial Attacks 84
4.4.4 Robustness and Accuracy of Model Architectures 87

4.5 Summary . 89

5 Robustness of Deep Neural Networks on Features of An Image 91
5.1 Robustness on Features of An Image 93

5.1.1 The Maximum Safe Radius Problem 96
5.1.2 The Feature Robustness Problem 103

5.2 A Game-Based Approximate Verification Approach 108
5.2.1 Problem Solving as A Two-Player Turn-Based Game 109
5.2.2 Safety Guarantees via Optimal Strategy 113
5.2.3 Complexity of the Problem 114

5.3 Algorithms and Implementation . 115
5.3.1 Upper Bounds: Monte Carlo Tree Search 116
5.3.2 Lower Bounds: Admissible A* in a Cooperative Game . . . 119
5.3.3 Lower Bounds: Alpha-Beta Pruning in a Competitive Game 122
5.3.4 Anytime Convergence . 123

5.4 Experimental Results . 125
5.4.1 Feature-Based Partitioning 125
5.4.2 Convergence Analysis of the Upper and Lower Bounds . . . 127
5.4.3 Comparison with Existing Approaches in Adversarial Attacks 133

5.5 Summary . 134

Contents xi

6 Robustness of Deep Neural Networks on Videos 137
6.1 Robustness on Videos . 139

6.1.1 Maximum Safe Radius with respect to Optical Flow 139
6.1.2 Approximation based on Finite Optimisation 140

6.2 A Game-Based Robustness Verification Approach 144
6.2.1 Problem Solving as A Two-Player Turn-Based Game 145
6.2.2 Robustness Guarantees . 147

6.3 Computation of the Converging Upper and Lower Bounds 148
6.3.1 Upper Bound: Gradient-Based Search 148
6.3.2 Lower Bound: Admissible A* 151

6.4 Experimental Results . 152
6.4.1 Network Architecture . 153
6.4.2 Adversarial Examples via Manipulating Optical Flows 153
6.4.3 Converging Upper and Lower Bounds 155
6.4.4 Extension to Naturally Plausible Distortions 158
6.4.5 Efficiency and Scalability . 162

6.5 Summary . 163

7 Conclusions 165
7.1 Summary . 165
7.2 Future Work . 170
7.3 Outlook . 171

Appendices

A Experimental Settings for DeepTRE 175
A.1 ImageNet Saliency Maps and Local Robustness 175

A.1.1 State-of-the-Art ImageNet Models 175
A.1.2 Hardware/Software Platforms and Parameter Settings 176
A.1.3 ImageNet Saliency Maps and Adversarial Images 176

A.2 Local/Global Robustness and Convergence 180
A.2.1 Hardware and Software Platforms 180
A.2.2 DNN-Reduced: Model Structure and Parameter Setting . . . 180
A.2.3 DNN-Standard: Model Structure and Parameter Setting . . . 181
A.2.4 Ground-Truth Adversarial Images 182

A.3 Robustness and Accuracy of Model Architecture 184
A.3.1 Hardware and Software Platforms 184
A.3.2 DNN-1 to DNN-7: Model Structure and Parameter Setting . 184

xii Contents

B Proofs and Comparisons for DeepGame 189
B.1 Proofs for Lemmas and Theorems 189

B.1.1 Proof for Lemma 4 . 189
B.1.2 Proof for Lemma 5 . 189
B.1.3 Proof for Theorem 6 . 190
B.1.4 Proof for Lemma 7 . 190
B.1.5 Proof for Theorem 7 . 191
B.1.6 Proof for Theorem 8 . 191
B.1.7 Proof for Theorem 9 . 192

B.2 Comparison of Tools in Adversarial Attacks 193
B.2.1 Model Architectures and Accuracy Rates 193
B.2.2 Parameter Settings of Existing Tools 194
B.2.3 Hardware and Software Platforms 195
B.2.4 Adversarial Images . 195

Bibliography 199

List of Figures

1.1 An adversarial example for a neural network. 2
1.2 Feature robustness of an image. 4
1.3 A time-series of images capturing the approaching traffic sign. . . . 5

2.1 A (not rigid) taxonomy of verification works for deep neural networks. 12

3.1 A fully-connected feed-forward neural network. 34
3.2 Illustration of a 2D convolution operation. 36
3.3 An example of the max-pooling operation. 37
3.4 Unfolding of a recurrent neural network. 38
3.5 A long short-term memory unit. 40
3.6 Relationship between different safety properties of neural networks. 49
3.7 Image datasets: MNIST, CIFAR-10, GTSRB, and ImageNet. 53

4.1 Illustration of the maximum safe radius problem. 60
4.2 Extension from local robustness to global robustness. 63
4.3 Local robustness and subspace sensitivity of ImageNet networks. . . 79
4.4 Local and global robustness of DNN-Reduced. 82
4.5 Convergence of DNN-Reduced on the test dataset. 83
4.6 Global robustness and convergence of DNN-Standard on test dataset. 84
4.7 Competitive adversarial attacks based on the Hamming distance. . . 85
4.8 Global robustness of MNIST networks with different structures. . . 88

5.1 Provable guarantees for maximum safe radius and feature robustness. 100
5.2 Illustration of the feature robustness problem. 103
5.3 Example of maximum safe radius and feature robustness. 106
5.4 Two-player turn-based solution for finite optimisation. 109
5.5 A game-based approximate verification approach. 116
5.6 Illustration of different feature extraction methods. 126
5.7 Convergence of maximum safe radius (MNIST) in a cooperative game.127
5.8 Convergence of maximum safe radius (GTSRB) in a cooperative game.128
5.9 Illustration of the grey-box feature extraction procedure. 129

xiii

xiv List of Figures

5.10 Convergence of feature robustness (CIFAR-10) in a competitive game. 130
5.11 Convergence of feature robustness (GTSRB) in a competitive game. 130
5.12 Scalability of maximum safe radius. 132
5.13 Examples of adversarial MNIST, CIFAR-10 and GTSRB images. . . 133

6.1 Provable guarantees for maximum safe radius w.r.t. optical flow. . . 142
6.2 A game-based robustness verification approach on videos. 144
6.3 Optical flow capturing temporal dynamics of a Soccer Juggling video. 154
6.4 Sequential optical flows of a Balance Beam video. 155
6.5 Imperceptible perturbations on optical flow leading to misclassification.156
6.6 Unsafe and safe perturbations on flows of a Hammer Throw video. . 157
6.7 Convergence of the maximum safe radius w.r.t. optical flow. 158
6.8 Unsafe and safe perturbations on flows of a Floor Gymnastics video. 159
6.9 Safe brightness changes and the lower bounds. 160
6.10 Possible extension to more naturally plausible distortions. 161
6.11 Scalability of the maximum safe radius w.r.t. the optical flow. . . . 162

A.1 ImageNet adversarial examples on upper boundaries by DeepTRE. . 177
A.2 ImageNet adversarial examples on upper boundaries by DeepTRE. . 178
A.3 ImageNet adversarial examples on upper boundaries by DeepTRE. . 179
A.4 Ground-truth adversarial examples when converging to MSR. 182
A.5 Ground-truth adversarial examples generated by DeepTRE at t = 1. 183

B.1 Comparison of adversarial MNIST images by all tools. 196
B.2 Comparison of adversarial CIFAR-10 images by all tools. 197
B.3 Adversarial GTSRB images generated by tool DeepGame. 198

1
Introduction

Researchers have always endeavoured to build “machines” to free humans from

unnecessary waste of energy and time, from daily tedious tasks such as routine labour

to more abstract problems that require complicated mathematical computation.

For example, smart and complex software-based systems have been developed in

various application domains of modern life, such as manufacturing, transportation,

and healthcare. However, the ever-increasing sheer complexity of these machines

makes it more and more painful and expensive for human designers to interpret

their behaviours and specify all the relevant knowledge needed in the world.

To mitigate this conundrum, artificial intelligence (AI) [63] provides a feasible

solution in the sense that the machines may become “intelligent” so that, through

gathering knowledge from experience, they can learn and understand the world by

themselves. Early successes of AI managed to efficiently solve problems that can be

entirely described by a list of formal rules, in other words, that are straightforward for

computers but intelligently challenging for humans. For example, the famous defeat

achieved by IBM’s Deep Blue in playing chess was a tremendous accomplishment,

though, in retrospective, it was partially because the world of chess is not hugely

complicated as all the movements are confined in a set of rigidly circumscribed ways.

1

2 1. Introduction

Figure 1.1: An adversarial example for a neural network trained on the GTSRB dataset.
After a slight perturbation of just one pixel, i.e., Hamming distance dHamming = 1, the
image classification changes from “go right or straight” to “go left or straight”.

Ironically, the real challenge of AI lies in the tasks that are actually easy for humans,

that we can almost solve automatically and intuitively, such as understanding

speech in daily conversations or recognising faces in photos. It is because, in our

everyday life, there is an enormous amount of knowledge about the world, potentially

subjective and difficult to articulate into formal descriptions, which the machines

are incapable of capturing to behave intelligently.

A solution is deep learning [22, 36], which enables the machines to gather

knowledge from experience and understand the world in respect of a hierarchy of

concepts so that they can learn complex concepts via deriving them out of the simpler

ones. For example, for a deep learning machine to understand the concept of the

traffic sign in Figure 1.1, it can first gather the knowledge of edges, e.g., “the white

circle”, from the brightness discrepancy of the adjacent pixels, then build the concept

of corners and contours based on the collections of the edges, and subsequently

combine these corners and contours into specific object parts, e.g., “the two arrows”,

and finally recognise the identity of the object present in the image by taking into

account all the object parts, i.e., “go right or straight”. The quintessential model in

deep learning is the deep feed-forward network, which is essentially a layer-by-layer

composition of mathematical functions, regarding each function approximation of

the outputs from the inputs as providing a new concept out of the simpler ones. As

a specialised kind of feed-forward network, convolutional networks have been very

successful in image classification, and as an extension with feedback connections,

the recurrent networks have further powered natural language processing.

1. Introduction 3

Despite the broad applications of deep learning in all sorts of real-world settings,

sometimes reaching or even surpassing human-level performance, serious concerns

have been raised regarding their security in safety-critical systems. In the context

of autonomous driving, where neural network solutions have been proposed for

tasks such as end-to-end steering, road segmentation, and traffic sign recognition,

accidents such as the (fatal) crashes caused by Uber and Tesla self-driving cars in

autopilot mode necessitate further research into the robustness of neural networks.

One representative case is the discovery of adversarial examples. An adversarial

example is a correctly-classified input which, after minor perturbations almost

imperceptible to humans applied to it, can be misclassified by a network. For

example, Figure 1.1 illustrates that, after modifying just a single pixel, say a tiny

mud speckle or a water drop, the classification of the traffic sign surprisingly changes

from “go right or straight” to “go left or straight”, which may lead a car to steer off

the road or even drive into oncoming traffic. Meanwhile, researchers in Berkeley

found out that merely placing some “stickers” on a “stop” sign can easily fool a

neural network into misclassifying it as “speed limit 45 mph”. Though somewhat

artificial, since in practice the self-driving car would rely on additional sensor inputs

in the decision-making process, such cases strongly suggest that, before deployment

in safety-critical tasks, neural networks’ robustness to adversarial examples must

be strengthened. Because such adversarial perturbations may take place in any

of arbitrarily many dimensions, e.g., pixels or channels, of an image, we refer to

it as the robustness of neural networks on pixel-level images.

Under some circumstances, however, instead of taking all input dimensions into

consideration, it is more likely that we pay more attention to certain features of an

input, partially due to the fact that they are more salient than others, or simply

because it is not worth the resources to consider every single dimension. For instance,

when trying to recognise the above-mentioned traffic sign, do human drivers actually

care about the region outside of the highlighted yellow circle, as marked out in

Figure 1.2(a)? The answer is apparently “No” as these pixels are irrelevant, and

4 1. Introduction

(a) A highlighted feature (b) An emoji in the feature

Figure 1.2: Feature robustness of an image. For image classification networks, the actual
traffic sign in the yellow circle should be more “robust” than the surrounding regions
which are actually irrelevant when human drivers recognise “go right or straight”. (a) A
highlighted feature of an image. (b) A laughing emoji in the selected feature.

we almost immediately exclude them from our subconsciousness. Nevertheless,

neural networks cannot intuitively make such a judgement. In experiments (such as

Figure 4.3), we even noticed that some well-trained networks “see” the pixels in

the background as more important than the main feature at the centre of an image.

In other words, though beginning to reach human-level performance, they have

not yet obtained a real human-level understanding. Ideally, the network should

recognise the traffic sign in Figure 1.2(b) even with the presence of a laughing emoji

in the highlighted feature, let alone in the surrounding regions. Regarding this, we

evaluate the robustness of neural networks on features of an image.

To take a step further, in reality, our decision-making is more of a dynamic

progress rather than a static one. That is, we perceive the surrounding environ-

ment constantly and then develop corresponding strategies. For example, in a

driving scenario, human drivers continuously monitor nearby lane conditions while

simultaneously taking control of the vehicle. Similarly as exhibited in Figure 1.3,

for a self-driving car, it should “see” an approaching traffic sign, e.g., “speed limit

80 mph”, getting closer and closer for a certain amount of time, then recognise the

sign, and finally figure out the optimal strategy. In other words, the car evaluates
1The traffic sign recognition video link: https://www.youtube.com/watch?v=XgOgbXMgF9w

https://www.youtube.com/watch?v=XgOgbXMgF9w

1. Introduction 5

Figure 1.3: A time-series of images sampled from a traffic sign recognition video1, in
a top-down/left-right order. The self-driving car “sees” the road sign approaching for a
certain duration, makes a judgement on the content on the sign, i.e., “speed limit 80 mph”,
and then reacts by mimicking human drivers.

a time-series of frames, i.e., a video, of the road condition possibly recorded by a

camera instead of just a single image scan at some instant. To this end, we work

on the robustness of neural networks on videos. This is an exciting problem as

video classification is more challenging than image recognition because, apart from

the spatial features on each frame, which can be extracted by the convolutional

networks, videos also consist of the temporal dynamics between adjacent frames,

where the recurrent networks come into place. Moreover, adversarial perturbations

of videos include more variants than pixel manipulations in images, such as frame

loss/repetition, brightness change, and camera occlusion.

To summarise, this thesis addresses the robustness evaluation of deep neural

networks, specifically in a step-by-step manner, on pixel-level images, on features of

an image, and on time-series of images, i.e., videos. Although the above motivation

is largely described via traffic sign recognition in the context of autonomous driving,

we contend that the proposed methodologies are also applicable to other image- or

video-based scenarios, such as MRI (magnetic resonance imaging) scan in medical

diagnosis and facial recognition in social media. Moreover, even beyond where

the inputs can be represented as matrices/tensors, and where features can be

extracted as subsets of the inputs, or where the inputs come sequentially, our

6 1. Introduction

work can be easily adapted to operate in complicated real-world environments,

so as to establish confidence in the robustness of neural networks, and thereby

facilitate their successful applications in society.

Contributions

As indicated in the title of the thesis, our work aims to provide provable guarantees

for the robustness evaluation of deep neural networks. It is well known that deep

learning algorithms tend to lack guarantees as the family of functions utilised is

quite complicated. We tackle this from the perspective of formal methods, which are

a particular set of mathematically based techniques, such as precise modelling and

rigorous reasoning, for the specification and verification of sophisticated software and

hardware systems, to ensure the safety, security, and robustness of these systems,

especially in safety-critical applications.

To exploit formal methods in the context of deep learning, we develop algo-

rithms and implement tools that can verify the correctness of the neural networks’

behaviours concerning a given specification of a property. In other words, the

specification has to hold for a specific input and all points in neighbourhood to

the networks. For instance, given a property “for a self-driving car deployed with

trained neural networks to monitor lane conditions, is it possible that it can always

accurately recognise the traffic signs?”, then in all possible situations involving the

traffic signs, such as partial occlusion or weather change, we need to decide whether

the networks can always classify correctly. The answer will be either it is True, or a

counter-example, in this case, an adversarial example for which the violation occurs.

The main contributions regarding the robustness evaluation of deep neural

networks with provable guarantees can be summarised in two aspects:

� We develop the theoretical foundations regarding the robustness evaluation

of deep neural networks with provable guarantees. Explicitly, we define a

distance, measured by metrics, called the maximum safe radius of a network

1. Introduction 7

with respect to an input, such that all the points within the distance are safe

while, if exceeding the distance, there definitely exists an adversarial example.

Based on this, we extend the maximum safe radius into two variants: (1) the

expected maximum safe radius evaluating the global robustness of a whole

dataset, and (2) the maximum safe radius with respect to optical flow when

assessing the robustness guarantees for videos. Besides, we also propose the

feature robustness problem. To compute the maximum safe radius and feature

robustness, we exploit input space discretisation based on Lipschitz continuity,

and thus reduce the robustness evaluation to finite optimisation problems.

Since our work is applicable to large neural networks and real-world systems,

in some situations, instead of computing the exact maximum safe radius or

the feature robustness, we calculate the upper and the lower bounds, and

prove that they converge to the optimal value. We also mention that, when

evaluating the robustness with respect to a feature or an optical flow, we utilise

a two-player turn-based game such that Player I selects a feature/flow and

Player II determines atomic manipulations within the selected feature/flow.

� We demonstrate the effectiveness of our methodologies through implementing

the algorithms into three tools, named DeepTRE for pixel-level robustness,

DeepGame at the feature-level, and DeepVideo for videos, respectively, and

analysing the experimental results. For all the tools, we perform robustness

evaluation of neural networks on standard benchmark datasets, e.g., the

MNIST, CIFAR-10, GTSRB, and ImageNet image datasets, as well as

the UCF101 video dataset, and generate either the exact maximum safe

radius or the exact feature robustness, or gradually and strictly converging

upper and lower bounds. Besides, we remark that although designed to

be verification tools, they can also perform competitive adversarial attacks

after slight adaptation. Specifically, for each tool, DeepTRE can generate

saliency maps, as a byproduct of computing the subspace sensitivity, which

8 1. Introduction

enables better interpretability and explainability of neural networks. Also, it

utilises efficient tensor-based parallelisation so that during the computation

procedure very few network queries are needed. Regarding DeepGame, it

facilitates the analysis of networks’ ‘visual perception’ in terms of identifying

the robust features of an image. Also, various feature extraction methods, e.g.,

SURF or network logits, can be accommodated into the tool as long as an

image partition can be achieved. In the game-based approximate verification

framework, Monte Carlo tree search is applied to generate the upper bounds,

and admissible A* and Alpha-Beta pruning are employed to produce the lower

bounds for the maximum safe radius and the feature robustness computation,

respectively. Finally, in DeepVideo we exploit the state-of-the-art VGG16 +

LSTM network architecture to capture spatial and temporal features in terms

of video robustness. Also, different optical flow methods are explored, such as

the Horn-Schunck method and the Gunnar Farnebäck algorithm. In the game

framework, a gradient-based search algorithm is used to generate the upper

bounds, and admissible A* for the lower bounds.

Thesis Outline

This thesis is organised as follows. In Chapter 2 we review the related work in

literature, and in Chapter 3 we introduce the technical background needed. The

main contributions, i.e., the robustness evaluation of deep neural networks on pixel-

level images, on features of an image, and on videos, are presented in Chapters 4,

5, and 6, respectively. We conclude with Chapter 7 summarising our work and

highlighting possible future directions.

Publications

Some of the work included in this thesis has been previously published in papers with

joint authors. Here, I clarify my contributions. To start with, the work concerning

1. Introduction 9

the global robustness evaluation of deep neural networks for the Hamming distance,

which forms the basis of Chapter 4, first appeared in [60]. I contributed to the

algorithm development and developed the tool DeepTRE in Python, and produced

the experimental results regarding adversarial attacks on the benchmark image

datasets, MNIST and CIFAR-10, in comparison to some existing tools, such as

JSMA and C&W, in terms of the Hamming distance and computational time. As a

by-product, I also generated some of the ImageNet saliency maps. Besides, since

our methodology takes advantage of tensor-based parallelisation, I also carried

out the comparative experiments using the Nvidia GPUs and the CPUs in my

departmental desktop. As for the robustness evaluation of deep neural networks

on feature-level images, presented in Chapter 5, the game-based approximate

verification framework with converging upper and lower bounds is published in

[80]. Apart from collaborating with the co-authors on developing the concept and

algorithms, I contributed to the tool DeepGame the implementation of the lower

bounds in both the cooperative and the competitive games, utilising Admissible A*

and Alpha-Beta Pruning, respectively. Moreover, I produced all the experimental

results that were generated by this tool, including the convergence analysis of

the bounds on MNIST, CIFAR-10, and GTSRB, as well as the comparison of

various tools on adversarial attacks.

Meanwhile, some of the work in this thesis is in preparation for publication

and can be found online. For instance, the contents of the robustness guarantees

for deep neural networks on videos in Chapter 6 are primarily from [78], which I

co-authored with my supervisor. Also, I wrote part of the review on the verification

approaches for deep neural networks in [27], which forms the basis of Chapter 2.

Apart from these, though not included in this thesis, I also contributed to some

other publications, such as [79], [28], and [67].

10

2
Related Work

Contents
2.1 Verification of Deep Neural Networks 12

2.1.1 Approaches with Deterministic Guarantees 13
2.1.2 Approaches to Compute an Approximate Bound 16
2.1.3 Approaches to Compute Converging Bounds 19
2.1.4 Approaches with Statistical Guarantees 21
2.1.5 Computational Complexity of Verification 22

2.2 Adversarial Attacks . 22
2.3 Summary . 27

In this chapter, we review some work related to the robustness evaluation of

deep neural networks. They are introduced from two perspectives: in Section 2.1,

the verification approaches of neural networks in the community of formal methods,

and in Section 2.2, the adversarial attacks from the computer vision and security

communities. The key difference is that the former provides guarantees whilst the

latter does not. Instead, the attacking methods check whether a network can be easily

attacked to see the network’s possible lack of robustness. As our work can provide

provable guarantees, in Section 2.3, we compare with those verification approaches

only, though those adversarial attacks mentioned are used as the baseline methods

in Chapters 4 and 5 to perform comparison in generating adversarial examples.

11

12 2.1. Verification of Deep Neural Networks

search-based
[76, 78, 80]

[28]
[14]

global
optimisation

[59, 60]

constraint solving
[5, 16, 30, 40]
[11, 49, 50, 81]

over-approximation

[45, 56, 77]

[18, 57, 70]

Figure 2.1: A (not rigid) taxonomy of verification works for (feed-forward) neural
networks. The overlapping areas indicate that the approaches fall into both categories.

2.1 Verification of Deep Neural Networks

According to the underlying techniques, existing work on verification of deep neural

networks largely fall into the following categories: constraint solving, search-based

approach, global optimisation, and over-approximation, although the separation

between them may not be strict. Figure 2.1 illustrates a taxonomy of the methods

mentioned in this chapter. A few survey papers that provide a broader overview of

the algorithms for verifying neural networks are available, such as [39] and [27].

In this chapter, we take the approach in [27] by classifying verification tech-

niques with respect to the type of guarantees they can provide. Basically, the

guarantees can be:

• Exact deterministic guarantee, which states exactly whether a property holds.

2. Related Work 13

We will omit the word exact and call it deterministic guarantee for simplicity.

• One-sided guarantee, which provides either a lower bound or an upper bound

for a variable, and thus can serve as a sufficient condition for a property to

hold - the variable can denote, e.g., the greatest value of some dimension in

the output reachable set.

• Guarantee with converging lower and upper bounds to a variable.

• Statistical guarantee, which quantifies the probability that a property holds.

Apart from the category of achievable guarantees, we also mention some of

the objective properties: the local robustness property, which requires a network’s

invariance against small perturbations; the output reachability property, which

computes a set of outputs given a set of inputs; the interval property, which

computes a convex over-approximation of the output reachable set, and finally

the Lipschitzian property, which monitors the changes of the outputs with respect

to the small changes of the inputs. Detailed definitions of these safety properties

can be found in Section 3.3.

2.1.1 Approaches with Deterministic Guarantees

Deterministic guarantees are achieved by transforming a verification problem into a

set of constraints (with or without optimisation objectives), so that they can be

solved with a constraint solver. The name “deterministic” comes from the fact that

solvers usually return a deterministic answer to a query, i.e., either satisfiable or

unsatisfiable. This is based on the current success of various constraint solvers such

as SAT solvers, linear programming (LP) solvers, mixed integer linear programming

(MILP) solvers, and Satisfiability Modulo Theories (SMT) solvers.

SMT/SAT

An abstraction-refinement approach based on SMT solving. A solution

to the verification of the interval property (which can be easily extended to work

with the reachability property for ReLU activation functions) is proposed in [56]

14 2.1. Verification of Deep Neural Networks

by abstracting a DNN into a set of Boolean combinations of linear arithmetic

constraints. It is shown that, whenever the abstracted model is declared to be

safe, the same holds for the concrete one. Spurious counter-examples, on the

other hand, trigger refinements and can be leveraged to automate the correction of

misbehaviour. This approach is validated on DNNs with fewer than 10 neurons,

with logistic activation function.

SMT solvers for DNNs. Two SMT tools, Reluplex [30] and Planet [16], were

put forward to verify DNNs on properties expressible with SMT constraints. SMT

solvers often have good performance on problems that can be represented as a

Boolean combination of constraints over other variable types. Typically, an SMT

solver combines a SAT solver with specialised decision procedures for other theories.

In the verification of DNNs, they adapt linear arithmetic over real numbers, in

which an atom (i.e., the most basic expression) is of the form ∑n
i=1 aixi ≤ b,

where ai and b are real numbers.

In both Reluplex and Planet, they rely on the classical Davis-Putnam-Logemann-

Loveland (DPLL) algorithm in splitting cases and ruling out conflict clauses, while

they differ slightly in dealing with the intersection. For Reluplex, it inherits rules in

the algorithm of Simplex and adds some non-linear rules for the ReLU operation.

Through the classical pivot operation, it first looks for a solution for the linear

constraints, and then applies the rules for ReLU to satisfy the ReLU relation for

every node. Differently, Planet uses linear approximation to over-approximate

the neural network, and manages the condition of ReLU and max-pooling nodes

with logic formulas.

SAT approach. [49, 50] propose to verify properties of a class of neural networks,

i.e., binarised neural networks, in which both weights and activations are binary, by

reduction to the well-known Boolean satisfiability. Using this Boolean encoding, they

2. Related Work 15

leverage the power of modern SAT solvers along with a proposed counterexample-

guided search procedure to verify various properties of these networks. A particular

focus is on the robustness to adversarial perturbations. The experimental results

demonstrate that this approach scales to medium-size deep neural networks used

in image classification tasks.

Mixed Integer Linear Programming (MILP)

MILP formulation for DNNs. [40] encodes the behaviours of fully connected

neural networks with MILP. For instance, a hidden layer zi+1 = ReLU(Wizi + bi)

can be described with the following MILP:

zi+1 ≥ Wizi + bi,

zi+1 ≤ Wizi + bi +Mti+1,

zi+1 ≥ 0,

zi+1 ≤M(1− ti+1),

where ti+1 has value 0 or 1 in its entries and has the same dimension as zi+1, and

M > 0 is a large constant which can be treated as ∞. Here each integer variable in

ti+1 expresses the possibility that a neuron is activated or not. The optimisation

objective can be used to express properties related to the bounds, and therefore

this approach can work with both reachability and interval properties.

However, it is not efficient to simply use MILP to verify DNNs or to compute

the output range. In [11], a number of MILP encoding heuristics are developed

to speed up the solving process, and moreover parallelisation of MILP-solvers is

used to result in an almost linear speed-up in the number (up to a certain limit) of

computing cores in experiments. In [14], Sherlock alternately conducts local and

global search to efficiently calculate the output range. In a local search phase, it

uses gradient descent method to find a local maximum (or minimum), while in a

global search phase, it encodes the problem with MILP to check whether the local

maximum (or minimum) is in the global output range.

16 2.1. Verification of Deep Neural Networks

Moreover, [5] presents a branch and bound (B&B) algorithm and claims that

both SAT/SMT-based approaches and MILP-based approaches can be regarded

as its special cases.

2.1.2 Approaches to Compute an Approximate Bound

The approaches to be surveyed in this subsection consider the computation of

a lower (or by duality, an upper) bound, and are able to claim the sufficiency

of achieving given properties. While these approaches can only have a bounded

estimation to the value of some variable, they are able to work with larger models,

e.g., up to 10 000 hidden neurons. The other advantage is the potential to avoid

floating point issues in existing constraint solver implementations. Actually, most

state-of-the-art constraint solvers implementing floating-point arithmetic only give

approximate solutions, which may not be the actual optimal solution or may even

lie outside the feasible space [51]. It may happen that a solver wrongly claims the

satisfiability or un-satisfiability of a property. For example, [14] reports several

false positive results in Reluplex, and mentions that this may come from unsound

floating point implementation.

Abstract Interpretation

Abstract interpretation is a theory of sound approximation of the semantics of

computer programs [12]. It has been used in static analysis to verify properties of

a program without actually running it. The basic idea of abstract interpretation

is to use abstract domains (represented as, e.g., boxes, zonotopes, polyhedra) to

over-approximate the computation of a set of inputs. It has been explored in a

few papers, including [18, 38, 45].

Generally, on the input layer, a concrete domain C is defined such that the set

of inputs η is one of its elements. To enable efficient computation, a comparatively

simple domain, i.e., abstract domain A, which over-approximates the range and

2. Related Work 17

relation of variables in C, is chosen. There is a partial order ≤ on C as well as

A, which is the subset relation ⊆.

Definition 2.1 (Galois Connection). A pair of functions α : C → A and

γ : A → C is a Galois connection if, for any a ∈ A and c ∈ C, we have

α(c) ≤ a⇔ c ≤ γ(a).

Intuitively, a Galois connection (α, γ) expresses abstraction and concretisation

relations between domains, respectively. A Galois connection is chosen because

it preserves the order of elements in two domains. Note that a ∈ A is a sound

abstraction of c ∈ C if and only if α(c) ≤ a.

In abstract interpretation, it is important to choose a suitable abstract domain

because it determines the efficiency and precision of the abstract interpretation.

In practice, a certain type of special shapes is used as the abstraction elements.

Formally, an abstract domain consists of shapes expressible as a set of logical

constraints. The most popular abstract domains for the Euclidean space abstraction

include Interval, Zonotope, and Polyhedron.

The approaches based on abstract interpretation can verify interval properties,

but cannot verify reachability properties.

Convex Optimisation

A method is proposed in [77] to learn deep ReLU-based classifiers that are provably

robust against norm-bounded adversarial perturbations on the training data. The

approach works with the interval property, but not the reachability property. It

may flag some non-adversarial examples as adversarial examples. The basic idea is

to consider a convex outer over-approximation of the set of activations reachable

through a norm-bounded perturbation, and then develop a robust optimisation

procedure that minimises the worst-case loss over this outer region (via a linear

program). Crucially, it is shown that the dual problem to this linear program can

be represented itself as a deep network similar to the back-propagation network,

18 2.1. Verification of Deep Neural Networks

leading to very efficient optimisation approaches that produce guaranteed bounds

on the robust loss. The approach is illustrated on a number of tasks with robust

adversarial guarantees. For example, for MNIST, they produce a convolutional

classifier that provably has less than 5.8% test error for any adversarial attack with

bounded Chebyshev distance (L∞ norm) less than ε = 0.1.

Moreover, [15] works by taking a different formulation of the dual problem,

i.e., applying Lagrangian relaxation on the optimisation. This is to avoid working

with constrained non-convex optimisation problem.

Interval Analysis

In [70], the interval arithmetic is leveraged to compute rigorous bounds on the

DNN outputs, i.e., the interval property. The key idea is that, given the ranges of

operands, an over-estimated range of the output can be computed by using only the

lower and upper bounds of the operands. Starting from the first hidden layer, this

computation can be conducted through to the output layer. Beyond this explicit

computation, symbolic interval analysis along with several other optimisations are

also developed to minimise over-estimations of output bounds. These methods

are implemented in ReluVal, a system for formally checking security properties of

ReLU-based DNNs. An advantage of this approach, compared to constraint-solving

based approaches, is that it can be easily parallelised. In general, interval analysis

is close to the interval-based abstract interpretation (Section 2.1.2).

In [55], lower bounds of adversarial perturbations needed to alter the classification

of the neural networks are derived by utilising the layer functions. The proposed

bounds have the theoretical guarantee that no adversarial manipulation could be

any smaller, and in this case can be computed efficiently - at most linear time in

the number of (hyper)parameters of a given model and any input, which makes

them applicable for choosing classifiers based on robustness.

2. Related Work 19

Output Reachable Set Estimation

In [81], the output reachable set estimation is addressed. Given a DNN N with its

associated function f , and a set of inputs η, the output reachable set is Reach(f, η)

as in Definition 3.10. The problem is to either compute a close estimation Y ′ such

that Reach(f, η) ⊆ Y ′, or to determine whether Reach(f, η)∩¬S = ∅ for a safety

specification S, where S is also expressed with a set similar to that in Equation (3.26).

Therefore, it is actually to compute the interval property. First, a concept called

maximum sensitivity is introduced and, for a class of multi-layer perceptrons whose

activation functions are monotonic functions, the maximum sensitivity can be

computed via solving convex optimisation problems. Then, using a simulation-

based method, the output reachable set estimation problem for neural networks

is formulated into a chain of optimisation problems. Finally, an automated safety

verification is developed based on the output reachable set estimation result. The

approach is applied to the safety verification for a robotic arm model with two joints.

Linear Approximation of ReLU Networks

FastLin/FastLip [74] analyses ReLU networks on both the interval property and the

Lipschitzian property. For the interval property, they consider linear approximation

over those ReLU neurons that are uncertain on their status of being activated or

deactivated. For the Lipschitzian property, they use the gradient computation

for the approximate computation. Crown [82] generalises the interval property

computation algorithm in [74] by allowing the linear expressions for the upper

and lower bounds to be different and enabling its working with other activation

functions such as tanh, sigmoid and arctan. The Lipschitzian property computation

is improved in RecurJac [83].

2.1.3 Approaches to Compute Converging Bounds

While the above approaches can work with small networks (up to a few thousands

of hidden neurons), state-of-the-art DNNs usually contain at least many-million

20 2.1. Verification of Deep Neural Networks

hidden neurons. It is necessary to develop approaches to work with real-world

systems. In Sections 2.1.3 and 2.1.4, we discuss approaches able to work with

large-scale networks, although they might have other restrictions or limitations.

Since the approaches surveyed in this subsection compute converging upper and

lower bounds, they can work with both output reachability and interval properties.

Layer-by-Layer Refinement

DLV [28] develops an automated verification framework for feedforward multi-layer

neural networks based on Satisfiability Modulo Theory (SMT). The key features

of this framework are that it guarantees a misclassification being found if it exists,

and that it propagates the analysis layer-by-layer, i.e., from the input layer to, in

particular, the hidden layers, and to the output layer.

In this work, safety for an individual classification decision, i.e., pointwise

(or local) robustness, is defined as the invariance of a classifier’s outcome to

perturbations within a small neighbourhood of an original input. Formally,

N , ηk, δk |= x

where x denotes an input, N a neural network, η a region surrounding the input,

δ a set of manipulations, and subscript k means at layer k. Later, in [76, 80], it

is shown that the minimality of the manipulations in δ can be guaranteed with

the existence of a Lipschitz constant.

To be more specific, the verification algorithm uses single-/multi-path search

to exhaustively explore a finite region of the vector spaces associated with the

input layer or the hidden layers, and a layer-by-layer refinement is implemented

using the Z3 solver to ensure that the local robustness of a deeper layer implies the

robustness of a shallower layer. The methodology is implemented in the software

tool DLV, and evaluated on image benchmarks such as MNIST, CIFAR-10, GTSRB,

and ImageNet. Though the complexity is high, it scales to work with state-of-

the-art networks such as VGG16. Furthermore, in [76, 80], the search problem

is alleviated by Monte Carlo tree search.

2. Related Work 21

Global Optimisation Based Approaches

DeepGO [59] shows that most known layers of DNNs are Lipschitz continuous,

and presents a verification approach based on global optimisation. For a single

dimension, an algorithm is presented to always compute the lower bounds (by

utilising the Lipschitz constant) and eventually converge to the optimal value.

Based on this single-dimensional algorithm, the algorithm for multiple dimensions is

to exhaustively search for the best combinations. The algorithm is able to work with

state-of-the-art DNNs, but is restricted by the number of dimensions to be perturbed.

2.1.4 Approaches with Statistical Guarantees

This subsection reviews a few approaches aiming to achieve statistical guarantees

on their results, by claiming, e.g., the satisfiability of a property, or a value is a

lower bound of another value, etc., with certain probability.

Lipschitz Constant Estimation by Extreme Value Theory

[75] proposes a metric, called CLEVER, to estimate the Lipschitz constant, i.e.,

the approach works with the Lipschitzian property. It estimates the robustness

lower bound by sampling the norm of gradients and fitting a limit distribution

using extreme value theory. However, as argued by [20], their evaluation approach

can only find statistical approximation of the lower bound, i.e., their approach

has a soundness problem.

Robustness Estimation

The work [1] proposes two statistics of robustness to measure the frequency and

the severity of adversarial examples, respectively. Both statistics are based on a

parameter ε, which is the maximum radius within which no adversarial examples

exist. The computation of these statistics is based on the local linearity assumption

which holds when ε is small enough. Except for the application of the ReLU

22 2.2. Adversarial Attacks

activation function which is piece-wise linear, this assumption can be satisfied by

the existence of the Lipschitz constant as shown in [59].

2.1.5 Computational Complexity of Verification

There are two main ways to measure the complexity of conducting formal verification.

The first, which appeared in [30], measures the complexity with respect to the

number of hidden neurons. This is due to the fact that their approach is to encode

the DNN into a set of constraints, and in the constraints every hidden neuron

is associated with two variables. On the other hand, in [59], the complexity is

measured with respect to the number of input dimensions. This is due to the fact

that their approach is to manipulate the input. For both cases, the complexity

is shown to be NP-complete, although it is the case that the number of hidden

neurons can be larger than the number of input dimensions.

2.2 Adversarial Attacks

Given an input, an adversarial attack (or attacker) attempts to craft a perturbation

or distortion to the input to make it misclassified, often with high confidence, by a

well-trained deep neural network. Attack techniques can roughly be divided into

two groups depending on the type of misclassification objective:

• For a targeted perturbation, the attacker can control the resulting misclassifi-

cation label.

• For an un-targeted perturbation, the attacker can search for a misclassification

but cannot control its resulting misclassification label.

Meanwhile, based on the amount of information an attacker can access, adversarial

perturbations can also be organised into two categories:

• White-box perturbation – the attacker needs to access the parameters and the

internal structure of the trained networks, and may also need to access the

training dataset.

2. Related Work 23

• Black-box perturbation – an attacker can only query the trained networks

with perturbed inputs, without the ability to access the internal structure

and parameters.

Moreover, according to the distance metrics adopted to evaluate the discrepancy

between a perturbed input and the original input, adversarial attacks can be listed as

the Hamming distance, the Manhattan distance (L1 norm), the Euclidean distance

(L2 norm) or the Chebyshev distance (L∞ norm) attacks. Note that, while any of

these metrics can measure all perturbations, an attack technique can sometimes

generate adversarial examples that are better measured by a particular metric.

In the computer vision community, various attack techniques to generate such

adversarial examples have recently been developed. From a technical point of view,

such attacks can be categorised as using cost gradient [4, 21, 46] or the forward

gradient of the networks [53], or perturbing towards the most promising directions,

or directly solving an optimisation problem (possibly using gradient ascent/descent)

to obtain a perturbation [8, 47]. Interestingly, adversarial examples have revealed

to be transferable between different network architectures, or between networks

trained on disjoint subsets of data [53, 68], or even between real-world scenarios [35].

For example, adversarial images remain misclassified even after being printed out

and recaptured with a cell phone camera. In the following, we mention a few

adversarial attacks that are most relevant to this thesis.

Limited-Memory BFGS Algorithm (L-BFGS)

Szegedy et al. [68] noticed the existence of adversarial examples in the neighbourhood

of the correctly-classified inputs and described them as the “blind spots” of neural

networks. The authors claim that, because the adversarial examples have a low

probability of occurrence, they cannot be found efficiently via sampling around the

correctly-classified inputs, yet can be discovered through an optimisation scheme.

Formally, assume we have a classifier f : Rm 7→ C = {1, . . . , n} that maps each

input to a class c ∈ C, a given input x ∈ Rm, and a target label c′ ∈ C such

24 2.2. Adversarial Attacks

that c′ 6= arg max f(x), the goal is to find an additive adversarial perturbation

r ∈ Rm with the following optimisation expression:

• Minimise ‖r‖2 subject to:

1. arg max f(x+ r) = c′, and

2. x+ r ∈ Rm.

As exact computation is hard, an approximate algorithm based on the limited-

memory Broyden–Fletcher–Goldfarb–Shanno (L-BFGS) algorithm is proposed.

Furthermore, [68] discovers that adversarial examples are abundant, and, utilising

the above framework, one could generate an unlimited number of them. The

authors also remark that these adversarial examples generalise across both model

and training sets – an adversarial example generated for one network classifier will

likely be an adversarial example for another classifier with different architectures

or training datasets. Adversarial examples were also independently discovered

by [23] in the context of security.

Fast Gradient Sign Method (FGSM)

The Fast Gradient Sign Method (FGSM) [21] can find adversarial perturbations with

a fixed L∞ norm constraint, in the sense that it conducts a one-step modification

to all pixel values so that the value of the loss function increases under the L∞

norm constraint. The authors argue that this provides a linear explanation of the

existence of adversarial examples. They highlight that, since the precision of an

individual input feature tends to be limited, e.g., digital images often use only 8

bits per pixel and therefore are precise up to 1/255, it is unreasonable for a classifier

to respond differently to two inputs if they only differ on each feature by an amount

that is less than the level of precision. However, consider the dot product between

a weight vector W and an adversarial example x′ = x + r, i.e.,

W Tx′ = W Tx+W Tr,

2. Related Work 25

and let r = ε sign(W), then the activation growth can be maximised this way. IfW

has m dimensions with elements having average magnitude n, the activation growth

is εmn, i.e., increases linearly with respect to the dimensionality of the problem,

whereas ‖η‖∞ remains less than ε. Thus, for high-dimensional problems, FGSM can

make many small changes to the input to produce a significant difference in model

output. Based on this linear explanation, [21] suggests a fast linear algorithm to

generate adversarial examples. Denoting θ as the model parameters, x an input to

the model, c the label associated with x, and J(θ,x, c) the cost function used to

train the model, an adversarial perturbation r can be generated by

r = ε sign (∇xJ(θ,x, c)) . (2.1)

A greater ε leads to a higher success rate of attack but potentially results in a

more significant human perception contrast. Later, this attack method is extended

to a targeted and iterative version [35].

Jacobian Saliency Map based Attack (JSMA)

Papernot et al. [53] present the Jacobian Saliency Map based Attack (JSMA)

algorithm based on the forward derivative of a network, which is defined as the

Jacobian matrix of the output probability distribution, over the set C of labels,

with respect to the input dimensions. The forward derivative highlights those

features that the network’s prediction is most sensitive to and are thus most

likely to cause misclassification when disturbed. For a given target class c ∈ C

and a given input x ∈ [0, 1]m, each dimension of the input is assigned a salient

value based on the forward derivative. The salient value captures, for each input

dimension, the sensitivity of the output probability assigned to a class c. For

the adversarial perturbation, the input dimension with the highest salient value

is perturbed by a maximum distortion parameter τ > 0. If this perturbation

results in a misclassification, then the algorithm terminates; otherwise, the forward

derivative is computed again over the distorted input and the algorithm proceeds.

26 2.2. Adversarial Attacks

The algorithm may also terminate when a maximum distance threshold d > 0 is

reached. This algorithm does not require the computation of the derivative of the

perturbation measured with the Lp norm, and can be used to generate adversarial

perturbations that are minimised under the Hamming distance. This method is

generally slower than FGSM and aims to find an adversarial example that has a

lower Hamming distance to the legitimate image.

Carlini & Wagner Attack (C&W)

The C&W attack [8] is an optimisation-based attack method which formulates

finding an adversarial example as an image distance minimisation problem for

metrics such as the Hamming distance, the Euclidean distance (L2 norm), and the

Chebyshev distance (L∞ norm). Specifically, it defines an optimisation problem

over the loss function

loss(r) = ‖r‖p + c · f(x+ r), (2.2)

where f is a function that is negative when the network N misclassifies x+r, under

the constraint that x+ r is a valid input. The optimisation problem is solved using

the Adam gradient-descent method described in [31]. This approach is applied

for three distance metrics, and the algorithm is adjusted slightly in each case. In

particular, for the Hamming distance, an iterative algorithm identifies a subset of

features having low impact on classification that are thus not considered candidates

for perturbation. This subset grows with each iteration, until its complement set is

sufficiently small, giving a minimal feature subset salient to classification. In each

iteration the feature i selected for exclusion is the one that minimises ∇f(x+r)i ·ri.

A smart trick in C&W attacker lies on introducing a new optimisation variable to

avoid box constraint (image pixels need to be within [0, 1]). This approach is similar

in intuition to [53], in that a subset of salient features is identified based on the

first-order derivatives, and [8] is shown to be more effective than [53]. C&W attack

2. Related Work 27

can find an adversarial example that has a significantly smaller image distance,

especially based on the L2 norm.

2.3 Summary

To summarise, we identify the limitations present in the literature on verification of

deep neural networks, and show that our approaches have addressed the gap.

• To start with, most existing methods evaluate robustness based on the Lp,

p ≥ 1, norms, which are differentiable, so that most optimisation algorithms

such as gradient descent can be utilised. In Chapter 4, we focus on the

non-differentiable Hamming distance and propose a technique, which, as far as

we know, is the first time to guarantee network safety on this specific metric.

• Moreover, while often a single input as a whole is evaluated against adversarial

perturbations, we extend this to the features of an input in Chapter 5, and

therefore to facilitate the explainability and interpretability of networks in

terms of how they actually ‘see’ and/or ‘understand’ an input. For instance,

do they focus on the salient feature, or the set of salient features, in a manner

consistent with human perception? To the best of our knowledge, ours is the

first method that guarantees feature-level robustness of neural networks.

• To take a step further, we generalise the input to have time-series characteris-

tics, as human decision-making processes tend to be dynamic and continuous.

In particular, we study the times-series of images, i.e., videos, which capture

spatial features on individual frames and temporal features between adjacent

frames. Correspondingly, robustness is guaranteed for networks with both

convolutional and recurrent layers. Before the work in Chapter 6 was put

online, no other work in public domain addressed robustness guarantees for

videos.

28 2.3. Summary

We summarise the capabilities of existing approaches to the verification of deep

neural networks discussed here, also including our approaches, in Table 2.1, taking

into account the type of achievable guarantees, underlying algorithms, and objective

properties, i.e., robustness, reachability, interval, and Lipschitzian. We remark that

our work is scalable to large neural networks and applicable to real-world scenarios.

Moreover, because computing the precise deterministic guarantees is unrealistic for

high dimensional inputs and networks, we provide anytime algorithms for upper and

lower bounds that converge to the optimal value. In other words, our approaches

mostly fall into the category of Section 2.1.3, where converging bounds are computed.

2. Related Work 29

Table 2.1: Comparison between the verification approaches of deep neural networks. Our
methods are highlighted in bold, such as the pixel-level robustness [60] in Chapter 4, the
feature-level robustness [80] in Chapter 5, and the video-level robustness [78] in Chapter 6.

Guarantees Algorithm
Property

Robustness Reachability Interval Lipschitzian

[56]

Deterministic
Guarantees

Constraints
Solving

SMT
X X X

[30] X X X

[16] X X X

[50] SAT X X X

[40]

MILP

X X X

[11] X X X

[14] X X X

[5] X X X

[18]

Lower/Upper
Bound

Abstract
Interpretation

X X

[45] X X

[38] X X

[77] Convex Optimisation X X

[70]
Interval Analysis

X X

[55] X X

[81] Set Estimation X X

[74] Linear Approximation X X X

[28]

Converging
Bounds

Search
Based

Layer-by-Layer
Refinement X X X

[76]
Two-Player

Turn-based Game

X X X X

[80] X X X X

[78] X X X X

[59] Global
Optisimation

X X X X

[60] X X X

[75] Statistical
Guarantees

Extreme Value Theory X

[1] Robustness Estimation X

30

3
Background

Contents

3.1 Deep Neural Networks 32
3.1.1 Feed-Forward Neural Networks 32
3.1.2 Convolutional Neural Networks 34
3.1.3 Recurrent Neural Networks 37
3.1.4 Classification . 41

3.2 Distance Metrics and Lipschitz Continuity 42
3.2.1 Distance Metrics . 42
3.2.2 Lipschitz Continuity . 43

3.3 Safety of Deep Neural Networks 44
3.3.1 Adversarial Examples 45
3.3.2 Safety Properties of Neural Networks 45

3.4 Images and Videos . 49
3.4.1 Tensors . 49
3.4.2 Feature Extraction . 50
3.4.3 Optical Flow . 51
3.4.4 Datasets . 53

3.5 Summary . 55

In this chapter, we introduce the technical background materials. Starting

with Section 3.1, we present the definitions of the three categories of deep neural

networks used in the thesis, i.e., the feed-forward neural networks, the convolutional

31

32 3.1. Deep Neural Networks

neural networks, and the recurrent neural networks. Then, after explaining the

distance metrics and Lipschitz continuity in Section 3.2, we discuss four safety

properties of neural networks in Section 3.3. In Section 3.4, we describe the

techniques that are related to the inputs, i.e, the images and the videos, such as

the tensor folding and unfolding operations, feature extraction for images, and

the optical flow methods for videos.

3.1 Deep Neural Networks

3.1.1 Feed-Forward Neural Networks

Feed-forward neural networks, also called deep feed-forward networks, or multilayer

perceptrons (MLPs), are the quintessential deep learning models. The goal of a

feed-forward neural network is to approximate some function, for instance, to imitate

human recognition in image classification tasks. These networks are called neural

because they are loosely inspired by neuroscience, and are typically represented by

composing different functions together, thus networks. Here, feed-forward indicates

that the information evaluated from the inputs flows through the intermediate

computations to the outputs, and that there are no feedback connections where

outputs of the network are fed back to itself. In fact, if there are feedback connections

included, they are called recurrent neural networks, as presented in Section 3.1.3.

Definition 3.1 (Feed-Forward Neural Networks). A feed-forward neural

network is a weighted, directed, acyclic graph N = (N, V, w, b), where

• N is a set of neurons;

• V is a set of connections between neuron pairs (ni, nj), ni, nj ∈ N ;

• w : V → R defines the weight of a connection;

• b : N → R defines the bias of a neuron;

and the following properties hold:

• A layer L(k) ⊆ N, k ∈ {1, 2, . . . , l} is an ordered, mutually exclusive set

3. Background 33

of neurons, such that

N =
l⋃

k=1
L(k), for l ∈ N+ (3.1)

where l is the number of layers. Moreover, for each neuron pair (ni, nj)

there exists a unique k such that ni ∈ L(k) and nj ∈ L(k+1).

• An activation function f (k) : R→ R exists for each layer L(k).

Weights and Biases Consider a feed-forward neural network N and its k-

th layer L(k), then the weight matrix W (k) ∈ Rm×n, where m =
∣∣∣L(k−1)

∣∣∣ and
n =

∣∣∣L(k)
∣∣∣, is a matrix with elements defined from the weight function: w(k)

ij =

w(L(k−1)
i , L

(k)
j); and the bias vector b(k) ∈ Rn is a vector with elements defined

from the bias function: b
(k)
j = b(L(k)

j).

Computation by Neural Networks Using the weights and biases defined

above, for a specific layer L(k) the activation function f (k) : Rm → Rn, where

m =
∣∣∣L(k−1)

∣∣∣ and n =
∣∣∣L(k)

∣∣∣, is given by

f (k)(x) def= f (k)(W (k)x+ b(k)). (3.2)

As a feed-forward neural network N may have length l of layers, the computation

by N is essentially a composition of different activation functions associated to

their corresponding layers:

f(x) = (f (l) ◦ f (l−1) ◦ · · · ◦ f (1))(x). (3.3)

In this case, f (1) is called the input layer of the network N , f (l) is called the output

layer, and all the layers in between are called the hidden layers.

Activation Functions The concept of hidden layers requires the choice of

activation functions, for which we list some common ones below.

• Rectified linear unit (ReLU) [19, 29, 48]: ReLU(x) = max{x, 0};

• Logistic sigmoid: σ(x) = 1
1 + e−x

;

• Hyperbolic tangent: tanh(x) = ex − e−x

ex + e−x
;

34 3.1. Deep Neural Networks

Input layer Output layerHidden layers

Figure 3.1: A fully-connected feed-forward neural network. It comprises four layers: an
input layer, two hidden layers (grey), and an output layer. The information flows through
the layers from left to right without any feedback connections.

• Softmax: softmax(x)i = exi∑n
j=1 e

xj
for i = 1, . . . , n.

Note that unlike ReLU(x), σ(x), and tanh(x), which are functions of one variable

x from the previous layers, softmax(x)i represents a probability distribution over

the vector x with n possible values. It is often used in the output layer of a

neural network to represent the predictive probability distribution over n possible

classes, and its inputs, i.e., the raw (un-normalised) predictions from previous

layers, are called the logits.

Example 1 (A Feed-Forward Neural Network). The feed-forward neural

network in Figure 3.1 consists of four layers: an input layer with 2 neurons,

two hidden layers with 4 and 3 layers respectively, and an output layer with 2

neurons. The layers are fully-connected as each neuron of the current layer

receives input from every neuron of the previous layer.

3.1.2 Convolutional Neural Networks

Convolutional neural networks (CNNs), also known as convolutional networks, are

a specialised kind of network designed for processing data that has a grid-like

topology, for instance, image data, which can be regarded as a two-dimensional

grid of pixels. Here, “convolutional” indicates that a convolutional network employs

a mathematical operation called convolution, which is a specialised kind of linear

3. Background 35

operation on two functions. In other words, CNNs are essentially neural networks

that utilise convolution instead of general matrix multiplication in no less than

one of the layers. The definition of convolution is as follows.

Definition 3.2 (Convolution). The convolution operation of two functions

f(t) and g(t), denoted as f ∗ g, is defined as

(f ∗ g)(t) =
∫ ∞
−∞

f(τ)g(t− τ)dτ (3.4)

in the continuous case, and in the discrete case the integral is replaced by a

sum, i.e.,

(f ∗ g)(t) =
∞∑

τ=−∞
f(τ)g(t− τ), (3.5)

where, in convolutional network terminology, f is often referred to as the

input, g as the kernel, and f ∗ g as the feature map.

Naturally, convolutions can be extended to multi-dimensional cases such as

images. For example, given a 2D image α as the input and a 2D kernel kernel,

the feature map extracted from the 2D convolution is

(α ∗ kernel)(i, j) =
∑
m

∑
n

α(m,n) · kernel(i−m, j − n), (3.6)

and since convolution is commutative, the feature map can be equivalently written as

(kernel ∗α)(i, j) =
∑
m

∑
n

α(i−m, j − n) · kernel(m,n). (3.7)

However, in general neural network libraries do not use convolution, but instead

implement a related function named the cross-correlation

(α ? kernel)(i, j) =
∑
m

∑
n

α(i+m, j + n) · kernel(m,n). (3.8)

The key difference between these two equations, i.e., − or +, determines whether

the kernel is flipped and what pixels of the image are processed for each element

of the feature map. Specifically, the kernel is flipped in convolution but not in

cross-correlation; and the image is traversed bottom-up/right-left in convolution

whilst top-down/left-right in cross-correlation. In a machine learning context, often

cross-correlation is implemented but called convolution, which does not affect the

36 3.1. Deep Neural Networks

a b c d

e f g h

i j k l

m n o p

w x

y z

aw+bx
+ey+fz

bw+cx
+fy+gz

cw+dx
+gy+hz

ew+fx+
iy+jz

fw+gx+
jy+kz

gw+hx
+ky+lz

iw+jx+
my+nz

jw+kx+
ny+oz

kw+lx+
oy+pz

input kernel feature map

⇤ =

Figure 3.2: Illustration of a 2D convolution operation with kernel size 2× 2. Here the
convolution is “valid” as the feature map is restricted to positions where the kernel lies
only within the input matrix. Same colour indicates how the element of the feature map
is formed by applying the kernel to the corresponding region of the input.

network’s performance as the weights are learned flipped, thus we just follow the

convention of referring to both operations as convolution.

Example 2 (Convolution). The 2D convolution operation shown in Figure 3.2

takes a 4 × 4 input matrix α and a 2 × 2 kernel. From Equation (3.8) we

have the value of the feature map in the blue region from (α ? kernel)(0, 0) =∑1
m=0

∑1
n=0α(m,n) ·kernel(m,n) = α(0, 0) ·kernel(0, 0)+α(0, 1) ·kernel(0, 1)+

α(1, 0) · kernel(1, 0) +α(1, 1) · kernel(1, 1) = aw + bx+ ey + fz.

Pooling A limitation of the feature map generated from the convolution operation

is that it records the precise position of the features in the input, which means

that even a very slight movement of the feature position, such as shifting, rotation,

re-cropping, and other minor changes to the input image, will produce a different

feature map. In some circumstance, however, it is whether the feature is present

that matters instead of where exactly it is.

A common and robust approach to addressing this problem is to use a pooling

function, which replaces the output at a certain location with a summary statistic of

the nearby outputs, and therefore makes the feature map approximately invariant to

3. Background 37

16 2 3 13

5 11 10 8

9 7 6 12

4 14 15 1

16 13

14 15

2�2 max-pooling
input output

stride 2

Figure 3.3: An example of the max-pooling operation with a 2× 2 filter and a stride of
2, shown above and below the black arrow. Left: pictorial representation of a 4× 4 matrix
as the initial input. Right: a 2× 2 output matrix after the convolution operation. Same
colour indicates the output value is retrieved from the corresponding region of the input.

small translations of the input. Two popular pooling functions are the max-pooling

and the average-pooling operations.

Example 3 (Max-Pooling). The max-pooling operation in Figure 3.3 takes

a 4× 4 matrix as an input and has a 2× 2 filter covering each of the regions

in different colours, as shown in the pictorial representation. For each region,

the max-pooling operation takes the maximum of that region, e.g., 16 =

max{16, 2, 5, 11} and 15 = max{6, 12, 15, 1}. The stride of 2 means that the

input matrix is traversed by (2, 2) in row and column, which in this case does

not overlap regions.

We also mention that in convolutional networks a typical layer consists of

three components: convolution operations to generate a set of linear activations; a

nonlinear activation function such as ReLU; and then a pooling function.

3.1.3 Recurrent Neural Networks

Recurrent neural networks (RNNs) [61], or recurrent networks, are a class of neural

networks where the connections between neurons form a directed graph along a

temporal sequence, and thus can exhibit temporal dynamic behaviours. The capa-

bility of processing sequential data makes them applicable to tasks such as machine

translation, speech/handwriting recognition, and protein homology detection.

38 3.1. Deep Neural Networks

h

Wh

Wo

o

x

Uh ht-1 ht ht+1h... h...

Wh

Wo

Wh

Wo

Wh

Wo

Uh Uh Uh Uh

xt xt+1 xt-1

ot ot+1 ot-1

Unfold

Figure 3.4: The time-unfolded computational graph of a recurrent network. Left: the
RNN with input-to-hidden weight matrix Wh, hidden-to-hidden recurrent connections
parametrised by weight matrix Uh, and hidden-to-output weight matrix Wo. The black
square indicates a delay of a single time instance. Right: the same RNN as an unfolded
computational graph in which each neuron is associated with a time instance t.

Below we introduce the definition of recurrent neural networks. Note that while

there are different design patterns, we choose a reasonably representative recurrent

network that has recurrent connections between hidden units and produces an

output at each time instance, illustrated in Figure 3.4. Other possible variations

include recurrent networks that have recurrent connections only from the output at

one time instance to the hidden unites at the next time instance, or that read an

entire input sequence then produce a single output at the very end.

Definition 3.3 (Recurrent Neural Networks). A recurrent neural network is

a network that has the following forward propagation equations at each time

instance t:

ht = tanh(Whxt +Uhht−1 + bh), (3.9)

ot = softmax(Woht + bo), (3.10)

where Wh (input-to-hidden), Uh (hidden-to-hidden), and Wo (hidden-to-

output) are the weight matrices; bh and bo are the bias vectors; and tanh

and softmax can be other activation functions.

Example 4 (RNN Unfolding). The RNN in Figure 3.4 maps an input sequence

x to a corresponding output sequence o of the same length, with recurrent

3. Background 39

connections between the hidden units h (grey) indicated by the self-loop.

From the unfolded computational graph on the right, we observe that, at

time instance t, the value of the hidden neuron ht is affected by the current

input xt and also ht−1 computed at the previous time instance t− 1.

Whilst the recurrent networks introduced above can connect previous information

to the present task, e.g., to predict the last word in a short sentence “Today the

sky is quite blue”, unfortunately when the gap between the relevant information

and the place where it is needed grows, e.g., to predict the last word in a relatively

long paragraph “Air pollution is getting much worse in this region... Today the sky

is quite grey”, the standard recurrent networks are incapable of learning such long

distance connections between information. The underlying challenge of learning

long-term dependencies is that the gradients propagated over many stages tend

to either vanish or explode.

An effective approach to having derivatives that neither vanish nor explode is

the idea of gated RNNs, with connection weights that may change at each time

instance. This allows the network to accumulate information over a long duration,

such as to hold “air pollution” as evidence for the subsequent “sky” prediction,

and once the information has been used, it might be beneficial for the network

to forget the old state. Instead of manually choosing when to accumulate or to

forget, gated RNNs can learn to decide when to do it. Below we introduce one of

the most successful gated RNNs, that is, long short-term memory.

Long Short-Term Memory As a recurrent network architecture, long short-

term memory [25], also known as LSTM, is capable of learning long-term dependen-

cies. The core contribution of LSTM is the introduction of a self-loop with gated

weight, by which the time scale of integration can change based on the input sequence.

The LSTM models have been proved particularly successful in various practical

applications, such as handwriting generation, image captioning, and parsing.

40 3.1. Deep Neural Networks

� + �
�

input

input gate

forget gate

output gate

memory output

Figure 3.5: A long short-term memory unit that consists of an input gate, a forget gate,
an output gate, and a memory cell. Whereas the input unit may have any squashing
non-linearity, e.g., σ (drawn) or tanh, the gating units all have a sigmoid non-linearity.
The memory cell has a linear self-loop, indicated by the black square as a delay of a single
time step, whose weight is controlled by the forget gate.

Definition 3.4 (Long Short-Term Memory). A common long short-term

memory unit comprises an input gate, a forget gate, an output gate, and a

memory cell, as shown in Figure 3.5. Its forward propagation equations are

as follows:

it = σ(Wixt +Uiht−1 + bi), (3.11)

ft = σ(Wfxt +Ufht−1 + bf), (3.12)

ot = σ(Woxt +Uoht−1 + bo), (3.13)

ct = ft � ct−1 + it � σ(Wcxt +Ucht−1 + bc), (3.14)

ht = ot � tanh(ct), (3.15)

where Wi, Ui, and bi denote respectively the input weights, recurrent weights,

and biases for the external input gate it; Wf , Uf , and bf denote those for

the forget gate ft; Wo, Uo, and bo denote those for the output gate ot; and

Wc, Uc, and bo denote those for the memory cell ct.

The block diagram of the LSTM unit is illustrated in Figure 3.5. Starting from

the top left, the “input” feature can be computed by a regular artificial neuron unit

with any squashing non-linearity such as σ (drawn in the figure) or tanh. All the

3. Background 41

three gating units, namely the “input gate”, the “forget gate”, and the “output

gate”, have their own input weights W , recurrent weights U , and biases b, as well

as a sigmoid non-linearity σ. The input value can be accumulated into the “memory”

cell if the input gate allows it. As the most important component of the LSTM,

the memory cell has a linear self-loop with weight controlled by the forget gate

that sets a value from (0, 1) via σ to this weight. Here, the black square on the

self-loop indicates a delay of a single time instance. The output of the LSTM unit

can be shut off by the “output gate”. Apart from this, among the variants of the

LSTM unit, the memory cell can be utilised as an extra input, with three additional

weights, into the three gating units (not drawn in the figure to avoid confusion).

3.1.4 Classification

Deep neural networks can be deployed to solve various tasks, e.g., the classification

problem. In this type of task, a network N , whether it is feed-forward, convolutional,

or recurrent, is asked to specify which of n classes an input belongs to. Specifically,

we view N as having a computation function f : Rm 7→ {1, . . . , n}, which maps an

input x ∈ Rm to a certain category identified by numeric code f(x) ∈ {1, . . . , n}.

Alternatively, N can be the function f : Rm 7→ Rn, i.e., mapping to a score

(logit) probability distribution over n classes, for which the result category is

arg maxi fi(x), where i denotes the i-th element of f(x).

In this thesis, we focus on a special kind of classification task – object recognition,

where the input x is an image or a video in the domain D = [0, 1]m normalised

from [0, 255]m, and the output is a numeric code c identifying the object in the

image or the video from a set of classes C. For a network N , we use N (x, c)

to denote the confidence, expressed as a logit value before the softmax layer or

a probability value after normalising the score, of N believing that x is in class

c ∈ C. Moreover, we write N (x) = arg maxc∈C N (x, c) for the category into which

N classifies x. Besides, we use α to indicate an image input in Chapters 4 and

5, and v to indicate a video input in Chapter 6.

42 3.2. Distance Metrics and Lipschitz Continuity

3.2 Distance Metrics and Lipschitz Continuity

3.2.1 Distance Metrics

In deep learning, sometimes we need to measure the difference between two inputs.

In computer vision, such a measurement should reflect the perceptual similarity

between the two inputs comparable to, for instance, human perception for image

or video classification neural networks. In practice, it is more common to employ

a metric or distance function.

Formally, a metric on a set D is a distance function d : D × D 7→ [0,∞) that

maps the distance between two inputs x,x′ ∈ D to a non-negative real number,

and satisfies the following standard axioms of a metric space:

• d(x,x′) ≥ 0 (non-negativity),

• d(x,x′) = 0 ⇐⇒ x = x′ (identity of indiscernibles),

• d(x,x′) = d(x′,x) (symmetry),

• d(x,x′′) ≤ d(x,x′) + d(x′,x′′) (triangle inequality).

Since we are working essentially in a vector space, as the inputs are either images

or videos, we can utilise the concept of the Lp norm, p ≥ 1 and take the metric

induced by a norm as d(x,x′) = ‖x− x′‖p.

Here we briefly introduce the metrics used in the thesis, i.e., the Euclidean, the

Manhattan, the Chebyshev, and the Hamming distances. The Euclidean metric, also

known as the L2 norm, computes the Euclidean distance between the two inputs by

‖x− x′‖2 =
√∑

i

(xi − x′i)2. (3.16)

Because the Euclidean distance is so frequently used in machine learning, it is

sometimes simply denoted as ‖x− x′‖. However, in this thesis different metrics are

used and compared, therefore we keep the subscript 2 to avoid confusion. Speaking

of other metrics, in certain applications it is important to discriminate between the

elements that are exactly zero and the elements that are very small but nonzero.

3. Background 43

In the cases when the difference between zero and nonzero elements matters, the

Manhattan distance, i.e., the L1 norm,

‖x− x′‖1 =
∑
i

|xi − x′i| (3.17)

comes into place as it grows at the same rate in all dimensions but simultaneously

retains mathematical simplicity. Another metric that commonly arises is the

Chebyshev distance, i.e., the L∞ norm, which computes the greatest difference of

the two inputs along any coordinate dimension,

‖x− x′‖∞ = max
i
|xi − x′i|. (3.18)

Apart from the above-mentioned L1, L2, and L∞ norms, sometimes we need to

measure the distance between two inputs by counting the number of different vector

components, that is, the number of nonzero elements in x− x′. In this case, the

Hamming distance is used with the definition

dHamming(x,x′) = |{xi | xi 6= x′i}|. (3.19)

Remark 1 (Hamming Distance). Although in some contexts referred to as

the “L0 norm”, the Hamming distance is not actually a norm because it is

not positive homogeneous, i.e., it does not satisfy positive homogeneity, i.e.,

∀m ∈ R, ‖m · (x− x′)‖p = |m| · ‖x− x′‖p, like L1, L2, and L∞ norms do. In

other words, for the Hamming distance, scaling x− x′ by m does not change

the number of nonzero elements.

3.2.2 Lipschitz Continuity

In this thesis, we restrict neural networks to those that satisfy the Lipschitz

continuity [52] assumption. Below is its definition in mathematical analysis.

Definition 3.5 (Lipschitz Continuity). A function f : Rm 7→ Rn is Lipschitz

continuous with respect to distance metric Lp for p ≥ 1 if there exists a

constant Lip > 0 such that, for inputs x,x′ ∈ Rm, we have

‖f(x)− f(x′)‖p ≤ Lip · ‖x− x′‖p, (3.20)

44 3.3. Safety of Deep Neural Networks

where Lip is the Lipschitz constant.

This property is particularly useful because it enables the quantification of the

assumption that a small change in the input, i.e, ‖x− x′‖p measured by Lp, p ≥ 1,

resulting from, for example, adversarial perturbations will have a corresponding

small change in the output, i.e., ‖f(x)− f(x′)‖p. More importantly, this small

change is guarded and guaranteed to not exceed the upper bound Lip · ‖x− x′‖p.

Note that all networks whose inputs are bounded, including all the state-of-the-

art image and video classification networks we studied, are Lipschitz continuous.

Specifically, it is shown in [59, 68] that most known types of layers, including

fully-connected, convolutional, ReLU, max-pooling, sigmoid, softmax, etc., have

Lipschitz continuous activation functions.

3.3 Safety of Deep Neural Networks

Despite the success of deep learning in many areas, serious concerns have been

raised regarding the deployment of deep neural networks (DNNs) in real-world

safety-critical scenarios, e.g., autonomous driving and automatic medical diagnosis.

In this section, we discuss the key problem of DNN safety and present a number

of properties to analyse safety. Let function f : Rm 7→ Rn, then for x ∈ Rm, we

let fi(x) denote the i-th element of the vector f(x).

Definition 3.6 (Erroneous Behaviour of DNNs). Given a (trained) DNN

N with the computation function f : Rm 7→ Rn, a human decision oracle

H : Rm → Rn, and a legitimate input x ∈ Rm, an erroneous behaviour of N

is such that

arg max
i
fi(x) 6= arg max

i
Hi(x). (3.21)

Intuitively, an erroneous behaviour is witnessed by the existence of an input

x on which the DNN and a human user have different perception.

3. Background 45

3.3.1 Adversarial Examples

Obviously, erroneous behaviours include those training and test samples that are

classified incorrectly by the model, but adversarial examples [68] represent another

category of erroneous behaviours that have safety implications.

Definition 3.7 (Adversarial Examples). Given a (trained) DNN N with the

computation function f : Rm 7→ Rn, a human decision oracle H : Rm → Rn,

and a legitimate input x ∈ Rm with arg maxi fi(x) = arg maxiHi(x), an

adversarial example x′ of N is defined as:

∃ x′ : arg maxiHi(x′) = arg maxiHi(x)

∧ arg maxi fi(x′) 6= arg maxi fi(x)

∧ x ≈ x′,

(3.22)

where ≈ denotes semantic closeness of two inputs.

Intuitively, x is an input on which the DNN and a human user have the same

classification and, based on this, an adversarial example is another input x′ that

is classified differently than x by network N , i.e., arg maxi fi(x′) 6= arg maxi fi(x),

even when they are semantically similar, i.e., x′ ≈ x, and the human user believes

that they should be the same, i.e., arg maxiHi(x′) = arg maxiHi(x). In reality,

the semantic closeness, i.e., ≈, between inputs is often approximated via some

similarity measures such as the distance metrics (Section 3.2) or the structural

similarity (SSIM) index [71].

3.3.2 Safety Properties of Neural Networks

In the following, we introduce four DNN safety properties that have been studied in

the literature, namely the local robustness property, the output reachability property,

the interval property, and the Lipschitzian property.

Local Robustness Property

Local robustness requires that the decision of a DNN is invariant against small

perturbations. The following definition is adapted from that of [28].

46 3.3. Safety of Deep Neural Networks

Definition 3.8 (Local Robustness). Given a DNN N with the computation

function f : Rm 7→ Rn, and an input region η ⊆ Rm, the (un-targeted) local

robustness of N on η is defined as

Robust(f, η) def= ∀x,x′ ∈ η : arg max
i
fi(x) = arg max

i
fi(x′). (3.23)

For the targeted local robustness of a class c, it is defined as

Robust(f, η) def= ∀x ∈ η : arg max
i
fi(x) 6= c. (3.24)

Intuitively, local robustness ensures that all inputs in the region η have the

same classification, and when targeted for a certain class c, it assures that none

of the inputs in η is classified as c. In most circumstances, the region η is defined

with respect to an input and a distance metric (Section 3.2). Below we define

the verification of the local robustness property.

Definition 3.9 (Verification of Local Robustness). Given a DNN N with

the computation function f : Rm 7→ Rn, and an input region η ⊆ Rm, the

verification of local robustness is to determine if

Robust(f, η) = True. (3.25)

Output Reachability Property

Output reachability is to compute the set of outputs with respect to a given

set of inputs. Formally, we follow the terminology from [59, 81] and have the

following definition.

Definition 3.10 (Output Reachability). Given a DNN N with the computa-

tion function f : Rm 7→ Rn, and an input region η ⊆ Rm, the output reachable

set of f and η is a set Reach(f, η) such that

Reach(f, η) def= {f(x) | x ∈ η}. (3.26)

The output reachability problem is highly non-trivial due to the fact that the

computation function f is highly non-linear, and also the region η is continuous,

3. Background 47

which implies the existence of an infinite number of inputs in it. Based on this,

we define the following verification problem.

Definition 3.11 (Verification of Output Reachability). Given a DNN N with

the computation function f : Rm 7→ Rn, an input region η ⊆ Rm, and an

output region Y ∈ Rn, the verification of output reachability on f , η, and Y

is to determine if

Reach(f, η) = Y . (3.27)

Intuitively, the verification of output reachability is to check whether all inputs

in η are mapped onto a given set Y of outputs, and vice versa, whether all outputs

in Y have a corresponding x in η. As a simpler question, we might be interested in

computing for a specific dimension of the set Reach(f, η) its greatest or smallest

value, for example, the greatest classification confidence of a specific class. We

also call such a problem the reachability problem.

Interval Property

An interval property is to compute a convex over-approximation of the output

reachable set. We follow the terminology from interval-based approaches, which

are a typical category of methods to compute this property. Formally, we have

the following definition.

Definition 3.12 (Interval Property). Given a DNN N with the computation

function f : Rm 7→ Rn, and an input region η ⊆ Rm, the interval property of

f and η is to compute a convex set Interval(f, η) such that

Interval(f, η) ⊇ {f(x) | x ∈ η}. (3.28)

And, Interval(f, η) contains the convex hull, i.e., the smallest convex set

containing the set {f(x) | x ∈ η}.

While the computation of such a set can sometimes be trivial, e.g., in classification

tasks when the output f(x) is often a positive integer representing a certain class,

and the total amount of classes is finite, it is expected that Interval(f, η) is as

48 3.3. Safety of Deep Neural Networks

close as possible to {f(x) | x ∈ η}, i.e., ideally it is a convex hull. Intuitively,

Interval(f, η) is an over-approximation of Reach(f, η). Based on this, we can

define the following verification problem.

Definition 3.13 (Verification of Interval Property). Given a DNN N with

the computation function f : Rm 7→ Rn, an input region η ⊆ Rm, and an

output region Y ∈ <n given as a convex set, the verification of an interval

property on f , η, and Y is to determine if

Y ⊇ Reach(f, η). (3.29)

Intuitively, the verification of an interval property is to check whether all inputs

in η are mapped into Y. Similarly to the reachability property, we might also be

interested in simpler problems, e.g., determining whether a given real number d

is a valid upper bound for a specific dimension of {f(x) | x ∈ η}.

Lipschitzian Property

A Lipschitzian property, inspired by the Lipschitz continuity (Section 3.2.2), is to

monitor the changes of the outputs with respect to small changes of the inputs.

Definition 3.14 (Lipschitzian Property). Given a DNN N with the compu-

tation function f : Rm 7→ Rn, an input region η ⊆ Rm, and the Lp norm for

p ≥ 1,

Lipschitz(f, η, Lp) ≡ sup
x,x′∈η

‖f(x)− f(x′)‖p
‖x− x′‖p

(3.30)

is a Lipschitzian metric of f , η, and Lp.

Intuitively, the value of this metric is the best Lipschitz constant. Regarding

this, we have the following verification problem.

Definition 3.15 (Verification of Lipschitzian Property). Given a Lipschitzian

metric Lipschitz(f, η, Lp) and a real value Lip ∈ R, the verification of a

Lipschitz property is to determine whether

Lipschitz(f, η, Lp) ≤ Lip. (3.31)

3. Background 49

Figure 3.6: Relationship between different safety properties of neural networks. An
arrow from a property A to another property B represents the existence of a simple
computation to enable the computation of B based on A. The dashed arrow from
“Lipschitzian” to “Reachability” means that the computation is more involved.

Relationship between Safety Properties

We illustrate the relationship between the above-mentioned four properties in

Figure 3.6. To be more specific, given a Lipschitzian metric Lipschitz(f, η, Lp)

and a region η = η(x, Lp, d), we can compute an interval Interval(f, η) =

[f(x)− Lipschitz(f, η, Lp) · d, f(x) + Lipschitz(f, η, Lp) · d] . (3.32)

It can be checked whether Interval(f, η) ⊇ {f(x) | x ∈ η} holds. Given an

interval Interval(f, η) or an output reachable set Reach(f, η), we can check their

respective robustness by determining the following expressions:

Interval(f, η) ⊆ Yc = {y ∈ Rn | arg max
i
yi = c}, for some c (3.33)

Reach(f, η) ⊆ Yc = {y ∈ Rn | arg max
i
yi = c}, for some c (3.34)

where yi denotes the i-element of the output vector y. The relationship between

Reach(f, η) and Interval(f, η) is actually an implication. Moreover, we use

a dashed arrow from Lipschitz(f, η, Lp) to Reach(f, η) to indicate that the

computation is more involved by, e.g., algorithms from [59, 75, 76].

3.4 Images and Videos

3.4.1 Tensors

A tensor T ∈ RI1×I2×...×IM in an M -dimensional space is a mathematical object

that has ∏M
k=1 Ik components and obeys certain transformation rules. Intuitively,

50 3.4. Images and Videos

tensors are generalisations of vectors (i.e., one index) and matrices (i.e., two indices)

to an arbitrary number of indices. Many state-of-the-art deep learning libraries,

such as Tensorflow [44] and PyTorch [54], are utilising tensors to parallelise the

computation with GPUs.

We introduce the following operations on tensors that are used in Chapter 4.

Definition 3.16 (Mode-m Unfolding and Folding). Given a tensor T ∈

RI1×I2×...×IM , the mode-m unfolding of T is a matrix U[m](T) ∈ RIm×IN such

that IN = ∏M
k=1,k 6=m Ik, and U[m](T) is defined by the mapping from element

(i1, . . . , iM) to (im, j), with

j =
M∑
k=1
k 6=m

ik × M∏
n=k+1
n6=m

In

 . (3.35)

Similarly, the tensor folding F folds an unfolded tensor back from a matrix

into a full tensor. Tensor unfolding and folding are dual operations and link

tensors and matrices.

Note that U[m](T) is a matrix because RIN is an one-dimensional array such

that IN is an integer. For example, to unfold a tensor T ∈ R4×3×2, its mode-1

unfolding is U[1](T) ∈ R4×(3·2) = R4×6, its mode-2 unfolding U[2](T) ∈ R3×8, and

its mode-3 unfolding U[3](T) ∈ R2×12.

3.4.2 Feature Extraction

Natural data, such as natural images and sounds, forms a high-dimensional manifold,

which embeds tangled manifolds to represent their inherent features [9]. For example,

in an input x ∈ Rm, each element xi ∈ x can be regarded as a feature, though

not necessarily an accurate one. When performing analysis of complex data with

potentially redundant information, such as the repetitiveness of images presented

as pixels, such an approach generally requires expensive yet possibly unnecessary

computation power and memory.

3. Background 51

In deep learning, pattern recognition, and particularly image processing, feature

extraction is to derive non-redundant and informative features from the initial

set of measured data, thus facilitating subsequent interpretations. For instance,

in the applications of image processing, various feature extraction methods are

used to detect and isolate desired shapes or portions, i.e., features, of a digitised

image or a video stream. Based on the underlying methodologies, we mention a

few categories that are relevant to this thesis:

– “neural networks” based: A CNN can learn very rich feature representations

of diverse images. To leverage the power of CNNs, a simple way is to use a

pretrained CNN as a feature extractor. For instance, after passing an image

into a CNN, the obtained softmax logits can be regarded as the features.

– “feature description” based: In computer vision, the scale-invariant feature

transform (SIFT) [41] is a well-known feature extraction algorithm to describe

local features in images. Irrelevant to image classifier, its extracted features

have a set of invariant characteristics, such as scaling, rotation, translation,

and local geometric distortion. Partially inspired by it, the standard version

of speeded up robust features (SURF) [2, 3] is several times faster and more

robust against various image transformations than SIFT, as claimed by the

authors.

– “thresholding” based: Originally from signal processing and popular for cluster

analysis in data mining, k-means clustering [73] partitions n observations into

k clusters in which each observation belongs to the cluster with the nearest

mean, serving as a prototype of the cluster.

3.4.3 Optical Flow

In order to capture the dynamic characteristics of the moving objects in a video,

we utilise optical flow [6, 72], which is a pattern of the apparent motion of the

objects, surfaces, and edges in a sequence of frames caused by the relative movement

52 3.4. Images and Videos

between the scene or an observer such as a camera. It is a 2D vector field where

each vector is a displacement vector showing the movement of points from the

previous frame to the next. Optical flow works on two assumptions:

• the pixel intensities of an object do not change between consecutive frames,

• and neighbouring pixels have similar motion.

Definition 3.17 (Optical Flow Equation). Consider a pixel Pix(x, y, t) in a

frame, where x, y denote the horizontal and vertical positions respectively, and

t denotes the time dimension. If after dt time, the pixel moves by distance

(dx , dy) in the next frame, then subject to the above assumptions, the following

brightness constancy constraint

Pix(x, y, t) = Pix(x+ dx , y + dy , t+ dt) (3.36)

holds. After taking Taylor series approximation of the right-hand side, remov-

ing common terms, and dividing by dt, the Optical Flow Equation is

fxu+ fyv + ft = 0, (3.37)

such that

fx = ∂f

∂x
, fy = ∂f

∂y
, u = ∂x

∂t
, v = ∂y

∂t
, (3.38)

where fx, fy, ft are the derivatives of the image at (x, y, t) in the corresponding

directions, i.e., horizontal, vertical, and time, and (u, v) are the x and y

components of the optical flow of Pix(x, y, t).

The optical flow equation itself has two unknowns and thus cannot be solved

as such. To solve it, some additional constraints are needed, which result in

another set of equations. More specifically, all optical flow methods introduce

some additional conditions to estimate the actual flow. In the computer vision

community, there are various differential methods to determine optical flow, such

as the Lucas-Kanade method [42], the Horn-Schunck method [26], and the Gunnar

Farnebäck algorithm [17].

3. Background 53

(a) MNIST (b) CIFAR-10 (c) GTSRB (d) ImageNet

Figure 3.7: Samples from four image benchmark datasets: (a) MNIST digit “4”, (b)
CIFAR-10 “airplane”, (c) GTSRB “no entry”, and (d) ImageNet “kit fox”. Though shown
in the same size, these datasets actually have images of different dimensions. For example,
MNIST has size 28 × 28 × 1 whereas ImageNet can be 224 × 224 × 3 or 299 × 299 × 3
depending on the classification networks.

3.4.4 Datasets

This section introduces the standard benchmark image and video datasets.

Image Datasets

In this thesis, we perform experiments on four image datasets - MNIST, CIFAR-10,

GTSRB, and ImageNet - as illustrated in Figure 3.7. They are standard benchmark

datasets for adversarial attacks on DNNs, and are widely adopted by all the baseline

methods compared in this thesis.

• MNIST1 (Modified National Institute of Standards and Technology) [37] –

is a grey-scale image dataset of handwritten digits from “0” to “9”, which

contains a training set of 60 000 examples and a test set of 10 000 examples.

Each sample has dimension 28 × 28. The digits have been size-normalised

and centred in a fixed-size image.

• CIFAR-102 (Canadian Institute For Advanced Research) [33] – is an image

dataset of 10 mutually exclusive classes, i.e., “airplane”, “automobile”, “bird”,

“cat”, “deer”, “dog”, “frog”, “horse”, “ship”, and “truck”. It consists of 60 000

32× 32 colour images - 50 000 for training, and 10 000 for testing.
1http://yann.lecun.com/exdb/mnist/
2https://www.cs.toronto.edu/~kriz/cifar.html

http://yann.lecun.com/exdb/mnist/
https://www.cs.toronto.edu/~kriz/cifar.html

54 3.4. Images and Videos

• GTSRB3 (The German Traffic Sign Recognition Benchmark) [66] – is an

image dataset of real-world traffic sign instances that are unique within the

dataset, which means each physical traffic sign occurs once only. It contains

more than 50 000 images covering 43 classes, e.g., “stop”, “go right or straight”,

and “speed limit 80 mph”.

• ImageNet4 [13] – is a large image dataset which has 21 841 classes, falling into

high-level categories such as “mammal”, “furniture”, and “geological formation”,

and consists of 14 197 122 hand-annotated and quality-controlled images. Since

2010, the ImageNet project runs the ImageNet Large Scale Visual Recognition

Challenge (ILSVRC) [62], where convolutional networks such as AlexNet [34]

achieved high performance in terms of correctly classifying the objects in the

dataset.

Video Datasets

As a popular benchmark for human action recognition in videos, UCF101 5 [65],

an extension of UCF50, consists of 101 annotated action classes divided into five

types: 1) human-object interaction, e.g., “Soccer Juggling”, “Hammering”, and

“Pizza Tossing”; 2) body-motion only, e.g., “Handstand Pushups”, “Swing”, and “Baby

Crawling”; 3) human-human interaction, e.g., “Hair Cut”, “Band Marching”, and

“Salsa Spins”; 4) playing musical instruments, e.g., “Playing Piano”, “Drumming”,

and “Playing Flute”; and 5) sports, e.g., “Floor Gymnastics”, “Biking”, and “Front

Crawl”. It labels 13 320 video clips of 27 hours in total, and each frame has

dimension 320 × 240 × 3.

3http://benchmark.ini.rub.de/?section=gtsrb&subsection=dataset
4http://www.image-net.org/
5https://www.crcv.ucf.edu/data/UCF101.php

http://benchmark.ini.rub.de/?section=gtsrb&subsection=dataset
http://www.image-net.org/
https://www.crcv.ucf.edu/data/UCF101.php

3. Background 55

3.5 Summary

This chapter presents some technical background materials needed to understand

this thesis. For instance, the convolutional neural networks are utilised to perform

image classification tasks in Chapters 4 and 5, whereas Chapter 6 deploys recurrent

neural networks to classify videos. Moreover, in Chapters 5 and 6, the upper and

lower bounds are proved to converge by the Lipschitz continuity of the networks.

Also, the unfolding and folding operations of the tensors are needed for the tensor-

based parallelisation algorithm in Chapter 4.

56

4
Robustness of Deep Neural Networks on

Pixel-Level Images

Contents

4.1 Robustness on Pixel-Level Images 59
4.2 Subspace Sensitivity . 62

4.2.1 Subspace for an Input 63
4.2.2 Computation of Subspace Sensitivity 66

4.3 Tensor-Based Algorithms for Upper and Lower Bounds 70
4.3.1 Computation of Lower and Upper Bounds 71
4.3.2 Anytime Robustness Evaluation 75
4.3.3 Convergence Analysis 77

4.4 Experimental Results . 78
4.4.1 Saliency Maps and Local Robustness 79
4.4.2 Convergence of Bounds and Global Robustness 81
4.4.3 Competitive Adversarial Attacks 84
4.4.4 Robustness and Accuracy of Model Architectures 87

4.5 Summary . 89

In this chapter, we consider the local robustness problem (Definition 3.8) of

the neural networks on pixel-level images. Specifically, we define a metric ball to

measure the neighbourhood of an input, and the maximum safe radius to quantify

local robustness. We remark that these two concepts are used throughout this

57

58 4. Robustness of Deep Neural Networks on Pixel-Level Images

thesis. Subsequently, we extend the concept of local robustness on an input to

global robustness on a dataset of inputs, thus enabling the evaluation of a network

on an entire dataset instead of just a single image, and accordingly extend the

maximum safe radius to the expected maximum safe radius.

Regarding the distance metrics, in this chapter we exploit the Hamming distance,

introduced in Section 3.2, to measure the discrepancy between an original input and

the manipulated one. The Hamming distance is an “interesting” yet “challenging”

metric – “interesting” in the sense that it can intuitively and straightforwardly

reflect the perturbations imposed on an image, e.g., a tiny mud speckle on a traffic

sign covering ten pixels; “challenging” in the sense that it is non-differentiable,

unlike the Lp norms where p ≥ 1, and therefore most optimisation algorithms

utilising gradient descent do not work in this case. In reality, different distance

functions may reflect various classes of physically plausible distortions which often

have their own characteristics. For example, the Hamming distance should work

well on “camera occlusion” as the shape and the size of the occlusion tend to remain

unchanged, whereas the Chebyshev distance (L∞ norm) may be more appropriate

to measure the discrepancy caused by “brightness change”, since the brightness

in all the pixels normally changes simultaneously by the same magnitude. We

will cover the Lp norms in Chapters 5 and 6.

We begin the chapter in Section 4.1 by introducing the formulations of the

local/global robustness. In order to compute the (expected) maximum safe radius,

in Section 4.2, we define the subspace sensitivity and its tensor-based computation

algorithm. Then, in Section 4.3 we utilise the computed subspace sensitivity to

generate the upper and lower bounds, and provide guarantees that the bounds

would converge. Finally, we implement the algorithms into the tool DeepTRE, and

report the experimental results in Section 4.4.

4. Robustness of Deep Neural Networks on Pixel-Level Images 59

4.1 Robustness on Pixel-Level Images

From the discussion of the DNN safety properties in Section 3.3, we know that

local robustness is defined as the invariance of a network’s classification over a small

neighbourhood of a given input. In Definitions 3.8 and 3.9, the neighbourhood is

simply represented by the “region η”, as it can be defined with respect to an input

and various similarity measures such as the structural similarity (SSIM) index.

In this thesis, we exploit the distance metrics introduced in Section 3.2 to

measure the neighbourhood of an input. Formally, we define it as a metric ball

around an input as follows.

Definition 4.1 (Metric Ball). Given an input α, a distance metric d, and a

distance d, the metric ball

Ball(α, d, d) = {α′ | d(α,α′) ≤ d} (4.1)

is the set of inputs whose distance to α is no greater than d based on the

metric d.

Intuitively, the metric ball Ball with centre α and radius d limits adversarial

perturbations to at most d with respect to the distance metric d. When the metric

is a norm, i.e., one of the Lp norms, we also refer to Ball(α, Lp, d) as a norm ball.

Following this, the verification of local robustness in Definition 3.9 can be

understood as to guarantee the non-existence of adversarial examples in this norm

ball, i.e., to determine whether Robust(N ,Ball(α, d, d)) = True holds. However,

this definition returns only True or False. In this thesis, we take a step further

to quantify the measurement of robustness. That is, we compute the distance

to the original input in the sense that, if exceeding the distance, there definitely

exists an adversarial example, whereas, within the distance, all the points are

safe. We formally define this distance as the maximum safe radius as follows.

The graphical illustration is in Figure 4.1.

60 4.1. Robustness on Pixel-Level Images

Figure 4.1: The maximum safe radius (MSR) problem aims to quantify the minimum
distance from an original image α to an adversarial example α′, equivalent to finding
the radius of a maximum safe metric ball. The solid line represents the classification
boundary learned by a neural network, while the dashed line is the decision boundary.
Adversarial examples tend to lie where the decision and classification boundaries do not
align. Intuitively, finding an adversarial example (green square) can only provide a loose
upper bound of MSR.

Definition 4.2 (Maximum Safe Radius). Given a network N , an input α, a

distance metric d, and a distance d, the maximum safe radius (MSR) problem is

to compute the minimum distance from the original input α to an adversarial

example α′ within the metric ball Ball(α, d, d), i.e.,

MSR(N ,α, d, d) = min
α′∈D
{d(α,α′) | α′ ∈ Ball(α, d, d) s.t. N (α′) 6= N (α)}.

(4.2)

If α′ does not exist in Ball, we let MSR(N ,α, d, d) = d+ ε, i.e., d plus a small

value ε.

Intuitively, this property means that any input with distance greater than MSR,

measured by metric d, may be misclassified by N , whereas all the inputs with

distance less than MSR are guaranteed to be classified correctly. Therefore, the key

4. Robustness of Deep Neural Networks on Pixel-Level Images 61

point to compute or approximate MSR is to find the adversarial example α′ with

the minimal distance to α. Here, for simplicity, we only highlight N (α′) 6= N (α)

to indicate that α′ is an adversarial example, but remark that α′ meets all the

constraints in the definition of adversarial examples (Definition 3.7), in the sense

that the human decision oracle H perceives it as α. Besides, the semantic closeness

α ≈ α′ is reflected by the fact that α′ is in Ball(α, d, d). The distance threshold d

is empirically dependent on the oracle. Intuitively, it should be a reasonable value

because if perturbations imposed on the input are too many to the extent that even

humans are not able to recognise the manipulated input, then it is no longer sensible

to require a network to classify correctly. Overall, a greater MSR(N ,α, d, d) indicates

that network N is more robust in classifying input α because it is less vulnerable

to adversarial perturbations measured by d in the neighbourhood of the input.

Regarding the distance metric d, we clarify that for the above definitions of local

robustness Robust(N ,Ball(α, d, d)) and maximum safe radius MSR(N ,α, d, d), the

metric can be any of the distance functions introduced in Section 3.2, i.e., the

Hamming distance (dHamming), the Manhattan distance (L1 norm), the Euclidean

distance (L2 norm), and the Chebyshev distance (L∞ norm). As a matter of fact,

the concepts of Ball, Robust, and MSR are used throughout the main contributing

chapters of this thesis. Particularly, in this chapter regarding the robustness on

pixel-level images, we utilise the Hamming distance dHamming(α,α′) to measure

the discrepancy between the original input α and its perturbed variant α′, while

later in Chapters 5 and 6, the metric d can be any of the Lp norms, denoted

by ‖α−α′‖p with p ≥ 1.

Global Robustness

In this chapter, apart from the verification of local robustness based on the Hamming

distance, i.e., Robust(N ,Ball(α, dHamming, d)), quantified by the computation of

MSR(N ,α, dHamming, d), we also generalise it to the concept of global robustness,

which is defined as the expected maximum safe radius over a (finite) dataset, so that

62 4.2. Subspace Sensitivity

we not only know the robustness of a network with respect to a single input but also

have a rough idea about the robustness of a network over a whole dataset. Note

that, here the dataset indicates a set of independent and identically distributed

inputs sampled from a distribution that the network is working on, e.g., the MNIST,

CIFAR-10, GTSRB, and ImageNet datasets.

Formally, we define the expected maximum safe radius over a dataset as follows.

Definition 4.3 (Expected Maximum Safe Radius). Given a network N , a

finite dataset X, the Hamming distance metric dHamming, and a distance d, the

expected maximum safe radius (EMSR) problem is to compute

EMSR(N ,X, dHamming, d) = Eα∈X [MSR(N ,α, dHamming, d)] (4.3)

= 1
|X|

∑
α∈X

MSR(N ,α, dHamming, d), (4.4)

where |X| denotes the number of inputs in X.

Intuitively, we compute the MSR for every input α in the dataset X, and take

the mathematical expectation E with respect to the input distribution, which is

approximated by averaging. See Figure 4.2 for the graphical illustration. We clarify

that, while the MSR provides guarantees with respect to a single input, the EMSR

does not guarantee a dataset - instead, it is used more as an empirical indication

of a network’s robustness on a large number of sampled inputs. For simplicity, we

write dHamming as dm in the remainder of this chapter.

4.2 Subspace Sensitivity

In order to compute MSR and EMSR, we define the subspace sensitivity of an input,

which indicates how each dimension of the input as well as every possible combination

of the dimensions, would affect the classification of a network. Intuitively, dimensions

with higher sensitivity have a more significant influence on the network’s decision-

making, e.g., ideally pixels of the main object in an image, whilst dimensions with

lower sensitivity tend not to count much when a network is identifying the object,

4. Robustness of Deep Neural Networks on Pixel-Level Images 63

1

Global Maximum Safe Radius

E
…
…
…
…

……
Figure 4.2: Extension from local robustness to the concept of global robustness is to
compute the mathematical expectation of the MSR for every input in a test dataset, thus
the expected maximum safe radius, i.e., EMSR.

e.g., the pixels in the background of an image. The analysis of subspace sensitivity

enables better interpretability and explainability of neural networks in terms of

how they actually “see” and/or “understand” an image.

4.2.1 Subspace for an Input

For an input α ∈ Rm, we say it has m dimensions and each dimension is a real

number. We are interested in the sensitivity of each dimension, as well as that of a

set of certain dimensions. Thus, we define a subspace for an input as follows.

Definition 4.4 (Subspace for an Input). Given an input α ∈ Rm and a set

of specific dimensions T ⊆ {1, . . . ,m}, the subspace for α with respect to T is

Subα,T = {α′ | α′i ∈ R, i ∈ T and α′j = αj, j ∈ {1, . . . ,m} \ T}, (4.5)

where the subscript i or j denotes the i-th or the j-th dimension of α.

Intuitively, it means that elements in the subspace Subα,T can take any legal

value for the dimensions in the given set T , whereas they must share the same

value with the original input α on the other dimensions. For instance, when

T = {m− 1,m}, the subspace Subα,T essentially contains all the input points with

at most the last two, the (m − 1)-th and the m-th, dimensions different from α,

i.e., the Hamming distance dm(α,α′) ≤ 2.

64 4.2. Subspace Sensitivity

We define the subspace for an input so that, at a later stage, we can impose

adversarial perturbations on a set of dimensions in an input to assess the network’s

sensitivity to the overall classification. By the way, we remark that in this chapter

we focus on object recognition in images, and pixel/channel values in images tend to

be in range [0, 255] before or [0, 1] after normalisation. Therefore, in the experiments

the images modified with perturbations are normally constrained to be legitimate,

e.g., α′ ∈ [0, 255]m or α′ ∈ [0, 1]m, though here we keep Rm for generality.

To take a step further, we are interested in not only a given set of dimensions

T , but also every possible combination of the input dimensions. Regarding this,

below we define the complete set of subspaces for an input.

Definition 4.5 (Complete Set of Subspaces for an Input). Given an input

α ∈ Rm and an integer t such that 1 ≤ t ≤ m, the complete set of subspaces

for α with respect to t is

Subs(α, t) = {Subα,T | ∀ T ⊆ {1, . . . ,m} s.t. |T | = t}, (4.6)

where t indicates the number of dimensions in T .

Intuitively, it means that Subs(α, t) includes all the subspaces Subα,T for any

possible combination T with t dimensions. Specifically, |Subs(α, t)| is
(
m
t

)
= m!

t!(m−t)! .

For example, when t = 2, then T can be any set comprising two dimensions, e.g.,

{m− 1,m} or {11, 6}, as long as the element in T does not exceed the total number

of dimensions α has, which is m. In other words, for a complete set of subspaces for

an input with respect to a certain t, adversarial perturbations can be imposed upon

any t number of dimensions, i.e., the Hamming distance dm(α,α′) remains at most t.

Next, we define subspace sensitivity, i.e., the sensitivity of a certain subspace

for an input with respect to a neural network N . Recall that, from the definition

of classification in Section 3.1.4, we use N (α, c) to denote the confidence, either

a logit value before the softmax layer or a probability value after normalising the

score, of N believing that α is in class c, and write N (α) = arg maxc∈C N (α, c)

for the category into which N classifies α.

4. Robustness of Deep Neural Networks on Pixel-Level Images 65

Definition 4.6 (Subspace Sensitivity). Given a subspace Subα,T for an input

α ∈ Rm, a neural network N , the subspace sensitivity with respect to Subα,T
and N is defined as

Sen(Subα,T ,N) = N (α, c)− inf
α′∈Subα,T

N (α′, c), (4.7)

where c = N (α) denotes the class that N identifies α.

Intuitively, Sen(Subα,T ,N) is the maximal decrease of the confidence value

from network N corresponding to the output class c that can be witnessed from

the subspace Subα,T for input α. In other words, given an input and a set of

specific dimensions T in it, if we impose adversarial perturbations within T , we can

measure the sensitivity of this T by calculating how much the network’s confidence

of identifying the original input α as class c is reduced. If Sen(Subα,T ,N) is

larger, it means that the input dimensions in T are more sensitive regarding the

decision-making of N on α with respect to c, i.e., perturbations in T are more

likely to make N not classify α as c.

Now we extend the subspace sensitivity defined on a given set of input dimensions

T to the sensitivity of a complete set of subspaces with respect to t for every input

α in a dataset X. That is, given a dataset X, a neural network N , and an integer t

such that 1 ≤ t ≤ m, the sensitivity for X with respect to N and t is

Sen(X,N , t) = (Sen(Subα,T ,N))Subα,T∈Subs(α,t),α∈X. (4.8)

Intuitively, Subα,T ∈ Subs(α, t) extends from a given set of dimensions T to any set

of dimensions as long as the total number of dimensions is t, and α ∈ X generalises

from a single image α to a dataset of images X. Therefore, Sen(X,N , t) is essentially

a two-dimensional array of the maximal decreases of the confidence values from

network N identifying class c, with one dimension corresponding to all the subspaces

in Subs(α, t), and the other dimension corresponding to all the inputs in X. Thus,

the total number of elements in Sen(X,N , t) is
(
m
t

)
· |X|.

We remark that the computation of subspace sensitivity for a dataset with respect

to a certain number of dimensions is nontrivial, as every element in Sen(X,N , t)

66 4.2. Subspace Sensitivity

represents an optimisation problem. For example, given a set of 20 MNIST images

and letting t = 1, Equation (4.8) requires
(

28×28
1

)
× 20 = 15 680 one-dimensional

optimisation problems. That is, given a dataset X and an integer t, the number of

elements in Sen(X,N , t) is in O(|X| ·mt), i.e., polynomial in |X| and exponential

in t. In the next section, we present a tensor-based formulation and an algorithm

to solve this challenging problem via GPU parallelisation.

4.2.2 Computation of Subspace Sensitivity

In the following, we present the algorithm to compute subspace sensitivity via

utilising the unfolding and folding operations of tensors (Definition 3.16). The basic

idea of our algorithm is to transform a set of nonlinear, non-convex optimisation

problems as given in Equation (4.8) into a tensor formulation, and solve this set of

optimisation problems efficiently via a few parallel queries of neural networks.

Given a neural network N , a dataset X, and an integer t, we would like to

compute the subspace sensitivity Sen(X,N , t). Recall that all the inputs in the

dataset are independent and identically distributed. While each input α in the

dataset generates a complete set of subspaces Subs(α, t), we remark that for different

inputs α and β in X, we have |Subs(α, t)| = |Subs(β, t)|, which means that each

input has the same number of subspaces for a given t. Let p = |X| denote the total

number of inputs in the dataset, and, for each input α ∈ Rm, let k = |Subs(α, t)|

denote its total number of subspaces with respect to t, i.e, k =
(
m
t

)
.

Adversarial Perturbations via Grid Search

We evaluate the subspace sensitivity utilising adversarial perturbations. To be

more specific, we impose modifications to each dimension of an input and every

possible combination of the dimensions to evaluate their corresponding sensitivities

in terms of how they would change the overall classification outcome of the input.

Now the problem is what kind of modifications should be imposed upon an input.

Ideally, every possible value in a dimension of the input should be traversed and its

4. Robustness of Deep Neural Networks on Pixel-Level Images 67

sensitivity for each possible value evaluated. For example, given a MNIST image

with dimensions [0, 255]28×28, even when t = 1, to evaluate sensitivity we need

to try the 256 integers in all the
(

28×28
1

)
dimensions to see which dimension with

what value makes the classification confidence decrease the most. And when t

increases, the computation grows exponentially. Regarding this, we define an error

tolerance ε > 0 as a workaround. In other words, instead of traversing every possible

value of a dimension, by applying grid search, we recursively sample ∆ = 256/ε

or 1/ε (after normalising into [0, 1]28×28) values in each dimension. For example,

let ε = 0.1 for a normalised MNIST image, then, for a pixel with original value

0, only 1/ε = 10 values need to be tested, i.e., {0.1, 0.2, . . . , 1}.

Now we generalise this grid search to an input α ∈ Rm in the dataset X. Given

integer t, for a set of specific dimensions T such that |T | = t, there are overall

∆t ways of imposing adversarial perturbations upon the set, i.e., ∆ samples in

each dimension and t dimensions in total. After adding those ∆t perturbations,

we essentially turn each subspace Subα,T ∈ Subs(α, t) into a two-dimensional grid

G(Subα,T) ∈ Rm×∆t , where Rm indicates a manipulated input α′, and ∆t the

number of α′ on the grid. Furthermore, if we extend this grid from a subspace to

the complete set of subspaces for the input α, and, even further, to every input

in the dataset X, then we can formulate the following tensor

T (X, t,∆) = Tensor((G(Subα,T))Subα,T∈Subs(α,t),α∈X) ∈ Rm×∆t×k×p, (4.9)

which includes all the subspaces Subα,T ∈ Subs(α, t), and all the inputs α ∈

X. Recall that k =
(
m
t

)
and p = |X|. Intuitively, T (X, t,∆) includes all the

possible adversarial perturbations, sampled by ∆, imposed on any t dimensions

within every input of the dataset.

Parallelisation via Unfolding and Folding of Tensors

Subsequently, by referring to the unfolding and folding operations of tensors in

Definition 3.16, we apply the mode-1 tensor unfolding to T (X, t,∆) so that we get a

two-dimensional matrix U[1](T (X, t,∆)) ∈ Rm×N such that N = ∆t ·k ·p. Note that

68 4.2. Subspace Sensitivity

here N is an integer indicating the total number of manipulated inputs α′ ∈ Rm.

Then we feed this tensor into the network N to obtain the corresponding confidence

values of N identifying all these perturbed α′ into class c = N (α). That is,

Cons(X, t,∆,N) = N (U[1](T (X, t,∆)), c) ∈ RN , (4.10)

whereN = ∆t·k·p. Here Cons(X, t,∆,N) is a vector comprisingN confidence values

of class c, either probabilities or logits, from N with respect to the N perturbed

inputs α′. We remark that Equation (4.10) only needs a single network query, and

if implemented in GPUs then the method is very efficient, as demonstrated in the

experimental results (Figure 4.7(c)). Now we apply a tensor folding operation to

fold this vector of confidence values back to a tensor

Cons(X, t,∆,N) = F(Cons(X, t,∆,N)) ∈ R∆t×k×p. (4.11)

Here, we highlight the difference between R∆t·k·p and R∆t×k×p. Although they both

indicate all the confidence values, we remark that the former is a one-dimensional

array and the latter is a tensor. Intuitively, the main purpose of these three

Equations (4.9), (4.10), and (4.11) is to take advantage of the GPU parallelisation

via the unfolding and folding operations of tensors, because, for a neural network,

classifying an input batch that contains a large number of inputs is much faster

than sequentially identifying them.

Once we have obtained all the confidence values, in order to compute sensitivity

defined by the maximal decrease of the confidence, we need to find the minimum

confidence value so that we can measure the difference from the original confidence.

Therefore, on the tensor Cons(X, t,∆,N), we search for the minimum values along

the first dimension to obtain1

Con(X, t,∆,N)min = min(Cons(X, t,∆,N), 1) ∈ Rk×p. (4.12)

The reason that we search in the first dimension, marked by ∆t, is that R∆t has

covered all the possible adversarial perturbations α′ sampled by ∆ imposed on
1Here, for convenience purposes, we exploit the Matlab notation min(Y, k), which computes

the minimum values over the k-th dimension of a multi-dimensional array Y . We use similar
notation in the remainder of this chapter.

4. Robustness of Deep Neural Networks on Pixel-Level Images 69

a subspace Subα,T such that |T | = t. Intuitively, for a specific set of dimensions

that can be perturbed, the minimum confidence value corresponds to a particular

way of manipulating the set of dimensions in the sense that it will result in the

maximal confidence decrease. Actually, if we look back at the definition of subspace

sensitivity in Equation (4.7), we notice that the returned minimum confidence

value is exactly infα′∈Subα,T N (α′, c). Moreover, in Theorem 3, we demonstrate that

grid search provides the guarantee of reaching the global minimum by utilising

the Lipschitz continuity of neural networks.

To this end, we have almost solved all the k × p, i.e.,
(
m
t

)
· |X|, optimisation

problems in Equation (4.8). Now that we already have the minimum confidence

values, what is left to do is to construct a tensor of the original confidence that the

network classifies the input into its class, i.e., N (α, c). Below is the tensor

Con(X, t,N) = (
k︷ ︸︸ ︷

N (α, c), . . . ,N (α, c)) ∈ Rk×p, (4.13)

which includes all the inputs α ∈ X in the dataset. Intuitively, Con(X, t,N) is

the tensor that contains the starting points of the optimisation problems and

Con(X, t,∆,N)min are the resulting optimal values. Note that these two tensors

have the same dimension Rk×p.

The following theorem shows the correctness of our computation, where the

subspace sensitivity for the whole dataset X with respect to the network N and

the integer t, i.e., Sen(X,N , t), has been defined in Equation (4.8).

Theorem 1 (Subspace Sensitivity). Given a dataset X, a neural network N ,

an integer t, and an ε grid search, the subspace sensitivity Sen(X,N , t) for X

with respect to N , t, and ∆ = 1/ε can be computed by

Sen(X,N , t)∆ = Con(X, t,N)− Con(X, t,∆,N)min. (4.14)

Proof. By utilising the Lipschitz continuity of neural networks, Theorem 3

establishes that grid search provides the guarantee that Con(X, t,∆,N)min

reaches the global minimum. Then, combined with the definition of subspace

70 4.3. Tensor-Based Algorithms for Upper and Lower Bounds

sensitivity in Equations (4.8) and (4.7), the computation of Sen(X,N , t)∆

via subtracting the global minimum confidence from the original confidence

follows naturally.

4.3 Tensor-Based Algorithms for Upper and Lower
Bounds

The computation of the maximum safe radius MSR(N ,α, d, d) of Definition 4.2 is

hard for the Hamming distance dm. Below we analyse the computational complexity

in the size of input dimensions and error tolerance.

Theorem 2 (Complexity). Given a network N and an input α normalised

into [0, 1]m, when the metric d is the Hamming distance dm, the maximum

safe radius problem is NP-hard, and there exists a deterministic algorithm

that can compute MSR(N ,α, dm, d) in time complexity O((1 + 1
ε
)m) for the

worst-case scenario when the error tolerance for each dimension is ε > 0.

Proof. Here we consider the worst-case scenario and use a straightforward grid

search to verify the time complexity needed. In the worst case, the maximum

radius of a safe metric ball for network N is MSR(N ,α, dm, d) = m. A grid

search with grid size ∆ = 1/ε starts from dm = 1 to verify whether dm is the

radius of the maximum safe ball and would require the following running time

in terms of the network queries.
m∑

dm=1

(
n

dm

)
∆dm = (1 + 1

ε
)m. (4.15)

From the above proof, we obtain the following remark.

Remark 2. Computing MSR(N ,α, dm, d) is a more challenging problem for

the Hamming distance dm, since it requires a higher computing complexity

than, e.g., the L1 and L2 norms. Namely, grid search only requires (1/ε)m

queries of the network to estimate MSR(N ,α, L1, d)) or MSR(N ,α, L2, d) given

4. Robustness of Deep Neural Networks on Pixel-Level Images 71

the same error tolerance ε.

4.3.1 Computation of Lower and Upper Bounds

It is demonstrated in Theorem 2 that the complexity of the maximum safe radius

problem is NP-hard. Therefore, instead of directly computing the maximum safe

radius of an input α, we propose to compute the lower and upper bounds of it,

whose intuitive meanings are that any perturbed input α′ with distance to α less

than the lower bound is definitely safe, whereas there definitely exists an adversarial

example α′ with distance to α exceeding the upper bound. After obtaining the

bounds, we gradually, but strictly, improve them so that eventually they converge

to the optimal value, i.e., MSR. Below we present the tensor-based algorithms to

compute the bounds, and later provide guarantees for their convergence.

To compute the lower and upper bounds, we utilise the definition of subspace

sensitivity in Equation (4.8) and its computation in Theorem 1. Specifically, given a

dataset X, its subspace sensitivity can be computed, i.e., Sen(X,N , t)∆. Apart from

the maximum decreases of the classification confidence caused by the adversarial

perturbations, we also care about the actual inputs that result in these decreases.

Regarding this, we construct the solutions, denoted by Solu(X,N , t)∆, which is

a tensor that includes all the modified inputs with the most effective adversarial

manipulations, i.e., the inputs that are the most sensitive in terms of affecting

the classification of the network. The way to construct the tensor of the solutions

is straightforward – essentially we replace each confidence drop in Sen(X,N , t)∆

by its corresponding perturbed input α′. This can be easily achieved through

storing the indices during the computation procedure and then applying a few

tensor operations to expand the dimension. Note that, whereas Sen(X,N , t)∆ has

dimensions Rk×p, the solutions Solu(X,N , t)∆ are in dimensions Rm×k×p, where

Rm indicates the perturbed input.

Now that we have the original dataset X, the subspace sensitivity Sen(X,N , t)∆,

and the solutions Solu(X,N , t)∆, we can compute the bounds as presented below.

72 4.3. Tensor-Based Algorithms for Upper and Lower Bounds

Recall that the integer t in the solutions constrains the number of dimensions in an

input α ∈ X that can be modified. In other words, the Hamming distance between

a perturbed input α′ and α is at most t, i.e., dm(α,α′) ≤ t.

Lower Bounds

For an input α, starting from the number of dimensions t = 1, we compute

the lower bound of MSR by finding the greatest decrease of the confidence value

in its complete set of subspaces Subs(α, t). Note that the subspace sensitivity in

Definition 4.6 is with respect to a single subspace. By comparing across the complete

set of subspaces, we obtain the most sensitive subspace. And if its corresponding

solution α′ is identified as the same as α, then we update the lower bound of

MSR to t. This is because, when even the most sensitive subspace cannot alter

the network’s classification, none of the other subspaces can. In other words, the

solutions in this complete set are all safe. Then, we gradually increase t to allow

adversarial perturbations on more dimensions, and if the most sensitive solution

remains correctly classified, then we simultaneously update the lower bound to t.

Nevertheless, if it comes to the situation that, for a certain t, the most sensitive

solution α′ is an adversarial example, then the maximum safe radius of this input

has been obtained, i.e, MSR(N ,α, dm, d) = t.

To efficiently compute the lower bounds of MSR for every input in the dataset using

parallelisation, we extend the above algorithm from a single input α to the whole

dataset X. Specifically, we reorder the solutions Solu(X,N , t)∆ and the sensitivity

of the complete set of subspaces for every input in the dataset, i.e., Sen(X,N , t)∆,

in a decreasing order with respect to the confidence drops in the complete set of

subspaces of each input. That is, the most sensitive solution for each input is placed

on top. Subsequently, we retrieve the first row of the second dimension in the sorted

solutions, i.e., Solu(X,N , t)∆[:, 1, :] ∈ Rm×p, and check whether N (Solu(X,N , t)∆[:

, 1, :]) = N (X). Intuitively, this is to check simultaneously whether the most sensitive

solution for each input is an adversarial example. The returned result is an array

4. Robustness of Deep Neural Networks on Pixel-Level Images 73

of Boolean values, within which each True or False indicates the corresponding

solution is safe or unsafe. If safe, then the lower bound of MSR for this input upgrades

to t; and if not, then the MSR of this input is reached.

Finally, we remark that, after computing Solu(X,N , t)∆, no further network

query is needed to compute the lower bounds.

Upper Bounds

The upper bounds are computed by iteratively accumulating perturbations based on

the tensor of solutions Solu(X,N , t)∆ for every input in X until a misclassification

occurs. To be more specific, for each input α in the dataset, Solu(X,N , t)∆ contains

k =
(
m
t

)
number of solution points corresponding to the same amount of total

subspaces in a complete set. Each solution reflects the optimal modification among

the total number of ∆t adversarial perturbations sampled by the grid search in a

specific subspace, as in Equation (4.12). However, under most circumstances, a

subspace-level perturbation, even the optimal one, does not tend to change the

overall classification of the input immediately, especially when t is quite small. For

example, given an image from the ImageNet dataset, when t = 2, based on the

ε grid search, a total number of ∆2 perturbations are sampled and imposed on

each subspace that comprises 2 dimensions. For a single subspace, even when the

optimal perturbation is chosen, the fact that it only changes 2 dimensions of the

ImageNet image often would not change its overall classification.

As a workaround, we accumulate the sampled perturbations across multiple

subspaces Subα,T , yet within the same complete set Subs(α, t), on α to see if the

perturbed input α′ can be turned into an adversarial example. Note that every

adversarial example produces an upper bound of the MSR. In our case, we would like

to generate the relatively smaller upper bounds so that they are closer to the actual

MSR. We achieve this by utilising the sorted tensor of solutions Solu(X,N , t)∆. For

α, we start modifying it from the perturbations within the more sensitive solution

points, then, in the decreasing order, we gradually accumulate the modifications

74 4.3. Tensor-Based Algorithms for Upper and Lower Bounds

in the less sensitive solutions, until the manipulated α′ becomes an adversarial

example, i.e., an upper bound of MSR(α,N , dm, d) is produced. However, doing this

sequentially for all inputs in X would be inefficient, as it needs to query the network

N after every subspace-level perturbation on each image.

We present an efficient tensor-based algorithm to generate the upper bounds

of MSR for every α ∈ X at the same time, taking advantage of GPU parallelisa-

tion. Intuitively, the primary gain provided by parallelisation is that during the

computation of subspace sensitivity and the bounds, a large number of perturbed

inputs are produced, depending on the values of the input dimensions and the error

tolerance. And feeding all these perturbed inputs in parallel into the network will be

much more efficient than classifying them sequentially. The key idea is to construct

a new tensor Acc ∈ Rm×k×p to maintain all the accumulated perturbations over

each α, separately yet simultaneously.

• Initialisation: Acc[:, 1, :] = Solu(X,N , t)∆[:, 1, :].

• Iteratively construct the i-th row until i = k:

Acc[:, i, :] = Acc[:, i− 1, :]� {Solu(X,N t)∆[:, i, :] e X[:, :]}, (4.16)

where � and e are tensor operations such that Acc1 � Acc2 imposes the non-zero

elements in Acc2 upon Acc1, and Acc1 eAcc2 retains those elements in Acc1 that are

different from Acc2 and sets the other elements to 0. The two operands of these oper-

ations are required to have the same type. Intuitively, Acc[:, i, :] represents the result

of accumulating the first i perturbations recorded in Solu(X,N , t)∆[:, 1 : i, :] on X.

Subsequently, we perform mode-1 unfolding to Acc and pass the result to the

network N , which yields the classifications N (U[1](Acc)) ∈ {1, . . . , n}k·p, where n

denotes the number of categories. After that, a tensor folding operation is applied

to obtain F(N (U[1](Acc))) ∈ {1, . . . , n}k×p. Finally, we can compute the minimum

column index along each row such that a misclassification occurs, denoted by

{n1, . . . , np} such that 1 ≤ ni ≤ k and 1 ≤ i ≤ p. Then we let

X′ = {Acc:,ni,: ∈ Rm×p | ni ∈ {n1, . . . , np}}, (4.17)

4. Robustness of Deep Neural Networks on Pixel-Level Images 75

which is the optimal set of inputs contributing the upper bounds of their cor-

responding MSR.

After computing Solu(X,N , t)∆, we only need one further network query to

obtain all the upper bounds of the maximum safe radii for a given dataset X.

Tightening the Upper Bounds

After computing the set of perturbed inputs contributing the upper bounds, i.e., X′,

we ask the question whether accumulating these adversarial perturbations along

the row without missing any is necessary. The answer is “No”. There might be

redundancies in X′ − X, i.e., not all the modifications in X′ − X are necessary to

observe a misclassification. We can therefore remove the redundancies and thereby

tighten the upper bounds. The procedure is more or less straightforward, as it is

essentially a reverse process of Equation (4.16). From X′, we iteratively remove

perturbations in Acc[:, ni, :] between the 1-th and the ni-th rows to check if the

misclassification is preserved. If yes, then the perturbation can be removed and the

dimension restored to the original value, thus possibly tightening the upper bound;

otherwise, the modification needs to be kept to retain the adversarial example. To

sum up, we tighten the upper bounds by removing the possibly redundant adversarial

perturbations in X′, and therefore ensure the upper bound is strictly decreasing.

4.3.2 Anytime Robustness Evaluation

Until this point, we have developed algorithms to compute the lower and upper

bounds of the maximum safe radii for a dataset. We remark that, for every input, the

lower bound of MSR(N ,α, dm, d) is updated in an increasing manner, i.e., starting

from T = 1, if all the solution points are safe then the lower bound increases

accordingly until some adversarial example occurs. Meanwhile, the upper bound is

generated from the accumulation of adversarial perturbations and then tightened

via the restoration of the unnecessary modifications, i.e., the upper bound gradually

decreases. Ideally, the increasing lower bound and the decreasing upper bound

76 4.3. Tensor-Based Algorithms for Upper and Lower Bounds

converge to the optimal value, i.e., MSR. However, in practice the run times can

be long when the input dimension is huge, i.e., large m, or a subspace contains

many dimensions, i.e, t is large.

Regarding this, we propose an anytime robustness evaluation approach, providing

pragmatic means to make progress. We first introduce the two sequences of the

lower and the upper bounds.

Definition 4.7 (Sequences of Bounds). Given a verification of the local robust-

ness problem Robust(N ,Ball(α, dm, d)), a sequence L(α) = {l1, l2, . . . , lk} ∈

R is an incremental lower bound sequence if, for all 1 ≤ i < j ≤ k, we

have li ≤ lj ≤ MSR(N ,α, dm, d). The sequence is strict, denoted as Ls(α), if

for all 1 ≤ i < j ≤ k, we have either li < lj or li = lj = MSR(N ,α, dm, d).

Similarly, we can define a decremental upper bound sequence U(α) and a

strict decremental upper bound sequence Us(α).

Then we define the anytime local robustness evaluation as follows.

Definition 4.8 (Anytime Local Robustness Evaluation). Given a verification

of local robustness problem Robust(N ,Ball(α, dm, d)), compute a lower bound

sequence L(α), and an upper bound sequence U(α), then at time t > 0,

lt ≤ MSR(N ,α, dm, d) ≤ ut (4.18)

holds. Let its centre be 1
2(lt + ut) and radius be 1

2(ut − lt), then the anytime

robustness evaluation of MSR(N ,α, dm, d) at time t is the pair

(1
2(lt + ut),

1
2(ut − lt)). (4.19)

The anytime evaluation will be returned whenever the computational procedure

is interrupted. Intuitively, we use the centre 1
2(lt + ut) to represent the current

estimate, and the radius 1
2(ut − lt) to represent its error bound. Essentially, we can

bound the true maximum safe radius MSR(N ,α, dm, d) via the anytime robustness

evaluation. Moreover, to extend to the anytime global robustness evaluation, we

4. Robustness of Deep Neural Networks on Pixel-Level Images 77

follow the computation of EMSR from MSR in Definition 4.3, and calculate the expected

bounds as the mean of all the bounds for every input at time t, i.e.,

Eα∈Xlt ≤ EMSR(N ,X, dm, d) ≤ Eα∈Xut. (4.20)

4.3.3 Convergence Analysis

We perform the convergence analysis of the proposed method. For simplicity, in

the proofs we consider the case of a single input α. The convergence guarantee

can be extended easily to a finite dataset X.

Theorem 3 (Guarantee of Global Minimum of Grid Search). Assume that a

neural network N with computation function f(α) : [0, 1]m → Rn is Lipschitz

continuous with respect to the Lp norm, and its Lipschitz constant is Lip. By

recursively sampling ∆ = 1/ε in each dimension through grid search, denoted

as Subs∆ = {α1, . . . ,α∆m}, the following relation holds:∥∥∥∥fopt(α∗)− min
α∈Subs∆

f(α)
∥∥∥∥
p

≤ Lip ·
∥∥∥∥ ε2Im

∥∥∥∥
p
, (4.21)

where fopt(α∗) represents the global minimum value, minα∈Subs∆ f(α) denotes

the minimum value returned by grid search, and Im ∈ Rm×m is an all-ones

matrix.

Proof. Based on the Lipschitz continuity assumption of f , we have

‖f(α1)− f(α2)‖p ≤ Lip · ‖α1 −α2‖p (4.22)

The ε grid search guarantees that ∀α̃ ∈ [0, 1]m, ∃α ∈ Subs∆ such that

‖α̃−α‖p ≤
∥∥∥∥ ε2Im

∥∥∥∥
p
. The global minimum α∗ must be some point in the

input space [0, 1]m, therefore the theorem holds as we can always find α from

the sampled set Subs∆ such that ‖α∗ −α‖p ≤
∥∥∥∥ ε2Im

∥∥∥∥
p
.

The guarantees for the lower and the upper bounds are explained as follows,

with detailed proofs in [60].

78 4.4. Experimental Results

Theorem 4 (Guarantee for Lower Bounds). Given a neural network N , and

an input α ∈ [0, 1]m, if our method generates a lower bound l(N ,α), then

N (α′) = N (α) holds for all α′ such that dm(α′,α) ≤ l(N ,α). That is, N is

guaranteed to be safe for any pixel perturbations with at most l(N ,α) pixels.

Intuitively, Theorem 4 shows that the lower bounds generated by our algorithm

are the lower bounds of MSR(N ,α, dm, d). We gradually increase t = l(N ,α) and

re-run the lower bound generation algorithm. Because the number of dimensions of

an input is finite, the distance to an adversarial example is also finite. Therefore,

the lower bound generation algorithm converges eventually.

Theorem 5 (Guarantee for Upper Bounds). Given a neural network N , and

an input α ∈ [0, 1]m, if our method generates an upper bound ut(N ,α) for any

t > 0, then ut+1(N ,α) ≤ ut(N ,α) holds for all t > 0, and limt7→∞ ut(N ,α) =

MSR(N ,α, dm, d).

Intuitively, there are three key ingredients to prove the monotonic decrease of

the upper bounds: (1) the complete subspaces generated at t are always included

in the complete subspaces at t + 1; (2) the pixel perturbation from a subspace

with higher sensitivity always results in a larger confidence decrease than those

with lower sensitivity; and (3) the tightening strategy is able to exclude the

redundant pixel perturbations.

4.4 Experimental Results

We implement our approach in a tool named DeepTRE2, short for “Tensor-based

Robustness Evaluation for Deep Neural Networks”, and report experimental evidence

for the utility of our algorithm. Some experiments may require simple adaptations

of the optimisation problem in Definition 4.3, e.g., small changes to the constraints,

nevertheless, no significant modification to the algorithm itself is needed to process
2Available on GitHub: https://github.com/TrustAI/L0-TRE

https://github.com/TrustAI/L0-TRE

4. Robustness of Deep Neural Networks on Pixel-Level Images 79

(a) Lower/upper bounds and estimates of MSR

(b) Adversarial examples (top) and saliency maps (bottom)

Figure 4.3: Local robustness and subspace sensitivity of common ImageNet networks.
(a) Lower bounds, upper bounds, and estimates of the local robustness for the five neural
networks with respect to an ImageNet image. (b) Adversarial examples on the upper
boundaries with perturbations in red circle (top) and the corresponding saliency maps
where a brighter colour indicates a more sensitive pixel (bottom).

these variants. In this section, we use several case studies to demonstrate the

broad applicability of DeepTRE.

4.4.1 Saliency Maps and Local Robustness

We study the relation of subspace sensitivity and local robustness via applying our

method to five state-of-the-art network models trained on the ImageNet dataset,

including AlexNet (8 layers), VGG-16 (16 layers), VGG-19 (19 layers), ResNet50

(50 layers), and ResNet101 (101 layers). Introduction to these ImageNet models, as

80 4.4. Experimental Results

well as the details of the experimental setup, can be found in Appendix A.1.

In this case, we set the subspace dimension t = 1, which means that we consider

the sensitivity of each pixel individually, i.e., not including groups of different pixels.

Based on this single pixel level sensitivity, in Figure 4.3(b) we generate the saliency

maps of the five ImageNet models with respect to the same “kit fox” image. We

observe that, while AlexNet and VGG-19 somehow “think” the background is more

salient, VGG-16 and ResNet50/101 “see” more into the silhouette of the image.

Correspondingly, based on the saliency map, we produce an adversarial example for

each model, from which we can see that the adversarial perturbations for VGG-16

and ResNet50/101 are basically imposed on the face and the back of the “kit fox”.

In other words, this is closer to where humans would focus on when we try to

distinguish the animal in the image, not just some random place in the background.

Nevertheless, merely analysing a network’s adversarial examples is not enough.

We measure the robustness quantitatively via computing the MSR for each model. As

the ImageNet dataset is large in dimensions thus making it difficult to compute the

MSR, we compute a lower and upper bound for it and give the mean as an estimate.

Figure 4.3(a) reveals that VGG-16 and ResNet50/101 have a relatively high MSR, i.e.,

they are comparatively more robust with respect to this specific image. This result

is in fact consistent with the phenomena observed from saliency maps. Moreover,

if we compare similar network structures, such as VGG-16/19 and ResNet50/101,

we may conclude that a model with deeper layers is not necessarily more robust to

adversarial perturbations, as VGG-19 and ResNet101 have a lower MSR.

Specifically, we remark that for AlexNet with respect to this specific image, the

lower and upper bounds converge to the actual MSR, i.e., dm = 2. Intuitively, it

means that manipulating a single arbitrary pixel of the “kit fox” image will not

alter the classification of AlexNet, whereas changing not more than two pixels will

definitely result in an adversarial example. That said, DeepTRE is able to find the

ground-truth adversarial example3 for AlexNet on this image.
3Ground-truth adversarial images are images at the boundary of a safe metric ball, which were

4. Robustness of Deep Neural Networks on Pixel-Level Images 81

4.4.2 Convergence of Bounds and Global Robustness

Now we generalise from searching for adversarial examples to analysing local and

global robustness of neural networks. Recall from Theorem 2 that computing the

MSR directly is NP-hard, and the complexity is determined primarily by the number

of input dimensions. Therefore, in this section we evaluate robustness through

demonstrating convergence of the lower and upper bounds, and also examine how

input dimension would affect convergence.

Specifically, we train two neural networks on the MNIST dataset with different

input dimensions, namely DNN-Reduced and DNN-Standard. The former is trained

on the dataset with reduced image size 14 × 14, whereas the latter trained with

original size of 28× 28. To compute global robustness, i.e., EMSR, for DNN-Reduced

we work with a set of 5300 randomly sampled test images, and for DNN-Standard

we use a set of 2400 test images. The structure of these two networks and their

training/testing accuracy statistics can be found in Appendix A.2, together with

the parameter settings of DeepTRE and the hardware/software platforms.

DNN-Reduced: Local/Global Robustness and Convergence of Bounds

We first look into local robustness, which is essentially a special case of global

robustness where |X| = 1, i.e., on a single image instead of a dataset. Figure 4.4(a)

illustrates the converging lower and upper bounds of the MSR of DNN-Reduced with

subspace dimension t ∈ {1, 2, 3}. We choose this particular image to demonstrate

the worst case of our approach – when the subspace dimension is one pixel, the

initial upper bound dm = 27 is actually quite large. However, after increasing the

subspace dimension to two pixels, the upper bound decreases drastically from 27 to

3 and simultaneously the lower bound increases from 1 to 2. That is, the uncertainty

radius of MSR is reduced significantly from 26 to 1. Furthermore, when the subspace

dimension is three pixels, the bounds converge to the actual MSR = 3. Intuitively, we

proposed in [7].

82 4.4. Experimental Results

(a) Local robustness (b) Global robustness (c) Time

Figure 4.4: Local and global robustness of DNN-Reduced with subspace dimension
t ∈ {1, 2, 3}. (a) Convergence of lower and upper bounds, together with the estimate
of MSR for one image. (b) Convergence of lower and upper bounds, together with the
estimate of EMSR for the test dataset. (c) Box-plots of computational time with respect to
subspace dimension.

can say that if modifying this MNIST image with fewer than three pixels, let it be any

location or combination of pixels, the classification of RNN-Reduced will not alter.

Now we extend to global robustness properly over the test dataset when |X| =

5300 in Figure 4.4(b). In general, we observe that our approach obtains tight lower

and upper bounds efficiently and these bounds converge quickly. Notably, we have

the estimate of EMSR as 1.97 when the subspace dimension is one pixel, and after

adding another pixel of subspace, the estimate becomes 2.1, so the relative error

is less than 7%. Moreover, the relative error is even smaller when the subspace

dimension changes to three pixels. In other words, our method is able to provide a

good approximation of EMSR with reasonable error when the computation proceeds,

until eventually the actual EMSR is obtained when the bounds converge. Concerning

convergence, in Figure 4.5 we plot the convergence condition for all these 5300

test images. These charts show a clear overall trend that our algorithm converges

for most images after a few iterations.

4. Robustness of Deep Neural Networks on Pixel-Level Images 83

Figure 4.5: Convergence of lower and upper bounds of DNN-Reduced on the test dataset.
From top to bottom: convergence of all sampled test images for subspace dimension
t ∈ {1, 2, 3}, respectively. The vertical blue line indicates that all images to the left have
converged.

As for the computational time, Figure 4.4(c) gives the box-plots of the cost for

local robustness with respect to different subspace dimensions. We remark that,

when the subspace is one pixel, our approach takes less than 0.1 s to process an

image, which suggests its potential application for real-time scenarios.

DNN-Standard: Scalability of Robustness and Convergence

We evaluate the scalability of our robustness evaluation via convergence of bounds

over different input dimensions. Regarding this, the model DNN-Standard is trained

on the original MNIST training set, and we present its robustness and convergence

for 2400 test images in Figure 4.6. We observe that, even for a network with tens

of thousands of hidden neurons, DeepTRE can still achieve tight estimates of EMSR

for most images, though the lower and upper bounds require more computational

resource to converge to the actual values, due to the increase of the image size.

Also, the large size of the input affects the execution time because, when the

84 4.4. Experimental Results

16.--------,-------.------��

en
en

14

12

� 10
+J

en
:::::,

-g 8
0::

co

-g 6

(9

4

2

.......
.......

.......
.......

•••••••••••••••••••

.......
.......

.......
.......

.......
.......

••••••••••••• ••••••••••

1 2

t (Subspace Dimension)

160

� 140
en

"'O
C

o 120
(.)
(])
en

.__. 100
(])

E
·-

I-- 80
C

0
·-

+-'

60 ro
+-'

:::::,
c..

E 40
0

(_)

20

0

+

+

I

I

I

I

I

1 2

t (Subspace Dimension)

(a) Global robustness and time (b) Lower and upper bounds

Figure 4.6: Global robustness and convergence of DNN-Standard on the test dataset
with subspace dimension t ∈ {1, 2}. (a) Global robustness of DNN-Standard and box-plots
of computational time. (b) Lower and upper bounds, together with the estimates of MSR
for all sampled test images.

subspace dimension changes from one to two pixels, the choice of subspace increases

considerably by
(

2
28×28

)
.

Besides, if we compare global robustness of DNN-Standard and DNN-Reduced,

we discover that the former has a higher EMSR (at least when t ∈ {1, 2}), which may

be because DNN-Standard is trained on the original, rather than the reduced size

version of the MNIST dataset, and therefore it tends to be more robust against

adversarial perturbations. Finally, we exhibit some ground-truth adversarial images

returned by DeepTRE in Figure A.2.4 in the Appendix.

4.4.3 Competitive Adversarial Attacks

While generating adversarial examples is not the primary goal of our approach, we

remark that our upper bound algorithm is highly competitive with the state-of-the-

art adversarial attack methods in terms of the Hamming distance. Specifically, we

train two MNIST and CIFAR-10 networks and compare on 1000 test images with

other tools, such as JSMA [53], C&W [8], DLV [28], SafeCV [76], and DeepGame [80].

4. Robustness of Deep Neural Networks on Pixel-Level Images 85

(a) Hamming distance

(b) Computational time (c) CPUs vs. GPUs

Figure 4.7: Competitive adversarial attacks of DeepTRE and other tools. (a) Means
and standard deviations of the adversarial Hamming distance. (b) Means and standard
deviations of the computational time of all tools. (c) Means and standard deviations of
the computational time of DeepTRE with CPUs or GPUs.

Model structure and training/testing accuracy, as well as the parameter setting

of each tool, are given in Appendix B.2.

Adversarial Hamming Distance

We evaluate the efficiency of adversarial attacks in terms of the Hamming distance

to the original image and the computational time. Intuitively, a small adversarial

distance indicates a more subtle perturbation, which is thus less likely to be

86 4.4. Experimental Results

perceived by humans. Figure 4.7(a) depicts the means and standard deviations of

the Hamming distances of the adversarial images produced by these six tools. We

observe that, on the MNIST dataset, our tool DeepTRE performs better than JSMA,

DLV, and SafeCV, and is comparable to C&W and DeepGame. As for CIFAR-10, the

bar chart reveals that DeepTRE achieves the smallest adversarial distance among

all competitors, modifying only 2.62 pixels on average.

Computational Cost

As for the computational time, we compare all these tools against DeepTRE when

using CPUs and GPUs. The latter is to show the advantage of our tensor-based

parallelisation during the computation process. Figure 4.7(b) presents the running

times of all these tools. Note that the vertical axis is in logarithmic scale. We

can see that, for both MNIST and CIFAR-10 networks, our tool delivers very

efficient adversarial attacks. For example, on the MNIST model, DeepTRE performs

18×, 100×, 1050×, 357×, and 23× faster than JSMA, C&W, DLV, SafeCV, and

DeepGame, respectively. Moreover, Figure 4.7(c) demonstrates that the utilisation

of tensor-based parallelisation significantly improves computational efficiency. For

instance, when using GPUs, DeepTRE is 38× faster in attacking the MNIST model

and 93× faster on CIFAR-10. Below we list the hardware setups:

• “CPU-1” – Tensorflow on an i5-4690S CPU;

• “CPU-2” – Deep Learning Toolbox (MATLAB 2018b) on an i7-7700HQ CPU;

• “GPU-1” – Tensorflow with parallelisation on an NVIDIA GTX TITAN GPU;

• “GPU-2” – Deep Learning Toolbox (MATLAB 2018b) with parallelisation on

an NVIDIA GTX-1050Ti GPU.

Finally, we compare some adversarial examples of the same images found by

these six tools in Figures B.1 and B.2 of Appendix B.2. These attack methods

indicate that modifying one to three pixels suffices to trigger a misclassification

of a well-trained neural network.

4. Robustness of Deep Neural Networks on Pixel-Level Images 87

Table 4.1: A sketch of the architectures of the MNIST models from DNN-1 to DNN-7
together with their accuracy rates on the test dataset. Each integer indicates the number
of layer types, activation functions, or operations. Detailed model structures are given in
Appendix A.3.2.

DNN-1 DNN-2 DNN-3 DNN-4 DNN-5 DNN-6 DNN-7

Convolutional 1 2 2 2 2 3 4

ReLU 1 2 2 3 3 4 5
Batch-

Normalisation 1 1 1 1 3

Dropout 1 1 2
Fully

Connected 1 1 1 2 2 2 2

Accuracy (%) 97.75 97.95 98.38 99.06 99.16 99.13 99.41

4.4.4 Robustness and Accuracy of Model Architectures

In this section, we examine how different model architectures of a neural network

affect its accuracy rates on the same training and test datasets, as well as its

robustness against adversarial perturbations. A general intuition is that a network

with deeper layers tends to be more accurate and thus is more robust. Below, we

perform experiments to demonstrate that this is not necessarily true.

Specifically, we train seven different networks on the MNIST dataset, namely

DNN-i for i ∈ {1, . . . , 7}. These networks vary in model architectures in terms of

the depth of layers and also the number of layer types, activation functions, or

operations. While the detailed structures are listed in Appendix A.3.2, we provide

a sketch of them in Table 4.1, where the complexity gradually increases from

DNN-1 to DNN-7. All models are trained with identical training parameters on the

same hardware and software platforms, attached in Appendix A.3. Regarding the

accuracy rates, while all these networks achieve 100% accuracy on the training set,

we observe that the testing accuracy increases generally from 97.75% to 99.41%.

We evaluate global robustness of these seven networks on 1000 sampled test

images. For each network, Figure 4.8 plots the expected maximum safe radius (EMSR)

88 4.4. Experimental Results

Figure 4.8: Global robustness in terms of lower and upper bounds of the expected
maximum safe radius (EMSR) of seven MNIST networks with varying model structures on
1000 test images when the subspace dimension t ∈ {1, 2}.

and its lower and upper bounds with respect to subspace dimension t ∈ {1, 2}.

By comparing EMSR of all the models, we endeavour to identify the architectural

choices that would affect robustness, in this case, against adversarial perturbations

based on the Hamming distance. Recall that a greater EMSR indicates better

robustness. We observe the following:

• depth of network: A deeper network, at least with too many layers relative to

the dimension of each input in the dataset, is not necessarily more robust. For

example, here DNN-7 is the deepest and has the most complicated structure,

but is in fact not as robust as DNN-6.

• convolutional layer : A convolutional layer with ReLU as the activation function

is likely to improve the robustness of a network. From the figure, we discover

that the EMSR increases from DNN-3 to DNN-6, accompanied by the addition

of more convolutions and ReLU functions in the table. This is also reflected

by DNN-1 and DNN-2, where the latter has an extra convolutional layer with

ReLU and is more robust.

4. Robustness of Deep Neural Networks on Pixel-Level Images 89

• batch-normalisation: A batch-normalisation operation, though it enhances

accuracy, might actually compromise the robustness of a network. In the figure,

we spot an obvious drop of EMSR from DNN-2 to DNN-3 and also from DNN-6

to DNN-7, which is probably caused by the existence of batch-normalisation

in DNN-3 and the extra two batch-normalisation operations in DNN-7.

To this end, we remark that accuracy rate measured on the training and test

datasets is not necessarily a good proxy for robustness: a network with higher

accuracy might turn out to be less robust. For example, in our experiments DNN-7

is less robust than DNN-2 while the former has a remarkably higher accuracy rate.

That said, neural networks may require a balance between robustness and their

ability to generalise, which is currently represented by the testing accuracy [69].

4.5 Summary

To the best of our knowledge, this is the first algorithm that evaluates local and global

robustness of deep neural networks with provable guarantees based on the Hamming

distance. We provide a tensor-based implementation of the technique to exploit the

inherent parallelism. Our experimental results demonstrate wide applicability and

efficiency of the method, with potential for real-time deployment. We hypothesise

that the approach computes a good proxy for robustness against physical attacks

that rely on the manipulation of a small part of the objects that are to be recognised.

90

5
Robustness of Deep Neural Networks on

Features of An Image

Contents

5.1 Robustness on Features of An Image 93
5.1.1 The Maximum Safe Radius Problem 96
5.1.2 The Feature Robustness Problem 103

5.2 A Game-Based Approximate Verification Approach . 108
5.2.1 Problem Solving as A Two-Player Turn-Based Game . . 109
5.2.2 Safety Guarantees via Optimal Strategy 113
5.2.3 Complexity of the Problem 114

5.3 Algorithms and Implementation 115
5.3.1 Upper Bounds: Monte Carlo Tree Search 116
5.3.2 Lower Bounds: Admissible A* in a Cooperative Game . 119
5.3.3 Lower Bounds: Alpha-Beta Pruning in a Competitive

Game . 122
5.3.4 Anytime Convergence 123

5.4 Experimental Results . 125
5.4.1 Feature-Based Partitioning 125
5.4.2 Convergence Analysis of the Upper and Lower Bounds . 127
5.4.3 Comparison with Existing Approaches in Adversarial

Attacks . 133
5.5 Summary . 134

In this chapter, apart from the maximum safe radius considered in the previous

91

92 5. Robustness of Deep Neural Networks on Features of An Image

chapter, we also study the feature robustness problem, which aims to find a feature,

or a subset of features on a given input, that is the most robust against adversarial

perturbations. To evaluate the robustness on the feature-level is partially inspired

by the sensitivity analysis and the saliency maps in Chapter 4. It is surprising to see

that a well-trained network would identify an image into a specific class, not because

of the pixels within the main object, but due to some rather “random” pixels (at

least to human perception) in the background. This does not make sense because,

when humans perceive an image, we immediately identify the salient features and

almost instantly exclude the irrelevant elements out of subconsciousness. Regarding

this, we think feature robustness is an exciting problem to dig into.

As for the metrics, instead of the Hamming distance, in this chapter we work

with the Lp norms, i.e., the Manhattan distance (L1 norm), the Euclidean distance

(L2 norm), and the Chebyshev distance (L∞ norm), in order to study other

possible physically plausible distortions such as “brightness change”. Recall that,

in Section 3.2, we remark that the Hamming distance is not actually a norm as it

does not satisfy positive homogeneity (Remark 1). Based on this, we highlight the

key differences between the approach in Chapter 4 and this chapter, and explain in

two respects why they cannot be applied on these metrics interchangeably.

• On one hand, for the pixel-based approach in Chapter 4, because the number

of input dimensions is finite, the Hamming distance to an adversarial example

is always finite, i.e., dm ∈ N+. Moreover, no matter how a single dimension

is perturbed, the resulting adversarial distance always remains as one pixel.

However, when dealing with the Lp norms, where the distance values are not

integers but real numbers, i.e., ‖x− x′‖p ∈ R+, the pixel-based approach is

no longer practically applicable as the adversarial distance is now dependent

on each small perturbation in every pixel.

• On the other hand, the method proposed in this chapter guarantees robustness

based on the Lp norms but cannot generalise the guarantees to the Hamming

5. Robustness of Deep Neural Networks on Features of An Image 93

distance. This is because in this chapter we utilise Lipschitz continuity to

discretise the input space so that the two problems, the maximum safe radius

and feature robustness, are reduced to finite optimisations with provable

guarantees. However, from Definition 3.5 we know that ‖f(x)− f(x′)‖p ≤

Lip · ‖x− x′‖p no longer holds for the Hamming distance. If we relax the

constraints on guarantees, e.g., focus on generating adversarial examples

instead, then this method also works with the Hamming distance, which is

demonstrated in Section 5.4.3.

The organisation of this chapter is as follows. In Section 5.1, we first describe

the two problems, maximum safe radius and feature robustness, and then reduce

them into two finite optimisations while showing that such reductions have provable

guarantees under the assumption of Lipschitz continuity. Then, in Section 5.2,

we show that the finite optimisation problems can be computed as the solution

of two-player turn-based games, where Player I selects features and Player II

then performs atomic perturbations within the chosen features. We then exploit

algorithms to compute the upper and the lower bounds of Player I’s reward, and

provide convergence analysis in Section 5.3. Finally, we implement the algorithms

into a tool DeepGame and report the experimental results in Section 5.4.

5.1 Robustness on Features of An Image

Recall that we have defined the metric ball Ball and the maximum safe radius MSR

in the previous chapter, here we continue working with these two concepts, and

consider another problem – the feature robustness problem, which we introduce in

Section 5.1.2. Besides, based on adversarial examples (Definition 3.7), we extend

it to the notions of targeted and non-targeted safety as follows.

Definition 5.1 (Targeted and Non-Targeted Safety). Given an input α ∈ D,

a distance measure Lp for some p ≥ 0, and a distance d, an adversarial example

α′ of class c is such that α′ ∈ Ball(α, Lp, d), N (α) 6= N (α′), and N (α′) = c.

94 5.1. Robustness on Features of An Image

Moreover, we write advLp,d(α, c) for the set of adversarial examples of class c

and let

advLp,d(α) =
⋃

c∈C,c6=N (α)
advLp,d(α, c). (5.1)

A targeted safety of class c is defined as advLp,d(α, c) = ∅, and a non-targeted

safety is advLp,d(α) = ∅.

The following formalisation focuses on the targeted safety of a network N with

respect to a given input α and a fixed class c 6= N (α). We remark that the situation

of non-targeted safety, i.e., misclassification into class other than c, is similar.

Input Manipulations

To study the crafting of adversarial examples, we require the following operations

for manipulating inputs. Let τ > 0 be a positive real number representing the

manipulation magnitude, then we can define the input manipulation operations

δτ,X,ψ : D → D for X ⊆ P0, a subset of input dimensions, and ψ : P0 → N,

an instruction function by:

δτ,X,ψ(α)(i) =
α[i] + ψ(i) ∗ τ, if i ∈ X
α[i], otherwise

(5.2)

for all i ∈ P0. Note that if the values are bounded, e.g., in the interval [0, 1],

then δτ,X,ψ(α)(i) needs to be restricted to be within the bounds. Let Ψ be the

set of possible instruction functions.

The following lemma shows that input manipulation operations allow one to

map one input to another by changing the values of input dimensions, regardless

of the distance measure Lp.

Lemma 1. Given any two inputs α and α′, and a distance ‖α−α′‖p for any

measure Lp, there exists a magnitude τ > 0, an instruction function ψ ∈ Ψ,

and a subset X ⊆ P0 of input dimensions, such that

‖α− δτ,X,ψ(α′)‖p ≤ ε (5.3)

where ε > 0 is an error bound.

5. Robustness of Deep Neural Networks on Features of An Image 95

Intuitively, any distance can be implemented through an input manipulation

with an error bound ε. The error bound ε is needed because input α ∈ D = [0, 1]n

is bounded, and thus reaching another precise input point via a manipulation is

difficult when each input dimension is a real number.

We will also distinguish a subset of atomic input manipulations, each of which

changes a single dimension for a single magnitude.

Definition 5.2. Given a set X, we let ∆(X) be the set of atomic input

manipulations δτ,X1,ψ1 such that

• X1 ⊆ X and |X1| = 1, and

• ψ1(i) ∈ {−1,+1} for all i ∈ P0.

Lemma 2. Any input manipulation δτ,X,ψ(α) for some X and ψ can be

implemented with a finite sequence of input manipulations

δτ,X1,ψ1(α), . . . , δτ,Xm,ψm(α) ∈ ∆(X). (5.4)

While the existence of a sequence of atomic manipulations implementing a given

manipulation is determined, there may exist multiple sequences. On the other hand,

from a given sequence of atomic manipulations we can construct a single input

manipulation by sequentially applying the atomic manipulations.

Feature-Based Partitioning

As introduced in Section 3.4.2, natural data forms a high-dimensional manifold,

and feature manifolds usually have lower dimensions than the data manifold. In

other words, the set of features form a partition of the input dimensions. Formally,

we define the feature-based partition of an input as follows.

Definition 5.3 (Feature Extraction). Let λ be a feature of an input α ∈ D,

then we use Pλ ⊆ P0 to denote the dimensions represented by λ. Given

an input α, a feature extraction function Λ maps an input α into a set of

features Λ(α) such that (1) P0 = ⋃
λ∈Λ(α) Pλ, and (2) Pλi ∩ Pλj = ∅ for any

96 5.1. Robustness on Features of An Image

λi, λj ∈ Λ(α) with i 6= j.

In this chapter, we employ two feature extraction approaches to partition an input

into disjoint subsets, namely the saliency-guided grey-box and the feature-guided

black-box methods. The former utilises the saliency map generated from the subspace

sensitivity in Chapter 4, whereas the latter applies the SIFT algorithm [41] to the

input locally. Section 5.4.1 provides an experimental illustration of these methods.

We remark that our technique is not limited to image classifiers and is able to

work with general classification tasks, as long as there is a suitable feature extraction

method that generates a partition of the input dimensions. In this case, we focus

on image classification for illustrative purpose and to enable better comparison.

5.1.1 The Maximum Safe Radius Problem

Given a targeted safety problem for α, we aim to compute the distance ‖α−α′‖p
to the nearest adversarial example within the d-neighbourhood of α, or in other

words the radius of the maximum safe metric ball, illustrated in Figure 4.1. Note

that the definition below is very similar to Definition 4.2, with the only difference

being the incorporation of a class c, which denotes a targeted safety problem.

We keep it here to avoid confusion.

Definition 5.4 (Maximum Safe Radius). The maximum safe radius problem

is to compute the minimum distance from the original input α to an adversarial

example, i.e.,

MSR(N ,α, c, Lp, d) = min
α′∈D
{‖α−α′‖p | α

′ ∈ advLp,d(α, c)} (5.5)

If advLp,d(α, c) = ∅, we let MSR(N ,α, c, Lp, d) = d+ ε.

Intuitively, MSR(N ,α, c, Lp, d) represents an absolute safety radius within which

all inputs are safe. In other words, within a distance less than MSR(N ,α, c, Lp, d), no

adversarial example is possible. When no adversarial example can be found within

radius d, i.e., advLp,d(α, c) = ∅, the maximum safe radius cannot be computed, but

is definitely greater than d. Therefore, we let MSR(N ,α, c, Lp, d) = d + ε.

5. Robustness of Deep Neural Networks on Features of An Image 97

Recall that finding an adversarial example can only provide a loose upper bound

of MSR. Similarly, this chapter investigates the more fundamental problem – how

to approximate the true MSR distance with provable guarantees.

Approximation Based on Finite Optimisation

Note that the two adversarial sets advLp,d(α, c) and advLp,d(α) can be infinite. We

now present a discretisation method that allows us to approximate the maximum

safe radius using finite optimisation, and show that such a reduction has provable

guarantees, provided that the network is Lipschitz continuous. Our approach

proceeds by constructing a finite ‘grid’ of points in the input space. Lipschitz

continuity enables us to reduce the verification problem to manipulating just the

grid points, through which we can bound the output behaviour of a network

on the whole input space, since Lipschitz continuity ensures that the network

behaves well within each cell. The number of grid points is proportional to the

Lipschitz constant. However, estimating a tight Lipschitz constant is difficult,

and so, rather than working with the Lipschitz constant directly, we assume the

existence of a (not necessarily tight) Lipschitz constant and work instead with a

chosen fixed magnitude of an input manipulation, i.e., τ ∈ (0, 1]. We show how

to determine the largest τ for a given Lipschitz network and give error bounds

for the computation of MSR that depend on τ .

We begin by constructing, for a chosen fixed magnitude τ ∈ (0, 1], the input

manipulations to search for adversarial examples.

Definition 5.5 (Finite Maximum Safe Radius). Let τ ∈ (0, 1] be a manipula-

tion magnitude. The finite maximum safe radius problem FMSR(N ,α, c, Lp, d, τ)

based on input manipulation is as follows:

min
Λ′⊆Λ(α)

min
X⊆
⋃
λ∈Λ′ Pλ

min
ψ∈Ψ
{‖α− δτ,X,ψ(α)‖p | δτ,X,ψ(α) ∈ advLp,d(α, c)}. (5.6)

If advLp,d(α, c) = ∅, we let FMSR(N ,α, c, Lp, d, τ) = d+ ε.

98 5.1. Robustness on Features of An Image

Intuitively, we aim to find a set Λ′ of features, a setX of dimensions within Λ′, and

a manipulation instruction ψ such that the application of the atomic manipulation

δτ,X,ψ on the original input α leads to an adversarial example δτ,X,ψ(α) that is

nearest to α among all adversarial examples. Compared to Definition 5.4, the search

for another input by minα′∈D over an infinite set is implemented by minimisation

over the finite sets of feature sets and instructions.

To this point, we have reduced the (infinite) maximum safe radius (MSR) problem

into the discretised finite maximum safe radius (FMSR) problem, as in advLp,d(α, c)

there are potentially infinitely many α′, whilst the number of δτ,X,ψ(α) is finite.

Next, we demonstrate that we can use FMSR to bound the value of MSR with

provable guarantees. Intuitively, from Definitions 5.4 and 5.5, we know that MSR

denotes the precise minimum distance from α′ to α, while FMSR finds the nearest

δτ,X,ψ(α) with the minimum atomic manipulations. And since the manipulations

are finite, it follows naturally that MSR is not greater than FMSR. Therefore, we

have the following lemma.

Lemma 3. For any manipulation magnitude τ ∈ (0, 1], we have that

MSR(N ,α, c, Lp, d) ≤ FMSR(N ,α, c, Lp, d, τ). (5.7)

To ensure the other direction of MSR(N ,α, c, Lp, d) in Lemma 3, we utilise the

fact that the network is Lipschitz continuous [59]. First, we need the concept of

a τ -grid input for a manipulation magnitude τ . The intuition for the τ -grid is

illustrated in Figure 5.1. We construct a finite set of grid points uniformly spaced

by τ in such a way that they can be covered by small subspaces centred on grid

points. We select a sufficiently small value for τ based on a given Lipschitz constant

so that all points in these subspaces are classified the same. We then show that an

optimum point (e.g., FMSR) on the grid is within an error bound dependent on τ

from the true optimum, i.e., the closest adversarial example (e.g., MSR).

5. Robustness of Deep Neural Networks on Features of An Image 99

Definition 5.6 (τ -Grid Input). An input α′ ∈ Ball(α, Lp, d) is a τ -grid input

if, for all dimensions p ∈ P0, we have |α′(p)−α(p)| = n× τ for some n ≥ 0.

Let Γ(α, Lp, d, τ) be the set of τ -grid inputs in Ball(α, Lp, d).

We note that τ -grid inputs in the set Γ(α, Lp, d, τ) are reachable from each

other by applying an input manipulation. The main purpose of defining the τ -grid

inputs is to ensure that the space Ball(α, Lp, d) can be covered by small subspaces

centred on the grid points. To implement this, we need the following lemma. The

proof is technical and given in Appendix B.1.

Lemma 4. We have Ball(α, Lp, d) ⊆ ⋃
α′∈Γ(α,Lp,d,τ) Ball(α′, Lp, 1

2d(Lp, τ)),

where d(Lp, τ) = (|P0|τ p)
1
p is the grid width.

Intuitively, this means that the metric ball of α is discretised into a finite grid of

inputs, and each grid point α′ has its own metric ball with radius 1
2d(Lp, τ) covering

a small subspace. The key point is that the union of all these small subspaces should

cover the metric ball of the original input. Also, because each grid point has radius
1
2d(Lp, τ), the distance between two neighbouring grid points is then d(Lp, τ), which

we call the ‘grid width’ here. As shown in Figure 5.1, the distance 1
2d(Lp, τ) is the

radius of the norm ball subspaces covering the input space. It is not difficult to see

that, for different norms, d(L1, τ) = |P0|τ , d(L2, τ) =
√
|P0|τ 2, and d(L∞, τ) = τ .

We have thus discretised the whole input space into a union of the small

subspaces centred on the grid points. In order to reduce the need to consider all

the infinite points to manipulating just the grid points, we need to make sure that

the network behaves well in each subspace (or grid cell). In other words, a grid

point should be able to ‘represent’ all the other inputs in its metric ball. To realise

this, we need the concept of a misclassification aggregator.

Definition 5.7 (Misclassification Aggregator). An input α′ ∈ Ball(α, Lp, d)

is a misclassification aggregator with respect to a number β > 0 if, for any

α′′ ∈ Ball(α′, Lp, β), we have that N (α′′) 6= N (α) implies N (α′) 6= N (α).

100 5.1. Robustness on Features of An Image

Figure 5.1: Provable guarantees for the MSR and FRΛ problems on a dense τ -grid (green
dots) that is reached upon convergence. In the worst case, the true optimum (the red
dot) lies in the middle between two hyper-points of the τ -grid, with the distance of at
most 1

2d(Lp, τ) from the found optimum.

Intuitively, if a misclassification aggregator α′ with respect to β is classified

correctly, then all inputs in Ball(α′, Lp, β) are classified correctly. And if we specify

this β by 1
2d(Lp, τ), then this is exactly what a small subspace covers in Lemma 4.

That is, if a grid point is classified correctly, then all other inputs in its metric

ball are also classified correctly.

Error Bounds

By utilising the concepts of a τ -grid input and a misclassification aggregator, we can

approximate the value of MSR using FMSR. Remember that it is always the maximum

safe radius problem that we endeavour to solve. However, because computing MSR

directly is NP-hard, we work around this by solving the finite maximum safe radius

problem and use FMSR to estimate MSR. Recall from Lemma 3 that we already

have MSR ≤ FMSR. Below in Lemma 5 (with proof in Appendix B.1) we bound

the error by 1
2d(Lp, τ), as illustrated in Figure 5.1.

5. Robustness of Deep Neural Networks on Features of An Image 101

Lemma 5. If all τ -grid inputs are misclassification aggregators with respect

to 1
2d(Lp, τ), then

MSR(N ,α, c, Lp, d) ≥ FMSR(N ,α, c, Lp, d, τ)− 1
2d(Lp, τ). (5.8)

Intuitively, this means that the adversarial example α′′ contributing to the

actual MSR (i.e., the true optimum), if it exists in the norm ball of the original input

α, will be covered by the small subspace of a certain τ -grid point, say α′ (Lemma 4).

And according to Definition 5.7, because α′′ is misclassified, the fact that α′ is a

misclassification aggregator will result in itself being misclassified. In other words,

the distance from α′ to α is in fact the FMSR (i.e., the found optimum). Since each

τ -grid input has radius 1
2d(Lp, τ), we know that MSR is in the same radius of FMSR.

In order to make sure that the condition in Lemma 5 is satisfied, i.e., all τ -

grid inputs are misclassification aggregators with respect to 1
2d(Lp, τ), we need to

determine the manipulation magnitude τ for a Lipschitz continuous network. In the

following, we discuss how to compute the largest τ . First, we introduce the concept

of a minimum confidence margin, which is essentially the discrepancy between the

maximum and the next largest confidence of an input dimension for a network.

Definition 5.8 (Minimum Confidence Margin). Given a network N , an input

α, and a class c, we define the minimum confidence margin between the class

c and another class c′ 6= N (α) as

Margin(α, c) = min
c′∈C,c′ 6=c

{N (α, c)−N (α, c′)}. (5.9)

Note that, we can compute Margin(α, c) in constant time. The following lemma

shows that the above-mentioned condition about misclassification aggregators can

be obtained if τ is sufficiently small.

Lemma 6. Let N be a Lipschitz network with a Lipschitz constant Lipc for

every class c ∈ C. If

d(Lp, τ) ≤ 2 ·Margin(α′,N (α′))
max

c∈C,c6=N (α′)
(LipN (α′) + Lipc)

(5.10)

102 5.1. Robustness on Features of An Image

for all τ -grid input α′ ∈ Γ(α, Lp, d, τ), then all τ -grid inputs are misclassifi-

cation aggregators with respect to 1
2d(Lp, τ).

Proof. For any input α′′ whose closest τ -grid input is α′, we have
Margin(α′,N (α′))−Margin(α′′,N (α′))

= min
c∈C,c6=N (α′)

{N (α′,N (α′))−N (α′, c)} − min
c∈C,c6=N (α′)

{N (α′′,N (α′))−N (α′′, c)}

≤ max
c∈C,c6=N (α′)

{N (α′,N (α′))−N (α′, c)−N (α′′,N (α′)) +N (α′′, c)}

≤ max
c∈C,c6=N (α′)

{|N (α′,N (α′))−N (α′′,N (α′))|+ |N (α′′, c)−N (α′, c)|}

≤ max
c∈C,c6=N (α′)

(LipN (α′) + Lipc) · ‖α′ −α′′‖p

≤ max
c∈C,c6=N (α′)

(LipN (α′) + Lipc) ·
1
2d(Lp, τ)

(5.11)
Now, to ensure that no class change occurs between α′′ and α′, we need

to have Margin(α′′,N (α′)) ≥ 0, which means that Margin(α′,N (α′)) −

Margin(α′′,N (α′)) ≤ Margin(α′,N (α′)). Therefore, we can let

max
c∈C,c6=N (α′)

(LipN (α′) + Lipc) ·
1
2d(Lp, τ) ≤ Margin(α′,N (α′)). (5.12)

Note that Margin(α′,N (α′)) is dependent on the τ -grid input α′, and thus

can be computed when we construct the grid. Finally, we let

d(Lp, τ) ≤ 2 ·Margin(α′,N (α′))
max

c∈C,c6=N (α′)
(LipN (α′) + Lipc)

(5.13)

Therefore, if we have the above inequality for every τ -grid input, then

we can conclude Margin(α′′,N (α′)) ≥ 0 for any α′′ ∈ Ball(α′, Lp, d), i.e.,

N (α′′,N (α′)) ≥ N (α′′, c) for all c ∈ C. The latter means that no class

change occurs.

Intuitively, only if the manipulation magnitude τ satisfies Inequality (5.10)

will the τ -grid points be misclassification aggregators. In other words, when the

magnitude is sufficiently small, which contributes to a small enough grid width, all

the points in the grid cell will have the same classification as the grid point.

Combining Lemmas 3, 5, and 6, we have the following theorem which shows

5. Robustness of Deep Neural Networks on Features of An Image 103

Figure 5.2: Illustration of the feature robustness (FRΛ) problem, which aims to find, on
an original image α, a feature, or a subset of features, that is the most robust against
adversarial perturbations. Given a benign image, we first apply feature extraction or
semantic partitioning methods to produce a set of disjoint features (‘Sky’, ‘Trees’, ‘Cat’,
etc.), then we find a set of robust features that is most resilient to adversarial perturbations
(‘Grass’ in the figure), which quantifies the most robust direction in a safe norm ball.

that the reduction from the maximum safe radius problem to its finite optimisation

has a provable guarantee, depending on the choice of the manipulation magnitude.

The proof is technical and given in Appendix B.1.

Theorem 6. Let N be a Lipschitz network with a Lipschitz constant Lipc for

every class c ∈ C. If

d(Lp, τ) ≤ 2 ·Margin(α′,N (α′))
maxc∈C,c6=N (α′)(LipN (α′) + Lipc)

(5.14)

for all τ -grid inputs α′ ∈ Γ(α, Lp, d, τ), then we can use FMSR(N ,α, c, Lp, d, τ)

to estimate MSR(N ,α, c, Lp, d) with an error bound 1
2d(Lp, τ).

5.1.2 The Feature Robustness Problem

Partly inspired by the saliency maps of neural networks in Chapter 4, we find it

interesting to see how various network models would ‘see’ the same image differently,

even when they all classify it with the same label. Therefore, in order to enable better

explainability and interpretability in terms of how networks actually ‘understand’

an image, we study the feature robustness problem, which aims to identify, on an

104 5.1. Robustness on Features of An Image

original input, a feature, or a subset of features, that is the most/least robust against

adversarial perturbations, illustrated in Figure 5.2. Practically, if we manage to

guarantee the safety of the least robust feature against a certain degree of adversarial

manipulations, then we can say that for all other features of this input, manipulations

within the same degree will definitely not alter the classification of the input. For

example, in Figure 5.2 if the ‘Cat’ feature turns out to be the most vulnerable, and

a small ink stain in ‘Cat’ does not make the image an adversarial example, then

the same stain in any other feature will also not change the classification. Apart

for this thesis, we mention some other works concerning feature robustness in the

domain of explainable AI. For example, [58] explains the decision-making of an

image classification network through different contributions of the superpixels (i.e.,

features) and [43] presents a general additive model for explaining the decisions

of a network by the Shapley value computed over the set of features.

Below we introduce the formal definition of the feature robustness problem.

In this context, we let P0(α,α′) ⊆ P0 be the set of input dimensions on which

α and α′ have different values.

Definition 5.9 (Feature Robustness). The feature robustness problem is

defined as follows.

FRΛ(N ,α, c, Lp, d) = max
λ∈Λ(α)

{xFRΛ(N ,α, λ, c, Lp, d)} (5.15)

where xFRΛ(N ,αm, λm, c, Lp, d) =
min

αm+1∈Ball(α,Lp,d)
{‖αm −αm+1‖p+

FRΛ(N ,αm+1, c, L
p, d) | ∅ 6= P0(αm,αm+1) ⊆ Pλm}, if αm /∈ advLp,d(α, c)

0, otherwise
(5.16)

where Λ is a feature extraction function, and αm,αm+1(m ∈ N) are the

inputs before and after the application of some manipulation on a feature λm,

respectively. If after selecting a feature λm no adversarial example can be

reached, i.e., ∀αm+1 : P0(αm,αm+1) ⊆ Pλm ⇒ αm+1 /∈ advLp,d(α, c), then we

5. Robustness of Deep Neural Networks on Features of An Image 105

let xFRΛ(N ,αm, λm, c, Lp, d) = d+ ε.

Intuitively, the search for the most robust feature alternates between maximising

over the features and minimising over the possible input dimensions within the

selected feature, with the distance to the adversarial example as the objective.

Starting from FRΛ(N ,α0, c, L
p, d) where α0 is the original image, the process moves

to FRΛ(N ,α1, c, L
p, d) by a max-min alternation on selecting feature λ0 and next

input α1. This continues until either an adversarial example is found, or the next

input αi for some i > 0 is outside the d-neighbourhood Ball(α, Lp, d). The value

d+ ε is used is to differentiate from the case where the minimal adversarial example

has exactly distance d from α0 and the manipulations are within λ0. In such a case,

according to Equation (5.16), we have xFRΛ(N ,α0, λ0, c, L
p, d) = d.

Assuming FRΛ(N ,α, c, Lp, d) has been computed and a distance budget d′ ≤ d

is given to manipulate the input α, the following cases can be considered.

• If FRΛ > d, then there are robust features, and if manipulations are restricted

to those features no adversarial example is possible.

• If FRΛ ≤ d′ ≤ d, then, no matter how one restricts the features to be

manipulated, an adversarial example can be found within the budget.

• If MSR ≤ d′ < FRΛ ≤ d, then the existence of adversarial examples is

controllable, i.e., we can choose a set of features on which the given distance

budget d′ is insufficient to find an adversarial example. This differs from the

first case in that an adversarial example can be found if given a larger d.

Therefore, studying the feature robustness problem enables a better under-

standing of the robustness of individual features and how the features contribute

to the robustness of an image.

It is straightforward to show that

MSR(N ,α, c, Lp, d) ≤ FRΛ(N ,α, c, Lp, d). (5.17)

106 5.1. Robustness on Features of An Image

Figure 5.3: Illustration of the maximum safe radius (MSR) and feature robustness (FRΛ)
problems. From left to right: an adversarial example with two pixel changes, feature
extraction of the image, adversarial examples with three changed pixels on features
‘Sky’ and ‘Cat’, four changed pixels on ‘Trees’, and five pixel manipulations on ‘Grass’,
respectively.

Compared to the absolute safety radius by MSR(N ,α, c, Lp, d), FRΛ(N ,α, c, Lp, d)

can be seen as a relative safety radius, within which the existence of adversarial

examples can be controlled. Theoretically, the MSR(N ,α, c, Lp, d) problem can be

seen as a special case of the FRΛ(N ,α, c, Lp, d) problem, when we let |Λ(α)| = 1.

We study them separately, because the MSR(N ,α, c, Lp, d) problem is interesting on

its own, and, more importantly, we show later that they can be solved using

different methods.

One can also consider a simpler variant of this problem, which aims to find

a subset of features that are most resilient to perturbations, and which can be

solved by only considering singleton sets of features. We omit the formalisation

for reasons of space.

We illustrate the two problems, the maximum safe radius (MSR) and (the simpler

variant of) feature robustness (FR′Λ), through Example 5.

Example 5. As shown in Figure 5.3, the minimum distance from the original

image to an adversary is two pixels, i.e., MSR = 2 (for simplicity here we

take the Hamming distance). That is, for a norm ball with radius less than 2,

the image is absolutely safe. Note that, for MSR, the manipulations can span

different features. After feature extraction, we find the maximum safe radius

of each feature, i.e., MSRλ1 = 3, MSRλ2 = 4, MSRλ3 = 3, MSRλ4 = 5.

5. Robustness of Deep Neural Networks on Features of An Image 107

Assume we have a norm ball of radius d, and a distance budget d′, then:

• if d = 4, then by definition we have FR′Λ = 4 + ε, i.e., manipulating

‘Grass’ cannot change the classification;

• if d = 10 and d′ = 7 then we have FR′Λ = 5 < d′ < d, i.e., all the features

are fragile;

• if d = 10 and d′ = 4 then d′ < FR′Λ = 5 < d, i.e., the existence of an

adversary is controllable by restricting perturbations to ‘Grass’.

Approximation Based on Finite Optimisation

Similarly to the case of the maximum safe radius, we reduce the feature robustness

problem to finite optimisation by implementing the search for adversarial examples

using input manipulations.

Definition 5.10 (Finite Feature Robustness). Let τ ∈ (0, 1] be a manipulation

magnitude. The finite feature robustness problem FFRΛ(N ,α, c, Lp, d, τ) based

on input manipulation is as follows:

FFRΛ(N ,α, c, Lp, d, τ) = max
λ∈Λ(α)

{xFFRΛ(N ,α, λ, c, Lp, d, τ)} (5.18)

where xFFRΛ(N ,αm, λm, c, Lp, d, τ) =
min

X⊆Pλm
min
ψ∈Ψ
{‖αm − δτ,X,ψ(αm)‖p+

FFRΛ(N , δτ,X,ψ(αm), c, Lp, d, τ)}, if αm /∈ advLp,d(α, c)
0, otherwise

(5.19)

where Λ is a feature extraction function, and αm, δτ,X,ψ(αm),m ∈ N, are the

perturbed inputs before and after the application of manipulation δτ,X,ψ on a

feature λm, respectively. If after selecting a feature λm no adversarial example

can be reached, i.e., ∀X ⊆ Pλm∀ψ ∈ Ψ : δτ,X,ψ(αm) /∈ advLp,d(α, c), then we

let xFFRΛ(N ,αm, λm, c, Lp, d, τ) = d+ ε.

Compared to Definition 5.9, the search for another input by minαm+1∈Ball(α,Lp,d)

is implemented by the combinatorial search over the finite sets of feature sets

108 5.2. A Game-Based Approximate Verification Approach

and instructions.

Error Bounds

The case for the feature robustness problem largely follows that of the maximum safe

radius problem. Similarly, we have the following lemma (with proof in Appendix B.1)

which bounds the error of FFRΛ(N ,α, c, Lp, d, τ) to 1
2d(Lp, τ), which depends on

the value of manipulation magnitude τ .

Lemma 7. If all τ -grid inputs are misclassification aggregators with respect

to 1
2d(Lp, τ), then FRΛ(N ,α, c, Lp, d) ≥ FFRΛ(N ,α, c, Lp, d, τ)− 1

2d(Lp, τ).

Combining Lemmas 3, 6, and 7, we have the following theorem which shows that

the reduction has a provable guarantee under the assumption of Lipschitz continuity.

The approximation error depends linearly on the prediction confidence on discretised

‘grid’ inputs and is inversely proportional with respect to the Lipschitz constants

of the network. The proof is technical and given in Appendix B.1.

Theorem 7. Let N be a Lipschitz network with a Lipschitz constant Lipc for

every class c ∈ C. If

d(Lp, τ) ≤ 2 ·Margin(α′,N (α′))
maxc∈C,c6=N (α′)(LipN (α′) + Lipc)

(5.20)

for all τ -grid inputs α′ ∈ Γ(α, Lp, d, τ), then we can use FFRΛ(N ,α, c, Lp, d, τ)

to estimate FRΛ(N ,α, c, Lp, d) with an error bound 1
2d(Lp, τ).

5.2 A Game-Based Approximate Verification Ap-
proach

In this section, we define a two-player game and show that the solutions of the

two finite optimisation problems, FMSR(N ,α, c, Lp, d, τ) and FFRΛ(N ,α, c, Lp, d, τ),

given in Expressions (5.6) and (5.18) can be reduced to the computation of the

rewards of Player I taking an optimal strategy. The two problems differ in that they

induce games in which the two players are cooperative or competitive, respectively.

5. Robustness of Deep Neural Networks on Features of An Image 109

…

…

Player-I Player-I

Player-II Player-II

… …
Player-I

Player-II

…

…

…

… …
Player-I

Player-II…

…

… …

… …

MCTS: Random
Simulation

Admissible
A*/Alpha-Beta
Pruning: More
Tree Expansion

Figure 5.4: The two-player turn-based solution for finite optimisation. Player I selects
features and Player II then performs an atomic input manipulation within the selected
features. For the maximum safe radius problem, both players aim to minimise the distance
to an adversarial example; for the feature robustness problem, while Player II has the same
objective, Player I plays against this, i.e., aiming to prevent the reaching of adversarial
examples by taking suitable actions. The game terminates when an adversary is found or
the distance budget for adversarial perturbation has been reached.

The game proceeds by constructing a sequence of atomic input manipulations

to implement the optimisation objectives in Equations (5.6) and (5.18).

5.2.1 Problem Solving as A Two-Player Turn-Based Game

The game has two players, who take turns to act. Specifically, Player I selects

features and Player II then selects an atomic input manipulation within the selected

features. While Player II aims to minimise the distance to an adversarial example,

depending on the optimisation objective designed for either FMSR(N ,α, c, Lp, d, τ)

or FFRΛ(N ,α, c, Lp, d, τ), Player I can be cooperative or competitive. We remark

that, in contrast to [76] where the games were originally introduced, we do not

consider the nature player. Figure 5.4 illustrates the game model with a partially-

expanded game tree.

110 5.2. A Game-Based Approximate Verification Approach

Definition 5.11 (Game). Given an input α, we let G(N ,α, c, Lp, d) = (S ∪

(S × Λ(α)), s0, {Ta}a∈{I,II}, L) be a game model, where

• S is a set of game states belonging to Player I such that each state

represents an input in Ball(α, Lp, d), and S × Λ(α) is a set of game

states belonging to Player II where Λ(α) is a set of features of input α.

We write α(s) for the input associated to the state s ∈ S.

• s0 ∈ S is the initial game state such that α(s0) is the original input α.

• Transition relation TI : S × Λ(α)→ S × Λ(α) is defined as

TI(s, λ) = (s, λ), (5.21)

and transition relation TII : (S × Λ(α))× P(P0)×Ψ→ S is defined as

TII((s, λ), X, ψ) = δτ,X,ψ(α(s)), (5.22)

where X ⊆ Pλ is a set of input dimensions within feature λ, ψ :

P0 → {−1,+1} is a manipulation instruction, and δτ,X,ψ is an atomic

dimension manipulation as defined in Definition 5.2. Intuitively, in every

game state s ∈ S, Player I will choose a feature λ, and, in response to

this, Player II will choose an atomic input manipulation δτ,X,ψ.

• The labelling function L : S ∪ (S × Λ(α))→ C assigns to each state s

or (s, λ) a class N (α(s)).

Intuitively, the game model starts from an input as the initial game state, from

which Player I selects features according to its transition relation in Equation (5.21)

and Player II determines an atomic manipulation within the chosen features, as

reflected by its transition relation in Equation (5.22). When the game proceeds as

the two players take turns to act, the game tree gradually expands, as illustrated in

Figure 5.4. Note that each Player I’s state represents a (perturbed) input in the

metric ball of the original input, whereas Player II’s states denote feature selection.

And the labelling function simply classifies the input points.

5. Robustness of Deep Neural Networks on Features of An Image 111

Strategy Profile

A path (or game play) of the game model is a sequence s1u1s2u2 . . . of game states

such that, for all k ≥ 1, we have uk = TI(sk, λk) for some feature λk and sk+1 =

TII((sk, λk), Xk, ψk) for some (Xk, ψk). Let last(ρ) be the last state of a finite path ρ,

and PathFa be the set of finite paths such that last(ρ) belongs to player a ∈ {I, II}.

Definition 5.12 (Strategy). A stochastic strategy σI : PathFI → D(Λ(α)) of

Player I maps each finite path to a distribution over the next actions, and

similarly for σII : PathFII → D(P(P0)×Ψ) for Player II. We call σ = (σI, σII)

a strategy profile.

Intuitively, this means that, in every Player I’s state, there is a distribution

over the features to select, and similarly, when Player II takes its turn, atomic

dimension manipulations are imposed according to a distribution. Besides, we also

mention that a strategy σ is deterministic if σ(ρ) is a Dirac distribution, and is

memoryless if σ(ρ) = σ(last(ρ)) for all finite paths ρ.

Rewards

We define a reward R(σ, ρ) for a given strategy profile σ = (σI, σII) and a finite

path ρ ∈ ⋃a∈{I,II} Path
F
a . The idea of the reward is to accumulate the distance to

the adversarial example found over a path. Note that, given σ, the game becomes

a deterministic system. Let α′ρ = α(last(ρ)) be the input associated with the

last state of the path ρ. We write

tc(ρ) ≡ (N (α′ρ) = c) ∨ (
∥∥∥α′ρ −α∥∥∥p > d), (5.23)

representing that the path has reached a state whose associated input either is

in the target class c or lies outside the region Ball(α, Lp, d). The path ρ can be

terminated whenever tc(ρ) is satisfied. It is not difficult to see that, due to the

constraints in Definition 5.1, every infinite path has a finite prefix which can be

terminated (that is, either when an adversarial example is found or the distance

to the original image has exceeded d). During each expansion of the game model,

112 5.2. A Game-Based Approximate Verification Approach

an atomic manipulation is employed, which excludes the possibility that an input

dimension is perturbed in smaller and smaller steps.

Definition 5.13 (Reward). Given a strategy profile σ = (σI, σII) and a finite

path ρ, we define a reward function as follows: R(σ, ρ) =

∥∥∥α′ρ −α∥∥∥p, if tc(ρ), ρ ∈ PathFI∑
λ∈Λ(α)

σI(ρ)(λ) ·R(σ, ρTI(last(ρ), λ)), if ¬tc(ρ), ρ ∈ PathFI∑
(X,ψ)∈P(P0)×Ψ

σII(ρ)(X,ψ) ·R(σ, ρTII(last(ρ), X, ψ)), if ρ ∈ PathFII

(5.24)

where σI(ρ)(λ) is the probability of selecting feature λ on finite path ρ by

Player I, and σII(ρ)(X,ψ) is the probability of selecting atomic input manip-

ulation δτ,X,ψ based on ρ by Player II. The expression ρTI(last(ρ), λ) is the

resulting path of Player I selecting λ, and ρTII(last(ρ), X, ψ) is the resulting

path of Player II applying δτ,X,ψ on α′ρ. We note that a path only terminates

on Player I states.

Intuitively, if an adversarial example is found then the reward assigned is

the distance to the original input, otherwise it is the weighted summation of

the rewards of its children.

Players’ Objectives

Players’ strategies are to maximise their rewards in a game. The following players’

objectives are designed to match the finite optimisation problems stated in Equations

(5.6) and (5.18).

Definition 5.14 (Players’ Objectives). In a game, Player II chooses a

strategy σII to minimise the reward R((σI, σII), s0), whilst Player I has

different goals depending on the optimisation problem under consideration.

• For the maximum safe radius problem, Player I chooses a strategy σI

to minimise the reward R((σI, σII), s0), based on the strategy σII of

Player II. That is, the two players are cooperative.

5. Robustness of Deep Neural Networks on Features of An Image 113

• For the feature robustness problem, Player I chooses a strategy σI to

maximise R((σI, σII), s0), based on the strategy σII of Player II. That

is, the two players are competitive.

The goal of the game is for Player I to choose a strategy σI to optimise its

objective, to be formalised below.

5.2.2 Safety Guarantees via Optimal Strategy

For different objectives x ∈ {MSR(N ,α, c, Lp, d), FRΛ(N ,α, c, Lp, d)} of Player I, we

construct different games. Given a game model G(N ,α, c, Lp, d) and an objective x

of Player I, there exists an optimal strategy profile σ = (σI, σII), obtained by both

players optimising their objectives. We will consider the algorithms to compute

the optimal strategy profile in Section 5.3. Here we focus on whether the obtained

optimal strategy profile σ is able to implement the finite optimisation problems

in Equations (5.6) and (5.18).

First of all, we formally define the goal of the game.

Definition 5.15 (Game Goal). Given a game model G(N ,α, c, Lp, d), an

objective x of Player I, and an optimal strategy profile σ = (σI, σII), the goal

of the game is to compute the value

val(G(N ,α, c, Lp, d), x) = R(σ, s0) (5.25)

That is, the goal is to compute the reward of the initial state s0 based on σ.

Note that an initial state s0 is also a finite path, and it is a Player I state.

We have the following Theorems 8 and 9 to confirm that the game can return

the optimal values for the two finite optimisation problems. Detailed proofs for

both theorems are in Appendix B.1.

Theorem 8. Assume that Player I has the objective MSR(N ,α, c, Lp, d). Then

val(G(N ,α, c, Lp, d), MSR(N ,α, c, Lp, d)) = FMSR(N ,α, c, Lp, d, τ) (5.26)

114 5.2. A Game-Based Approximate Verification Approach

Theorem 9. Assume that Player I has the objective FRΛ(N ,α, c, Lp, d). Then

val(G(N ,α, c, Lp, d), FRΛ(N ,α, c, Lp, d)) = FFRΛ(N ,α, c, Lp, d, τ) (5.27)

Combining Theorems 8, 9 with Theorems 6, 7, we have the following corollary,

which states that the optimal game strategy is able to achieve the optimal value for

the maximum safe radius problem MSR(N ,α, c, Lp, d) and the feature robustness

problem FRΛ(N ,α, c, Lp, d) with an error bound 1
2d(Lp, τ).

Corollary 1. The two-player turn-based game is able to solve the maximum

safe radius problem of Equation (5.5) and the feature robustness problem

of Equation (5.15) with an error bound 1
2d(Lp, τ), when the manipulation

magnitude τ is such that

d(Lp, τ) ≤ 2 ·Margin(α′,N (α′))
maxc′∈C,c′ 6=N (α′)(LipN (α′) + Lipc′)

(5.28)

for all τ -grid inputs α′ ∈ Γ(α, Lp, d, τ).

Furthermore, we have the following lemma.

Lemma 8. For a game model G(N ,α, c, Lp, d) with goal val(G(N ,α, c, Lp, d),

MSR(N ,α, c, Lp, d)), deterministic and memoryless strategies suffice for Player I;

and similarly for game G with goal val(G(N ,α, c, Lp, d), FRΛ(N ,α, c, Lp, d)).

5.2.3 Complexity of the Problem

As a by-product of Lemma 8, the theoretical complexity of the problems is in

PTIME, with respect to the size of the game model G(N ,α, c, Lp, d). However, the

size of the game is exponential with respect to the number of input dimensions. More

specifically, we have the following complexity result with respect to the manipulation

magnitude τ , the pre-specified range size d, and the number of input dimensions m.

Theorem 10 (Complexity). Given a game model G(N ,α, c, Lp, d), the com-

putational time for the two goal values val(G(N ,α, c, Lp, d), x), where x ∈

{MSR(N ,α, c, Lp, d), FRΛ(N ,α, c, Lp, d)}, is polynomial with respect to d/τ

5. Robustness of Deep Neural Networks on Features of An Image 115

and exponential with respect to m.

Proof. We can see that the size of the grid, measured as the number |Γ(α, Lp, d, τ)|

of τ -grid inputs in Ball(α, Lp, d), is polynomial with respect to d/τ and

exponential with respect to m. From a τ -grid to any of its neighbouring

τ -grids, each player needs to take a move. Therefore, the number of game

states is doubled (i.e., polynomial) over |Γ(α, Lp, d, τ)|. This yields PTIME

complexity of solving the game.

Considering that the problem instances we work with usually have a large input

dimensionality, this complexity suggests that directly working with the explicit

game models is impractical. If we consider an alternative representation of a game

tree (i.e., an unfolded game model) of finite depth to express the complexity, the

number of nodes on the tree is O(mh) for h the length of the longest finite path

without a terminating state. While the precise size of O(mh) is dependent on

the problem (including the image α and the difficulty of crafting an adversarial

example), it is roughly O(50000100) for the images used in the ImageNet competition

and O(100020) for smaller images such as GTSRB, CIFAR-10, and MNIST. This is

beyond the capability of existing approaches for exact or ε-approximate computation

of probability (e.g., reduction to linear programming [67], value iteration, and policy

iteration, etc.) that are used in probabilistic verification.

5.3 Algorithms and Implementation

In this section we describe the implementation of the game-based approach intro-

duced in this chapter. Figure 6.3 presents an overview of the reductions from the

original problems to the solution of a two-player game for the case of Lipschitz

networks, described in Section 5.1. Because exact computation of optimal rewards

is computationally hard (Theorem 10), we approximate the rewards by means of

algorithms that unfold the game tree based on Monte Carlo tree search (MCTS),

Admissible A∗, and Alpha-Beta Pruning.

116 5.3. Algorithms and Implementation

Figure 5.5: A game-based approximate verification approach for the maximum safe
radius (MSR) and feature robustness (FR) problems of deep neural networks.

We take a principled approach to compute for each of the two game values,

MSR(N ,α, c, Lp, d) and FRΛ(N ,α, c, Lp, d), an upper bound and a lower bound. Our

algorithms can gradually, but strictly, improve the bounds, so that they gradually

converge as the computation proceeds. For x ∈ {MSR, FRΛ}, we write lx and ux for

their lower and upper bound, respectively. The bounds can be interesting in their

own. For example, a lower bound lMSR suggests absolute safety of an Lp norm ball

with radius lMSR from the original input α, and an upper bound uMSR suggests the

existence of an adversarial example α′ such that ‖α−α′‖p = uMSR. On the other

hand, given distance budget d′, uFRΛ ≤ d′ indicates an unsafe distance from which

the existence of adversarial examples is not controllable.

Next we present the algorithms we employ to compute the upper and lower

bounds of the values of the games, as well as their convergence analysis.

5.3.1 Upper Bounds: Monte Carlo Tree Search

We present an approach based on Monte Carlo tree search (MCTS) [10] to find

an optimal strategy asymptotically. As a heuristic search algorithm for decision

processes notably employed in game play, MCTS focuses on analysing the most

promising moves via expanding the search tree based on random sampling of the

search space. The algorithm, whose pseudo-code is presented in Algorithm 1,

gradually expands a partial game tree by sampling the strategy space of the model

5. Robustness of Deep Neural Networks on Features of An Image 117

Algorithm 1: Monte Carlo Tree Search for DNN Verification
Input :A game model G(N ,α, c, Lp, d), a termination condition tc
Output : val(G(N ,α, c, Lp, d), FRΛ(N ,α, c, Lp, d)) or

val(G(N ,α, c, Lp, d), MSR(N ,α, c, Lp, d))
1 procedure MCTS(G(N ,α, c, Lp, d), tc):
2 root← s0 ;
3 while (¬tc) do
4 leaf ← selection(root) ;
5 newnodes← expansion(G(N ,α, c, Lp, d), leaf) ;
6 for node in newnodes do
7 v ← Simulation(G(N ,α, c, Lp, d), node) ;
8 backPropogation(node, v) ;
9 return optimal value of the root node

G(N ,α, c, Lp, d). With the upper confidence bound (UCB) [32] as the exploration-

exploitation trade-off, MCTS has a theoretical guarantee that it converges to the

optimal solution when the game tree is fully explored. In the following, we explain

the components of the algorithm.

Concerning the data structure, we maintain the set of nodes on the partial tree

T (N ,α, c, Lp, d). For every node o on the partial tree, we maintain three variables,

ro, no, eo, which represent the accumulated reward, the number of visits, and the

current best input with respect to the objective of the player, respectively. We

remark that eo is usually different from α(so), which is the input associated with

the game state so. Moreover, for every node o, we record its parent node po and

a set Co of its children nodes. The value val(G(N ,α, c, Lp, d), x) of the game is

approximated by ‖eroot −α‖p, which represents the distance between the original

input and the current best input maintained by the root node of the tree.

The selection procedure starts from the root node, which contains the original

image, and conducts a tree traversal until reaching a leaf node (Line 6). From a

node, the next child node to be selected is dependent on an exploration-exploitation

balance, i.e., UCB [32]. More specifically, on a node o, for every child node

118 5.3. Algorithms and Implementation

o′ ∈ Co, we let

v(o, o′) = d ∗ no′

ro′
+
√

2 lnno
no′

(5.29)

be the weight of choosing o′ as the next node from o. Then the actual choice of

a next node is conducted by sampling over a probabilistic distribution Probo :

Co → [0, 1] such that

Probo(o′) = vo,o′∑
o′∈Co vo,o′

(5.30)

which is a normalisation over the weights of all children. On a leaf node o, the

expansion procedure returns a set of children nodes Co by applying the transition

relation in the game model G(N ,α, c, Lp, d) (Line 7). These new nodes are added

into the partial tree T (N ,α, c, Lp, d). This is the only way for the partial tree

to grow. After expanding the leaf node to have its children added to the partial

tree, we call the Simulation procedure on every child node (Line 9). A simulation

on a new node o is a play of the game from o until it terminates. Players act

randomly during the simulation. Every simulation terminates when reaching a

terminal node α′. Once a terminal node α′ is reached, a reward ‖α−α′‖p can

be computed. This reward, together with the input α′, is then backpropagated

from the new child node through its ancestors until reaching the root (Line 10).

Every time a new reward v is backpropagated through a node o, we update its

associated reward ro into ro + v and increase its number of visits into no + 1. The

update of current best input eo depends on the player who owns the node. For the

MSR(N ,α, c, Lp, d) game, eo is made equivalent to eo′ such that

o′ = arg min
o1∈Co

‖α− eo1‖p (5.31)

For the FRΛ(N ,α, c, Lp, d) game, Player II also takes the above approach, i.e.,

Equation (5.31), to update eo, but for Player I we let eo be eo′′ such that

o′′ = arg max
o1∈Co

‖α− eo1‖p (5.32)

We remark the game is not zero-sum for the maximum safe radius problem.

5. Robustness of Deep Neural Networks on Features of An Image 119

5.3.2 Lower Bounds: Admissible A* in a Cooperative Game

To produce the lower bounds with guarantees, we consider algorithms which can

compute optimal strategy deterministically, without relying on the asymptotic

convergence as MCTS does. Recall that, to address the maximum safe radius

and the feature robustness problems, we have set the game to be cooperative and

competitive, respectively. As Player I has opposite goals depending on the game

type – to minimise the reward in a cooperative game and to maximise it when the

game is competitive, we utilise different algorithms to compute the lower bounds in

each game type. Specifically, in this section we exploit Admissible A* to achieve the

lower bound of Player I reward when it is cooperative, i.e., MSR(N ,α, c, Lp, d), and

in Section 5.3.3 we use Alpha-Beta Pruning to obtain the lower bound of Player I

reward when it is competitive, i.e., FRΛ(N ,α, c, Lp, d).

The A* algorithm gradually unfolds the game model into a tree. It maintains

a set of leaf nodes of the unfolded partial tree, computes an estimate for every

node in the set, and selects the node with the least estimated value to expand.

The estimation consists of two components, one for the exact cost up to now and

the other for the estimated cost of reaching the goal node. In our case, for each

game state s, we assign an estimated distance value

distances(s) = ‖α(s)−α(s0)‖p + heuristic(α(s)) (5.33)

where the first component ‖α(s)−α(s0)‖p represents the distance from the initial

state s0 to the current state s, and the second component heuristic(α(s)) denotes

the estimated distance from the current state s to a terminal state.

An admissible heuristic function is to, given a current input, never overestimate

the cost of reaching the terminal game state. Therefore, to achieve the lower bound,

we need to take an admissible heuristic function. We remark that, if the heuristic

function is inadmissible (i.e., does not guarantee the underestimation of the cost),

then the A* algorithm cannot be used to compute the lower bound, but instead

can be used to compute the upper bound.

120 5.3. Algorithms and Implementation

We utilise the minimum confidence margin Margin(α′,N (α′)) defined in Def-

inition 5.8 to obtain an admissible heuristic function.

Lemma 9. For any game state s such that α(s) = α′, the following heuristic

function is admissible:

heuristic(α′) = Margin(α′,N (α′))
max

c∈C,c6=N (α′)
(LipN (α′) + Lipc)

(5.34)

Proof. Consider the expression Margin(α′,N (α′))−Margin(α′′,N (α′)), where

α′ is the current state and α′′ is the last state before a terminal state. Then

we have that

Margin(α′,N (α′))−Margin(α′′,N (α′)) ≤ Margin(α′,N (α′)) (5.35)

Now because
Margin(α′,N (α′))−Margin(α′′,N (α′))

= min
c∈C,c6=N (α′)

{N (α′,N (α′))−N (α′, c)} − min
c∈C,c6=N (α′)

{N (α′′,N (α′))−N (α′′, c)}

≤ max
c∈C,c6=N (α′)

{|N (α′,N (α′))−N (α′′,N (α′))|+ |N (α′′, c)−N (α′, c)|}

≤ max
c∈C,c6=N (α′)

(LipN (α′) + Lipc) · ‖α′ −α′′‖p
(5.36)

we can let

max
c∈C,c6=N (α′)

(LipN (α′) + Lipj) · ‖α′ −α′′‖p ≤ Margin(α′,N (α′)) (5.37)

Thus, we define

heuristic(α′) = Margin(α′,N (α′))
max

c∈C,c6=N (α′)
(LipN (α′) + Lipc)

(5.38)

which is sufficient to ensure that Margin(α′′,N (α′)) ≥ 0 for any α′′. That is,

the distance heuristic(α′) is a lower bound of reaching a misclassification.

The Admissible A* algorithm is presented in Algorithm 2. In the following, we

explain the main components of the algorithm. For each root node (initialised as the

original input), Player I chooses between mutually exclusive features partitioned

based on either the grey-box or black-box approach. Subsequently, in each feature,

5. Robustness of Deep Neural Networks on Features of An Image 121

Algorithm 2: Admissible A* for DNN Verification
Input :A game model G(N ,α, c, Lp, d), a termination condition tc
Output : val(G(N ,α, c, Lp, d), MSR(N ,α, c, Lp, d))

1 procedure AdmissibleA*(G(N ,α, c, Lp, d), tc):
2 root← s0 ;
3 while (¬tc) do
4 features← Player I (root, feature extraction = grey/black) ;
5 for feature in features do
6 dimensions← Player II (feature) ;
7 newnodes← AtomicManipulation(dimensions) ;
8 for node in newnodes do
9 distances← DistanceEstimation(node) ;

10 root← MSR(distances) ;
11 return ‖α(root)−α(s0)‖p

Player II chooses among all the dimensions within each feature (Line 4-8). On

each of the dimensions, an AtomicManipulation is constructed and applied. We

add +τ and −τ to each dimension, and make sure that it does not exceed the upper

and lower bounds of the input dimension, e.g., 1 and 0 if the input is pre-processed

(normalised). If exceeded, the bound value is used instead. This procedure essentially

places adversarial perturbations on the image, and all manipulated images become

the newnodes (Line 9). For each node in the newnodes, the DistanceEstimation

function in Equation (5.33) is used to compute a value, which is then added into the

set distances. The set distances maintains the estimated values for all leaf nodes

(Line 10-11). Among all the leaf nodes whose values are maintained in distances,

we select the one with the minimum MSR as the new root (Line 12).

As for the termination condition ¬tc, the algorithm gradually unfolds the game

tree with increasing tree depth td = 1, 2, . . . and go on. Because all nodes on

the same level of the tree have the same distance to the original input α, every

tree depth td > 0 is associated with a distance d(td), such that d(td) is the

distance of the nodes at level td. For a given tree depth td, we have a termination

condition tc(td) requiring that either

• all the tree nodes up to depth td have been explored, or

122 5.3. Algorithms and Implementation

• the current root is an adversarial example.

For the latter condition, ‖α(root)−α(s0)‖p is returned and the algorithm converges.

As for the former, we update d(td) as the current lower bound of the game

value val(G(N ,α, c, Lp, d), MSR(N ,α, c, Lp, d)). Note that the termination condition

guarantees the closest adversarial example that corresponds to FMSR, which is within

distance 1
2d(Lp, τ) from the actual closest adversarial example corresponding to MSR.

5.3.3 Lower Bounds: Alpha-Beta Pruning in a Competitive
Game

Alpha-Beta Pruning is an adversarial search algorithm, applied commonly in two-

player games, to minimise the possible cost in a maximum cost scenario. In this

chapter, we apply Alpha-Beta Pruning to compute the lower bounds of Player I

reward in a competitive game, i.e., FRΛ(N ,α, c, Lp, d).

Lemma 10. For any game state s ∈ S ∪ (S×Λ(α)), we let σI(s) ∈ S×Λ(α)

be the next state of s ∈ S after Player I taking an action σI, and σII(s) ∈ S be

the next state of s ∈ S × Λ(α) after Player II taking an action σII. If using

alpha(s) (initialised as −∞) to denote Player I current maximum reward on

state s and beta(s) (initialised as +∞) to denote Player II current minimum

reward on state s, and let

alpha(s) = max
σI

beta(σI(s)) if s ∈ S (5.39)

beta(s) = min
σII

alpha(σII(s)) if s ∈ S × Λ(α) (5.40)

then alpha(s0) is a lower bound of val(G(N ,α, c, Lp, d), FRΛ(N ,α, c, Lp, d)).

Note that, for a game state s, whenever alpha(s) ≥ beta(s′) for some s′ = σI(s)

is satisfied, Player I does not need to consider the remaining strategies of Player II

on state s′, as such will not affect the final result. This is the pruning of the

game tree. The Alpha-Beta Pruning algorithm is presented in Algorithm 3. Many

components of the algorithm are similar to those of Admissible A*, except that

each node maintains two values: alpha value and beta value. For every node, its

5. Robustness of Deep Neural Networks on Features of An Image 123

Algorithm 3: Alpha-Beta Pruning for DNN Verification
Input :A game model G(N ,α, c, Lp, d), a termination condition tc
Output : val(G(N ,α, c, Lp, d), FRΛ(N ,α, c, Lp, d))

1 procedure AlphaBeta(G(N ,α, c, Lp, d), tc):
2 root← s0 ;
3 root.alpha← −∞ ;
4 features← Player I (root, feature extraction = grey/black) ;
5 for feature in features do
6 feature.beta← +∞ ;
7 dimensions← Player II (feature) ;
8 newnodes← AtomicManipulation(dimensions) ;
9 for node in newnodes do

10 if tc then return ‖α(node)−α(s0)‖p;
11 else node.alpha←AlphaBeta(node, tc);
12 feature.beta← min(newnodes.alpha) ;
13 root.alpha← max(features.beta) ;
14 return root.alpha

alpha value is initialised as −∞ and its beta value is initialised as +∞. For each

feature, its beta value is the minimum of all the alpha values of the perturbed

inputs whose manipulated dimensions are within this feature (Line 14); for root

in each recursion, the alpha value is the maximum of all the beta values of the

features (Line 15). Intuitively, beta maintains the MSR of each feature, while

alpha maintains the FRΛ of an input.

5.3.4 Anytime Convergence

In this section, we show the convergence of our approach, i.e., that both bounds

are monotonically improved with respect to the optimal values.

Upper Bounds: 1/ε-Convergence and Practical Termination Condition

Because we are working with a finite game, MCTS is guaranteed to converge when the

game tree is fully expanded, but the worst case convergence time may be prohibitive.

In practice, we can work with 1/ε-convergence by letting the program terminate

when the current best bound has not been improved for e.g., d1/εe iterations, where

124 5.3. Algorithms and Implementation

ε > 0 is a small real number. We can also impose time constraint tc, and ask the

program to return once the elapsed time of the computation has exceeded tc.

In the following, we show that the intermediate results from Algorithm 1 can be

the upper bounds of the optimal values, and the algorithm is continuously improving

the upper bounds, until the optimal values are reached.

Lemma 11. Let ‖α′ − eroot‖p be the returned result from Algorithm 1. For

an FMSR(N ,α, c, Lp, d, τ) game, we have that

‖α′ − eroot‖p ≥ val(G(N ,α, c, Lp, d), MSR(N ,α, c, Lp, d)). (5.41)

Moreover, we reamrk that the discrepancy between ‖α′ − eroot‖p and the goal

value val(G(N ,α, c, Lp, d), MSR(N ,α, c, Lp, d)) improves monotonically as the

computation proceeds.

Proof. Assume that we have a partial tree T (N ,α, c, Lp, d). We prove by

induction on the structure of the tree. As the base case, for each leaf node o

we have that its best input eo is such that

‖α− eo‖p ≥ val(G(N ,α, c, Lp, d), MSR(N ,α, c, Lp, d)) (5.42)

because a random simulation can always return a current best, which is an

upper bound to the global optimal value. The equivalence holds when the

simulation found an adversarial example with minimum distance.

Now, for every internal node o, by Equation (5.31) we have that

∃o1 ∈ Co : ‖α− eo‖p ≥ ‖α− eo1‖p (5.43)

which, together with Equation (5.42) and induction hypothesis, implies that

‖α− eo‖p ≥ val(G(N ,α, c, Lp, d), MSR(N ,α, c, Lp, d)). Equation (5.41) holds

since the root node is also an internal node.

The monotonic improvement can be seen from Equation (5.31), namely

that, when, and only when, the discrepancy for the leaf node is improved after

a new round of random simulation, can the discrepancy for the root node be

improved. Otherwise, it remains the same.

5. Robustness of Deep Neural Networks on Features of An Image 125

Similarly, we have the following lemma for the feature robustness game.

Lemma 12. Let ‖α′ − eroot‖p be the returned result from Algorithm 1. For

an FFRΛ(Lp, d,α, c) game, we have that

‖α′ − eroot‖p ≥ val(G(N ,α, c, Lp, d), FRΛ(N ,α, c, Lp, d)). (5.44)

Proof. The proof is similar to that of Lemma 11, except that, according to

Equation (5.32), for the nodes of Player I (including the root node) to reduce

the discrepancy, i.e., ‖α− eo‖p − val(G(N ,α, c, Lp, d), FRΛ(N ,α, c, Lp, d)), it

requires that all its children nodes reduce their discrepancy.

Lower Bounds: Gradual Expansion of the Game Tree

The monotonicity of the lower bounds is achieved by gradually increasing the

tree depth td. Because, in both algorithms, the termination conditions are the

full exploration of the partial trees up to the depth td, it is straightforward

that the results returned by the algorithms are either the lower bounds or the

converged results.

5.4 Experimental Results

This section presents the experimental results for the proposed game-based frame-

work, implemented as a tool DeepGame, for the safety verification of deep neural

networks, focused on demonstrating the convergence of the upper and lower bounds,

and the comparison with the state-of-the art techniques. The hardware environment

is a Linux server with NVIDIA GeForce GTX TITAN Black GPUs, and the

operating system is Ubuntu 14.04.3 LTS.

5.4.1 Feature-Based Partitioning

Our game-based approach, where Player I determines features and Player II selects

pixels or dimensions within the selected feature, requires an appropriate feature

126 5.4. Experimental Results

Figure 5.6: Examples of three feature extraction methods applied on the ImageNet
(left) and MNIST (right) datasets, respectively. The top row: image segmentation via
the saliency map generation method introduced in [60]. Middle row: feature extraction
using the SIFT approach [41]. Bottom row: image partition using K-means clustering
and superpixels [73].

partitioning method into disjoint sets of dimensions. In Figure 5.6 we illustrate

three distinct feature extraction procedures on a colour image from the ImageNet

dataset and a grey-scale image from the MNIST dataset. Though we work with

image classifier networks, our approach is flexible and can be adapted to a range

of feature partitioning methods.

The first technique for image segmentation is based on the saliency map generated

from an image classifier such as a neural network. As shown Figure 5.6 (top

row), the heat-map is produced by quantifying how sensitive each pixel is to the

classification outcome of the network. By ranking these sensitivities, we separate

the pixels into a few disjoint sets. The second feature extraction approach, shown

in Figure 5.6 (middle row), is independent of any image classifier, but instead

focuses on abstracting the invariant properties directly from the image. Here

we show segmentation results from the SIFT method [41], which is invariant to

5. Robustness of Deep Neural Networks on Features of An Image 127

Figure 5.7: Convergence of maximum safe radius in a cooperative game with grey-box
feature extraction of an MNIST image originally classified as “4”. Left: The convergence
trends of the upper bound from MCTS and the lower bound from Admissible A* for the
MSR problem. Right: The generated adversarial images while searching for the upper
bound via MCTS, and lower boundary safe images while searching for the lower bound
via Admissible A*.

image translation, scaling, rotation, and local geometric distortion. More details

on how to adapt SIFT for safety verification on neural networks can be found in

[76]. The third feature extraction method is based on superpixel representation,

a dimensionality reduction technique widely applied in various computer vision

applications. Figure 5.6 (bottom row) demonstrates an example of how to generate

superpixels (i.e., the pixel clusters marked by the green grids) using colour features

and K-means clustering [73].

5.4.2 Convergence Analysis of the Upper and Lower Bounds

We demonstrate convergence of the bound computation for the maximum safe

radius and feature robustness problems, evaluated on standard benchmark datasets

MNIST, CIFAR-10, and GTSRB. The architectures of the corresponding trained

neural networks as well as their accuracy rates can be found in Appendix B.2.1.

128 5.4. Experimental Results

Figure 5.8: Convergence of maximum safe radius in a cooperative game with grey-box
feature extraction of a GTSRB image originally classified as “keep right”. Left: The
convergence trends of the upper bound from MCTS and the lower bound from Admissible
A* for the MSR problem. Right: The generated adversarial images while searching for the
upper bound via MCTS, and lower boundary safe images while searching for the lower
bound via Admissible A*.

Convergence of MSR in a Cooperative Game

First, we illustrate convergence of MSR in a cooperative game on the MNIST and

GTSRB datasets. For the MNIST image (index 67) in Figure 5.7, the black line

denotes the descending trend of the upper bound uMSR, whereas the red line indicates

the ascending trend of the lower bound lMSR. Intuitively, after a few iterations, the

upper bound (i.e., minimum distance to an adversarial example) is 2.84 wrt the

L2 metric, and the absolute safety (i.e., lower bound) is within radius 0.012 from

the original image. The right-hand side of Figure 5.7 includes images produced

by intermediate iterations, with adversarial images generated by MCTS shown

in the two top rows, and safe images computed by Admissible A* in the bottom

rows. Similarly, Figure 5.8 displays the converging upper and lower bounds of MSR

in a cooperative game on a GTSRB image (index 19).

As for the computation time, each MCTS iteration updates the upper bound

uMSR and typically takes minutes; each Admissible A* iteration further expands the

game tree and updates the lower bound lMSR whenever applicable. The running

5. Robustness of Deep Neural Networks on Features of An Image 129

(a) CIFAR-10 “ship” image. (b) GTSRB “speed limit 70 mph” image.

Figure 5.9: Illustration of the 10 features using the grey-box feature extraction procedure:
cells with the same colour indicate the same feature, and the number in each cell represents
the featureID. That is, Feature1 in deep blue has the most salient impact, whereas
Feature10 in deep red is the least influential. (a) Features of the CIFAR-10 “ship” image
(32× 32) in Figure 5.10. (b) Features of the GTSRB “speed limit 70 mph” image (48× 48)
in Figure 5.11.

times for the iterations of the Admissible A* vary: initially it takes minutes but

this can increase to hours when the tree is larger.

Convergence of FRΛ in a Competitive Game

Next we demonstrate the convergence of FRΛ in a competitive game on the CIFAR-10

and GTSRB datasets. Each iteration of MCTS or Alpha-Beta Pruning updates

their respective bound with respect to a certain feature. Note that, in each MCTS

iteration, upper bounds uMSR of all the features are improved and therefore the

maximum among them, i.e., uFRΛ of the image, is updated, whereas Alpha-Beta

Pruning calculates lMSR of a feature in each iteration, and then compares and updates

lFRΛ with the computation progressing until all the features are processed.

For the CIFAR-10 image in Figure 5.10, the green line denotes the upper bound

uFRΛ and the red line denotes the lower bound lFRΛ . The “ship” image is partitioned

into 10 features (see Figure 5.9(a)) utilising the grey-box extraction method. We

observe that this saliency-guided image segmentation procedure captures the features

130 5.4. Experimental Results

Figure 5.10: Convergence of feature robustness in a competitive game with grey-
box feature extraction of a CIFAR-10 image originally classified as “ship”. Left: The
convergence trends of the upper bound from MCTS and the lower bound from Alpha-Beta
Pruning for the FRΛ problem. Right: The generated adversarial images while computing
the upper bounds via MCTS, and lower bound images while computing the lower bounds
via Alpha-Beta Pruning.

Figure 5.11: Convergence of feature robustness in a competitive game with the grey-
box feature extraction of a GTSRB image originally classified as “speed limit 70 mph”.
Left: The convergence trends of the lower bound from Alpha-Beta Pruning for the FRΛ
problem. Right: The generated lower bound images while computing the lower bounds
via Alpha-Beta Pruning.

well, as in Figure 5.9(a) the most influential features (in blue) resemble the silhouette

of the “ship”. After 3 iterations, the algorithm indicates that, at L2 distance of more

than 1.75, all features are fragile, and if the L2 distance is 0.48 there exists at least

one robust feature. The right-hand side of Figure 5.10 shows several intermediate

images produced, along with the converging uFRΛ and lFRΛ . The top row exhibits

5. Robustness of Deep Neural Networks on Features of An Image 131

the original image as well as the manipulated images with decreasing uFR. For

instance, after the 1st iteration, MCTS finds an adversary perturbed in Feature4

with L2 distance 2.38, which means by far the most robust feature of this “ship”

image is Feature4. (FeatureID is retrieved from the number in each cell of the image

segmentation in Figure 5.9(a).) When the computation proceeds, the 2nd iteration

updates uFRΛ from 2.38 to 1.94, and explores the current most robust Feature8,

which is again replaced by Feature9 after the 3rd iteration with lower distance 1.75.

The bottom row displays the original image together with perturbations in each

feature while lFRΛ is increasing. It can be seen that Feature1, Feature2, and Feature3

need only one dimension change to cause image misclassification, and the lower

bound Feature4 increases from 0.42 to 0.56 after three iterations.

For the feature robustness (FRΛ) problem, i.e., when Player I and Player II are

competing against each other, apart from the previous CIFAR-10 case where

Player II wins the game by generating an adversarial example with atomic

manipulations in each feature, there is a chance that Player I wins, i.e., at least one

robust feature exists. Figure 5.11 illustrates this scenario on the GTSRB dataset.

Here Player I defeats Player II through finding at least one robust feature by MCTS,

and thus the convergence trend of the upper bound uFRΛ is not shown. As for the

lower bound lFRΛ , Alpha-Beta Pruning enables Player II to manipulate a single

pixel in Feature1 - Feature5 (see Figure 5.9(b)) so that adversarial examples are

found. For instance, with L1 distance above 0.79, Feature1 turns out to be fragile.

Here, each iteration of MCTS or Alpha-Beta Pruning is dependent on the size of

feature partitions – for smaller partitions it takes seconds to minutes, whilst for larger

partitions it can take hours. The running times are also dependent on the norm ball

radius d. If the radius d is small, the computation can always terminate in minutes.

Scalability wrt Number of Input Dimensions

We now investigate how the increase in the number of dimensions affects the

convergence of the lower and upper bounds. From the complexity analysis of the

132 5.4. Experimental Results

(a) Convergence of lower and upper bounds. (b) Gap of bounds.

Figure 5.12: Analysis of convergence of upper and lower bounds of the maximum safe
radius as the number of dimensions increases for the MNIST image in Figure 5.7, based
on the L2 norm. The increase in the number of features (2 to 10) corresponds to an
increase in the number the input dimensions.

problems in Section 5.2.3, we know that the theoretical complexity is in PTIME

with respect to the size of the game model, which is exponential with respect

to the number of input dimensions.

We utilise the example in Figure 5.7, where the convergence of the upper bound

uMSR and the lower bound lMSR in a cooperative game is exhibited on all the dimensions

(pixels) of the MNIST image (index 67). We partition the image into 10 disjoint

features using the grey-box extraction method, and gradually manipulate features,

starting from those with fewer dimensions, to observe how the corresponding bound

values uMSR, lMSR are affected if we fix a time budget. To ensure fair comparison, we

run the same number of expansions of the game tree, i.e., 10 iterations of MCTS,

and 1000 iterations of Admissible A*, and plot the bound values uMSR, lMSR thus

obtained. Figure 6.11 shows the widening upper and lower bounds based on the

L2 norm with respect to 2 to 10 features of the image. It is straightforward to see

that the conclusion also holds for the feature robustness problem.

5. Robustness of Deep Neural Networks on Features of An Image 133

Figure 5.13: Examples of adversarial MNIST, CIFAR-10 and GTSRB images with slight
perturbations based on the L2 norm. Top: “9” misclassified into “8”; “1” misclassified
into “3”. Middle: “frog” misclassified into “dog”; “dog” misclassified into “cat”. Bottom:
“speed limit 80 mph” misclassified into “speed limit 60 mph”; “danger” misclassified into
“pedestrian crossing”.

5.4.3 Comparison with Existing Approaches in Adversarial
Attacks

When the game is cooperative, i.e., for the maximum safe radius problem, we can

have adversarial examples as by-products. In this regard, both MCTS and A*

algorithm can be applied to generate adversarial examples. Note that, for the latter,

we can take Inadmissible A* (i.e., the heuristic function can be inadmissible), as

the goal is not to ensure the lower bound but to find adversarial examples. By

proportionally enlarging the heuristic distance heuristic(α′) with a constant, we

ask the algorithm to explore those tree nodes where an adversarial example is more

likely to be found. Figure 5.13 displays some adversarial MNIST, CIFAR-10 and

GTSRB images generated by DeepGame after manipulating a few pixels. More

examples can be found in Figures B.1, B.2, and B.3.

We compare our tool DeepGame with several state-of-the-art approaches to

search for adversarial examples: C&W [8], DeepTRE [60], DLV [28], SafeCV [76],
1Whilst DeepGame works on channel-level dimension of an image, in order to align with some

tools that attack at pixel level the statistics are all based on the number of different pixels.

134 5.5. Summary

Table 5.1: Comparison between our tool DeepGame and several other tools on search
for adversarial examples performed on the MNIST and CIFAR-10 datasets, based on the
Hamming distance. Here DeepGame deploys the grey-box feature extraction method, and
Inadmissible A* algorithm. We set a ten-minute time constraint and evaluate on correctly
classified images and the produced adversarial examples.

Hamming
Distance

MNIST CIFAR-101

Distance Time (s) Distance Time (s)
mean std mean std mean std mean std

DeepGame 6.11 2.48 4.06 1.62 2.86 1.97 5.12 3.62
C&W 7.07 4.91 17.06 1.80 3.52 2.67 15.61 5.84

DeepTRE 10.85 6.15 0.17 0.06 2.62 2.55 0.25 0.05
DLV 13.02 5.34 180.79 64.01 3.52 2.23 157.72 21.09

SafeCV 27.96 17.77 12.37 7.71 9.19 9.42 26.31 78.38
JSMA 33.86 22.07 3.16 2.62 19.61 20.94 0.79 1.15

and JSMA [53]. More specifically, we train neural networks on two benchmark

datasets, MNIST and CIFAR-10, and calculate the distance between the adversarial

image and the original image based on the Hamming distance. The original images,

preprocessed to be within the bound [0, 1], are the first 1000 images of each testing

set. Apart from a ten-minute time constraint, we evaluate on correctly classified

images and their corresponding adversarial examples. This is because some tools

regard misclassified images as adversarial examples and record zero-value distance

while other tools do not, which would result in unfair comparison.

Table 5.1 demonstrates the statistics. Figures B.1 and B.2 include adversarial

examples found by these tools. Model architectures and the parameter settings

for these tools can be found in Appendix B.2.

5.5 Summary

In this chapter, we present a two-player turn-based game framework for the

verification of deep neural networks with provable guarantees. In particular, we

tackle two problems, maximum safe radius and feature robustness, which essentially

5. Robustness of Deep Neural Networks on Features of An Image 135

correspond to the absolute (pixel-level) and relative (feature-level) safety of a

network against adversarial manipulations. Our framework can deploy various

feature extraction or image segmentation approaches, including the saliency-guided

grey-box mechanism, and the feature-guided black-box procedure. We develop

a software tool DeepGame, and demonstrate its applicability on state-of-the-art

networks and dataset benchmarks. Our experiments exhibit converging upper and

lower bounds, and are competitive compared to existing approaches in searching

for adversarial examples.

136

6
Robustness of Deep Neural Networks on

Videos

Contents

6.1 Robustness on Videos . 139
6.1.1 Maximum Safe Radius with respect to Optical Flow . . 139
6.1.2 Approximation based on Finite Optimisation 140

6.2 A Game-Based Robustness Verification Approach . . . 144
6.2.1 Problem Solving as A Two-Player Turn-Based Game . . 145
6.2.2 Robustness Guarantees 147

6.3 Computation of the Converging Upper and Lower Bounds148
6.3.1 Upper Bound: Gradient-Based Search 148
6.3.2 Lower Bound: Admissible A* 151

6.4 Experimental Results . 152
6.4.1 Network Architecture 153
6.4.2 Adversarial Examples via Manipulating Optical Flows . 153
6.4.3 Converging Upper and Lower Bounds 155
6.4.4 Extension to Naturally Plausible Distortions 158
6.4.5 Efficiency and Scalability 162

6.5 Summary . 163

No matter whether we are studying the maximum safe radius problem, or the

feature robustness problem, the previous Chapters 4 and 5 evaluate the robustness of

neural networks on images, while in this chapter we adapt the methods to time-series

137

138 6. Robustness of Deep Neural Networks on Videos

data, e.g., video inputs. This is due to the fact that human decision-making is more

of a dynamic progress rather than a static one – we keep perceiving the surrounding

environment and then developing the corresponding strategies. We remark that video

classification is more challenging than image recognition because, apart from the

spatial features on each frame, extracted by the convolutional networks, videos also

consist of the temporal dynamics between adjacent frames, captured by the recurrent

networks. Moreover, adversarial perturbations of videos include more variants than

pixel manipulations in images, such as frame loss/repetition, brightness change, and

camera occlusion. Therefore, in this chapter we continue using the Lp norms where

p ≥ 1 to measure the distance between the original input and the perturbed one.

Regarding the methodology behind the robustness guarantees for deep neural

networks on videos, in general we adapt the game-based approach proposed in

Chapter 5, and highlight the key differences. To start with, instead of computing

the maximum safe radius of an image input, here we extend to the concept of

the maximum safe radius with respect to optical flow, so that both the spatial and

temporal features in a video can be captured by the flow. Consequently, in a two-

player turn-based game, this time Player I no longer chooses image partitions but

optical flows, and Player II determines adversarial perturbations within the chosen

flow. We will still aim to compute upper and lower bounds, although for videos we

propose a gradient-based search algorithm to compute the upper bounds. Finally, in

experiments we add recurrent layers into the networks to deal with the time-series

characteristics and evaluate them on a video dataset, which has input dimensions

considerably greater than the image benchmarks used in previous chapters.

This chapter is organised as follows. In Section 6.1, we extend the formulation of

the maximum safe radius to that with respect to optical flow, and reduce the problem

into finite optimisation via Lipschitz continuity. Subsequently, we reuse the game-

based approximate verification framework in Section 6.2, where this time Player I

selects optical flows and Player II determines perturbations within the chosen flow.

In Section 6.3, we design a gradient-based search algorithm to compute the upper

6. Robustness of Deep Neural Networks on Videos 139

bounds and reuse the admissible A* algorithm to generate the lower bounds. Finally,

we report the experimental results in Section 6.4 produced by our tool DeepVideo.

6.1 Robustness on Videos

In this section, we formulate the robustness problem and provide an approximation

with provable guarantees. We reuse the notions defined in Chapter 4, and extend the

input from an image α to a video v. That is, we have the norm ball Ball(v, Lp, d),

the local robustness property Robust(N ,v, Lp, d), and the maximum safe radius

MSR(N ,v, Lp, d), which are exactly the same as in Chapter 4, except the input

type is now a video.

6.1.1 Maximum Safe Radius with respect to Optical Flow

In existing work that evaluate a network’s robustness over images, it is common to

manipulate each image at pixel- or channel-level, and then compute the distance

between the perturbed and original inputs. However, as we deal with time-series

inputs, i.e., videos, instead of manipulating directly on each individual frame, we

impose perturbation on each optical flow that is extracted from every pair of

adjacent frames, so that both spatial features on frames and temporal dynamics

between frames can be captured. We define optical flow as follows.

Definition 6.1 (Optical Flow). Given an input video v with number l of

frames, i.e., v = {F1, . . . ,Ft, . . . ,Fl}, t ∈ [1, l], t ∈ N+, the optical flow

extraction function f : Ft,Ft+1 7→ opt maps every two adjacent frames Ft,Ft+1

into an optical flow opt. Then, for the video v, a sequence of optical flows

can be extracted, i.e., OP(v) = {op1, . . . , opt, . . . , opl−1}, t ∈ [1, l − 1], t ∈ N+.

We remark that the distance between the optical flow sequences of two videos,

denoted as ‖OP(v)− OP(v′)‖p, can be measured similarly to the distance of two

videos ‖v − v′‖p by the Lp, p ∈ {1, 2,∞} norms in a standard way, as they are

essentially tensors.

140 6.1. Robustness on Videos

Then, to study the crafting of adversarial examples, we construct manipulations

on the optical flow to obtain perturbed inputs. Note that if the input values are

bounded, e.g., [0, 255] or [0, 1], then the perturbed inputs need to be restricted

to be within the bounds.

Definition 6.2 ((Atomic) Optical Flow Manipulation). Given an input v

with a set of optical flow OP(v), an instruction function ψ : R → N, and a

manipulation magnitude τ , we define the input manipulation operations

δψ,τ (opt)(i) =
opt[i] + ψ(i) · τ, if i ∈ [1, w × h], i ∈ N+

opt[i], otherwise
(6.1)

where w, h denote the width and height of v. Specifically, when ψ : R →

{+1,−1}, we say the manipulation is atomic, denoted as δθ,τ .

Moreover, after remapping the manipulated flow back to the original frame, we

obtain a perturbed new frame, i.e., f ′ : Ft, δψ,τ (opt)→ F ′t+1, and the manipulated

flow set, f ′ : v, δψ,τ (OP(v)) → v′, maps to a new video with the perturbation.

Intuitively, given a video input and a neural network, we apply some optical flow

extraction method to generate the sequence of flows. The flow set is then modified by

manipulations, and subsequently restored to the original input to obtain a perturbed

video, which is classified by the network to see if it is an adversarial example. To

this end, we compute the distance from δψ,τ (OP(v)) to OP(v) instead of that

from v′ to v because the former reflects both spatial and temporal manipulations

simultaneously. That is, we compute the maximum safe radius with respect to

optical flow, denoted as MSR(N ,OP(v), Lp, d), such that N (v′) 6= N (v).

6.1.2 Approximation based on Finite Optimisation

By manipulating optical flow, we explore the existence of potential adversarial

examples v′ of input v. The Robust(N ,OP(v), Lp, d) and MSR(N ,OP(v), Lp, d)

problems cover the set of all the input points, which are essentially infinite. In this

section, we utilise the fact that the networks studied in this thesis are Lipschitz

continuous to discretise the neighbourhood space of an optical flow set, i.e., transform

6. Robustness of Deep Neural Networks on Videos 141

the infinite number of points in the norm ball into a finite number on the grid.

First, based on the definitions of optical flow and input manipulation, we transform

the MSR problem into the following finite maximum safe radius problem.

Definition 6.3 (Finite Maximum Safe Radius). Given an input v, and a

manipulation function δψ,τ , let v′ = f ′(v, δψ,τ (OP(v))) denote the perturbed

input, then the finite maximum safe radius with respect to optical flow is

FMSR(N ,OP(v), Lp, d, τ) = min
opt∈OP(v)

min
θ∈ψ
{‖OP(v)− δψ,τ (OP(v))‖p |

δψ,τ (OP(v)) ∈ Ball(OP(v), Lp, d) s.t. N (v′) 6= N (v)}. (6.2)

If v′ does not exist in Ball, we let FMSR(N ,OP(v), Lp, d, τ) = d+ ε.

Intuitively, we aim to find a set of manipulations θ ∈ ψ to impose on a set of

optical flows opt ∈ OP(v), such that the distance between the flow sets is minimal,

and after the remapping procedure the perturbed input v′ is an adversarial example.

Considering that, within a norm ball Ball, the set of manipulations is finite for a fixed

magnitude τ , the FMSR problem only needs to explore a finite number of the ‘grid’

points. To achieve this, we let g be a τ -grid point such that |g − OP(v)| = n× τ ,

and Γ(OP(v), Lp, d) be the set of τ -grid points whose corresponding inputs are in

Ball. Note that all the τ -grid points are reachable from each other via manipulation.

By selecting a proper τ , we ensure that the optical flow space can be covered

by small sub-spaces. That is,

Ball(OP(v), Lp, d) ⊆
⋃
g∈Γ

Ball(g, Lp, 1
2 d̃(Lp, τ)), (6.3)

where the grid width d̃(Lp, τ) is |D|τ for L1,
√
|D|τ 2 for L2, and τ for L∞.

To this point, we can use FMSR to approximate MSR within the error bounds in

Theorem 11, as illustrated in Figure 6.1. Intuitively, this is similar to Lemmas 3 and

5 in Chapter 5, with the major difference being that in this case the discretisation

method is imposed upon the space of optical flow instead of the input space. In

order to reduce the verification problem to manipulating just the grid points, we

142 6.1. Robustness on Videos

d

d/2

OP(v)

Norm Ball

MSR

FMSR

Figure 6.1: Provable guarantees for maximum safe radius w.r.t. optical flow via a τ -grid
discretisation of the norm ball. Here, OP(v) in blue is the original optical flow set, around
which the grey area within the black circle is the norm ball Ball with grid width d̃(Lp, τ).
The found optimum FMSR (green), as a τ -grid point, can bound the true optimum MSR
(red) within 1

2 d̃(Lp, τ) distance.

need to bound the output behaviour of the network within each grid cell, which

can be achieved by Lipschitz continuity.

Theorem 11 (Error Bounds). Given a manipulation magnitude τ , the optical

flow space can be discretised into a set of τ -grid points, and MSR can be

approximated as

FMSR(N ,OP(v), Lp, d, τ)− 1
2 d̃(Lp, τ)

≤ MSR(N ,OP(v), Lp, d) ≤ FMSR(N ,OP(v), Lp, d, τ). (6.4)

Then, the problem is to determine the manipulation magnitude τ . Note that, in

order to make sure each τ -grid point g covers all the possible manipulation points in

its neighbourhood, we compute the largest τ . We now show that τ can be obtained

via Lipschitz continuity. For a network N which is Lipschitz continuous at input

v, given Lipschitz constant Lipc, c ∈ C, for each class, we have

d̃′(Lp, τ) ≤
min

c∈C,c6=N (v)
{N (v,N (v))−N (v, c)}

max
c∈C,c6=N (v)

(LipN (v) + Lipc)
. (6.5)

6. Robustness of Deep Neural Networks on Videos 143

Below we prove how this quantity is computed. Recall that in Chapter 5 we

introduce the concept of the minimum confidence margin (Definition 5.8). Here we

apply it to the domain of video inputs. Intuitively, it is the discrepancy between

the maximum confidence of v being classified as c and the next largest confidence

of v being classified as c′.

Definition 6.4 (Minimum Confidence Margin). Given a network N , an input

v, and a class c, we define the minimum confidence margin as

Margin(v, c) = min
c′∈C,c′ 6=c

{N (v, c)−N (v, c′)}. (6.6)

By utilising the above concept and Lipschitz continuity, we determine the value

of manipulation magnitude τ so that every grid point can ‘represent’ it surrounding

subspace. When Expression 6.5 is satisfied, Theorem 11 holds.

Proof. For any input v′ whose optical flow set is in the subspace of a grid

point g, and the input v corresponding to this optical flow set g, we have
Margin(v,N (v))−Margin(v′,N (v))

= min
c∈C,c6=N (v)

{N (v,N (v))−N (v, c)} − min
c∈C,c6=N (v)

{N (v′,N (v))−N (v′, c)}

≤ max
c∈C,c6=N (v)

{N (v,N (v))−N (v, c)−N (v′,N (v)) +N (v′, c)}

≤ max
c∈C,c6=N (v)

{|N (v,N (v))−N (v′,N (v))|+ |N (v′, c)−N (v, c)|}

≤ max
c∈C,c6=N (v)

LipN (v) · ‖v − v′‖p + Lipc · ‖v − v′‖p

≤ max
c∈C,c6=N (v)

(LipN (v) + Lipc) · ‖v − v′‖p

≤ max
c∈C,c6=N (v)

(LipN (v) + Lipc) · d̃′(Lp, τ)

(6.7)
Now, since the optical flow set of v′ is in the subspace of g, we need to ensure

that no class change occurs between v and v′. That is, Margin(v′,N (v)) ≥ 0,

which means Margin(v,N (v))−Margin(v′,N (v)) ≤ Margin(v,N (v)). There-

fore, we have

max
c∈C,c6=N (v)

(LipN (v) + Lipc) · d̃′(Lp, τ) ≤ Margin(v,N (v)). (6.8)

And as g is the grid point, the minimum confidence margin for its corresponding

144 6.2. A Game-Based Robustness Verification Approach

Figure 6.2: A game-based robustness verification approach for the maximum safe radius
problem of deep neural networks on videos.

input v can be computed. Finally, we replace Margin(v,N (v)) with its

definition, then we have

d̃′(Lp, τ) ≤
min

c∈C,c6=N (v)
{N (v,N (v))−N (v, c)}

max
c∈C,c6=N (v)

(LipN (v) + Lipc)
. (6.9)

Remark 3. We remark that, while d̃′(Lp, τ) is with respect to input v and

d̃(Lp, τ) is with respect to the flow set OP(v), the relation between them, and

similarly that between f and f ′, is dependent on the optical flow extraction

method used. As this is not the main focus of this thesis, we do not expand on

this topic.

6.2 A Game-Based Robustness Verification Ap-
proach

In this section, we show that the finite optimisation problem FMSR of Definition 6.3

can be reduced to the computation of Player I’s reward when taking the optimal

strategy in a game-based setting. To this end, we adapt the game-based approach

6. Robustness of Deep Neural Networks on Videos 145

proposed in Chapter 5 for robustness evaluation of convolutional networks on

images. The overall workflow is illustrated in Figure 6.2. Here we highlight the

differences between these two approaches: (1) instead of computing the maximum

safe radius of an image, this chapter extends to that with respect to optical flow; (2)

to enable finite optimisation, Lipschitz continuity is still applied but to discretise

the flow space rather than the input space; (3) a novel gradient-based search

algorithm is proposed to compute the upper bounds, utilising the spatial features

extracted from individual frames.

6.2.1 Problem Solving as A Two-Player Turn-Based Game

We define a two-player turn-based game, in which Player I chooses which optical flow

to perturb, and Player II then imposes atomic manipulations of the pixels within

the selected flow. Note that, in this chapter, we primarily address the maximum

safe radius problem, therefore both player share the same objective – to minimise

the distance to an adversarial example. In other words, the game is cooperative.

Definition 6.5 (Game). Given an input v and its optical flow set OP(v), we

let G(N ,v, Lp, d) = (S∪ (S×OP(v)), s0, {TI, TII}, L) be a game model, where

• S ∪ (S × OP(v)) denotes the set of game states, in which S is the set

of Player I’s states whereas S × OP(v) is the set of Player II’s states.

Each s ∈ S corresponds to an optical flow set OP(s) in the norm ball

Ball(OP(v), Lp, d).

• s0 ∈ S is the initial state such that OP(s0) corresponds to the original

optical flow set OP(v).

• TI : S ×OP(v)→ S ×OP(v) is Player I’s transition relation defined as

TI(s, opt) = (s, opt), (6.10)

and TII : (S × OP(v))× ψ → S is Player II’s transition relation

TII((s, opt), θ) = δθ,τ (opt), (6.11)

146 6.2. A Game-Based Robustness Verification Approach

where δθ,τ is the atomic manipulation of Definition 6.2. Intuitively, in

a game state s, Player I selects an optical flow opt of OP(s) and enters

into a Player II’s state (s, opt), where Player II then chooses an atomic

manipulation δθ,τ on opt.

• L : S ∪ (S × OP(v)) → C is the labelling function that assigns each

game state’s corresponding input to a class N (f ′(v,OP(s))).

To compute FMSR of Definition 6.3, we let the game G be cooperative. When it

proceeds, two players take turns - Player I employs a strategy σI to select optical

flow, then Player II employs a strategy σII to determine atomic manipulations -

thus forming a path ρ, which is a sequence s0σIs1σIIs2 · · · . Formally, we define

the strategy of the game as follows.

Definition 6.6 (Strategy). Let PathFI be a set of finite paths ending in

Player I’s state, and PathFII be a set of finite paths ending in Player II’s state,

we define a strategy profile σ = (σI, σII), such that σI : PathFI → D(OP(v))

of Player I maps a finite path to a distribution over next actions, and similarly

σII : PathFII → D(ψ) for Player II.

Intuitively, by imposing atomic manipulations in each round, the game searches

for potential adversarial examples with increasing distance to the original optical

flow. Given ρ, let v′ρ = f ′(v, last(ρ)) denote the input corresponding to the last

state of ρ, and OP(v′ρ) denote its optical flow set, we write the termination condition

tc(ρ) ≡ (N (v′ρ) 6= N (v)) ∨ (
∥∥∥OP(v′ρ)− OP(v)

∥∥∥
p
> d), (6.12)

which means the game is in a state whose corresponding input is either classified

differently or outside the norm ball. In order to quantify the distance accumulated

along a path, we define a reward function as follows. Intuitively, the reward is the

distance to the original optical flow if an adversarial example is found, and otherwise

it is the weighted summation of the rewards of its children on the game tree.

6. Robustness of Deep Neural Networks on Videos 147

Definition 6.7 (Reward). Give a strategy profile σ = (σI, σII), and a finite

path ρ, we define a reward function

R(σ, ρ) =

∥∥∥OP(v′ρ)− OP(v)
∥∥∥
p
, if tc(ρ), ρ ∈ PathFI∑

opt∈OP(v)
σI(ρ)(opt) ·R(σ, ρTI(last(ρ), opt)), if ¬tc(ρ), ρ ∈ PathFI∑

θ∈ψ
σII(ρ)(θ) ·R(σ, ρTII(last(ρ), θ)), if ρ ∈ PathFII

,

(6.13)

where σI(ρ)(opt) is the probability of Player I choosing optical flow opt along ρ,

and σII(ρ)(θ) is the probability of Player II choosing atomic manipulation δθ,τ
along ρ. Also, ρTI(last(ρ), opt) and ρTII(last(ρ), θ) are the resulting paths of

Player I,Player II applying σI, σII, respectively. Essentially, it is adding to ρ

a new state after transition.

6.2.2 Robustness Guarantees

We now confirm that the game can return the optical value of the reward function

as the solution to the FMSR problem.

Theorem 12 (Guarantees). Given an input v, a game model G(N ,v, Lp, d),

and an optimal strategy profile σ = (σI, σII), the finite maximum safe ra-

dius problem is to minimise the reward of initial state s0 based on σ, i.e.,

FMSR(N ,OP(v), Lp, d, τ) = minR(σ, s0).

Proof. On one hand, we demonstrate that ‖OP(v′)− OP(v)‖p ≥ R(σ, s0) for

any optical flow set OP(v′) as a τ -grid point, such that OP(v′) ∈ Ball(OP(v), Lp, d)

and its corresponding input is an adversarial example. Intuitively, it means

that Player I’s reward from the game G on the initial state s0 is no greater

than the Lp distance to any τ -grid manipulated optical flow set. That is, the

reward value R(σ, s0), once computed, is a lower bound of the optimisation

problem FMSR(N ,OP(v), Lp, d, τ). Note that the reward value can be obtained

as every τ -grid point can be reached by some game play, i.e., a sequence of

148 6.3. Computation of the Converging Upper and Lower Bounds

atomic manipulations.

On the other hand, from the termination condition tc(ρ) of the game, we

observe that, for some OP(v′), if R(σ, s0) ≤ ‖OP(v′)− OP(v)‖p holds, then

there must exist some other OP(v′′) such that R(σ, s0) = ‖OP(v′′ − OP(v))‖p.

Therefore, we have that R(σ, s0) is the minimum value of ‖OP(v′′ − OP(v))‖p
among all the τ -grid points OP(v′) such that OP(v′) ∈ Ball(OP(v), Lp, d) and

their corresponding inputs are adversarial examples.

Finally, we notice that the minimum value of ‖OP(v′)− OP(v)‖p is equiv-

alent to the optical value required by Equation (6.2).

6.3 Computation of the Converging Upper and
Lower Bounds

Since we demonstrated in the complexity analysis (Theorem 10 of Chapter 5)

that the exact value of optimal reward is computationally hard, we approximate

the reward by a decreasing upper bound and an increasing lower bound - the

former is achieved via a gradient-based search algorithm and, for the latter, the

Admissible A* approach is reused.

6.3.1 Upper Bound: Gradient-Based Search

We utilise a gradient-based search algorithm to compute an upper bound of FMSR.

Below we introduce the concept of spatial features extracted from individual frames,

and then construct the objective function and present the methods to calculate

the gradients. As we utilise CNNs to extract the spatial features, and RNNs to

capture the temporal dynamics between the neighbouring frames, we use NC to

indicate the convolutional part of N , and NR for the recurrent part.

Definition 6.8 (Spatial Features). Given a network N , let NC denote the

convolutional part, then NC : v → η ∈ Rl×s maps from input v to its extracted

spatial features η, which has consistent length l of v and feature dimension

6. Robustness of Deep Neural Networks on Videos 149

s of a frame. Then, we pass η into the recurrent part NR and obtain the

classification results, i.e., NR : η → N (v, c), c ∈ C.

The objective is to manipulate optical flow as imperceptibly as possible while

altering the final classification. We write the objective function as follows:

∀t ∈ [1, l − 1], t ∈ N+, min opt + ε ·∇opt(N ,v)

s.t. ∇opt(N ,v) = ∂lossNv
∂η

� ∂η

∂opt
(6.14)

where ε is a constant, and ∇opt(N ,v) is the perturbation imposed on opt. The

key point is to minimise ∇opt(N ,v) so that the perturbation is unnoticeable while

simultaneously changing N (v). Here, we utilise the loss of N on v, denoted as

lossNv , to quantify the classification change. Intuitively, if lossNv increases, N (v)

is more likely to change. By utilising the concept of spatial features η, we rewrite

∇opt(N ,v) as ∂lossN
v

∂η
� ∂η

∂opt
, where ∂lossN

v

∂η
denotes the gradient of the network’s

loss w.r.t the spatial features, ∂η
∂opt

denotes the gradient of the spatial features w.r.t

the optical flow, and � denotes Hadamard/element-wise product. We introduce

the computation of the two parts below.

Gradient of spatial features w.r.t. optical flow Here, ∂η
∂opt

essentially exhibits

the relation between spatial features and optical flow. Here we reuse input

manipulation (Definition 6.2) to compute ∂η
∂opt

, though instead of manipulating

the flow we impose perturbation directly on the frame. Intuitively, we manipulate

the pixels of each frame to see how the subtle optical flow between the original

and the manipulated frames will influence the spatial features. Each time we

manipulate a single pixel of a frame, we get a new frame which is slightly different.

If we perform δψ,τ on pixel F [m,n], and denote the manipulated frame as Fm,n,

its spatial features as ηm,n, the subtle optical flow between Fm,n and F as δopm,n,

then ∂η
∂opt

can be computed as in Equation (6.15).

150 6.3. Computation of the Converging Upper and Lower Bounds

∂η

∂opt
=

‖η1,1 − η‖p∥∥∥δop1,1

∥∥∥
p

· · ·
‖η1,w − η‖p∥∥∥δop1,w

∥∥∥
p

...
‖ηh,1 − η‖p∥∥∥δoph,1

∥∥∥
p

· · ·
‖ηw,h − η‖p∥∥∥δopw,h

∥∥∥
p

w×h

(6.15)

Gradient of loss w.r.t. spatial features Meanwhile, ∂lossN
v

∂η
shows how the

spatial features will influence the classification, which can be reflected by the loss of

the network. After getting η from NC, we can obtain lossNv from NR. If we perform

pixel manipulation δψ,τ (F [m,n]) on frame F , and obtain a new input, denoted as

vF [m,n], then for this frame we have the gradient in Equation (6.16).

∂lossNv
∂η

=

lossNvF[1,1]
− lossNv

‖η1,1 − η‖p
· · ·

lossNvF[1,w]
− lossNv

‖η1,w − η‖p
...

lossNvF[h,1]
− lossNv

‖ηh,1 − η‖p
· · ·

lossNvF[w,h]
− lossNv

‖ηw,h − η‖p

w×h

(6.16)

Remark 4. From Definition 6.8 of spatial features, i.e., η = NC(v), we know

that the spatial features η only depend on each individual F of v and do not

capture the temporal information between frames. That is, when NC remains

unchanged, η and F have a direct relation, which indicates that the gradient

of the latter can reflect that of the former. Therefore, during implementation,

instead of the distance between ηm,n and η, we calculate that between Fm,n and

F , i.e., ‖Fm,n −F‖p.

Note that both gradients in Equations (6.15) and (6.16) have size w × h, which

is consistent with the size of an individual frame. After the � operation of the

Hadamard product, ∇opt(N ,v) essentially computes the perturbation on a single

optical flow opt, t ∈ [1, l − 1]. Therefore, for an input v, we compute a series

6. Robustness of Deep Neural Networks on Videos 151

Algorithm 4: Admissible A* for DNN Verification
Input : A game model G(N ,v, Lp, d), a terminating condition tc
Output : Lower bound of FMSR

1 procedure AdmissibleA*(G(N ,v, Lp, d), tc):
2 root← s0 ;
3 while (¬tc) do
4 OP(root)← Player I(root, optical flow = Farneback) ;
5 for opt in OP(root) do
6 opt[i]← Player II(opt) ;
7 newnodes← δθ,τ (opt)(i) ;
8 for node in newnodes do
9 distances← DistanceEstimation(node) ;

10 root← MaximumSafeRadius(distances) ;
11 return ‖OP(root)− OP(s0)‖p

of perturbations on each optical flow generated from neighbouring frames, which

is reflected in Equation (6.14).

6.3.2 Lower Bound: Admissible A*

We exploit admissible A* to compute the lower bound of Player I’s reward, i.e.,

FMSR. An A* algorithm gradually unfolds the game model into a tree, in the sense

that it maintains a set of children nodes of the expanded partial tree, and computes

an estimate for each node. The key point is that in each iteration it selects the

node with the least estimated value to expand. The estimation comprises two

components: (1) the exact reward up to the current node, and (2) the estimated

reward to reach the goal node. To guarantee the lower bound, we need to make

sure that the estimated reward is minimal. For this part, we let the A* algorithm

be admissible, which means that, given a current node, it never overestimates

the reward to the terminal goal state. For each state s in the game model G,

we assign an estimated distance value

DistanceEstimation(s) = ‖OP(s)− OP(s0)‖p + heuristic(OP(s)), (6.17)

where ‖OP(s)− OP(s0)‖p is the distance from the original state s0 to the current

state s based on the Lp norm, and heuristic(OP(s)) is the admissible heuristic

152 6.4. Experimental Results

function that estimates the distance from the current state s to the terminal state.

Here, we use d̃(Lp, τ) in Equation (6.4).

We present the admissible A* algorithm in Algorithm 4. To be more specific,

in each iteration for the root node (initialised as the original input s0), Player I

selects among a series of optical flows OP(root) extracted by an optical flow method

such as the Gunnar Farnebäck algorithm [17]. We remark that various optical flow

methods, e.g., those mentioned in Section 3.4.3, can fit into our framework as long

as a dense flow is produced. Subsequently, on each chosen optical flow opt Player II

determines the dimensions opt[i] to be perturbed (Lines 1-6). On each of the

dimensions, the atomic manipulation function applies δθ,τ , which essentially places

adversarial perturbations on the optical flow, and after applying the manipulated

flows onto the current root, a set of manipulated inputs become the newnodes

(Line 7). Then, the DistanceEstimation function in Equation (6.17) computes the

distances of the newnodes to the original optical flow set OP(v) and puts them

into the distances set, which maintains the estimated distance values for all the

leaf nodes (Lines 8-11). Eventually, among all the leaf nodes in distances, the

MaximumSafeRadius function sets the one with the minimal distance as the new

root (Line 12). Finally, at the end of each iteration, the terminating condition tc is

checked: if it is not satisfied, a new iteration starts; otherwise, the optimal distance

value ‖OP(root)− OP(s0)‖p, i.e., lower bound of FMSR, is returned.

6.4 Experimental Results

This section presents the evaluation results of our framework regarding the robust-

ness guarantees for the deep neural networks on the video dataset UCF101 [65].

Specifically, we develop the tool DeepVideo and perform the experiments on a

Linux server with the NVIDIA GeForce GTX Titan Black GPUs and the Ubuntu

14.04.3 LTS operating system.

6. Robustness of Deep Neural Networks on Videos 153

6.4.1 Network Architecture

In the experiments, we exploit a VGG16 [64] + LSTM [25] architecture, in the

sense of utilising the VGG16 network to extract the spatial features from the

UCF101 video dataset and then passing these features to a separate RNN unit

LSTM. For each video, we sample a frame every 1000 ms and stitch them together

into a sequence of frames. Specifically, we run every frame from every video through

VGG16 with input size 224 × 224 × 3, excluding the top classification part of

the network, i.e., saving the output from the final Max-Pooling layer. Hence, for

each video, we retrieve a sequence of extracted spatial features. Subsequently, we

pass the features into a single LSTM layer, followed by a Dense layer with some

Dropout in between. Eventually, after the final Dense layer with activation function

Softmax, we get the classification outcome.

We use the categorical cross-entropy loss function and the accuracy metrics for

both the VGG16 and LSTM models. Whilst the former has a SGD optimiser

and directly exploits the imagenet weights, we train the latter through a rmsprop

optimiser and get 99.15% training accuracy as well as 99.72% testing accuracy.

Specifically, when the loss difference cannot reflect the subtle perturbation on

optical flow during the computation of upper bounds, we use the discrepancy

of logit values instead.

6.4.2 Adversarial Examples via Manipulating Optical Flows

We illustrate how optical flow can capture the temporal dynamics of the moving

objects in neighbouring frames. In this case, we exploit the Gunnar Farnebäck

algorithm [17] as it computes the optical flow for all the pixels in a frame, i.e., dense

optical flow, instead of a sparse feature set. We remark that the proposed framework

can work with any state-of-the-art optical flow algorithm as long as a dense flow is

produced – here we chose the Farnebäck approach because it is easily accessible in

Python and Matlab. In Figure 6.10 (top) we also exploited another Horn-Schunck

154 6.4. Experimental Results

(a) Soccer Juggling at 0 s and 1 s.

(b) Optical flow (red arrows) and its magnitude (left) and direction (right).

Figure 6.3: Illustration of how an optical flow can capture the dynamics of the moving
objects between two adjacent frames sampled from a video. (a): Two sampled frames
from Soccer Juggling with original size 320× 240× 3. (b): The optical flow (red arrows)
extracted between the frames, and its two characteristics: magnitude and direction.

flow method. Figure 6.3 presents an optical flow generated from two adjacent frames

of a video labelled as Soccer Juggling: (a) shows two frames sampled at 0 s and 1 s of

the video; and (b) exhibits the characteristics of the flow: magnitude and direction.

We observe that, while the indoor background essentially remains unchanged, the

motion of the player together with the football is clearly captured by the flow.

Moreover, we include an example of the sequential optical flows extracted from

another video with classification Balance Beam in Figure 6.4, where the top row

exhibits four sampled frames from 0 s to 3 s, extracted from which the corresponding

optical flows (in blue arrows) are shown in the 2nd row, with two characteristics

magnitude and direction in the 3rd and the bottom rows, respectively. Overall, the

motions of the gymnast performing on the balance beam in the centre of the video

are captured in the highlighted regions of the magnitude and direction characteristics.

We now demonstrate how a very slight perturbation on the flow, almost imper-

ceptible to human eyes, can lead to a misclassification of the whole video. Figure 6.5

6. Robustness of Deep Neural Networks on Videos 155

Figure 6.4: Examples of a sequence of optical flows extracted from a Balance Beam
video. Top row: four sampled frames from 0 s to 3 s with original size 320× 240× 3. 2nd
row: the optical flows (blue arrows) extracted between the frames. 3rd row: one of optical
flow’s characteristics: magnitude. Bottom row: the direction of optical flow.

exhibits that a video originally classified as Long Jump with confidence 100.00% is

manipulated into Floor Gymnastics with confidence 86.10%. Two sampled frames

at 1 s and 2 s are shown in the 1st column. If we compare the original optical

flow of magnitude and direction (2nd column) generated from the frames with the

perturbed ones (4th column), we can hardly notice the difference (3rd column).

However, the classification of the video has changed.

6.4.3 Converging Upper and Lower Bounds

We illustrate the convergence of the bound computation for the maximum safe radius

with respect to manipulations on the optical flows extracted from the consecutive

frames of a video. Take a Hammer Throw video as an example. Figure 6.6 exhibits

four sampled frames (top row) from a Hammer Throw video and the optical flows

156 6.4. Experimental Results

(a) Long Jump at 1 s. (b) Optical flow magnitude: original, difference, and perturbed.

(c) Long Jump at 2 s. (d) Optical flow direction: original, difference, and perturbed.

Figure 6.5: Imperceptible perturbations on optical flow, in terms of magnitude and
direction, leading to misclassification from Long Jump (100.00%) to Floor Gymnastics
(86.10%). (a)(c): sampled frames at 1 s and 2 s with size 224× 224× 3. (b): original and
perturbed magnitude. (d): original and perturbed direction.

extracted between them (2nd row). The descending upper bounds (yellow) and the

ascending lower bounds (blue) to approximate the value of MSR are presented in

Figure 6.7(a). Intuitively, after 20 iterations of the gradient-based algorithm, the

upper bound, i.e., minimum distance to an adversarial example, is 5670.31 based

on the L2 distance metric. That is, manipulations imposed on the flows exceeding

this upper bound may be unsafe. Figure 6.6 (3rd row) shows some of such unsafe

perturbations on each optical flow, which result in the misclassification of the video

into Front Crawl with confidence 99.86%. As for the lower bound, we observe that,

after 1000 iterations of the admissible A* algorithm, the lower bound reaches 52.95.

That is, manipulations within this L2 norm ball is absolutely safe. Some of such

safe perturbations can be found in the bottom row of Figure 6.6.

We include another example to illustrate the convergence of the upper and lower

bounds. Similarly, Figure 6.8 exhibits five sampled frames (top row) and the optical

flows extracted between them (2nd row). By utilising our framework, we present

the approximation of MSR in Figure 6.7(b), where the yellow line indicates the

6. Robustness of Deep Neural Networks on Videos 157

Figure 6.6: Examples of unsafe and safe perturbations on the optical flows of a Hammer
Throw video. Top row: four sampled frames from 0 s to 3 s. 2nd row: optical flows of the
frames from 0 s to 3 s. 3rd row: unsafe perturbations on the flows corresponding to the
upper bound. Bottom row: safe perturbations corresponding to the lower bound.

descending trend of the upper bound, whereas the blue line denotes the ascending

trend of the lower bound. Intuitively, after 20 iterations of the gradient-based

algorithm, the upper bound, i.e., minimum distance to an adversarial example, is

2100.45 based on the L2 distance metric. That is, manipulations imposed on the

flows exceeding this upper bound may be unsafe. Figure 6.8 (3rd row) shows some of

such unsafe perturbations on each optical flow, which result in the misclassification

of the video into Front Crawl with confidence 97.04%. As for the lower bound, we

observe that, after 1500 iterations of the admissible A* algorithm, the lower bound

reaches 146.61. That is, manipulations within this L2 norm ball is absolutely safe.

158 6.4. Experimental Results

(a) Hammer Throw (b) Floor Gymnastics

Figure 6.7: Convergence of the maximum safe radius with respect to manipulations
on extracted optical flows. The blue line denotes the decreasing upper bound from the
gradient-based algorithm, and the black line denotes the increasing lower bound from
admissible A*. (a) The Floor Gymnastics video. (b) The Hammer Throw video.

Some of such safe perturbations can be found in the bottom row of Figure 6.8.

6.4.4 Extension to Naturally Plausible Distortions

Apart from the above-mentioned adversarial perturbations imposed on the optical

flows, no matter whether safe or unsafe, our framework can be extended to distortions

that are more natural and physically plausible to the modality of the data itself.

This is because all the large perturbations that preserve the semantic content of

a video, such as “brightness change”, “camera occlusion”, “horizontal flip”, and

“angular rotation”, are essentially compositions of various atomic manipulations

on the videos, and thus can easily be incorporated.

Take the “brightness change” perturbation as an example. As illustrated in

Figure 6.9, we increase the brightness of the Hammer Throw video on the frame

level. That is, each pixel in the same frame is simultaneously brightened by the

atomic manipulation τ , thus resulting in the overall distance to the original video

increasing by d̃′(Lp, τ ·w · h), where w denotes the width of the frame and h height.

The corresponding lower bounds of MSR are computed in Figure 6.9(c). Intuitively,

it means that any degree of brightness alteration is definitely safe as long as the

6. Robustness of Deep Neural Networks on Videos 159

Figure 6.8: Examples of unsafe and safe perturbations on the optical flows of a Floor
Gymnastics video. Top row: five sampled frames from 0 s to 4 s. 2nd row: optical flows of
the frames from 0 s to 5 s. 3rd row: unsafe perturbations on the flows corresponding to
the upper bound. Bottom row: safe perturbations corresponding to the lower bound.

distance to the original video is less than the computed lower bound. For instance,

after 10 iterations, the lower bound is 548.68 based on the L2 norm, then any

frame-level brightness increase less than 548.68 in the Euclidean distance will not

change the classification of this video. Besides, compared to the bounds produced

in Figure 6.7, here the ascending trend of the lower bounds is slightly different, in

the sense that, every once in a while, the bounds remain unchanged for a number

of iterations, e.g., same 387.97 during the first 5 iterations, corresponding to the

total 5 frames this video contains. This is because the brightness perturbation is

imposed at the frame level, and in each iteration when Player I chooses a frame to

perturb, Player II adds the same τ · w · h to this frame. In other words, Player I

has to traverse every frame (and their combinations after the first 5 iterations)

160 6.4. Experimental Results

(a) Brightness increase of the Hammer Throw video.

(b) Optical flows corresponding to the same frame with brightness changes.

(c) Lower bounds of the maximum safe radius.

Figure 6.9: Safe brightness changes to the Hammer Throw video and the corresponding
lower bounds of the maximum safe radius. (a) The frame at 2 s of Hammer Throw with
increasing brightness. (b) The optical flows extracted from the same frame taking into
account the brightness change. (c) The ascending lower bounds of the maximum safe
radius reflecting the brightness change.

to increase the lower bounds.

One interesting phenomenon observed is that, as exhibited in Figure 6.9(b),

when the brightness of a frame increases, the extracted optical flow on the same

frame is not significantly affected, due to the fact that the motion is relatively

unchanged. In other words, optical flow can naturally discard some perturbations

that do not alter the underlying temporal dynamics.

Apart from the “brightness change”, we include some other possible natural

6. Robustness of Deep Neural Networks on Videos 161

Figure 6.10: Some possible extensions of the adversarial perturbations to more naturally
plausible distortions such as “camera occlusion”, “horizontal flip”, and “angular rotation”.
Top: “camera occlusion” to the Soccer Juggling video with the Horn-Schunck [26] optical
flow method. Middle: “left and right flip” to the Floor Gymnastics video. Bottom: “angular
rotation” to the Front Crawl video.

distortions of the adversarial perturbations in Figure 6.10, such as the “camera

occlusion” of the Soccer Juggling video with the Horn-Schunck optical flow method,

the “horizontal flip” of the Floor Gymnastics video, and the “angular rotation” by 90°,

180°, and 270° of the Front Crawl video. We can see that the “camera occlusion” here

is very similar to the safe perturbations of the Hammer Throw video in Figure 6.6

(bottom row), and thus can be handled using similar methods. The “horizontal flip”

and the “angular rotation” involve manipulations that form a group, and to deal

with those our approach would need to be extended, for example by incorporating

network invariances. This is left as future work.

Finally, regarding these various adversarial perturbations, we remark that

whether the perturbations are visible for a human largely depends on the ma-

nipulation manner – with the same distance to the original input, manipulations

such as these physically plausible distortions are certainly more visible than

162 6.4. Experimental Results

Figure 6.11: Scalability of the maximum safe radius with respect to optical flow. Lines
with different colours represent the lower bounds of the maximum safe radius of a Hammer
Throw video with different dimensions of the manipulated optical flows.

unsafe perturbations produced by the gradient-based search algorithm and the

safe perturbations created from the admissible A* algorithm.

6.4.5 Efficiency and Scalability

As for the computation time, the upper bound requires the gradient of optical flow

with respect to the frame, and because we extract dense optical flow, the algorithm

needs to traverse each pixel of a frame to impose atomic manipulations; thus it

takes around 30 minutes to retrieve the gradient of each frame. Once the gradient

of the whole video is obtained, and the framework enters into the cooperative game,

i.e., the expansion of the tree, each iteration takes minutes. Meanwhile, for the

lower bound, the admissible A* algorithm expands the game tree in each iteration

which takes minutes, and updates the lower bound wherever applicable. Note that

initially the lower bound may be updated in each iteration, but when the size of

the game tree increases, it can take hours to update.

Moreover, we analyse the scalability of our framework via an example of a

Hammer Throw video in Figure 6.11, which shows the lower bounds of the maximum

safe radius obtained with respect to different dimensions of the manipulated optical

6. Robustness of Deep Neural Networks on Videos 163

flows. We observe that, within the same number of iterations, smaller input

dimension leads to faster convergence.

6.5 Summary

In this chapter, we study the maximum safe radius problem of neural networks,

including CNNs and RNNs, with respect to the optical flow sets extracted from

sequential videos. By relying on Lipschitz continuity, we transform the problem to a

finite optimisation whose approximation has provable guarantees, and subsequently

reduce the finite optimisation to the solution of a two-player turn-based game.

We design algorithms to compute upper and lower bounds, and demonstrate the

convergence trend of the bounds in the experiments.

164

7
Conclusions

7.1 Summary

The central question examined in this thesis is how to make sure deep neural networks

behave correctly in real-world safety-critical scenarios, such as autonomous driving

and automatic medical diagnosis, where erroneous behaviours might cause tremen-

dous loss. A particular category of erroneous behaviours that have safety implications

is the vulnerability of neural networks to adversarial examples. Researchers found

that, even a well-trained network performing at a human level accuracy might,

surprisingly, have a 100% error rate on inputs that are intentionally constructed.

Regarding this, this thesis studies the robustness property of neural networks,

defined as the invariance of a network’s decision-making procedure against small

perturbations in the neighbourhood of an input. Early endeavours to evaluate

robustness emerged in the computer vision and security communities, where various

attack techniques have been developed to craft such adversarial examples on purpose.

And whether a network can be easily attacked is used as an indication of the network’

(lack of) robustness. However, such assessment does not have guarantees, in the

sense that it cannot tell whether a misclassification is definitely not going to happen,

given some constraints such as the size of the neighbourhood. Later, around 2016,

165

166 7.1. Summary

researchers in the field of formal verification started to propose approaches that

can provide guarantees. For example, [30] computes deterministic guarantees on

small size networks, and [28] deploys a layer-by-layer exhaustive search.

Compared with existing works in literature, the methodologies developed in

this thesis for the robustness evaluation of deep neural networks with provable

guarantees are scalable to large neural networks and applicable to real-world systems.

Specifically, we start with the assessment of local robustness on pixel-level images, as

presented in Chapter 4. Here, to measure the discrepancy between an original input

and the manipulated one, we exploit the Hamming distance, which is an “interesting”

yet “challenging” metric – “interesting” in the sense that it can intuitively and

straightforwardly reflect the perturbations imposed on an image, e.g., a tiny mud

speckle on a traffic sign covering ten pixels; “challenging” in the sense that it is

non-differentiable, unlike the Lp norms, and therefore most optimisation algorithms

utilising gradient descent do not work in this case. Moreover, in this chapter, we

extend the local robustness property to the global robustness so that we enable

the evaluation of a network on an entire dataset instead of just a single image.

To the best of our knowledge, this is the first algorithm that evaluates global

robustness of networks with provable guarantees based on the Hamming distance.

Apart from the pixel-level robustness evaluation, in Chapter 5, we extend the

robustness of neural networks to feature level, which makes more sense because,

when humans perceive an image, we immediately identify the salient features and

almost instantly exclude the irrelevant elements out of subconsciousness, e.g., pixels

in the background. Similarly, as far as we know, it is the first work that guarantees

feature-level robustness of neural networks. To take a step further, in Chapter 6, we

not only consider the spatial features in images, as in the above two chapters, where

convolutional networks suffice, but also take into account the temporal dynamics

between adjacent frames from a video, for which recurrent networks are deployed.

By the time this work was put online, there was no other work in public domain

addressing the robustness guarantees for videos.

7. Conclusions 167

Contributions

We summarise the main contributions of this thesis in the following aspects:

� To quantify robustness, we exploit the concept called the maximum safe

radius of a neural network with respect to an input, which is defined as the

distance, measured by a certain metric, to the original input in the sense that,

if exceeding the distance, there definitely exists an adversarial example in

the input space, whereas, within the distance, all the input points are safe.

Specifically, in Chapter 4 we compute this maximum safe radius when the

input is an image and the metric is the Hamming distance, and subsequently

extend to other metrics such as the Manhattan and the Euclidean distances,

i.e., the L1 and L2 norms, in Chapter 5. Moreover, in Chapter 6 we extend

the input space from images to videos, and compute the maximum safe radius

with respect to optical flow, so that, for a time-series of frames sampled from

a video, both spatial features in individual frames and temporal dynamics

between adjacent frames can be captured. While the maximum safe radius in

these scenarios is regarded as local robustness, in Chapter 4 we also extend

to global robustness as an expectation of the maximum safe radius over a

dataset of independent and identically distributed images. Apart from this,

to evaluate the robustness of neural networks on features of an image, in

Chapter 5 we propose the feature robustness problem to find the most robust

feature of an image by restricting adversarial perturbations to certain features,

and thus the existence of adversarial attacks is controllable.

� To solve the above maximum safe radius and feature robustness problems,

theoretically, we need to consider all the possible input points in the norm ball,

of which, however, there are infinitely many. Regarding this, we utilise the

fact that the neural networks studied in this thesis are Lipschitz continuous to

discretise the neighbourhood space of an input, in other words, to transform

the infinite number of points in the norm ball into a finite number of uniformly

168 7.1. Summary

distributed points on a grid. We demonstrate that, when the distances between

the grid points are small, we can reduce the robustness evaluation to finite

optimisation problems that have provable guarantees. This is the underlying

technique we use in Chapters 4, 5, and 6 to provide the robustness evaluation

of deep neural networks with guarantees.

� Because our work is scalable to large-scale state-of-the-art neural networks,

e.g., VGG16 and ResNet101, and applicable to real-world systems such as The

German Traffic Sign Recognition Benchmark (GTSRB) dataset, it is not always

realistic to compute the exact maximum safe radius or the exact feature

robustness, as the input dimensions can be huge, and the networks usually

contain millions of hidden neurons. To deal with this, we calculate two bounds,

namely an upper bound and a lower bound, in the sense that the upper bound

is monotonically decreasing whilst the lower bound monotonically increasing,

so that eventually they will converge to the optimal value, i.e., the exact value

of maximum safe radius or the feature robustness. Intuitively, it means that

all the points with distance to the original input less than the lower bound

are definitely safe, and when the distance to the original input exceeds the

upper bound, there definitely exists some point that is an adversarial example.

We deploy different methods to obtain the bounds, for example, in Chapter 4

the pixel-level subspace sensitivity is analysed and a generated saliency map

is used to compute the bounds over the local/global maximum safe radius.

For robustness on features and videos in Chapters 5 and 6, we solve the

finite optimisation problems via a game-based verification framework, which

is introduced below.

� Unlike the robustness evaluation of networks on pixel-level images, where

adversarial perturbations may be applied to any arbitrary pixels, robustness

evaluation on the features of an image or the videos needs to determine,

within which specific feature, or which optical flow extracted between adjacent

7. Conclusions 169

frames, modifications should occur. In these two scenarios, we utilise a

game-based verification framework to solve the finite optimisation problems.

Specifically, for a two-player turn-based game, in Chapter 5, we let Player I

select features and Player II choose pixels/channels within the selected feature

to perform manipulations, and in Chapter 6 we let Player I pick optical flows

and Player II determine dimensions within the picked optical flow to conduct

alterations. In each iteration of the game, after both players have made their

choices, the input image/video is perturbed, and the game continues. For the

robustness evaluation on features, we set Player II’s aim as to minimise the

distance to an adversarial example, then when Player I is cooperative, this

is essentially the maximum safe radius computation problem, whereas when

Player II is competitive, this addresses the feature robustness problem. We

apply the Monte Carlo tree search algorithm to compute the upper bounds for

both cooperative and competitive games, and admissible A* and Alpha-Beta

Pruning, respectively, to compute the lower bounds for the two game-based

approaches. Similarly, for video robustness, we exploit a gradient-based

algorithm to improve the upper bounds and the Admissible A* to refine

the lower bounds. In either case, we demonstrate that the solution to the

optimisation problems is Player I’s reward when taking the optimal strategy.

To add to the discussion, we also mention the key potential limitation of the

methods proposed in this thesis. Our approach assumes the knowledge of a Lipschitz

constant of the neural networks, though not necessarily a tight one. That is, the

value of Lip should satisfy the Lipschitzian property (Definition 3.15). In the

literature, there are several techniques to estimate such a constant, for example

FastLin/FastLip [74], Crown [82], and DeepGO [59]. The size of the Lipschitz constant

is inversely proportional to the grid width and thus the error bound, and therefore

affects the computational performance. Due to the high non-linearity and high-

170 7.2. Future Work

dimensionality of modern deep neural networks, we remark that it is non-trivial

to conduct verification even if the Lipschitz constant is known.

7.2 Future Work

Several directions for potential future research arise from the work in this thesis.

Below we highlight several that are of particular relevance.

Classes of Adversarial Manipulations

To this point, most of our work has focused on adversarial perturbations accumu-

lated from imposing atomic manipulations in input dimensions. Especially when

generating a lower bound, we need to make sure all the inputs with distances less

than the lower bound must be safe, therefore, in each iteration, the modification

of the bound is caused by a very slight alteration constrained by the Lipschitz

constant to provide provable guarantees. Nevertheless, such modifications often

tend to be random and unrealistic to human perception. Researchers arguably even

doubt if they are actually natural and physically plausible.

Regarding this, a possible future work is to consider adversarial perturbations

that preserve the semantic content of the input data, for example, the “brightness

change”, “camera occlusion”, “left/right flip”, and “angular rotation” distortions

for the robustness evaluation on videos, as studied in Chapter 6.

Moreover, we observe that such kind of physically plausible distortions often

have their own characteristics, and thus can be categorised into specific classes. For

instance, to measure the discrepancy caused by “brightness change”, the Chebyshev

distance might be one of the appropriate metrics, as the brightness in all the pixels

usually change simultaneously by the same magnitude. Also, as demonstrated in our

work, “brightness change” can easily be easily handled via optical flow, as when the

brightness increases or decreases, the motion of the objects is virtually unaffected.

As for “camera occlusion”, one of its characteristics is that the shape and size of the

occlusion often remain unchanged. In other words, the distance between the input

7. Conclusions 171

and the perturbed image does not change much. Compared with those, “horizontal

flip” and “angular rotation” are similar in the sense that it would seem slightly

inappropriate to utilise the conventional Lp norms to measure the distance in a

dimension-by-dimension manner. Instead, it is necessary to consider operations that

distort or rotate images, and extend robustness evaluation to take this into account.

Robustness of Natural Language Processing

Another appealing future work is the possible application to natural language

input, i.e., the robustness evaluation of deep neural networks on natural language

processing. Neural networks have been widely employed in this domain, such as

machine translation, language modelling, and sentiment analysis. For example, in a

sentence-level sentiment analysis task, adversarial perturbations such as replacing

the word “excellent” by “terrific” in a given text may completely change the

classified polarity from positive to negative.

In fact, if we compare the similarity between the robustness evaluation of

natural language processing and the work in this thesis, there is a high chance

that our proposed methodologies can be adopted. To be more specific, if given a

trained network N to perform polarity classification, and a text represented by

word embedding with finite words t = {w1, . . . , wm}, m ∈ N+, we can define the

local robustness of the network with respect to the text as the invariance of N ’s

decision-making in the neighbourhood of t. This neighbourhood can be expressed by

our metric ball Ball(t, dEmbed, d), where dEmbed can be a similarity measurement from

word embedding. Thus, the verification of local robustness problem is to determine

whether Robust(N ,Ball(t, dEmbed, d)) = True holds, as in our Definition 3.9.

7.3 Outlook

This thesis has developed methodologies for the robustness evaluation of deep neural

networks with provable guarantees. Compared to traditional formal verification

disciplines, the safety verification of deep neural networks essentially emerged

172 7.3. Outlook

during my doctoral study, and thus is still in relative infancy. Nevertheless, with

the world-wide application of deep learning techniques, we believe that methods

to provide robustness guarantees for deep neural networks will constitute a key

element of safety-critical real-world systems in future.

Appendices

173

A
Experimental Settings for DeepTRE

A.1 ImageNet Saliency Maps and Local Robust-
ness

A.1.1 State-of-the-Art ImageNet Models

• AlexNet [34] – a convolutional neural network with 8 layers, designed by Alex

Krizhevsky. It competed in the 2012 ImageNet Large Scale Visual Recognition

Challenge (ILSVRC) [62], and achieved a top-5 error of 15.3%, more than

10.8 percentage points lower than that of the runner up.

• VGG-16 and VGG-19 [64] – two 16-layer and 19-layer convolutional networks

released in 2014 by K. Simonyan and A. Zisserman from the Visual Geometry

Group (VGG) at the University of Oxford. This family of architectures

achieved 7.4% to 7.3% top-5 error in the ILSVRC 2014.

• ResNet50 and ResNet101 [24] – deep residual networks with a depth of 50 and

101 layers respectively proposed by Kaiming He et al. at Microsoft Research

Asia. An ensemble of these networks achieved 3.57% error on the ImageNet

test set and won the 1st place on the ILSVRC 2015 classification task.

175

176 A.1. ImageNet Saliency Maps and Local Robustness

A.1.2 Hardware/Software Platforms and Parameter Set-
tings

Hardware and Software Platforms

• Hardware Platform:

– NVIDIA GeForce GTX 1050

– Intel® Core™ i7-7700HQ Processor

• Software Platform:

– MATLAB 2018a

– Neural Network Toolbox

– Image Processing Toolbox

– Parallel Computing Toolbox

– Pretrained ImageNet Models (AlexNet, VGG-16/19, ResNet50/101)

DeepTRE: Parameter Setting

• EPSILON = 0.3

• Subspace_Dimension = 1

• Tested Images: 20 ImageNet Images (Random)

A.1.3 ImageNet Saliency Maps and Adversarial Images

Figures A.1, A.2, and A.3 exhibit more examples of adversarial images and

saliency maps.

A. Experimental Settings for DeepTRE 177

Figure A.1: Adversarial examples on upper boundaries returned by our tool DeepTRE
(right column), and saliency maps for each ImageNet DNN model (left column).

178 A.1. ImageNet Saliency Maps and Local Robustness

Figure A.2: Adversarial examples on upper boundaries (right column) returned by
DeepTRE, and their saliency maps (left column) for the ImageNet AlexNet model. Note
that all adversarial images with dm = 1, 2 are also the ground-truth Hamming distance
adversarial images since their upper bounds and lower bounds local robustness have
converged.

A. Experimental Settings for DeepTRE 179

Figure A.3: Adversarial examples on upper boundaries (right column) returned by
DeepTRE, and their saliency maps (left column) for the ImageNet VGG-16 and VGG-19
models. The first and second columns are for the VGG-16 model; the third and fourth
columns are for the VGG-19 model.

180 A.2. Local/Global Robustness and Convergence

A.2 Local/Global Robustness and Convergence

A.2.1 Hardware and Software Platforms

• Hardware Platform:

– NVIDIA GeForce GTX 1050

– Intel® Core™ i7-7700HQ Processor

• Software Platform:

– MATLAB 2018a

– Neural Network Toolbox

– Image Processing Toolbox

– Parallel Computing Toolbox

A.2.2 DNN-Reduced: Model Structure and Parameter Set-
ting

The model structure of DNN-Reduced is in Table A.1.

Table A.1: DNN-Reduced

Layer Type Size

Input 14× 14× 1

Convolution + Batch Normalisation + ReLU 2× 2× 8

Convolution + Batch Normalisation + ReLU 2× 2× 16

Convolution + Batch Normalisation + ReLU 2× 2× 32

Fully Connected + Softmax 10

DNN-Reduced: Training Setup

• Parameter Optimisation Option:

– Mini-Batch Size = 128

– Max Epochs = 50

A. Experimental Settings for DeepTRE 181

– Optimizer = SGDM

• Training Accuracy:

– MNIST (99.5% on 50 000 images)

• Testing Accuracy:

– MNIST (98.73% on 10 000 images)

DeepTRE: Parameter Setting

• EPSILON = 0.25

• Subspace_Dimension = 3

• Tested Images: 5300 MNIST Test Images

A.2.3 DNN-Standard: Model Structure and Parameter Set-
ting

The model structure of DNN-Standard is in Table A.2.

Table A.2: DNN-Standard

Layer Type Size

Input 28× 28× 1

Convolution + ReLU 3× 3× 32

Convolution + ReLU 3× 3× 64

Max-Pooling 2× 2

Dropout 0.25

Fully Connected + ReLU 128

Dropout 0.5

Fully Connected + Softmax 10

DNN-Standard: Training Setup

• Parameter Optimisation Option:

182 A.2. Local/Global Robustness and Convergence

– Mini-Batch Size = 128

– Max Epochs = 30

– Optimizer = SGDM

• Training Accuracy:

– MNIST (100% on 50 000 images)

• Testing Accuracy:

– MNIST (99.16% on 10 000 images)

DeepTRE: Parameter Setting

• EPSILON = 0.25

• Subspace_Dimension = 2

• Tested Images: 2400 MNIST Test Images

A.2.4 Ground-Truth Adversarial Images

Figures A.4 and A.5 display some adversarial images returned by our tool DeepTRE.

Figure A.4: Ground truth adversarial examples when converging to MSR. For each digital
image, from the left to right, the first is original image, the second is the adversarial
image returned at t = 1, and the third is the adversarial example at the boundary of a
safe norm ball, namely the ground-truth adversarial example [7].

A. Experimental Settings for DeepTRE 183

Figure A.5: Ground-truth adversarial examples (right column) generated by DeepTRE
at t = 1, and the saliency maps of the original images (left column).

184 A.3. Robustness and Accuracy of Model Architecture

A.3 Robustness and Accuracy of Model Archi-
tecture

A.3.1 Hardware and Software Platforms

• Hardware Platform:

– NVIDIA GeForce GTX 1050

– Intel® Core™ i7-7700HQ Processor

• Software Platform:

– MATLAB 2018a

– Neural Network Toolbox

– Image Processing Toolbox

– Parallel Computing Toolbox

A.3.2 DNN-1 to DNN-7: Model Structure and Parameter
Setting

The model structures of DNN-1 to DNN-7 are presented from Tables A.3 to A.9.

DNN-1 to DNN-7: Training Setup

• Parameter Optimisation Option:

– Mini-Batch Size = 128

– Max Epochs = 30

– Optimizer = SGDM

• Training Accuracy of MNIST (50 000 images):

– DNN-1 to DNN-7 all reach 100%

• Testing Accuracy of MNIST (10 000 images):

– DNN-1 = 97.75%

– DNN-2 = 97.95%

– DNN-3 = 98.38%

– DNN-4 = 99.06%

A. Experimental Settings for DeepTRE 185

– DNN-5 = 99.16%

– DNN-6 = 99.13%

– DNN-7 = 99.41%

DeepTRE: Parameter Setting

• EPSILON = 0.3

• Subspace_Dimension = 2

• Tested Images: 1000 MNIST Test Images

Table A.3: DNN-1

Layer Type Size

Input 28× 28× 1

Convolution + ReLU 3× 3× 32

Fully Connected + Softmax 10

Table A.4: DNN-2

Layer Type Size

Input 28× 28× 1

Convolution + ReLU 3× 3× 32

Convolution + ReLU 3× 3× 64

Fully Connected + Softmax 10

186 A.3. Robustness and Accuracy of Model Architecture

Table A.5: DNN-3

Layer Type Size

Input 28× 28× 1

Convolution + ReLU 3× 3× 32

Convolution + Batch Normalisation + ReLU 3× 3× 64

Fully Connected + Softmax 10

Table A.6: DNN-4

Layer Type Size

Input 28× 28× 1

Convolution + ReLU 3× 3× 32

Convolution + Batch Normalisation + ReLU 3× 3× 64

Fully Connected + ReLU 128

Fully Connected + Softmax 10

Table A.7: DNN-5

Layer Type Size

Input 28× 28× 1

Convolution + ReLU 3× 3× 32

Convolution + Batch Normalisation + ReLU 3× 3× 64

Dropout 0.5

Fully Connected + ReLU 128

Fully Connected + Softmax 10

A. Experimental Settings for DeepTRE 187

Table A.8: DNN-6

Layer Type Size

Input 28× 28× 1

Convolution + ReLU 3× 3× 32

Convolution + ReLU 3× 3× 64

Convolution + Batch Normalisation + ReLU 3× 3× 128

Dropout 0.5

Fully Connected + ReLU 128

Fully Connected + Softmax 10

Table A.9: DNN-7

Layer Type Size

Input 28× 28× 1

Convolution + ReLU 3× 3× 16

Convolution + Batch Normalisation + ReLU 3× 3× 32

Convolution + Batch Normalisation + ReLU 3× 3× 64

Convolution + Batch Normalisation + ReLU 3× 3× 128

Dropout 0.5

Fully Connected + ReLU 256

Dropout 0.5

Fully Connected + Softmax 10

188

B
Proofs and Comparisons for DeepGame

B.1 Proofs for Lemmas and Theorems

B.1.1 Proof for Lemma 4

Proof. Let α1 be any point in Ball(α, Lp, d). We need to show that, for some

τ -grid input α′, we have α1 ∈ Ball(α′, Lp, 1
2d(Lp, τ)). Because every point in

Ball(α, Lp, d) belongs to a τ -grid cell, we assume that α1 is in a τ -grid cell

which, without loss of generality, has a set T of τ -grid inputs as its vertices.

Now for any two τ -grid inputs α2 and α3 in T , we have ‖α2 −α3‖p ≤ d(Lp, τ)

by the construction of the grid. Therefore, we have α1 ∈ Ball(α′, Lp, 1
2d(Lp, τ))

for some α′ ∈ T .

B.1.2 Proof for Lemma 5

Proof. We prove by contradiction. Assume that FMSR(N ,α, c, Lp, d, τ) = d′

for some d′ > 0, and MSR(N ,α, c, Lp, d) < d′ − 1
2d(Lp, τ). Then there must

exist an input α′ such that α′ ∈ advLp,d(α, c) and

‖α′ −α‖p = MSR(N ,α, c, Lp, d) < d′ − 1
2d(Lp, τ), (B.1)

and α′ is not a τ -grid input. By Lemma 4, there must exist a τ -grid input

189

190 B.1. Proofs for Lemmas and Theorems

α′′ such that α′ ∈ Ball(α′′, Lp, 1
2d(Lp, τ)). Now because all τ -grid inputs

are misclassification aggregators with respect to 1
2d(Lp, τ), we have α′′ ∈

advLp,d(α, c). By α′′ ∈ advLp,d(α, c) and the fact that α′′ is a τ -grid input, we

have that

FMSR(N ,α, c, Lp, d, τ) ≤ ‖α−α′′‖p ≤ ‖α−α
′‖p + 1

2d(Lp, τ). (B.2)

Now, combining Equations (B.1) and (B.2), we have FMSR(N ,α, c, Lp, d, τ) <

d′, which contradicts the hypothesis that FMSR(N ,α, c, Lp, d, τ) = d′.

B.1.3 Proof for Theorem 6

Proof. By Lemma 3, we have MSR(N ,α, c, Lp, d) ≤ FMSR(N ,α, c, Lp, d, τ) for

any τ > 0. By Lemmas 5 and 6, when FMSR(N ,α, c, Lp, d, τ) = d′, we have

MSR(N ,α, c, Lp, d) ≥ d′ − 1
2d(Lp, τ), under the condition that

d(Lp, τ) ≤ 2 ·Margin(α′,N (α′))
maxc∈C,c6=N (α′)(LipN (α′) + Lipc)

(B.3)

for all τ -grid inputs α′ ∈ Γ(α, Lp, d, τ). Therefore, when d(Lp, τ) satisfies the

above condition for all τ -grid inputs α′ ∈ Γ(α, Lp, d, τ), if we use d′ to estimate

MSR(N ,α, c, Lp, d), we will have d′ − 1
2d(Lp, τ) ≤ MSR(N ,α, c, Lp, d) ≤ d′, i.e.,

the error bound is 1
2d(Lp, τ).

B.1.4 Proof for Lemma 7

Proof. We prove by contradiction. Assume that FFRΛ(N ,α, c, Lp, d, τ) = d′

for some d′ > 0, and FRΛ(N ,α, c, Lp, d) < d′− 1
2d(Lp, τ). Then, for all subsets

Λ ⊆ Λ(α) of features, either (1) for all X ⊆ ⋃
λ∈Λ Pλ and ψ ∈ Ψ we have

δτ,X,ψ(α) /∈ advLp,d(α, c), or (2) there must exist X ⊆ ⋃
λ∈Λ Pλ and ψ ∈ Ψ

such that α′ = δτ,X,ψ(α) ∈ advLp,d(α, c) and

‖α′ −α‖p < d′ − 1
2d(Lp, τ), (B.4)

and α′ is not a τ -grid input. For the latter case, by Lemma 4, there must

exist a τ -grid input α′′ such that α′ ∈ Ball(α′′, Lp, 1
2d(Lp, τ)). Now because

B. Proofs and Comparisons for DeepGame 191

all τ -grid inputs are misclassification aggregators with respect to 1
2d(Lp, τ),

we have α′′ ∈ advLp,d(α, c). By α′′ ∈ advLp,d(α, c) and the fact that α′′ is a

τ -grid input, we have that

‖α−α′′‖p ≤ ‖α−α
′‖p + 1

2d(Lp, τ). (B.5)

Hence, we have FFRΛ(N ,α, c, Lp, d, τ) < d′ by combining Equations (B.4) and

(B.5). However, this contradicts the hypothesis that FFRΛ(N ,α, c, Lp, d, τ) =

d′. As for the former case, we have that FFRΛ(N ,α, c, Lp, d, τ) = d′ > d.

If FRΛ(N ,α, c, Lp, d) < d′ − 1
2d(Lp, τ), then there exists an α′ such that

α′ ∈ Ball(α′′, Lp, 1
2d(Lp, τ)) for some τ -grid input α′′. By the definition of

misclassification aggregator, we have α′′ ∈ advLp,d(α, c). This contradicts the

hypothesis that FFRΛ(N ,α, c, Lp, d, τ) = d′ > d.

B.1.5 Proof for Theorem 7

Proof. By Lemma 3, we have FRΛ(N ,α, c, Lp, d) ≤ FFRΛ(N ,α, c, Lp, d, τ) for

any τ > 0. By Lemma 6 and Lemma 7, when FFRΛ(N ,α, c, Lp, d, τ) = d′, we

have FRΛ(N ,α, c, Lp, d) ≥ d′ − 1
2d(Lp, τ), under the condition that

d(Lp, τ) ≤ 2 ·Margin(α′,N (α′))
maxc∈C,c6=N (α′)(LipN (α′) + Lipc)

(B.6)

for all τ -grid inputs α′ ∈ Γ(α, Lp, d, τ). Therefore, when d(Lp, τ) satisfies the

above condition for all τ -grid inputs α′ ∈ Γ(α, Lp, d, τ), if we use d′ to estimate

FRΛ(N ,α, c, Lp, d), we will have d′ − 1
2d(Lp, τ) ≤ FRΛ(N ,α, c, Lp, d) ≤ d′, i.e.,

the error bound is 1
2d(Lp, τ).

B.1.6 Proof for Theorem 8

Proof. First, we show that ‖α−α′‖p ≥ val(G(N ,α, c, Lp, d), MSR(N ,α, c, Lp, d))

for any input α′ such that α′ ∈ Ball(α, Lp, d), α′ ∈ advLp,d(α, c), and α′ is a τ -

grid input. Intuitively, it says that Player I reward from the game on the initial

state s0 is no greater than the distance to any τ -grid adversarial example.

192 B.1. Proofs for Lemmas and Theorems

That is, once computed, the val(G(N ,α, c, Lp, d), MSR(N ,α, c, Lp, d)) is a

lower bound of the optimisation FMSR(N ,α, c, Lp, d, τ). This can be obtained

by the fact that every τ -grid input can be reached by some game play.

Second, from the termination condition of the game plays, we can see that if

val(G(N ,α, c, Lp, d), MSR(N ,α, c, Lp, d)) ≤ ‖α−α′‖p for some α′ then there

must exist some α′′ such that val(G(N ,α, c, Lp, d), MSR(N ,α, c, Lp, d)) =

‖α−α′′‖p. Therefore, we have that val(G(N ,α, c, Lp, d), MSR(N ,α, c, Lp, d))

is the minimum value of ‖α−α′‖p among all α′ with α′ ∈ Ball(α, Lp, d),

α′ ∈ advLp,d(α, c), and α′ is a τ -grid input.

Finally, we notice that the above minimum value of ‖α−α′‖p is equivalent

to the optimal value required by Equation (5.6).

B.1.7 Proof for Theorem 9

Proof. First of all, let Λ1 be the set of features and ∆1 be the set of atomic input

manipulations in achieving the optimal value of FFRΛ(N ,α, c, Lp, d, τ). We

can construct a game play for (Λ1,∆1). More specifically, the game play leads

from the initial state to a terminal state, by recursively selecting an unused

input manipulation and its associated feature and defining the corresponding

moves for Player I and Player II, respectively. Therefore, because the strat-

egy profile σ is optimal, we have val(G(N ,α, c, Lp, d), FRΛ(N ,α, c, Lp, d)) ≥

FFRΛ(N ,α, c, Lp, d, τ).

On the other hand, we notice that the ordering of the applications of atomic

input manipulations does not matter, because the reward of the terminal

state is the distance from its associated input to the original input. Therefore,

because the game explores exactly all the possible applications of atomic input

manipulations and FFRΛ(N ,α, c, Lp, d, τ) is the optimal value by its defini-

tion, by Lemma 2 we have that val(G(N ,α, c, Lp, d), FRΛ(N ,α, c, Lp, d)) ≤

FFRΛ(N ,α, c, Lp, d, τ).

B. Proofs and Comparisons for DeepGame 193

B.2 Comparison of Tools in Adversarial Attacks

B.2.1 Model Architectures and Accuracy Rates

The architectures of the MNIST and CIFAR-10 models used in adversarial attacks

are illustrated in Table B.1. Below we list the parameters during the training

process together with the training and testing accuracy rates.

Table B.1: Architectures of the MNIST, CIFAR-10, and GTSRB models

Layer Type MNIST CIFAR-10 GTSRB

Input 28× 28× 1 32× 32× 3 48× 48× 3

Convolution + ReLU 3× 3× 32 3× 3× 64 3× 3× 64

Convolution + ReLU 3× 3× 32 3× 3× 64 3× 3× 64

Max-Pooling 2× 2 2× 2 2× 2

Convolution + ReLU 3× 3× 64 3× 3× 128 3× 3× 128

Convolution + ReLU 3× 3× 64 3× 3× 128 3× 3× 128

Max-Pooling 2× 2 2× 2 2× 2

Flatten

Fully Connected + ReLU 200 256 256

Dropout 0.5 0.5 0.5

Fully Connected + ReLU 200 256 256

Fully Connected + Softmax 10 10 43

• Parameter Optimisation Option:

– Batch Size = 128

– Epochs = 50

– Loss Function = softmax_cross_entropy_with_logits

– Optimizer = SGD (lr=0.01, decay=1e-6, momentum=0.9, nesterov=True)

• Training Accuracy:

194 B.2. Comparison of Tools in Adversarial Attacks

– MNIST (99.99% on 60 000 images)

– CIFAR-10 (99.83% on 50 000 images)

• Testing Accuracy:

– MNIST (99.36% on 10 000 images)

– CIFAR-10 (78.30% on 10 000 images)

B.2.2 Parameter Settings of Existing Tools

We remark that, unless separately specified, we employ the same parameter setting

of each tool to generate adversarial examples on the MNIST and CIFAR-10 datasets.

• DeepTRE:

– EPSILON = 0.5

– L0_UPPER_BOUND = 100

• DeepGame

– gameType = cooperative

– bound = ub

– algorithm = A*

– eta = (L0, 30)

– tau = 1

• C&W:

– targeted = False

– learning_rate = 0.1

– max_iteration = 100

• DLV:

– mcts_mode = sift_twoPlayer

– startLayer, maxLayer = -1

– numOfFeatures = 150

– featureDims = 1

B. Proofs and Comparisons for DeepGame 195

– MCTS_level_maximal_time = 30

– MCTS_all_maximal_time = 120

– MCTS_multi_samples = 5 (MNIST), 3 (CIFAR-10)

• SafeCV:

– MANIP = max_manip (MNIST), white_manipulation (CIFAR-10)
– VISIT_CONSTANT = 1

– backtracking_constant = 1

– simulation_cutoff = 75 (MNIST), 100 (CIFAR-10)
– small_image = True

• JSMA:

– bounds = (0, 1)

– predicts = logits

B.2.3 Hardware and Software Platforms

• Hardware Platform:

– NVIDIA GeForce GTX TITAN Black

– Intel® Core™ i5-4690S CPU @ 3.20GHz × 4

• Software Platform:

– Ubuntu 14.04.3 LTS

– Fedora 26 (64-bit)

– Anaconda, PyCharm

B.2.4 Adversarial Images

Figures B.1 and B.2 present a few adversarial examples generated on the MNIST

and CIFAR-10 datasets by our tools DeepTRE and DeepGame in comparison to

some other existing approaches. Figure B.3 exhibits some adversarial examples

generated by our tool DeepGame on the GTSRB dataset.

196 B.2. Comparison of Tools in Adversarial Attacks

Figure B.1: Comparison of the generated adversarial MNIST images. From left to right:
the original image, DeepGame, C&W, DeepTRE, DLV, SafeCV, and JSMA.

B. Proofs and Comparisons for DeepGame 197

Figure B.2: Comparison of generated adversarial CIFAR-10 images. From left to right:
the original image, DeepGame, C&W, DeepTRE, DLV, SafeCV, and JSMA.

198 B.2. Comparison of Tools in Adversarial Attacks

Figure B.3: Adversarial GTSRB images generated by tool DeepGame.

Bibliography

[1] Osbert Bastani, Yani Ioannou, Leonidas Lampropoulos, Dimitrios Vytiniotis,
Aditya Nori, and Antonio Criminisi. “Measuring Neural Net Robustness with
Constraints”. In: Advances in Neural Information Processing Systems 29. Ed. by
D. D. Lee, M. Sugiyama, U. V. Luxburg, I. Guyon, and R. Garnett. Curran
Associates, Inc., 2016, pp. 2613–2621.

[2] Herbert Bay, Andreas Ess, Tinne Tuytelaars, and Luc Van Gool. “Speeded-Up
Robust Features (SURF)”. In: Computer Vision and Image Understanding 110.3
(2008). Similarity Matching in Computer Vision and Multimedia, pp. 346–359.

[3] Herbert Bay, Tinne Tuytelaars, and Luc Van Gool. “SURF: Speeded Up Robust
Features”. In: Computer Vision – ECCV 2006. Ed. by Aleš Leonardis,
Horst Bischof, and Axel Pinz. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006,
pp. 404–417.

[4] Battista Biggio, Igino Corona, Davide Maiorca, Blaine Nelson, Nedim Šrndić,
Pavel Laskov, Giorgio Giacinto, and Fabio Roli. “Evasion Attacks against Machine
Learning at Test Time”. In: Machine Learning and Knowledge Discovery in
Databases. Ed. by Hendrik Blockeel, Kristian Kersting, Siegfried Nijssen, and
Filip Železný. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013, pp. 387–402.

[5] Rudy Bunel, Ilker Turkaslan, Philip HS Torr, Pushmeet Kohli, and
M Pawan Kumar. “A unified view of piecewise linear neural network verification”.
In: Proceedings of the 32nd International Conference on Neural Information
Processing Systems. 2018, pp. 4795–4804.

[6] Andrew Burton and John Radford. Thinking in Perspective: Critical Essays in the
Study of Thought Processes. Vol. 646. Routledge, 1978.

[7] Nicholas Carlini, Guy Katz, Clark W. Barrett, and David L. Dill. “Ground-Truth
Adversarial Examples”. In: CoRR abs/1709.10207 (2017). arXiv: 1709.10207.

[8] Nicholas Carlini and David Wagner. “Towards Evaluating the Robustness of
Neural Networks”. In: 2017 IEEE Symposium on Security and Privacy (SP). May
2017, pp. 39–57.

[9] Gunnar Carlsson, Tigran Ishkhanov, Vin de Silva, and Afra Zomorodian. “On the
Local Behavior of Spaces of Natural Images”. In: International Journal of
Computer Vision 76.1 (Jan. 2008), pp. 1–12.

[10] G.M.J.B. Chaslot, M.H.M. Winands, J.W.H.M. Uiterwijk, H.J. van den Herik, and
B. Bouzy. “Progressive Strategies for Monte-Carlo Tree Search”. In: New
Mathematics and Natural Computation 4.3 (2008), pp. 343–359.

199

http://arxiv.org/abs/1709.10207

200 Bibliography

[11] Chih-Hong Cheng, Georg Nührenberg, and Harald Ruess. “Maximum Resilience of
Artificial Neural Networks”. In: Automated Technology for Verification and
Analysis. Ed. by Deepak D’Souza and K. Narayan Kumar. Cham: Springer
International Publishing, 2017, pp. 251–268.

[12] Patrick Cousot and Radhia Cousot. “Abstract Interpretation: A Unified Lattice
Model for Static Analysis of Programs by Construction or Approximation of
Fixpoints”. In: Proceedings of the 4th ACM SIGACT-SIGPLAN Symposium on
Principles of Programming Languages. Association for Computing Machinery, 1977,
pp. 238–252.

[13] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. “ImageNet:
A Large-Scale Hierarchical Image Database”. In: 2009 IEEE Conference on
Computer Vision and Pattern Recognition. June 2009, pp. 248–255.

[14] Souradeep Dutta, Susmit Jha, Sriram Sankaranarayanan, and Ashish Tiwari.
“Output Range Analysis for Deep Feedforward Neural Networks”. In: NASA
Formal Methods. Ed. by Aaron Dutle, César Muñoz, and Anthony Narkawicz.
Cham: Springer International Publishing, 2018, pp. 121–138.

[15] Krishnamurthy Dvijotham, Robert Stanforth, Sven Gowal, Timothy A Mann, and
Pushmeet Kohli. “A Dual Approach to Scalable Verification of Deep Networks.” In:
Conference on Uncertainty in Artificial Intelligence (UAI). 2018, pp. 550–559.

[16] Rüdiger Ehlers. “Formal Verification of Piece-Wise Linear Feed-Forward Neural
Networks”. In: Automated Technology for Verification and Analysis. Ed. by
Deepak D’Souza and K. Narayan Kumar. Cham: Springer International Publishing,
2017, pp. 269–286.

[17] Gunnar Farnebäck. “Two-Frame Motion Estimation Based on Polynomial
Expansion”. In: Image Analysis. Ed. by Josef Bigun and Tomas Gustavsson. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2003, pp. 363–370.

[18] Timon Gehr, Matthew Mirman, Dana Drachsler-Cohen, Petar Tsankov,
Swarat Chaudhuri, and Martin Vechev. “AI2: Safety and Robustness Certification
of Neural Networks with Abstract Interpretation”. In: 2018 IEEE Symposium on
Security and Privacy (SP). May 2018, pp. 3–18.

[19] Xavier Glorot, Antoine Bordes, and Yoshua Bengio. “Deep Sparse Rectifier Neural
Networks”. In: Proceedings of the Fourteenth International Conference on Artificial
Intelligence and Statistics. Ed. by Geoffrey Gordon, David Dunson, and
Miroslav Dudík. Vol. 15. Proceedings of Machine Learning Research. Fort
Lauderdale, FL, USA: PMLR, Nov. 2011, pp. 315–323.

[20] Ian J. Goodfellow. “Gradient Masking Causes CLEVER to Overestimate
Adversarial Perturbation Size”. In: CoRR abs/1804.07870 (2018). arXiv:
1804.07870.

[21] Ian J. Goodfellow, Jonathon Shlens, and Christian Szegedy. “Explaining and
Harnessing Adversarial Examples”. In: 3rd International Conference on Learning
Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference
Track Proceedings. 2015.

http://arxiv.org/abs/1804.07870

Bibliography 201

[22] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. The MIT
Press, 2016.

[23] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,
Sherjil Ozair, Aaron Courville, and Yoshua Bengio. “Generative Adversarial Nets”.
In: Advances in Neural Information Processing Systems 27. Ed. by Z. Ghahramani,
M. Welling, C. Cortes, N. D. Lawrence, and K. Q. Weinberger. Curran Associates,
Inc., 2014, pp. 2672–2680.

[24] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. “Deep Residual
Learning for Image Recognition”. In: 2016 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR). June 2016, pp. 770–778.

[25] Sepp Hochreiter and Jürgen Schmidhuber. “Long Short-Term Memory”. In: Neural
Computation 9.8 (1997), pp. 1735–1780.

[26] Berthold K.P. Horn and Brian G. Schunck. “Determining Optical Flow”. In:
Artificial Intelligence 17.1 (1981), pp. 185–203.

[27] Xiaowei Huang, Daniel Kroening, Wenjie Ruan, James Sharp, Youcheng Sun,
Emese Thamo, Min Wu, and Xinping Yi. “A Survey of Safety and Trustworthiness
of Deep Neural Networks: Verification, Testing, Adversarial Attack and Defence,
and Interpretability”. In: Computer Science Review 37 (2020), p. 100270.

[28] Xiaowei Huang, Marta Kwiatkowska, Sen Wang, and Min Wu. “Safety Verification
of Deep Neural Networks”. In: Computer Aided Verification. Ed. by
Rupak Majumdar and Viktor Kunčak. Cham: Springer International Publishing,
2017, pp. 3–29.

[29] Kevin Jarrett, Koray Kavukcuoglu, Marc’Aurelio Ranzato, and Yann LeCun.
“What is the Best Multi-Stage Architecture for Object Recognition?” In: 2009
IEEE 12th International Conference on Computer Vision. Sept. 2009,
pp. 2146–2153.

[30] Guy Katz, Clark Barrett, David L. Dill, Kyle Julian, and Mykel J. Kochenderfer.
“Reluplex: An Efficient SMT Solver for Verifying Deep Neural Networks”. In:
Computer Aided Verification. Ed. by Rupak Majumdar and Viktor Kunčak. Cham:
Springer International Publishing, 2017, pp. 97–117.

[31] Diederik P. Kingma and Jimmy Ba. “Adam: A Method for Stochastic
Optimization”. In: 3rd International Conference on Learning Representations,
ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings.
Ed. by Yoshua Bengio and Yann LeCun. 2015.

[32] Levente Kocsis and Csaba Szepesvári. “Bandit Based Monte-Carlo Planning”. In:
Machine Learning: ECML 2006. Ed. by Johannes Fürnkranz, Tobias Scheffer, and
Myra Spiliopoulou. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006,
pp. 282–293.

[33] Alex Krizhevsky and Geoffrey Hinton. “Learning Multiple Layers of Features from
Tiny Images”. In: Technical Report, University of Toronto, 2009.

202 Bibliography

[34] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. “ImageNet Classification
with Deep Convolutional Neural Networks”. In: Advances in Neural Information
Processing Systems 25. Ed. by F. Pereira, C. J. C. Burges, L. Bottou, and
K. Q. Weinberger. Curran Associates, Inc., 2012, pp. 1097–1105.

[35] Alexey Kurakin, Ian J Goodfellow, and Samy Bengio. “Adversarial Examples in
the Physical World”. In: Artificial Intelligence Safety and Security. Chapman and
Hall/CRC, 2018, pp. 99–112.

[36] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. “Deep Learning”. In: Nature
521.7553 (2015), pp. 436–444.

[37] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. “Gradient-Based
Learning Applied to Document Recognition”. In: Proceedings of the IEEE 86.11
(Nov. 1998), pp. 2278–2324.

[38] Jianlin Li, Jiangchao Liu, Pengfei Yang, Liqian Chen, Xiaowei Huang, and
Lijun Zhang. “Analyzing Deep Neural Networks with Symbolic Propagation:
Towards Higher Precision and Faster Verification”. In: Static Analysis. Ed. by
Bor-Yuh Evan Chang. Cham: Springer International Publishing, 2019, pp. 296–319.

[39] Changliu Liu, Tomer Arnon, Christopher Lazarus, Christopher Strong,
Clark Barrett, and Mykel J. Kochenderfer. “Algorithms for Verifying Deep Neural
Networks”. In: Foundations and Trends® in Optimization 4.3-4 (2021),
pp. 244–404. url: http://dx.doi.org/10.1561/2400000035.

[40] Alessio Lomuscio and Lalit Maganti. “An Approach to Reachability Analysis for
Feed-Forward ReLU Neural Networks”. In: CoRR abs/1706.07351 (2017). arXiv:
1706.07351.

[41] David G. Lowe. “Distinctive Image Features from Scale-Invariant Keypoints”. In:
International Journal of Computer Vision 60.2 (2004), pp. 91–110.

[42] Bruce D. Lucas and Takeo Kanade. “An Iterative Image Registration Technique
with an Application to Stereo Vision”. In: Proceedings of the 7th International
Joint Conference on Artificial Intelligence - Volume 2. IJCAI’81. Vancouver, BC,
Canada: Morgan Kaufmann Publishers Inc., 1981, pp. 674–679.

[43] Scott M Lundberg and Su-In Lee. “A Unified Approach to Interpreting Model
Predictions”. In: Advances in Neural Information Processing Systems 30. Ed. by
I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and
R. Garnett. Curran Associates, Inc., 2017, pp. 4765–4774.

[44] Martın Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen,
Craig Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin,
Sanjay Ghemawat, Ian Goodfellow, Andrew Harp, Geoffrey Irving, Michael Isard,
Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath Kudlur,
Josh Levenberg, Dandelion Mané, Rajat Monga, Sherry Moore, Derek Murray,
Chris Olah, Mike Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever,
Kunal Talwar, Paul Tucker, Vincent Vanhoucke, Vijay Vasudevan,
Fernanda Viégas, Oriol Vinyals, Pete Warden, Martin Wattenberg, Martin Wicke,
Yuan Yu, and Xiaoqiang Zheng. TensorFlow: Large-Scale Machine Learning on
Heterogeneous Systems. Software available from tensorflow.org. 2015.

http://dx.doi.org/10.1561/2400000035
http://arxiv.org/abs/1706.07351

Bibliography 203

[45] Matthew Mirman, Timon Gehr, and Martin Vechev. “Differentiable Abstract
Interpretation for Provably Robust Neural Networks”. In: Proceedings of the 35th
International Conference on Machine Learning. Ed. by Jennifer Dy and
Andreas Krause. Vol. 80. Proceedings of Machine Learning Research.
Stockholmsmässan, Stockholm Sweden: PMLR, Oct. 2018, pp. 3578–3586.

[46] Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, Omar Fawzi, and
Pascal Frossard. “Universal Adversarial Perturbations”. In: 2017 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR). July 2017, pp. 86–94.

[47] Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, and Pascal Frossard. “DeepFool:
A Simple and Accurate Method to Fool Deep Neural Networks”. In: 2016 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR). June 2016,
pp. 2574–2582.

[48] Vinod Nair and Geoffrey E. Hinton. “Rectified Linear Units Improve Restricted
Boltzmann Machines”. In: Proceedings of the 27th International Conference on
Machine Learning (ICML-10). Ed. by Johannes Fürnkranz and Thorsten Joachims.
Haifa, Israel: Omnipress, June 2010, pp. 807–814.

[49] Nina Narodytska. “Formal Analysis of Deep Binarized Neural Networks”. In:
Proceedings of the Twenty-Seventh International Joint Conference on Artificial
Intelligence, IJCAI-18. International Joint Conferences on Artificial Intelligence
Organization, July 2018, pp. 5692–5696.

[50] Nina Narodytska, Shiva Kasiviswanathan, Leonid Ryzhyk, Mooly Sagiv, and
Toby Walsh. “Verifying Properties of Binarized Deep Neural Networks”. In:
Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence
(AAAI-18). 2018, pp. 6615–6624.

[51] Arnold Neumaier and Oleg Shcherbina. “Safe Bounds in Linear and Mixed-Integer
Linear Programming”. In: Mathematical Programming 99.2 (2004), pp. 283–296.

[52] Mıcheál O’Searcoid. Metric Spaces. Springer, 2007.
[53] Nicolas Papernot, Patrick McDaniel, Somesh Jha, Matt Fredrikson, Z Berkay Celik,

and Ananthram Swami. “The Limitations of Deep Learning in Adversarial
Settings”. In: 2016 IEEE European Symposium on Security and Privacy
(EuroS&P). Mar. 2016, pp. 372–387.

[54] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury,
Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga,
Alban Desmaison, Andreas Kopf, Edward Yang, Zachary DeVito, Martin Raison,
Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and
Soumith Chintala. “PyTorch: An Imperative Style, High-Performance Deep
Learning Library”. In: Advances in Neural Information Processing Systems 32.
Ed. by H. Wallach, H. Larochelle, A. Beygelzimer, F. d’Alché-Buc, E. Fox, and
R. Garnett. Curran Associates, Inc., 2019, pp. 8026–8037.

204 Bibliography

[55] Jonathan Peck, Joris Roels, Bart Goossens, and Yvan Saeys. “Lower bounds on the
robustness to adversarial perturbations”. In: Advances in Neural Information
Processing Systems 30. Ed. by I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach,
R. Fergus, S. Vishwanathan, and R. Garnett. Curran Associates, Inc., 2017,
pp. 804–813.

[56] Luca Pulina and Armando Tacchella. “An Abstraction-Refinement Approach to
Verification of Artificial Neural Networks”. In: Computer Aided Verification. Ed. by
Tayssir Touili, Byron Cook, and Paul Jackson. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2010, pp. 243–257.

[57] Aditi Raghunathan, Jacob Steinhardt, and Percy Liang. “Certified Defenses
against Adversarial Examples”. In: 6th International Conference on Learning
Representations, ICLR 2018, Vancouver, BC, Canada, April 30 - May 3, 2018,
Conference Track Proceedings. OpenReview.net, 2018.

[58] Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. “"Why Should I Trust
You?": Explaining the Predictions of Any Classifier”. In: Proceedings of the 22nd
ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining. KDD ’16. San Francisco, California, USA: ACM, 2016, pp. 1135–1144.

[59] Wenjie Ruan, Xiaowei Huang, and Marta Kwiatkowska. “Reachability Analysis of
Deep Neural Networks with Provable Guarantees”. In: Proceedings of the
Twenty-Seventh International Joint Conference on Artificial Intelligence, IJCAI-18.
International Joint Conferences on Artificial Intelligence Organization, July 2018,
pp. 2651–2659.

[60] Wenjie Ruan, Min Wu, Youcheng Sun, Xiaowei Huang, Daniel Kroening, and
Marta Kwiatkowska. “Global Robustness Evaluation of Deep Neural Networks with
Provable Guarantees for the Hamming Distance”. In: Proceedings of the
Twenty-Eighth International Joint Conference on Artificial Intelligence, IJCAI-19.
International Joint Conferences on Artificial Intelligence Organization, July 2019,
pp. 5944–5952.

[61] David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. “Learning
Representations by Back-Propagating Errors”. In: Nature 323.6088 (1986),
pp. 533–536.

[62] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh,
Sean Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein,
Alexander C. Berg, and Li Fei-Fei. “ImageNet Large Scale Visual Recognition
Challenge”. In: International Journal of Computer Vision 115.3 (2015),
pp. 211–252.

[63] Stuart Russell and Peter Norvig. Artificial Intelligence: A Modern Approach. 3rd.
USA: Prentice Hall Press, 2009.

[64] Karen Simonyan and Andrew Zisserman. “Very Deep Convolutional Networks for
Large-Scale Image Recognition”. In: 3rd International Conference on Learning
Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference
Track Proceedings. Ed. by Yoshua Bengio and Yann LeCun. 2015.

Bibliography 205

[65] Khurram Soomro, Amir Roshan Zamir, and Mubarak Shah. “UCF101: A Dataset
of 101 Human Actions Classes From Videos in The Wild”. In: CRCV-TR-12-01.
November, 2012.

[66] Johannes Stallkamp, Marc Schlipsing, Jan Salmen, and Christian Igel. “Man vs.
Computer: Benchmarking Machine Learning Algorithms for Traffic Sign
Recognition”. In: Neural Networks 32 (2012). Selected Papers from IJCNN 2011,
pp. 323–332.

[67] Youcheng Sun, Min Wu, Wenjie Ruan, Xiaowei Huang, Marta Kwiatkowska, and
Daniel Kroening. “Concolic Testing for Deep Neural Networks”. In: Automated
Software Engineering (ASE). ACM, 2018, pp. 109–119.

[68] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan,
Ian J. Goodfellow, and Rob Fergus. “Intriguing Properties of Neural Networks”. In:
2nd International Conference on Learning Representations, ICLR 2014, Banff, AB,
Canada, April 14-16, 2014, Conference Track Proceedings. 2014.

[69] Dimitris Tsipras, Shibani Santurkar, Logan Engstrom, Alexander Turner, and
Aleksander Madry. “Robustness May Be at Odds with Accuracy”. In: 7th
International Conference on Learning Representations, ICLR 2019, New Orleans,
LA, USA, May 6-9, 2019. OpenReview.net, 2019.

[70] Shiqi Wang, Kexin Pei, Justin Whitehouse, Junfeng Yang, and Suman Jana.
“Formal Security Analysis of Neural Networks using Symbolic Intervals”. In: 27th
USENIX Security Symposium (USENIX Security 18). Baltimore, MD: USENIX
Association, Aug. 2018, pp. 1599–1614.

[71] Zhou Wang, Eero P Simoncelli, and Alan C Bovik. “Multiscale Structural
Similarity for Image Quality Assessment”. In: The Thrity-Seventh Asilomar
Conference on Signals, Systems Computers, 2003. Vol. 2. Nov. 2003, pp. 1398–1402.

[72] David H Warren and Edward R Strelow. Electronic Spatial Sensing for the Blind:
Contributions from Perception, Rehabilitation, and Computer Vision. Vol. 99.
Springer Science & Business Media, 1985.

[73] Shang-Chia Wei and Tso-Jung Yen. “Superpixels Generating from the Pixel-based
K-Means Clustering.” In: Journal of Multimedia Processing and Technologies 6.3
(2015), pp. 77–86.

[74] Tsui-Wei Weng, Huan Zhang, Hongge Chen, Zhao Song, Cho-Jui Hsieh,
Luca Daniel, Duane Boning, and Inderjit Dhillon. “Towards Fast Computation of
Certified Robustness for ReLU Networks”. In: Proceedings of the 35th International
Conference on Machine Learning. Ed. by Jennifer Dy and Andreas Krause. Vol. 80.
Proceedings of Machine Learning Research. Stockholmsmässan, Stockholm Sweden:
PMLR, Oct. 2018, pp. 5276–5285.

[75] Tsui-Wei Weng, Huan Zhang, Pin-Yu Chen, Jinfeng Yi, Dong Su, Yupeng Gao,
Cho-Jui Hsieh, and Luca Daniel. “Evaluating the Robustness of Neural Networks:
An Extreme Value Theory Approach”. In: 6th International Conference on
Learning Representations, ICLR 2018, Vancouver, BC, Canada, April 30 - May 3,
2018, Conference Track Proceedings. OpenReview.net, 2018.

206 Bibliography

[76] Matthew Wicker, Xiaowei Huang, and Marta Kwiatkowska. “Feature-Guided
Black-Box Safety Testing of Deep Neural Networks”. In: Tools and Algorithms for
the Construction and Analysis of Systems. Ed. by Dirk Beyer and
Marieke Huisman. Cham: Springer International Publishing, 2018, pp. 408–426.

[77] Eric Wong and Zico Kolter. “Provable Defenses against Adversarial Examples via
the Convex Outer Adversarial Polytope”. In: Proceedings of the 35th International
Conference on Machine Learning. Ed. by Jennifer Dy and Andreas Krause. Vol. 80.
Proceedings of Machine Learning Research. Stockholmsmässan, Stockholm Sweden:
PMLR, Oct. 2018, pp. 5286–5295.

[78] Min Wu and Marta Kwiatkowska. “Robustness Guarantees for Deep Neural
Networks on Videos”. In: 2020 IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR). 2020, pp. 308–317.

[79] Min Wu, Tyron Louw, Morteza Lahijanian, Wenjie Ruan, Xiaowei Huang,
Natasha Merat, and Marta Kwiatkowska. “Gaze-based Intention Anticipation over
Driving Manoeuvres in Semi-Autonomous Vehicles”. In: 2019 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS). Nov. 2019,
pp. 6210–6216.

[80] Min Wu, Matthew Wicker, Wenjie Ruan, Xiaowei Huang, and Marta Kwiatkowska.
“A Game-Based Approximate Verification of Deep Neural Networks with Provable
Guarantees”. In: Theoretical Computer Science 807 (2020). In memory of Maurice
Nivat, a founding father of Theoretical Computer Science - Part II, pp. 298–329.

[81] Weiming Xiang, Hoang-Dung Tran, and Taylor T Johnson. “Output Reachable Set
Estimation and Verification for Multilayer Neural Networks”. In: IEEE
Transactions on Neural Networks and Learning Systems 29.11 (Nov. 2018),
pp. 5777–5783.

[82] Huan Zhang, Tsui-Wei Weng, Pin-Yu Chen, Cho-Jui Hsieh, and Luca Daniel.
“Efficient Neural Network Robustness Certification with General Activation
Functions”. In: Advances in Neural Information Processing Systems 31. Ed. by
S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and
R. Garnett. Curran Associates, Inc., 2018, pp. 4939–4948.

[83] Huan Zhang, Pengchuan Zhang, and Cho-Jui Hsieh. “RecurJac: An Efficient
Recursive Algorithm for Bounding Jacobian Matrix of Neural Networks and Its
Applications”. In: Proceedings of the Thirty-Third AAAI Conference on Artificial
Intelligence (AAAI-19). Vol. 33. 2019, pp. 5757–5764.

	List of Figures
	Introduction
	Related Work
	Verification of Deep Neural Networks
	Approaches with Deterministic Guarantees
	Approaches to Compute an Approximate Bound
	Approaches to Compute Converging Bounds
	Approaches with Statistical Guarantees
	Computational Complexity of Verification

	Adversarial Attacks
	Summary

	Background
	Deep Neural Networks
	Feed-Forward Neural Networks
	Convolutional Neural Networks
	Recurrent Neural Networks
	Classification

	Distance Metrics and Lipschitz Continuity
	Distance Metrics
	Lipschitz Continuity

	Safety of Deep Neural Networks
	Adversarial Examples
	Safety Properties of Neural Networks

	Images and Videos
	Tensors
	Feature Extraction
	Optical Flow
	Datasets

	Summary

	Robustness of Deep Neural Networks on Pixel-Level Images
	Robustness on Pixel-Level Images
	Subspace Sensitivity
	Subspace for an Input
	Computation of Subspace Sensitivity

	Tensor-Based Algorithms for Upper and Lower Bounds
	Computation of Lower and Upper Bounds
	Anytime Robustness Evaluation
	Convergence Analysis

	Experimental Results
	Saliency Maps and Local Robustness
	Convergence of Bounds and Global Robustness
	Competitive Adversarial Attacks
	Robustness and Accuracy of Model Architectures

	Summary

	Robustness of Deep Neural Networks on Features of An Image
	Robustness on Features of An Image
	The Maximum Safe Radius Problem
	The Feature Robustness Problem

	A Game-Based Approximate Verification Approach
	Problem Solving as A Two-Player Turn-Based Game
	Safety Guarantees via Optimal Strategy
	Complexity of the Problem

	Algorithms and Implementation
	Upper Bounds: Monte Carlo Tree Search
	Lower Bounds: Admissible A* in a Cooperative Game
	Lower Bounds: Alpha-Beta Pruning in a Competitive Game
	Anytime Convergence

	Experimental Results
	Feature-Based Partitioning
	Convergence Analysis of the Upper and Lower Bounds
	Comparison with Existing Approaches in Adversarial Attacks

	Summary

	Robustness of Deep Neural Networks on Videos
	Robustness on Videos
	Maximum Safe Radius with respect to Optical Flow
	Approximation based on Finite Optimisation

	A Game-Based Robustness Verification Approach
	Problem Solving as A Two-Player Turn-Based Game
	Robustness Guarantees

	Computation of the Converging Upper and Lower Bounds
	Upper Bound: Gradient-Based Search
	Lower Bound: Admissible A*

	Experimental Results
	Network Architecture
	Adversarial Examples via Manipulating Optical Flows
	Converging Upper and Lower Bounds
	Extension to Naturally Plausible Distortions
	Efficiency and Scalability

	Summary

	Conclusions
	Summary
	Future Work
	Outlook

	Experimental Settings for DeepTRE
	ImageNet Saliency Maps and Local Robustness
	State-of-the-Art ImageNet Models
	Hardware/Software Platforms and Parameter Settings
	ImageNet Saliency Maps and Adversarial Images

	Local/Global Robustness and Convergence
	Hardware and Software Platforms
	DNN-Reduced: Model Structure and Parameter Setting
	DNN-Standard: Model Structure and Parameter Setting
	Ground-Truth Adversarial Images

	Robustness and Accuracy of Model Architecture
	Hardware and Software Platforms
	DNN-1 to DNN-7: Model Structure and Parameter Setting

	Proofs and Comparisons for DeepGame
	Proofs for Lemmas and Theorems
	Proof for Lemma 4
	Proof for Lemma 5
	Proof for Theorem 6
	Proof for Lemma 7
	Proof for Theorem 7
	Proof for Theorem 8
	Proof for Theorem 9

	Comparison of Tools in Adversarial Attacks
	Model Architectures and Accuracy Rates
	Parameter Settings of Existing Tools
	Hardware and Software Platforms
	Adversarial Images

	Bibliography

