
Tractable Probabilistic Models for

Causal Learning and Reasoning

Benjie Wang

Keble College

University of Oxford

A thesis submitted for the degree of

Doctor of Philosophy

Summer 2023

Acknowledgements

Pursuing a DPhil, especially partially during a global pandemic, has been a challenging,

but immensely rewarding experience. Here I would like to name just a few of the

people who have made this journey special.

First and foremost, I would like to express my deepest gratitude to my wonderful

supervisor, Marta Kwiatkowska. Since starting as a DPhil student in 2019, I have

learned so much about research under your patient and insightful guidance. Thank you

in particular for your encouragement and advice in pursuing important research ques-

tions without fear or expediency. This thesis, and my development as a independent

researcher, would not have been possible otherwise.

Thanks are also due to my friends and colleagues who I have had the good fortune

to work with over the past years: Emanuele La Malfa, Matthew Wicker, Clare Lyle,

Xiyue Zhang, Hjalmar Wijk, Tom Rainforth, Daqian Shao, Siddhartha Datta, Artem

Velikzhanin, Jon Vadillo, Luca Laurenti, Stefan Webb, Anthony Hartshorn, and Rui

Yan. Emanuele, it has been a pleasure sharing the DPhil journey with you. Matthew,

Clare, Xiyue, Hjalmar, Tom: I could not have asked for more enthusiastic and talented

collaborators - I have learned much working with each of you. Thank you all for

enriching my DPhil life, from the long Zoom discussions during the pandemic to the

whiteboard brainstorms and coffee breaks after.

Finally, I am, and have always been, indebted to my Mum and Dad for their

unconditional love and support. This thesis, and all of my achievements, I owe to you.

I gratefully acknowledge funding from the European Research Council (ERC)

through the FUN2MODEL project (grant agreement No. 834115), under the European

Union’s Horizon 2020 research and innovation programme. The research outcomes in

this thesis would not have been possible without this generous support.

2

Abstract

This thesis examines the application of tractable probabilistic modelling principles

to causal learning and reasoning. Tractable probabilistic modelling is a promising

paradigm that has emerged in recent years, which focuses on probabilistic models

that enable exact and efficient probabilistic reasoning. In particular, the framework

of probabilistic circuits provides a systematic language of the tractability of models

for various inference queries based on their structural properties, with recent pro-

posals pushing the boundaries of expressiveness and tractability. However, not all

information about a system can be captured through a probability distribution over

observed variables; for example, the causal direction between two variables can be

indistinguishable from data alone. Formalizing this, Pearl’s Causal Hierarchy (also

known as the information hierarchy) delineates three levels of causal queries, namely,

associational, interventional, and counterfactual, that require increasingly greater

knowledge of the underlying causal system, represented by a structural causal model

and associated causal diagram. Motivated by this, we investigate the possibility of

tractable causal modelling; that is, exact and efficient reasoning with respect to classes

of causal queries. In particular, we identify three scenarios, separated by the amount

of knowledge available to the modeler: namely, when the full causal diagram/model is

available, when only the observational distribution and identifiable causal estimand are

available, and when there is additionally uncertainty over the causal diagram. In each

of the scenarios, we propose probabilistic circuit representations, structural properties,

and algorithms that enable efficient and exact causal reasoning. These models are

distinguished from tractable probabilistic models in that they can not only answer

different probabilistic inference queries, but also causal but also different interventions

and even different causal diagrams. However, we also identify key limitations that cast

3

doubt on the existence of a fully general tractable causal model. Our contributions

also extend the theory of probabilistic circuits by proposing new properties and circuit

architectures, which enable the analysis of advanced inference queries including, but

not limited to, causal inference estimands.

4

Contents

1 Introduction 1

1.1 Contributions . 5

1.2 Thesis Outline . 7

1.3 Publications . 7

2 Preliminaries 9

2.1 Causality . 10

2.1.1 Structural Causal Models . 10

2.1.2 The Causal Hierarchy of Queries 13

2.1.3 Causal Inference . 16

2.1.3.1 L1 Inference . 16

2.1.3.2 L2 Inference . 18

2.1.3.3 L3 inference . 20

2.1.4 Summary . 21

2.2 Tractable Probabilistic Models . 21

2.2.1 Probabilistic Models and Queries 22

2.2.2 Probabilistic Circuits . 23

2.2.3 Summary . 27

3 Literature Review 29

3.1 Tractable Probabilistic Models . 29

3.1.1 The Spectrum of Tractable Probabilistic Models 30

3.1.2 Tractable Probabilistic Models for Causality 33

3.2 Computational Causality . 35

3.2.1 Structural Causal Models and Causal Identification 35

i

3.2.2 Causal Structure Learning . 36

4 Advanced Causal Reasoning via Compilation 40

4.1 Compiled Representations of Models 42

4.1.1 Compiling Bayesian Networks 43

4.1.2 Compiled Representations for Causality 49

4.2 Interventional Robustness . 50

4.2.1 Interventional Robustness and Credal Sets 51

4.2.2 Bounding Interventional Robustness via Compilation 52

4.2.2.1 Upper Bounding via Constraint Relaxation 54

4.2.2.2 Lower Bounding via Projection 55

4.2.3 Case Study: Robustness Analysis of Classifiers 56

4.3 Counterfactual Reasoning using Circuits 58

4.4 Experiments . 63

4.4.1 Robustness of Classifiers to Causal Interventions 63

4.4.2 Credal Inference Benchmarks 63

4.5 Discussion . 65

5 Tractability of Causal Inference 67

5.1 On The Tractability of Exact Causal Inference 69

5.1.1 Causal and Probabilistic Inference 71

5.1.2 Conditioning in Probabilistic Circuits 74

5.1.3 Hardness of the Backdoor Query 76

5.2 A Theory of Marginal Determinism in Structured Decomposable Circuits 78

5.2.1 Structured Marginal Determinism 78

5.2.1.1 Structured Decomposability 78

5.2.1.2 Properties of Marginal Determinism 80

5.2.1.3 Md-vtrees . 82

5.2.1.4 Support Properties and Md-vtrees 83

5.2.2 Regular Md-vtrees and Enforcing Marginal Determinism . . . 85

5.2.2.1 Non-Admissibility of Strong Determinism 87

5.2.3 Succinctness: Exponential Separation 88

ii

5.3 MDNet Architecture and Learning 95

5.3.1 Understanding Regular Md-vtrees and MDNets 95

5.3.2 MDNet Architecture: Definition and Illustration 98

5.4 Compositional Inference using Structured Marginal Determinism . . . 102

5.4.1 Support Properties in Compositional Inference 102

5.4.2 Operations on md-vtrees . 104

5.4.3 The MD-calculus . 106

5.4.4 Examples . 111

5.5 Causal Inference using MD-Calculus 111

5.5.1 MD-calculus for Causal Formulae 112

5.5.1.1 Backdoor . 112

5.5.1.2 Frontdoor . 114

5.5.1.3 Napkin . 115

5.6 Experiments . 115

5.7 Discussion . 116

6 Tractable Causal Reasoning with Structural Uncertainty 119

6.1 Bayesian Causal Reasoning . 119

6.1.1 Bayesian Structure Learning 121

6.1.2 Statistical and Causal Uncertainty 123

6.1.3 Hierarchical Conditional Independences 125

6.2 Tractable Representations for Bayesian Structure Learning 129

6.2.1 OrderSPNs . 129

6.2.2 Reasoning on Leaf Distributions 132

6.2.3 Tractable Queries on OrderSPNs 136

6.3 Learning OrderSPNs . 143

6.3.1 Learning OrderSPN structures 143

6.3.2 Parameter Learning via Variational Inference 144

6.4 Experiments . 146

6.4.1 Learning Performance . 147

6.4.2 Ablation Study on OrderSPN Learning 149

iii

6.4.3 Exact and Approximate Computation 150

6.4.4 Coverage and Query Answering 152

6.5 Discussion . 154

7 Conclusions 156

7.1 Discussion . 157

7.2 Future Work . 158

Bibliography 161

A Advanced Causal Reasoning via Compilation 186

A.1 Proofs . 186

B Tractability of Causal Inference 189

B.1 Proofs . 189

B.2 Operations and MD-Calculus . 202

B.2.1 Algorithms and the Forward Problem 203

B.2.2 MD-calculus and the Backward Problem 212

C Tractable Causal Reasoning with Structural Uncertainty 219

C.1 Proofs . 219

C.2 OrderSPN Structure Learning Oracles 225

C.3 Experimental Details . 227

iv

List of Symbols

U ,u, U, u Exogenous variables
V ,v, V, v Endogenous variables
W ,w Subset of variables
Q, q Marginal determinism

X,x, X, x Treatment variables (intervention targets)
Y ,y, Y, y Outcome variables
Z, z, Z, z Adjustment variables

E, e Event/Evidence variables
D, d, n Dataset, Variable dimension, Number of samples
G Graph

pa, ch, an, desc Parents, children, ancestors, descendants
σ Order
p Probability distribution
E Expectation
P ,P Probabilistic model, Probabilistic model class

N , CBN , P r Bayesian network (BN), causal Bayesian network (CBN), conditional
probability distributions (CPD)

λ, λ,Θ, θ Indicator, parameter variables for BN
M,F ,Pr Structural causal model (SCM), Functional mechanisms, Exogenous

variables distribution
C,C Probabilistic circuit (PC), Probabilistic circuit class
Csub Complete subcircuit
ω, g PC weights, leaf node functions

N, T, P, L,R PC nodes (generic, sum, product, leaf, root)
ϕ, supp Scope, support (for PC nodes)
v, w Vtree, Md-vtree
M,E Vtree nodes, edges
ψ Decision variable/Vtree labelling function
f BN/PC polynomial
R Set of real numbers
1 Indicator/identity function

v

List of Figures

1.1 Conceptual overview of causal reasoning frameworks/workflows 3

2.1 Decomposable, smooth and deterministic PC. Edges are labelled with

sum node weights ω, while leaf nodes are labelled with their functions gL. 24

2.2 Computing the marginal pC(Y = 1) for the PC in Figure 2.1. 26

2.3 Computing the MAP maxX,Y,Z pC(X, Y, Z) for the PC in Figure 2.1. . 26

4.1 Example of Bayesian network and corresponding compiled circuit. All

sum node weights are equal to 1 in the circuit. 46

4.2 Example of upper bounding routine, for the event Y = 1 56

4.3 INSURANCE Bayesian network [13] 57

5.1 Separating causal and probabilistic models 68

5.2 Examples of causal diagrams . 71

5.3 Probabilistic (blue) and causal (red) quantities, with probabilistic ()

and causal inference ([2mm] [2mm]) for backdoor/napkin graphs. Note

that pX,NK(V) has no incoming arrows as it is non-identifiable. 71

5.4 Example of structured decomposable circuit, and vtree it respects. . . 78

5.5 Example of md-vtree for variables V = {V1, V2, V3, V4}. In the leftmost

subfigure, we show each node m with its scope ϕ(m), whilst in each of

the three other subfigures, we show each node with its label ψ(m) (for

each of three different labelling functions). 82

5.6 Illustration of PC computing hidden Markov model (HMM) 90

5.7 Illustration of PC computing graphical model 93

vi

5.8 Illustration of support partitioning in mixing and synthesizing layers,

for a vtree node m and its children m1,m2. Vertical/horizontal axes

represent different values of ψ(m1)/ψ(m2) respectively. Colors represent

partitioning of support for sum nodes within a group. 96

5.9 Example of product layer. Groups are highlighted in boxes, with

the top two groups corresponding to layer m, the bottom left group

corresponding to layer m1, and the bottom right groups corresponding

to layer m2. Sum nodes labelled with their support. Sum node weights

omitted for clarity. 100

5.10 Example of mixing layer. Groups are highlighted in boxes, with the

top two groups corresponding to layer m, the bottom left group corre-

sponding to layer m1, and the bottom right groups corresponding to

layer m2. Sum nodes labelled with their support. Sum node weights

omitted for clarity. 101

5.11 Example of synthesizing layer. Groups are highlighted in boxes, with

the top two groups corresponding to layer m, the bottom left group

corresponding to layer m1, and the bottom right groups corresponding

to layer m2. Sum nodes labelled with their support. Sum node weights

omitted for clarity. 101

6.1 Reasoning under diagram uncertainty 120

6.2 Width-limited approximation to posterior distribution 125

6.3 Example of regular OrderSPN for d = 4. Best viewed in color. 129

6.4 Performance evaluation of the Trust framework. We find that across

all metrics and for both dimensionalities that the Trust framework

outperforms the seed method, in some instances considerably. Top

Row: Learning structures with d = 16. Bottom Row: Learning

structures with d = 32. (a) Expected Structural Hamming Distance,

lower is better. (b)Marginal Log Likelihood (higher is better). (c) Area

Under the Receiver Operator Characteristic curve (higher is better).

(d) MSE of Causal Effects (lower is better). 147

vii

6.5 Ablation study evaluating performance of different variants of Trust-g

(and Gadget), for d = 16. 151

6.6 MSE-CE for approximate (10000 graph samples) and exact computa-

tion of pairwise causal effects, as a function of the mean edge weight

magnitude. Data shown is over 10 runs per weight. 152

6.7 As we specify more edges in our query, the probability that sample-based

posteriors (Dibs and Gadget) have support over the queried edges

drops. Trust-d and Trust-g, in contrast, maintain much greater

coverage. 153

B.1 Examples of (possibly) compatible vtrees, where A ∩B = ∅, and C

are the shared variables . 208

B.2 Examples of product of the two sum nodes on the top half, with the

result shown in the bottom half. The root sum node is labelled with

the corresponding vtree node label, while the leaves are labelled with

their support. 211

viii

Chapter 1

Introduction

Machine learning, and particularly methods based on deep neural networks, have

revolutionized the field of artificial intelligence, achieving impressive performance on

many long-standing challenges, from image classification to playing Go, that would

have been unimaginable just two decades ago. Learning algorithms implement the

principle that computers can improve their performance on a task over time simply by

observing examples, without being explicitly programmed [119]. This is particularly

important in the many domains and tasks where handcrafting a program would be

impractical for a human. With modern computational resources and the advent

of improved learning algorithms and model architectures, machine learning is now

commonly deployed in the real world, in areas from medical imaging to self-driving

cars to computer graphics [58, 122].

Perhaps the most remarkable feature of these methods is in their autonomy and

generality: many seemingly unconnected tasks have all been solved, essentially end-to-

end, by applying powerful function approximation techniques from data. Furthermore,

once a model is trained from data, performing inference (for example, predicting

labels in a discriminative model, or sampling from a generative model) is often orders

of magnitude faster. These attributes help to explain the popularity of machine

learning methods. However, with greater popularity has come greater scrutiny, and

the practical deficiencies of purely data-driven machine learning are by now well known.

In particular, models based on deep learning exhibit issues such as poor robustness to

input perturbations; lack of explainability to humans; and poor performance under

distribution shift.

1

One criticism that could be levelled at end-to-end machine learning models is that,

in contrast to traditional approaches to AI, such as expert systems or probabilistic

graphical models, they typically lack a consistent knowledge base (model), and

associated reasoning algorithms. For example, probabilistic generative models can

claim to encode a knowledge base through the joint probability distribution they

express, but reasoning about the distribution in modern large-scale models is typically

intractable, meaning that we have to resort to approximations, for example by sampling

or by using heuristics (e.g. prompting in autoregressive language models). Obtaining

guarantees on or reasoning over the output of such models typically requires significant

additional computational effort [86, 100, 195]. The downside to traditional knowledge-

based systems, however, is that they often involve significant hand-coding of knowledge,

and require reasoning algorithms that are generally far slower than inference in machine

learning models, limiting their scalability to high-dimensional problems.

To tackle this apparent tradeoff, the emerging field of tractable probabilistic

modelling (TPM) is concerned with studying families of probabilistic models, and

classes of probabilistic inference queries, for which reasoning about the queries is

exact (or approximable with guarantees) and computationally efficient. Tractable

probabilistic models have the desirable property that they can be used as a transparent

world model; that is, we can efficiently and exactly inspect any aspect of the probability

distribution represented by the model that can be captured by a tractable query class.

For example, in a latent variable model, MAP (maximum a posteriori) queries allow

us to inspect the most likely values of the latent variables given an observed sequence,

which can be interpreted as an explanation of the underlying system dynamics. Recent

advances in TPMs have shown the ability to scale tractable models far beyond what

was previously thought possible [146, 137, 107].

However, even tractable models of the observed probability distribution cannot

reliably express causality in the underlying system. Understanding cause-effect rela-

tionships is arguably the bedrock of scientific inquiry, and indeed the way in which

humans reason about the world. However, it has long been understood that inferring

causality from associations in data alone is not possible. The modern treatment of

causality, starting from the seminal work of Pearl [132], sheds further light on this by

2

Diagram Query

Identifiability

Estimand Data

Probabilistic
Model(s)

Causal Inference

Result

(a) Causal Inference

Diagram

Compiled Circuit Query

Result

(b) Compilation

Diagram Query

Identifiability

Estimand

Result

Data

Probabilistic
Model(s)

(c) Model + Estimand

Diagram
Prob Model

Query

Data

Causal
Discovery

Overall
Prob Model

Result

(d) Reasoning with diagram uncertainty

Figure 1.1: Conceptual overview of causal reasoning frameworks/workflows

3

proposing an information hierarchy, in which observed data is provably insufficient to

make causal statements without assumptions about the underlying domain [9]. Such

assumptions can be specified in the form of a causal diagram, which is a directed

acyclic graph over the domain variables specifying the causal relationships. Causal

inference then provides a principled schema for combining graphical assumptions with

data in order to answer causal queries, as depicted in Figure 1.1a. Correspondingly,

the space of causal queries is larger and more expressive than probabilistic queries, due

to the addition of interventional semantics which depend on the causal diagram. For

example, this more expressive language has given rise to new causality-aware notions

of robustness [176] and fairness [98, 145] of models.

In this thesis, we examine the synthesis of causal reasoning and tractable proba-

bilistic modelling. The application of tractable modelling principles to causality is

especially appealing as causal models can be viewed, in some sense, to be closer to the

underlying physical reality of the data-generating system [158]; in this view, causal

models are viewed as a useful abstraction of the underlying physics of the system,

while probabilistic models are an abstraction in turn of the causal model. As such,

the development and deployment of a “tractable causal model” would constitute the

ability to efficiently inspect the causal knowledge behind the model that is being used,

which is highly desirable for developing reliable artificial intelligence. Correspondingly,

developing classes of causal queries that can be answered efficiently on these models

would significantly simplify the application of causal reasoning, as the models could

then form an efficient and modular component of a larger intelligent system.

However, there are a couple of key challenges towards developing tractable causal

models. The first is conceptual in nature, relating to what information should be

contained inside such a model. Unlike probabilistic modelling, where the answers to

all possible queries are present in the joint distribution, causal models have differing

levels of abstraction that differ in terms of the queries that they can answer, as well as

their learnability (identifiability) from data. The second is computational in nature,

and relates to identifying model representations that enable tractable computation

of causal queries (and their corresponding algorithms). This, too, becomes more

4

challenging due to the larger space of possible causal queries compared to probabilistic

queries, induced by the interventional semantics of causal models.

1.1 Contributions

In this thesis, we develop theory and methodology for tractable causal modelling.

The contributions of this thesis can be summarized as 1) introducing new settings

for tractable causal reasoning, beyond fully specified graphical models; 2) identifying

tractability conditions and algorithms for causal reasoning in each of these settings; 3)

developing new TPM (specifically, probabilistic circuit [33]) architectures, which satisfy

the requirements for tractable causal reasoning by design and can be learned from data;

and 4) introducing a new language for analyzing tractability in probabilistic circuits.

We explain our contributions in more detail in the following itemized description:

• We introduce the concept of tractable causal modelling, which broadly refers to

probabilistic models that can be used to (computationally) tractably answer

many different causal queries (for example, with respect to different causal

interventions, or different causal graphs). In Figure 1.1a, we depict the typical

approach to causal reasoning. Here, one first decides on a causal query, and then

fits a probabilistic model in order to aid in estimating that query. In Figures

1.1b, 1.1c, and 1.1d, we propose cases where a single probabilistic model can be

used to answer many causal queries.

• We analyze tractable causal modelling in the existing setting of compiled repre-

sentations of causal graphs (Figure 1.1b). In this setting, one compiles a causal

graph into a tractable probabilistic circuit, that then enables reasoning over a

broad class of causal queries (interventional marginals) in polynomial time. We

show conditions on the compiled circuit (specifically, the elimination order) that

enable efficient computation of two advanced classes of causal queries, namely, in-

terventional robustness, and counterfactual queries. We further demonstrate the

application of interventional robustness to analyzing the robustness of classifiers

to causal distribution shifts.

5

• We introduce two new settings for tractable causal modelling, when knowledge

of the fully-specified causal diagram is not available (or compilation is too

expensive). The first (Figure 1.1c) concerns performing exact causal inference

when the observational distribution is given as a general probabilistic circuit,

rather than a circuit compiled from a causal graph. This allows for a conceptual

separation between the causal quantities, on the left hand side of the Figure, and

the probabilistic model, given on the right hand side of the Figure. The second

(Figure 1.1d) concerns exact inference in tractable causal models expressing the

data distribution jointly with uncertainty over the causal graph. In both cases,

we develop a novel tractable probabilistic circuit model (MDNet and OrderSPN

respectively) that are tractable for the relevant causal queries.

• In the first new setting (Figure 1.1c), we prove that causal inference is in-

tractable for most classes of probabilistic circuits. We then identify subclasses

of circuits (and corresponding algorithms) that enable tractable computation of

interventional distributions when the distribution is identified through either

the backdoor, frontdoor, or napkin causal formulae. These constitute the first

non-compiled circuits for which exact causal inference is known to be tractable,

and the corresponding algorithms constitute the first poly-time algorithms for

causal inference on probabilistic circuits that do not rely on a compilation as-

sumption. On the other hand, we also discuss why it is likely not possible to

design circuits which are tractable for causal inference entirely independently of

the causal graph, without losing expressivity.

• In the second new setting (Figure 1.1d), we propose a new approximate rep-

resentation (OrderSPNs) that specifies a joint distribution over causal graphs

and variables. We show that, for this model, it is possible to tractably evaluate

interventional likelihoods, and in the common case of linear Gaussian causal

models, evaluate causal effects averaged over the uncertainty. We further show

empirically that the tractability and compactness of OrderSPNs can have prac-

tical benefits with regards to accuracy compared to other approximate inference

methods.

6

• We introduce new theory and methodology for tractable probabilistic modelling.

In particular, we introduce a new framework, md-vtrees, for analyzing support

properties in probabilistic circuits, together with an architecture, MDNets, for

enforcing these properties independently of the scope properties. We show

separation results that show these new circuits can be exponentially more

succinct than previously proposed classes of circuits. We then show how this

framework can be used to extend the compositional approach to inference in

TPMs, to derive tractability conditions and algorithms for a wider range of

inference queries.

1.2 Thesis Outline

We now outline the structure of this thesis. In Chapter 2, we introduce necessary

background on causality and tractable probabilistic modelling. In Chapter 3, we then

survey the literature on tractable modelling and computational aspects of causality.

Following this, in Chapter 4, we present results on tractability of causal reasoning

using compiled circuits. In Chapter 5, we present results on the tractability of causal

inference for general circuits, as well as our new framework for support properties

in probabilistic circuits. In Chapter 6, we then describe causal reasoning under

diagram uncertainty and introduce OrderSPNs. Finally, in Chapter 7 we conclude

by summarizing the findings of this thesis, and suggesting promising directions for

future work. Proofs not included in the main text and other details can be found in

the Appendix.

1.3 Publications

This thesis is based upon several papers [191, 196, 193, 190] which were published

during my studies. Additionally, during my DPhil I contributed to a number of other

works which are not included in this thesis [100, 192, 184, 208]. In this section I detail

my contributions to joint-authored work in the context of this thesis.

Chapter 4 is primarily based on two papers [191, 196]. Firstly, in [191] (published

at IJCAI 2021), the interventional robustness problem, its complexity in relation to

7

marginal MAP, and the bounding methodology was introduced. I formalized the

interventional robustness problem, proposed the use of arithmetic circuits, developed

and proved the properties and correctness of the bounding algorithm, and performed

the majority of the experimental evaluations. The initial motivation behind the

work and some other results not included in the chapter are due to other authors.

In [196] (published at IJCAI 2022), the extension to credal sets was proposed, and

simplifications of the results in the first paper were made. I conceived the initial

idea of extending to parameter bounds, assisted with the proofs, and contributed

to the experimental methodology. The idea of the simplifications, and experimental

evaluations comparing to credal inference methods were due to other authors. The

part of the chapter on computing counterfactuals was done independently and has

not appeared in published work to date.

Chapter 5 is based upon the paper [190] (published at AISTATS 2023) and parts

of a preceding workshop version [189], together with some new results regarding

succinctness of md-vtrees. The idea of analyzing exact computation of causal inference

queries, the md-vtree framework for circuits, the MDNet architecture, theoretical

results, and the methodology and experiments were my own.

Chapter 6 is based upon the paper [193] (published at ICML 2022). The idea of

applying tractable models to Bayesian structure learning, the design of OrderSPNs,

reasoning algorithms, and execution of experiments were my own. The learning

procedure and design of experiments was developed over time, primarily by myself

but in conjunction with other authors, and some illustrations in the experiments are

due to other authors.

8

Chapter 2

Preliminaries

Contents
2.1 Causality . 10

2.1.1 Structural Causal Models 10

2.1.2 The Causal Hierarchy of Queries 13

2.1.3 Causal Inference . 16

2.1.4 Summary . 21

2.2 Tractable Probabilistic Models 21

2.2.1 Probabilistic Models and Queries 22

2.2.2 Probabilistic Circuits . 23

2.2.3 Summary . 27

In this chapter, we cover the essential technical material underpinning the work

in this thesis. The chapter is divided into two broad sections: the first concerns

foundations in causality, while the second covers probabilistic inference with a particular

focus on probabilistic circuit models.

Notation We use uppercase letters to denote a random variable (e.g. V) and

lowercase letters for an instantiation of a variable (e.g. v). Sets of variables (and

their assignments) are denoted using bold font (e.g. V ,v), and we use val to denote

the set of all instantiations of a set of variables (e.g. val(V)). In a slight abuse of

notation, we use lowercase to indicate instantiations of arbitrary sets; for example,

v \w is an instantiation of V \W . We use calligraphic letters (e.g. P , C) to denote

probabilistic/causal models, and pP to denote the distributions represented by those

9

models. For ease of reference, a full list and explanation of notation used can be found

in the preamble to this Thesis.

2.1 Causality

In this section, we cover the basics of modern treatments of causality, focusing on

Pearl’s graphical framework [133]. In this framework, the underlying reality of a data-

generating system is assumed to be given by a structural causal model (SCM). We

explain the information hierarchy of causal queries, from associational to interventional

to counterfactual queries. Finally, we explain the problem of causal inference; that is,

computing causal quantities given partial information on the underlying SCM.

2.1.1 Structural Causal Models

The science of causality seeks to draw conclusions about the causal relationships

underlying a data-generating system. Unfortunately, it has been observed through

many scientific fields, from economics to population genetics to clinical experimental

design, that such conclusions are not easy or even possible to draw purely from data, as

epitomized in the common refrain correlation is not causation. The fundamental issue,

observed in [130], is that probability theory is insufficient as a language to express

the experimental conditions or context under which data is generated, precluding the

direct application of statistical inference to draw causal conclusions. For example,

the observation of a correlation between smokers and developing lung cancer does

not distinguish between a world in which smoking causes the development of cancer,

and one in which there exists a gene that causes people to be predisposed to both

smoking and developing lung cancer, a possibility which was exploited by cigarette

manufacturers [60, 68] to cast doubt on the interpretation of observational studies.

The first component towards tackling causal questions is to formally define models

that can distinguish between these different underlying realities. To this end, structural

causal models (SCMs) [132] provide a framework for specifying the underlying causal

mechanisms in a data-generating process.

Definition 2.1 (Structural Causal Model). A SCMM is a tuple (U ,V ,F ,Pr) where:

10

• U is a set of exogenous (i.e. outside the model) random variables, which are

typically unobserved;

• V = {V1, .., Vd} is a set of endogenous (i.e. inside the model) random variables;

• F = {F1, ..., Fd} is a set of causal mechanisms (functions). Each endogenous

variable Vi is associated with a set of endogenous parents PAi ⊆ V \ {Vi} and

a set of exogenous parents Ui ⊆ U . Then, Fi is a mapping from the domain of

Ui ∪ PAi to the domain of Vi, i.e.

Vi ← Fi(Ui,PAi) (2.1)

• Pr(U) is a probability distribution over the exogenous variables.

In this definition, the endogenous variables are quantities that we wish to model

causally (e.g. smoking, cancer), whose parents can be viewed as direct causes of

the variable, as given by the causal mechanisms. The exogenous variables can be

interpreted as external sources of noise whose causal relationships are not being

explicitly modelled, besides their effect on the endogenous variables (e.g. genetics). A

SCM represents a modular data-generating process, where the state of the external

world is sampled (exogenous variables), and then the value of each endogenous variable

is generated according to its causal mechanism deterministically.

In practice, it is often helpful to use a graphical abstraction of a SCM known as a

causal diagram (or causal graph). Causal diagrams represent the essential graphical

structure of the causal relations between endogenous variables in an SCM.

Definition 2.2 (Causal Diagram). The causal diagram G induced by a SCMM =

(U ,V ,F ,Pr) is a directed graph consisting of:

• A node for every endogenous variable Vi ∈ V ;

• Directed edges Vj → Vi whenever Vj ∈ PAi, i.e. Vj appears as an argument of

Fi;

• Bidirected edges Vj ←→ Vi whenever Ui and Uj share a variable, or they are

correlated in Pr(U).

11

Though SCMs with cyclic dependencies are also possible [14], in this thesis we

focus on acyclic SCMs, also known as semi-Markovian SCMs.

Definition 2.3 (Semi-Markovian SCM). A SCMM is said to be semi-Markovian if

the causal diagram induced by the SCM does not contain directed cycles. In this case,

for each variable V ∈ V we write V (U) to denote the value of V as a function of the

exogenous variables U .

In semi-Markovian SCMs, any value u of the exogenous values generates unique

values for each of the endogenous variables, by applying the causal mechanisms in any

topological order of the causal diagram. As a result, the SCM defines a distribution

over the d endogenous variables V , given by:

pM(V) =
∑
U

Pr(U)
d∏
i=1

1Vi=Fi(Ui,PAi) (2.2)

We call this the observational distribution, as it reflects the distribution over the

endogenous (observed) variables V that the data generated from a system given by

the SCM follows.

Semi-Markovian SCMs allow for the presence of latent confounding ; that is, cor-

relations between endogenous variables which are caused by common or correlated

exogenous parent(s). On the other hand, Markovian SCMs make a more stringent

assumption that there is no such exogenous confounding, and as such do not have any

bidirected edges. As a result, correlations between variables can always be attributed

either to a direct causal relation, or an endogenous (observed) common parent.

Definition 2.4 (Markovian SCM). A semi-Markovian SCMM is said to be Markovian

if the following conditions hold:

1. Pr(U) =
∏

U∈U PrU(U), i.e. the exogenous variables are independent;

2. Each exogenous variable is a parent of exactly one endogenous variable.

12

2.1.2 The Causal Hierarchy of Queries

The utility of the SCM framework is not purely in its ability to model causal rela-

tionships in the underlying system, but also in how it makes predictions about the

behaviour of the system. For example, the distribution of the endogenous (observed)

variables in a semi-Markovian SCM is given by marginalizing out the exogenous

variables as in Equation 2.2. However, SCMs can answer a much wider range of causal

queries that go beyond the observational distribution. These queries are organized in

a causal hierarchy, spanning from associational to interventional to counterfactual.

We begin by giving an intuitive account:

1. Associational: Associational queries relate to observation; e.g. “is smoking

correlated with lung cancer incidence?”

2. Interventional: Interventional queries relate to actions, or doing ; e.g. “if we

made everyone stop smoking, would this decrease lung cancer incidence?”

3. Counterfactual: Counterfactual queries relate to imagining, or retrospecting;

e.g. “if my father had not smoked, would he still be alive today?”

These query classes form an information hierarchy, in that the higher levels of the

hierarchy are more general and require more information on the SCM to answer. For

example, associational queries are a special case of interventional queries where we

“do nothing”, while interventional queries are a special case of counterfactual queries

where there is no counterfactual condition (in this case, the condition is the fact that

the speaker’s father did smoke, contracted lung cancer, and died). In order to define

these queries more formally, we first need to define the concept of an intervention on

a SCM:

Definition 2.5 (SCM Intervention). Given a SCM M = (U ,V ,F ,Pr), where

V = {V1, ...Vd}, an intervention is a set of causal mechanisms F ′ = {F ′
1, ...F

′
d}.

We define the set of intervened endogenous variables VF ′, where VF ′,i is defined by

the structural equation:

VF ′,i = F ′
i (Ui,PAF ′,i) (2.3)

13

In other words, a SCM intervention F ′ changes the causal mechanisms for (a subset

of) the endogenous variables V , defining a new set of intervened variables VF ′ . The

most common type of intervention is the hard intervention, where a subset X ⊆ V

of variables are set to a specific value x. This can be expressed by setting F ′
i ≡ vi

when Vi ∈ X, and F ′
i = Fi otherwise. This can be interpreted as performing the

corresponding action in the system (for example, eliminating smoking). In such cases,

we notate Vx to mean VF ′ .

With the definition of interventions in hand, we can now define interventional and

counterfactual distributions. While there is only a single observational distribution

for an SCM, there is a different interventional distribution for every intervention, and

different counterfactual distributions for any combination of interventions.

Definition 2.6 (Causal Distributions). Given an SCMM, observational (L1), inter-

ventional (L2), and counterfactual (L3) distributions are defined by:

1. Associational/Observational: The observational distribution is given by:

pM(V) =
∑
U

Pr(U)
d∏
i=1

1Vi=Fi(Ui,PAi) (2.4)

2. Interventional: Given any intervention F ′, the interventional distribution is

given by:

pM(VF ′) =
∑
U

Pr(U)
d∏
i=1

1VF ′,i=F
′
i (Ui,PAF ′,i)

(2.5)

3. Counterfactual: Given any set of interventions F (1), ...,F (n), the counterfac-

tual distribution is given by:

pM(VF (1) , ...VF (n)) =
∑
U

Pr(U)
n∏
j=1

(
d∏
i=1

1
V
F (j),i

=F
(j)
i (Ui,PA

F (j),i
)

)
(2.6)

In practice, rather than the distributions themselves, we are often interested in

functions of these distributions corresponding to interpretable quantities. For example,

for the observational distribution, we may want to compute the marginal probability

of a specific variable Y ∈ V , i.e. pM(Y = y) =
∑

V \{Y } pM(V \ {Y }, Y = y). We call

14

such functions associational (L1), interventional (L2), and counterfactual (L3) queries

respectively.

These queries, or predictions of the SCM, are important for two reasons. Firstly,

from a learning perspective, observing data generated from a system allows us to

deduce properties of the underlying SCM. For example, if we observe data from an

intervened system where X has been set to x, then the SCM should have the property

that pM(Vx) (approximately) matches the empirical data distribution. Secondly, from

a reasoning perspective, when we know (part of) the underlying SCM, we would like

to use queries to gain insight into the behaviour of the system. For example, for a

given intervention target X and two values x,x′ of X, the average causal effect on

Y , given by EpM [Yx′]− EpM [Yx], expresses the effect of acting on the system. Note

that this is an interventional query, as each expectation term is a function of the

probability distribution of a single intervened SCM.

Given that all of these query types are defined as (functions of) probabilistic

expressions on the underlying SCM, one might wonder, why do we need to explicitly

distinguish between them? One answer is the distinction between observation, doing,

and retrospecting that we established earlier, which humans understand on an intuitive

level and use everyday in commonsense reasoning. However, armed with the formalism

of structural causal models and interventions, it can be shown that there is an

information gap between the layers of the causal hierarchy.

Definition 2.7 (Similarity of SCMs). LetM,M′ be two SCMs. We say thatM,M′

are similar at layer i, writtenM∼iM′, if the models agree on every Li query.

Theorem 2.1 (Causal Hierarchy Theorem (Informal) [9]). For almost all SCMsM,

and levels i < j, there exists aM′ such thatM∼iM′ butM ̸∼jM′.

That is, data corresponding to queries at level i is almost never sufficient for us to

draw conclusions about queries at higher levels. The immediate consequence is that,

unfortunately, observational data is not enough on its own for us to be able to answer

causal (interventional and counterfactual) queries. This is problematic, as statistical

inference is reliant on the principle that all information necessary to answer a query

of interest can be found in the data distribution. Even in settings where are able to

15

obtain data from interventional distributions, we need to understand how such data

affects the query that we are actually interested in (which may involve a different

intervention). This motivates the need for causal inference.

2.1.3 Causal Inference

This process of characterizing data as the output of a causal query from the underlying

(unobserved) SCM, in order to reason about the output of other causal queries on

that SCM, is at the core of causal inference. Broadly, causal inference consists of two

problems: identifiability, and estimation. Identifiability asks whether the available

data is sufficient to uniquely determine the answer to the query of interest, while

estimation is the algorithmic process of answering the query from the given data.

In this section, we focus on inference for queries in each of the layers of the causal

hierarchy in turn. First, we describe how each layer can be naturally characterized

using abstractions of structural causal models; that is, coarser versions of SCMs

that can answer queries at the respective layer of the hierarchy. Next, we discuss

identifiability issues; namely, what assumptions we need to make to be able to perform

cross-layer inferences. Finally, we describe approaches to estimation, focusing on the

underlying principles.

2.1.3.1 L1 Inference

L1 (associational) queries correspond to properties of the observed distribution pM(V)

of a SCM. As such, the multivariate probability distribution pM(V) itself is an

abstraction of the SCM capable of answering any L1 query. In the following, we

describe the process of L1 inference with a particular focus on Bayesian networks, a

popular graphical representation of probability distributions.

Definition 2.8 (Bayesian Network). A Bayesian network (BN) N = (G,Pr) over

variables V is a pair consisting of a directed acyclic graph (DAG) G over nodes V ,

and a collection of conditional probability distributions (CPDs) Pri(Vi|paG(Vi)) for

each Vi ∈ V , where paG(Vi) are the parents of Vi in G.

16

A Bayesian network specifies a joint distribution over V defined by the factorization:

pN (V) =
d∏
i=1

Pri(Vi|paG(Vi)) (2.7)

As defined, Bayesian networks provide an explicit construction of the joint proba-

bility distribution they represent. The graph of a Bayesian network places restrictions

on the distributions p(V) that can be expressed. For example, a fully connected

Bayesian network graph (where Vi has the parent set {Vj|j < i}) can express any

multivariate distribution p(V), while a Bayesian network with no edges necessarily

corresponds to a fully factorized distribution (i.e. every variable is independent). That

is, the absence of edges corresponds to (conditional) independence assumption(s).

At first glance, Bayesian networks share many similarities with structural causal

models; namely, they can both be interpreted graphically, where each node (variable)

depends on the values of its parents, through a causal mechanism or conditional

probability distribution. They also both define a joint distribution p(V) over the

endogenous variables V . However, the key distinction is that Bayesian networks only

have semantics relating to the observational distribution (L1), while structural causal

models additionally define interventional and counterfactual distributions (L2,L3).

That is, the Bayesian network graph, and each CPD in a Bayesian network, should

not be interpreted as a causal relation, but merely a convenient means of specifying

(constraints on) the joint distribution. This is also the reason why there is no need for

latent/exogenous variables in the definition of a BN: there is no need to distinguish,

for example, between an exogenous variable confounding two endogenous variables,

and the variables themselves having a parent-child relationship.

Now, we turn to L1 inference from observational data. In this case, there are no

identifiability issues, as we are using L1 data to answer L1 queries, and this simply

reduces to statistical inference1. In statistical inference, the general procedure is to

fit/learn a probabilistic model (e.g. Bayesian network) from data, and then reason on

that model to answer the query of interest. Examples of specific queries of interest

include conditional/predictive distributions p(Y |X = x) and their mean E[Y |X = x]

and mode maxy p(Y = y|X = x).

1On the other hand, statistical models often make assumptions on the distribution, such as the
conditional independences implied by a Bayesian network graph.

17

2.1.3.2 L2 Inference

L2 queries correspond to properties of the intervened distributions pM(VF ′). These

typically correspond to some experimental setting of the data generating system which

is of interest, but different to the current reality from which data is observed; for

example, a world where we force all smokers to stop smoking, or collecting data from

a randomized sample of the population instead of survey respondents. If we had

access to data from this distribution, then, like in L1 inference, this would reduce

to statistical inference; in fact, this is the principle of a randomized controlled trial

(RCT), which aims to ensure that treatments are assigned randomly. However, this

is often not possible, for example, due to economic or ethical reasons. Instead, it is

common to consider the setting where we have access to either L1 (observational) data

or a combination of L1 and L2 (experimental) data, where the L2 data corresponds

to different interventions to the query. In this setting, there is a simple extension to

Bayesian networks that can be used to represent not only the observational distribution,

but also interventional distributions, known as a causal Bayesian network.

Definition 2.9 (Causal Bayesian Network). A causal Bayesian network CBN =

(G,Pr) is a Bayesian network with the additional semantics that, given any collection

of CPDs Pr′, the interventional distribution is defined as:

pCBN (VPr′) =
d∏
i=1

Pr′i(Vi|paG(Vi)) (2.8)

As in SCMs, we can define hard interventions as a special case, where we set a

subset of variables X to the value x. The corresponding interventional distribution is

given by pCBN (Vx) =
∏d

i=1,Vi ̸∈X Pr(Vi|paG(Vi))|X=x, where |X=x denotes instantiating

the variables X with x.

In contrast to Bayesian networks, in causal Bayesian networks we do interpret

parents of a variable as being direct causes, and the ancestor-descendant relation as

being a cause-effect relation. Though seemingly innocuous and straightforward, causal

Bayesian networks make the significant assumption that all interventional (causal)

distributions should follow this truncated factorization. In particular, notice that

in a Bayesian network, a variable is independent of all other variables which are

18

not its effects (non-descendants) given its parents; in causal Bayesian networks, this

means that in a hard intervened distribution, the variables X are independent of its

non-effects. This is often known as the causal Markov assumption.

Under what circumstances is the causal Markov assumption justified? Leveraging

the theory of SCMs, this amounts to understanding how interventional distributions

of a causal Bayesian network relate to the L2 predictions of an SCM.

Theorem 2.2 (CBN-SCM [9]). Given a Markovian SCMM with causal diagram G,

there exists a causal Bayesian network CBN = (G,Pr) such thatM∼2 CBN .

The Markovian assumption is key; causal Bayesian networks are justified when

there are no unobserved common causes (exogenous variables). The theorem says that

given any Markovian SCM, there is a corresponding abstract representation in the

form of a CBN that is sufficient to encode all L2 properties. Thus, if we are interested

in L2 inference, rather than inferring a SCM, it is sufficient to infer a CBN, in order

to answer any L2 query.

Inferring a causal Bayesian network from L1 (and possibly also L2) data, including

both the graph and distribution, is a challenging problem that is typically treated

separately in causal discovery or causal structure learning. For now, suppose that we

know the CBN graph (obtained, for example, through domain knowledge or causal

discovery). Remarkably, in this case, L1 data is sufficient to identify the CBN, and

thus, all L2 queries:

Corollary 2.1 (L2 identifiability in Markovian SCMs [9]). Given the diagram of

a Markovian SCM M, and the observational distribution p(V), all L2 queries are

identifiable.

This result follows simply by noting that a CBN is defined by its graph and

conditional probability distributions (CPD), and the CPDs follow from the joint

distribution p(V). This gives a simple procedure for performing L2 inference in

Markovian SCMs given the diagram; learn the CBN distribution from data, apply the

truncated factorization, and then compute the query from Prx(V).

We now turn to the semi-Markovian case, where there are unobserved common

causes of endogenous variables. It is not possible to identify interventional distributions

19

without some assumptions on the nature of the confounding. Thus, the question

of identifiability is typically posed as follows: given the causal diagram of a semi-

Markovian SCM (including bidirected edges) as an assumption, and a L2 query, is L1

data (or a combination of L1,L2 data) sufficient to identify the query?

To answer this question, Pearl derived a systematic set of rules called the do-

calculus [130], for transforming probabilistic expressions involving interventions and

observations into new but equivalent expressions. Each of the rules of the do-calculus

consists of a graphical criterion on the causal diagram under which they can be applied,

and the corresponding transformation. The goal is then to derive an expression not

involving interventions by applying do-calculus rules. To automate this process, a

polynomial-time algorithm for identifying causal effects was proposed by [177], and

was later shown to be able to identify all identifiable distributions [168, 80].

2.1.3.3 L3 inference

L3, or counterfactual inference, corresponds to answering queries involving outcomes in

more than one counterfactual world/intervention, i.e. pM(VF (1) , ...,VF (n)). In this case,

knowledge of the entire SCM, including functional relationships and the distribution

of the exogenous variables, is typically required. Given a fully specified SCM, it is

possible to express a counterfactual inference query as a marginal inference query on

a twin network [8] (more generally, a n-world network).

Unfortunately, by the causal hierarchy theorem, if we do not have access to the

underlying SCM, even L2 (i.e. experimental/interventional) data is not sufficient to

make L3 inferences. There are two main approaches to this problem. First, we can

make (strong) assumptions on the form of the SCM, which enable identifiability of

the target query from data. A prominent example of this approach is the property of

monotonicity [131] for binary variables, and counterfactual stability [124] for categorical

variables, for identifiability of probabilities of causation. Alternatively, we can look to

bound the query of interest under all possible SCMs consistent with the data [205].

20

2.1.4 Summary

To summarize, we have described the structural causal model framework for modelling

causal systems. The core task of causal inference can then be broadly described as

follows: given some information about the SCM (e.g. generated observational data,

causal diagram) as input, answer some query about the SCM as output. Key to

the formulation of SCMs is the information hierarchy, which specifies three different

levels of queries that require increasingly more fine-grained knowledge of the SCM.

This means that it is not possible, for example, to uniquely extract L2 information

given only L1 information. More generally, we can speak of identifiability, which asks

whether the input information is sufficient to uniquely determine the desired output

information. However, even if a query is identifiable, that does not mean that we can

tractably compute it.

The key question we are concerned with in this thesis is how to computationally

reason about the input information, in order to answer a causal query of interest.

This is not a single problem but rather a vast space of problems, induced by (i) what

input information we are assumed to have; and (ii) the space of possible queries

that we might want to answer (functions of the distributions in Definition 2.6). The

perspective we take in this thesis is to organize by the input information we have,

build/learn a model based on this information, and then use the model to reason

about queries efficiently. In particular, in Chapter 4, we study the case where a fully

specified causal Bayesian network or SCM is available as input; in Chapter 5, we will

study the more challenging (but also more realistic) setting where we have access to

observational data (L1), and the causal diagram; and in Chapter 6, we assume only

access to observational data, and model uncertainty over the causal diagram. In order

to construct models for the input information, we will employ and extend tools from

tractable probabilistic modelling, which we introduce in the next section.

2.2 Tractable Probabilistic Models

In this section, we introduce the concept of tractable probabilistic modelling (TPMs),

which is an approach to modelling probability distributions that focuses on designing

21

model classes that enable efficient (i.e. polynomial time) and reliable (i.e. exact or

approximate with guarantees) reasoning. In particular, we provide background on

tractable probabilistic circuits, the key computational framework underlying the work

in this thesis.

2.2.1 Probabilistic Models and Queries

A probabilistic model P is a particular representation of a (possibly unnormalized)

distribution over a set of random variables V . That is, it encodes some non-negative

function pP : val(V) → R≥0. We have already seen an example of a probabilistic

model in the previous section on causality: namely, Bayesian networks. Bayesian

networks specify a distribution pN by individually specifying mechanisms/CPDs

for each variable, according to a directed acyclic graph. Given a model, the task of

reasoning is to extract some useful information from the model. This can be formalized

through the definition of queries, which are functions of the distribution that the model

encodes. For example, the evidence query requires the evaluation of the distribution

pP :

Definition 2.10 (Evidence Queries). Given a probabilistic model P, an evidence

query is of the form pP(v), where v is an instantiation of V .

A generalization of the evidence query is the marginal query, which instead asks

for the probability of a partial assignment w. This is often useful in practice, as w

may represent some event that we are interested in, that does not involve the variables

V \W (we say that these variables have been marginalized out).

Definition 2.11 (Marginal Queries). Given a probabilistic model P, a marginal query

is of the form pP(w), where w is an instantiation of a subset W ⊆ V of variables.

Another important query is the MAP (maximum a posteriori) query2, which asks

for the maximum value of pP(v) over all instantiations of V (i.e. the mode of the

distribution), possibly in conjunction with some evidence/event.

2In the graphical model literature, the MAP query is often referred to as MPE, while marginal
MAP is referred to as MAP. In this thesis, we will use the terms MAP and marginal MAP (MMAP)
to avoid ambiguity and in line with recent literature [108, 114, 32].

22

Definition 2.12 (MAP Queries). Given a probabilistic model P, a MAP query is of

the form maxQ pP(Q, e), where Q,E partition V , and e is an instantiation of E.

We can also extend the MAP query to cases where some variables have been

marginalized out.

Definition 2.13 (Marginal MAP Queries). Given a probabilistic model P, a marginal

MAP (MMAP) query is of the form maxQ pP(Q, e) where Q,E ⊆ V , and e is an

instantiation of E.

All of these queries (as well as others) can be important to be able to reason about

depending on the application domain and meaning of the variables. However, models

may differ in terms of their tractability on each of these queries, even if they represent

the same distribution p. The key thrust of tractable probabilistic modelling is to

understand what makes a particular query tractable for particular models. To this

end, it will often be useful to talk about a class of models P , and classes of queries q

which is simply a semantic grouping of models and queries.

Definition 2.14 (Tractability). We say that a class of queries q is tractable for a

class of probabilistic models P, if for any query q ∈ q and any model P ∈ P, it is

possible to compute q on P in O(poly(|P|)) time, where |P| is the size of the model.

For example, the class of evidence queries is tractable on Bayesian networks.

However, (the decision variants of) MAP and marginal queries are NP-complete and

PP-complete respectively.

2.2.2 Probabilistic Circuits

The recently introduced framework of probabilistic circuits (PC) [33] is a unifying

language for tractable probabilistic models, which encompasses many previously

known tractable models, such as bounded-treewidth Bayesian networks [34], arithmetic

circuits [42], sum-product networks [146], cutset networks [149], and probabilistic

sentential decision diagrams [89]. Probabilistic circuits are computational graphs

which represent a non-negative function over a set of variables, often interpreted as a

(possibly unnormalized) probability distribution.

23

+

× ×

+ + + +

× × 1Y=1 1Y=0

1X=1 1Z=1 1X=0 1Z=1

× × 1Y=1 1Y=0

1X=1 1Z=0 1X=0 1Z=1

0.7 0.3

0.9 0.1 0.2 0.8 0.25 0.75 0.6 0.4

Figure 2.1: Decomposable, smooth and deterministic PC. Edges are labelled with sum
node weights ω, while leaf nodes are labelled with their functions gL.

Definition 2.15 (Probabilistic Circuit). A probabilistic circuit (PC) over variables

V is a triple C = (G,ω, g), which encodes a non-negative function pC(V), where G

is the structure of the PC, ω are the parameters of the PC, and g are the leaf node

functions.

Definition 2.16 (Syntax of Probabilistic Circuits). The structure G of a PC is

a rooted directed acyclic graph consisting of three types of nodes N : leaf L, sum

T and product P . Leaf nodes L are leaves of the graph, while each internal node

(sum or product) N has a set of children, denoted ch(N). Each sum node T has a

parameter/weight ωT,i ∈ R≥0 associated with each of their children Ni. Each leaf

node L encodes a non-negative function gL : ϕ(L) → R≥0 over a subset of variables

ϕ(L) ⊆ V , known as its scope.

In contrast to probabilistic graphical models such as Bayesian networks, the nodes

in a PC do not represent the variables V , but rather distributions over those variables,

which are intermediate units used to construct the final distribution. In that sense,

PCs are computational graphs that directly specify how the probability distribution

they represent is evaluated.

Definition 2.17 (Semantics of Probabilistic Circuits). The function encoded by each

node N is defined by:

pN(V) :=


gL(V) if N is a leaf L∏

Ni∈ch(P) pNi
(V) if N is a product P∑

Ni∈ch(T) ωipT,Ni
(V) if N is a sum T

(2.9)

24

The function encoded by the circuit, pC(V), is defined to be the function encoded by its

root node R. The size of a circuit, denoted |C|, is defined to be the number of edges in

the circuit.

As an example, in Figure 2.1 we show a probabilistic circuit over variables V =

{X, Y, Z}, where the edges linking sum nodes to their children have been labelled

with the corresponding weight, and each leaf node has been labelled with its function,

e.g. gL(X) = 1X=1.

We now turn to the tractability of probabilistic circuits as a model class. It is

typically assumed that the leaf node functions are tractable; that is, we can compute

the query on pL(V) in constant time. In practice, leaf node functions are often

univariate density functions, e.g. a univariate Gaussian or discrete distribution. Under

this assumption, the evidence query (that is, computing the density pC(v) for some

instantiation v of V) is tractable in linear time for any probabilistic circuit. The

corresponding algorithm involves a bottom-up (i.e. starting from the leaves) evaluation

of pN(v) for every node in the PC, according to Equation (2.9). However, we are

typically interested in classes of PCs that support tractable reasoning on more complex

queries. To define these classes, we need to define the scope and support of a PC node.

Definition 2.18 (Scope and support of PC node). The scope of an internal node

N is recursively defined by ϕ(N) :=
⋃
Ni∈ch(N) ϕ(Ni), and is the set of variables pN

specifies a function over. The support of any node N is defined as supp(N) := {w ∈

val(ϕ(N)) : pN (w) > 0}, i.e. the set of all instantiations of its scope s.t. pN is positive.

The tractability of probabilistic circuits depends on constraints on the scope of

the PC nodes (which we call scope properties) and support of the PC nodes (which

we call support properties).

Definition 2.19 (Decomposability). A PC is decomposable if the children of a product

node P have distinct scopes, i.e. ∀N1, N2 ∈ ch(P), ϕ(N1) ∩ ϕ(N2) = ∅.

Definition 2.20 (Smoothness). A PC is smooth if the children of a sum node T have

the same scope, i.e. ∀N1, N2 ∈ ch(T), ϕ(N1) = ϕ(N2).

25

0.32

0.2 0.6

1 0.2 1 0.6

1 1 1 0

1 1 1 1

1 1 1 0

1 1 1 1

0.7 0.3

0.9 0.1 0.2 0.8 0.25 0.75 0.6 0.4

Figure 2.2: Computing the marginal pC(Y = 1) for the PC in Figure 2.1.

0.504

0.72 0.45

0.9 0.8 0.75 0.6

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

0.7 0.3

0.9 0.1 0.2 0.8 0.25 0.75 0.6 0.4

Figure 2.3: Computing the MAP maxX,Y,Z pC(X, Y, Z) for the PC in Figure 2.1.

Intuitively, decomposability requires that product nodes represent a factorized

distribution over disjoint sets of variables, while smoothness requires that product

nodes represent a mixture distribution over components with the same variables.

Decomposability and smoothness together enable tractable marginal inference; that

is, for any subset W ⊆ ϕ(N) of the scope of a node N , we can compute pN(W)

efficiently, where pN(W) :=
∑

ϕ(N)\W pN(ϕ(N)) is the marginal of the function. The

corresponding algorithm is similar to the bottom-up evaluation of the evidence query.

All of the circuits which we study in this thesis will satisfy these two properties. For

example, the PC example in Figure 2.1 satisfies both properties. We show in Figure

2.2 the linear-time computation of the marginal pC(Y = 1), where we label each node

with its value under this computation; the output is the value at the root node 0.32.

As for support properties, by far the most common is determinism, which intuitively

states that each child of a sum node is associated with different values of the variables:

Definition 2.21 (Determinism). A PC is deterministic if the children of a sum node

T have disjoint supports, i.e. ∀N1, N2 ∈ ch(T), supp(N1) ∩ supp(N2) = ∅.

Determinism (together with decomposability) enables tractability of the MAP

26

inference query, i.e. computing maxV \E pN(V \ E, e) for some instantiation e of a

set of evidence variables E ⊆ V . Intuitively, this is because we can independently

optimize for the most likely instantiation in each child of a sum node, and then

select the most likely child. Determinism is also helpful for parameter learning in

that maximum likelihood estimation of the PC parameters becomes tractable. The

example PC in Figure 2.1 is deterministic, and we show in Figure 2.3 the corresponding

MAP computation, where one child is chosen at every sum node. The maximum

probability instantiation can be obtained by following the chosen child at every sum

node (highlighted in red); in this case, it is X = 1, Y = 0, Z = 1.

Though other support properties exist, such as the decision property, partitioned

determinism, and marginal determinism, their implications for tractable probabilistic

reasoning are less well studied, and consequently they are less well known/commonly

enforced in tractable probabilistic modelling. However, in Chapters 4 and 5, we will

show that additional support properties besides determinism are vital for tractable

causal reasoning.

2.2.3 Summary

To summarize, we have introduced the key concepts of tractable probabilistic modelling,

namely, models, which are specific representations of probability distributions (more

generally, non-negative functions), and the queries they can answer in polynomial

time. In particular, probabilistic circuits are a framework for TPMs whose tractability

for various inference queries can be characterized by their structure properties, such

as decomposability, smoothness, and determinism.

As models of the (observational) probability distribution, from a causal perspective,

probabilistic circuits can only answer L1 queries; however, they are distinguished from

other types of probabilistic models (e.g. intractable generative models, discriminative

models) in that they form a consistent, flexible and tractable knowledge base; i.e.

they can compute many classes of queries exactly and efficiently, rather than just a

single query. Such a knowledge base for causal modelling would have even greater

appeal, as the space of L2 and L3 queries is much larger than for L1 queries (due

to the interventional semantics). In the following chapters, for each of the settings

27

described in Section 2.1.4, we will investigate to what extent it is possible to develop

circuit-based models that can compute large classes of L2 and L3 queries efficiently.

28

Chapter 3

Literature Review

Contents
3.1 Tractable Probabilistic Models 29

3.1.1 The Spectrum of Tractable Probabilistic Models 30

3.1.2 Tractable Probabilistic Models for Causality 33

3.2 Computational Causality 35

3.2.1 Structural Causal Models and Causal Identification 35

3.2.2 Causal Structure Learning 36

In this Chapter, we review the literature on tractable probabilistic modelling

and computational problems in causality, in order to provide further context for the

research questions that we tackle in the upcoming Chapters.

3.1 Tractable Probabilistic Models

The term tractable probabilistic modelling refers broadly to an approach to probabilistic

learning and reasoning, in which the representation of the probability distribution is

designed to enable tractable exact computation of a set of inference queries of interest.

Many such model classes now exist, from those admitting tractable likelihoods (e.g.

Bayesian networks [129], autoregressive models, normalizing flows [152]), to tractable

marginals (e.g. sum-product networks [146]), to tractable computation of various

advanced inference queries (e.g. probabilistic sentential decision diagrams [89]). In

this section, we survey the literature on tractable probabilistic modelling in order to

contextualize the contributions of this thesis.

29

3.1.1 The Spectrum of Tractable Probabilistic Models

In the following, we review the most important classes of tractable probabilistic models,

starting from classical probabilistic graphical models, and then moving into more

recent proposals inspired by machine learning.

Bayesian networks [129] are directed probabilistic graphical models that specifies

a distribution over a set of variables as the product of local conditional probability

distributions for each variable. Evaluating the probability (density) of any instantiation

of the variables can thus be performed in linear time. In contrast, computing densities

in undirected probabilistic graphical models (Markov networks) requires computing

the partition function (normalizing constant), which is NP-hard [93]. However, it is

often of more interest to compute the probability of some event, or marginal, of the

joint distribution. This task is also known to be NP-hard through a reduction from

the Boolean satisfiability problem [36]. For this reason, Bayesian networks have not

historically been considered tractable models, and much effort has been expended into

developing effective exact and approximate inference algorithms.

The complexity of exact (marginal) inference algorithms for Bayesian networks

can be bounded in practice by the treewidth of its graph [99]. For this reason, one

way to ensure tractable inference is to restrict to low or bounded-treewidth Bayesian

networks [34, 7, 57, 94] or mixtures thereof [117], where marginal inference is tractable

by design. Such methods can now scale to learning networks containing thousands of

variables [157]. Unfortunately, bounded treewidth is not always a tenable assumption,

as it inevitably imposes conditional independences on the distribution that restricts

expressivity. To efficiently represent Bayesian networks with high treewidth, it is

possible to exploit determinism1 [101] and context-specific independences (CSI) [15] to

more compactly express the conditional probability distributions defining a Bayesian

network. These properties of the distribution, sometimes referred to as local structure,

can then be exploited for efficient inference [42, 26].

The seminal work of [42] showed that the process of inference in Bayesian networks

can be traced and represented as an arithmetic circuit (AC), which is a representation

1Determinism in this context refers to the determinism of conditional probability distributions of
BNs; not to be confused with determinism as a circuit property.

30

of the Bayesian network distribution that admits linear-time marginal and MAP

inference. Similar proposals, based on extensions of the ordered binary decision

diagram (OBDD) in automated verification, were also introduced in the form of

probabilistic decision graphs [16, 83] and AND/OR multi-valued decision diagrams

[115]. All of these can be interpreted as decomposable, smooth, and deterministic

probabilistic circuits. Later, it was shown that these circuits could be learned directly

from data, exploiting context-specific independence for compactness [84, 111].

The insights from these earlier works have spurred further research into the

precise properties of circuits required to enable tractable inference for different queries.

In particular, we highlight two major advances in this area. The first was the

introduction of sum-product networks (SPN) [146], which relaxed the requirement for

circuits to satisfy determinism, while retaining decomposability and smoothness to

ensure tractable marginal inference2. This has been shown to result in potentially

exponentially more succinct circuits, but at the cost of tractable MAP inference [31].

SPNs can be interpreted as deep, hierarchical latent variable models [136] that satisfy

the necessary structure for tractable inference. Secondly, probabilistic sentential

decision diagrams (PSDD) [89] provide an implementation of the stronger properties

and structured decomposability and partitioned (strong) determinism [142, 144] for

probabilistic models, based upon logical circuits known as sentential decision diagrams

(SDDs) [44]. These properties were later shown to additionally enable tractable

probabilistic operations, such as products of circuits [162], KL-divergence of two

circuits[105], and expected predictions [87].

Much effort has also been made in developing more scalable architectures and

learning algorithms for probabilistic circuits, as well as adapting them for new tasks.

The task of learning PCs can be divided into parameter learning, which relates to

learning the weights of sum nodes in the PC, and structure learning, which relates to

learning the topology of the PC graph. Prominent algorithms for learning the structure

of probabilistic circuits include top-down learning algorithms, such as LearnSPN [66]

and ID-SPN [154], that hierarchically split the root sum node using (subsets of)

2In the sum-product network literature, smoothness is often known as completeness, and deter-
minism as selectivity. In addition, a condition weaker than decomposability called consistency is
used, but this has no practical implication on the size of circuits [138].

31

the data, in a divide-and-conquer approach; and bottom-up learning algorithms

[135, 103, 41], which iteratively grow the circuit from the leaf node distributions.

Parameter (weight) learning for probabilistic circuits can be performed using maximum

likelihood estimation for deterministic circuits, while the EM algorithm [51] can be

used for non-deterministic circuits [146, 211]. A recent trend in PC learning has

been to utilize random but scalable structures upon which parameter learning can be

performed; works in this direction include RAT-SPN [139] and EiNets [137], which

are SPN architectures, and XPCs [53], which can additionally impose structured

decomposability and determinism.

While probabilistic circuits are typically thought of as generative models describing

a joint distribution, they can also be adapted for learning conditional distributions

of some set of output variables, given a set of input variables. In the case where

the output set is a singleton (e.g. classification), it is possible to learn probabilistic

circuits over the input variables in a discriminative manner [65, 1, 139, 104], with

the output being interpreted as the classification probability. For output sets with

more variables, there have been a number of proposals. Conditional cutset networks

[148] and conditional SPNs [161] employ external function approximators (e.g. neural

network) to express PC weights as a function of the input variables. On the other

hand, conditional PSDDs [163] explicitly include the input variables as part of the

tractable circuit; this extra tractability is important, for example, for being able to

multiply two conditional distributions [164].

A class of tractable models that is not efficiently captured by graphical models

or probabilistic circuits exploiting local structure is the determinantal point process

(DPP) [97]. (Discrete) DPPs efficiently express probability distributions exhibiting

global negative dependence; that is, distributions with negative correlations between

any subset of variables. Marginal inference in DPPs corresponds to matrix operations

which can be performed in polynomial time. Unfortunately, such distributions are not

possible to represent compactly as probabilistic circuits [203]; very recently, a new

tractable model known as a probabilistic generating circuit [204] was introduced that

generalizes both circuit-based models and DPPs.

32

Finally, we touch briefly on probabilistic models based on neural networks, which

have shown increasingly impressive performance in terms of their modelling capa-

bilities in recent years. Most generative models that have been proposed, such as

variational autoencoders [88], generative adversarial networks [70], and diffusion mod-

els [170, 171] do not admit tractable density evaluation and can only be sampled from.

Autoregressive models [182, 18], which explicitly predict the density of each variable

(token) conditional on the past, and normalizing flows [151], which utilize invertible

transformations, are notable exceptions that have tractable densities.

3.1.2 Tractable Probabilistic Models for Causality

We now review the literature on tractable probabilistic models for causal reasoning. In

this context, causal reasoning inherits many of the challenges of probabilistic reasoning,

but also poses new questions, such as relating to identifiability and tractability of

interventional and counterfactual queries. Existing works can broadly be divided into

two strands of research, which differ in terms of their motivation and methods. The

first strand extends the knowledge compilation approach to probabilistic inference, to

compiling causal models such as causal Bayesian networks and structural causal models.

The second strand focuses instead on general (learned) probabilistic circuits, and

under what circumstances they can be interpreted causally and/or used for tractable

causal reasoning.

In the first strand, the underlying causal model is generally assumed to be fully

known, such that there are no identifiability concerns. The main focus is thus on

identifying and computing representations of the model that are tractable for causal

queries and succinct. Such a representation can be obtained by applying the symbolic

Bayesian network compilation methods of [42] to causal Bayesian networks and

structural causal models. By exploiting the semantic relationship between circuit

parameters and Bayesian network parameters, it has been noted that the compiled

circuits can be used for tractable interventional marginal reasoning [147, 191, 46] 3. This

approach has been extended to counterfactual reasoning by instead compiling a twin

network [8] representation of SCMs [73]. For succinctness, a new compilation/inference

3I am a co-author on the second paper, on which Chapter 4 is partially based.

33

technique has recently been introduced that exploits the functional mechanisms present

in SCMs [46, 45, 27]; the resulting compilations are exponential in the so-called causal

treewidth, which is always less than the treewidth.

The second strand of research aims to exploit general probabilistic circuits, which,

as in probabilistic inference, are not limited by treewidth and can be learned from

data. The challenge, however, is that such circuits no longer have a direct reference

point to a causal model (i.e. CBN or SCM), and consequently they do not have

direct causal semantics [210]. One approach is to use PCs in a purely probabilistic

manner, for example to model conditional probability distributions in CBNs and

SCMs. These models can then be used to compute causal quantities in conjunction

with causal assumptions: for example, to adjust for observed confounders via the

backdoor formula [202]. However, the resulting computation is intractable unless there

is massive determinism (that is, most instantiations have zero probability) [72], which

could result in violations of the positivity assumption in causal inference. The other

approach is to interpret a circuit as representing a causal model. Unfortunately, [126]

showed that known interpretations of common circuits (SPNs and PSDDs) as graphical

models lead to degenerate causal models. As a workaround, [201] proposed to use

different weights on the same circuit to model different interventional distributions,

with the weights predicted by neural networks [161]; however, there is no guarantee

that the resulting interventional distributions are consistent with any causal model.

Despite the disparity in these approaches, the common thread is that one is

attempting to extract an interventional distribution from a circuit modelling the

observational distribution. In the former case, we employ external machinery (e.g.

backdoor adjustment) to define the interventional distribution, while in the latter case,

we assume that the interventional distribution(s) can be somehow encoded into the

circuit such that reasoning remains tractable over the interventional distribution. This

raises the fundamental question: for what circuits is the interventional distribution

tractable to compute? In Chapter 5, we will explore this question in depth.

34

3.2 Computational Causality

We now turn to the broader literature on causality, with a particular focus on compu-

tational problems. First, we review work on causal identification and reasoning over

the space of SCMs and compare and contrast to the questions in this thesis. Then,

we review work on causal structure learning, which is of importance in Chapter 6.

3.2.1 Structural Causal Models and Causal Identification

We begin by considering the problem of identification of interventional distributions,

given access to a causal diagram and observational data. An interventional distribution

is said to be identifiable if it is the same for all SCMs consistent with the diagram

and data. The identification problem is then to develop an algorithm for (i) deciding

whether a given interventional distribution is identifiable given the diagram; and

(ii) if it is, returning a formula giving the interventional distribution in terms of the

observational distribution. An identification algorithm is said to be sound if it only

returns True (and an identification formula) when the interventional distribution is

identifiable, and complete if it always does so.

Pearl’s celebrated do-calculus [130] provides a set of rules (together with basic

probabilistic operations) for soundly transforming interventional distributions into

functions of the observational distribution based on the structure of the diagram.

Later, a sound and complete poly-time algorithm known as the ID algorithm [177] was

introduced for automatically applying the do-calculus to arbitrary causal diagrams

and interventional distributions, effectively solving the identification problem from

a computational perspective. More recent works have considered extensions to the

identification problem. In [38], a set of rules known as the σ-calculus was developed

for the problem of identification of interventional distributions with stochastic rather

than hard interventions; follow-up work resulted in an efficient sound and complete

algorithm [37] in this setting. In the setting where one has additional information on

context-specific independences involving the latent and observed variables in the SCM,

[179] showed that more interventional distributions become identifiable. Unfortunately,

the resulting identification problem becomes NP-hard. Finally, in the so-called general

35

identifiability setting, where additional information in the form of a set of interventional

distributions (with different interventions to the target interventional distribution) is

available, a sound and complete polytime algorithm exists [102, 90].

One can also define other reasoning problems over the space of structural causal

models based on logic. Recently, in [81, 121], languages for expressing causal statements

on SCMs were introduced, as an extension to probabilistic languages for probability

functions[59]. These languages allow for expressing interventions, sums, conditionals,

and products, in addition to the standard propositional logic operators. The resulting

satisfiability problems (i.e. existence of a SCM satisfying the formula) were shown

to be NP-complete or ∃R-complete, depending on whether products are allowed in

the language. This has very recently been extended to additionally allow for variable

summation (marginalization) operations, with a corresponding jump in complexity

[183]. Such a language can then be used to, for example, check the validity of a

do-calculus formula for a given causal diagram.

These works are mostly orthogonal to this thesis as we are mostly concerned

with reasoning on statements about a specific causal model, rather than statements

about the space of all causal models. Identification algorithms output an expression

in terms of the observational distribution, but do not specify how to compute it

given a particular SCM/observational distribution. Similarly, even though checking

satisfiability of causal (or probabilistic) expressions not involving multiplication is

“only” NP-complete, this does not imply that probabilistic (or causal) inference over

a given SCM is tractable [56]. Further, rather than the complexity of reasoning on

arbitrary SCMs/representations of distributions, we are concerned with tractable

representations where reasoning is possible in polynomial time.

3.2.2 Causal Structure Learning

While in causal inference (part of) the causal graph is assumed to be known, in causal

structure learning (also known as causal discovery) one seeks to uncover the causal

relations between variables. To perform causal structure learning from data, it is

necessary to make assumptions on how the structure of the causal model manifests in

the observational distribution. In this respect, the three most common assumptions are

36

the causal Markov condition (CMC), the causal faithfulness assumption, and the causal

sufficiency assumption [173]. Informally, the causal Markov condition states that

every variable is independent of its non-descendants given its parents, the faithfulness

assumption states that any conditional independences in the observed distribution is

implied by the CMC on the underlying graph, and the sufficiency assumption states

that there are no unobserved confounders.

Even under these assumptions, it is usually not possible to uniquely identify the

underlying graph even with infinite data, as multiple graphs can induce the same

observational distribution; the resulting equivalence classes of indistinguishable DAGs

are known as Markov equivalence classes (MEC) [187]. In order to distinguish between

DAGs in an equivalence class, one can make assumptions on the functional form of the

structural causal model; in particular, for linear non-Gaussian models [167], non-linear

additive noise models [76], and post-nonlinear models [206, 207], it becomes possible

to identify the causal direction between two variables. This can be used to orient the

edges within a MEC.

The primary computational challenge in causal structure learning relates to search-

ing over the combinatorial space of directed acyclic graphs, which grows super-

exponentially with the number of variables. Causal structure learning algorithms can

broadly be categorized into two types: constraint-based and score-based. Constraint-

based algorithms employ conditional independence tests on the observed data in order

to narrow down the space of possible graphs. Prominent examples include the PC

algorithm [173], which returns a Markov equivalence class (MEC) of DAGs that imply

the same conditional independences, and the FCI [173] and RFCI [35] algorithms,

which can additionally deal with violations to causal sufficiency. Score-based algo-

rithms aim to globally optimize a score function defined over the space of graphs, that

measures the degree of fit to the data (along with penalties for model complexity).

Unfortunately, this optimization is in general NP-hard [30], even for bounded-treewidth

graphs [94]. In practice, approximate optimization methods need to be used: in

particular, greedy equivalence search (GES) [29] is a greedy algorithm that nonetheless

retains consistency guarantees in the large-sample limit. More recently, continuous

optimization methods based on a relaxation to the acyclicity requirement have been

37

proposed that do not come with guarantees, but demonstrate impressive empirical

performance [212, 199, 213, 17, 12].

Bayesian methods for causal structure learning [74] are closely related to score-

based approaches, but explicitly define a probability distribution over DAGs via

a prior over graphs, and a likelihood for graphs given data. The posterior then

represents uncertainty about the underlying causal graph. Unfortunately, exact

Bayesian inference methods for structure learning can only scale to around 20 variables

[92, 91]. As a result, there has been much interest in approximate methods, which

can be divided into sampling-based and variational approaches. Sampling-based

approaches utilize MCMC sampling over the space of DAGs; an early proposal known

as structure MCMC used edge additions and deletions as Metropolis-Hastings proposals

[113, 67]. Unfortunately, the posterior space of structures is highly multimodal and

irregular, leading to slow mixing times. This has motivated the development of more

sophisticated MCMC schemes for structure learning. Notable works in this direction

include OrderMCMC [62], which operates over the much smaller space and smoother

posterior landscape of topological orders, [71] which introduced a new edge-reversal

proposal, and PartitionMCMC [96], which operates over the space of node partitions.

Alternatively, some recent works have applied variational inference to the Bayesian

structure learning problem. In variational inference, one defines a tractable variational

family of distributions, such as multivariate Gaussians, and then optimizes within

this family to find the closest tractable approximation to the true posterior, via

a quantity known as the evidence-lower bound (ELBO). Unfortunately, employing

variational inference in high-dimensional, discrete spaces such as the space of directed

acyclic graphs is highly challenging, for two reasons. Firstly, it is very difficult to

specify a variational family of distributions over such spaces (due to the acyclicity

constraint) that is sufficiently tractable to use for sampling, density estimation, or

other downstream tasks. Secondly, when optimizing the ELBO, pathwise gradient

estimators (e.g. reparameterization trick) [88, 120] are not applicable in discrete

settings, while the score-function estimator can suffer from prohibitively high variance.

In [110], the authors propose a latent variable model and particle-based variational

inference, obtaining a sample of graphs. In [3], the authors propose using a neural

38

autoregressive model for the entries of the graph adjacency matrix. Finally, in [40] it

is proposed to use a continuous relaxation to the (intractable) Boltzmann distribution

over variable orderings, which enables the application of pathwise gradient estimators.

Aside from discovering causal relations in a system, the other key motivation for

causal structure learning is to use the learned causal graph to answer downstream

causal inference queries. However, it has long been recognized that committing to

a single graph can lead to unreliable results, particularly when the graph is not

identifiable4 from observational data [174]. In such cases, there are a couple of

approaches to account for the uncertainty [172], usually restricted to the case of linear

Gaussian SCMs. One approach is to consider sets of DAGs that can be identified from

data, i.e. Markov equivalence classes, and to obtain bounds on the quantity of interest.

Notably, the IDA algorithm [112] uses linear regression to estimate causal effects for

each DAG in a given equivalence class, returning a (multi)set of possible values for the

causal effect. However, this does not account for the statistical uncertainty between

equivalence classes when there is limited data. Another approach is to use Bayesian

structure learning approaches to represent the (statistical and causal) uncertainty over

graphs, and then employ Bayesian model averaging [75, 61] to estimate the causal

query in expectation over the posterior. This has been implemented in BIDA [140]

and OB-MA [22], which average the IDA estimate for each graph in the posterior,

while Beeps [188] explicitly computes the exact causal effect for each graph in the

approximate posterior; these Bayesian methods have been shown to outperform IDA

in accuracy in low sample-size settings. Finally, in non-linear settings, two recent

works [178, 180] have proposed end-to-end procedures for causal structure learning

and inference utilizing the Bayesian structure learner DiBS [110], though the resulting

procedure is highly computationally expensive.

4Note that, in causal structure learning, identifiability is typically used to mean identifiability of
the causal graph, rather than identifiability of a specific causal inference query given the graph as is
the case in causal inference.

39

Chapter 4

Advanced Causal Reasoning via
Compilation

Contents
4.1 Compiled Representations of Models 42

4.1.1 Compiling Bayesian Networks 43

4.1.2 Compiled Representations for Causality 49

4.2 Interventional Robustness 50

4.2.1 Interventional Robustness and Credal Sets 51

4.2.2 Bounding Interventional Robustness via Compilation 52

4.2.3 Case Study: Robustness Analysis of Classifiers 56

4.3 Counterfactual Reasoning using Circuits 58

4.4 Experiments . 63

4.4.1 Robustness of Classifiers to Causal Interventions 63

4.4.2 Credal Inference Benchmarks 63

4.5 Discussion . 65

In this Chapter, we consider reasoning about interventional (L2) and counter-

factual (L3) queries in the case where the causal graph (DAG) of the underlying

system is known. Such situations arise, for example, when expert domain knowledge

permits the specification of a structural causal model or causal Bayesian network, or

through discovery of causal relations when observational and/or experimental data is

available. Given knowledge of the causal graph, we can represent the causal model

computationally as a Bayesian network; that is, a collection of conditional probability

distributions (parameters) for each variable, conditional on its parents in the graph.

40

Crucially, we can perform causal interventions in constant time on this representation

by modifying the parameters. This means that any interventional query that can be

expressed as an associational (L1) query on an intervened model is no harder than

the associational query itself. For example, using classical inference algorithms, both

associational and interventional marginal probabilities are exponential in the treewidth

of the graph.

Given this, the use of compiled representations of causal graphs is particularly

appealing. Compilation approaches to inference in Bayesian networks [42] convert

a Bayesian network into a more tractable circuit representation, in which marginal

and MAP inference queries can be computed efficiently in linear time in the size

of the circuit. One of the key features of compilation-based inference is that the

compilation process is symbolic with respect to the variables, such that the circuit

efficiently “stores” the result of all possible inference queries. In other words, the cost

of multiple inference queries (e.g. marginal queries over different sets of variables) can

be amortized by compiling once, and then querying the arithmetic circuit for each

query. More pertinently for causal reasoning, compiled circuits are also symbolic with

respect to the parameters of the Bayesian network. This allows us also to amortize the

cost of inference across different interventions. As such, we can interpret a compiled

circuit not just as a tractable representation of a specific distribution, but a tractable

representation of the intervened distributions induced by all possible interventions.

However, such circuits are not fully tractable representations for causal queries,

as the space of causal queries extends far beyond those which can be formulated as

an associational query on an intervened model. We focus in particular on two such

classes of queries of both theoretical and practical importance. The first involves

maximization of marginal probabilities over a set of different interventions, which is

closely related to the problem of credal inference in the imprecise probability literature.

This can be applied, for example to model robustness to distribution shift induced

by interventions, or to make decisions about which intervention to apply; recent

work has also shown the applicability of credal inference to bounding non-identifiable

queries [200]. The second is that of computing counterfactuals (L3), which involves

reasoning over multiple worlds corresponding to different interventions and is arguably

41

a hallmark of human reasoning. Unfortunately, previous work has found that both of

these classes of queries have previously been found to result in significantly increased

complexity compared to marginal inference on Bayesian networks [39, 49, 73], both in

theory and practice.

To tackle these problems, we re-examine the structure of compiled circuits in

order to identify conditions under which the queries can be efficiently computed or

soundly approximated. Our key finding is that by applying partial ordering constraints

corresponding to the topology of the Bayesian network graph, it becomes possible

to compute/soundly approximate the queries in linear time in the size of the circuit.

Importantly, and analogously to associational inference queries, the compiled circuit

“stores” the results for all possible queries in the two classes, including any configuration

of interventions. The drawback is that compiling the circuit is now exponential in

the topology-constrained treewidth of the Bayesian network. Our results show that

using elimination orders corresponding to the topology of a causal graph has practical

implications for tractability of (causal) inference, and that circuits compiled with

such orderings can answer queries at all levels of the causal hierarchy. Empirically,

we evaluate our algorithms on a range of benchmark Bayesian networks and find

significantly improved scalability compared to existing approaches.

4.1 Compiled Representations of Models

In this section, we introduce compiled circuit representations of probabilistic and

causal graphical models. In this context, we use the term “compiled” in the sense of

knowledge compilation [48], which is an approach to reasoning over (propositional)

logical theories that seeks to transform (compile) a theory from a less tractable

language into a more tractable target language, for which reasoning about queries of

interest is easy. The motivation behind such an approach is to invest computational

resources once into the offline compilation, and then to use the compiled theory to

answer many online queries efficiently. The seminal work of [42] applied the framework

of knowledge compilation to probabilistic inference in Bayesian networks. Here, instead

of logical theories, the object of interest is the probability distribution represented by

42

the Bayesian network, and the target representation is a tractable class of arithmetic

circuits, where answering marginal inference queries can be done in linear time. We

begin this section by describing compiled representations of Bayesian networks, and

then explain how the approach can be extended to causal Bayesian networks and

structural causal models.

For the rest of this chapter, we will make the assumption that the cardinality of all

variables (endogenous and exogenous) is finite and fixed. This is necessary in order to

apply compilation methods, which rely on a direct parameterization of the conditional

probability distributions. It has been shown that any SCM over discrete endogenous

variables and continuous exogenous variables can be translated to an equivalent SCM

where the exogenous variables are also discrete [8, 205] (though the cardinality of these

variables may be large). Thus, the main assumption being made is that the observed

(endogenous) variables are discrete. We will discuss at the end of this chapter how

our methods might be extended also to continuous or mixed variables.

4.1.1 Compiling Bayesian Networks

The core tradeoff in knowledge compilation is between the succinctness of a target

representation [69], and the queries that can be computed on them in polynomial time

in the size of the representation. Recall that the distribution of a Bayesian network

N = (G,Pr) is given by:

pN (V) =
d∏
i=1

Pri(Vi|paG(Vi)) (4.1)

Unfortunately, this product representation is not tractable for marginal inference

queries. For example, if we interpret (4.1) as a PC product node with d children, the

product is not decomposable as variables are shared between the children. However,

there is a representation of the distribution, known as the network polynomial, which

is tractable for marginal inference. For every value vi of a variable Vi ∈ V , we define

an indicator variable 1Vi=vi , which takes the value 1 when V1 = vi, and 0 otherwise.

Further, for every value pai of its parents paG(Vi), we define a parameter variable

θvi|pai
:= Pri(Vi|paG(Vi)). Then the probability distribution of the Bayesian network

43

can be rewritten in terms of these variables:

pN (V) =
d∏
i=1

Pri(Vi|paG(Vi)) (4.2)

=
∑

v∈val(V)

(
d∏
i=1

1Vi=vi

)(
d∏
i=1

Pri(vi|pai)

)
(4.3)

=
∑

v∈val(V)

d∏
i=1

1Vi=viθvi|pai
(4.4)

Definition 4.1 (Network Polynomial [42, 43]). The network polynomial of a Bayesian

network N = (G,Pr) is defined as:

fN (λ,Θ) :=
∑

v∈val(V)

d∏
i=1

1Vi=viθvi|pai
(4.5)

where λ,Θ are the sets of all indicator and parameter variables respectively. Each

component
∏d

i=1 1Vi=viθvi|pai
of the summation is called a term, and is associated with

a complete instantiation v of the variables V .

We can interpret the network polynomial as a shallow and wide probabilistic

circuit over variables V , consisting of a root sum node with a product node child for

every instantiation of V , and leaf nodes given by indicators or parameters. Here, an

indicator leaf L with gL(Vi) = 1Vi=vi has scope ϕ(L) = Vi (for some Vi ∈ V), while

parameter leaves L with gL() = θvi|pai
have empty scope. This circuit can easily be

seen to be decomposable (children of a product each mention one of the variables),

smooth and deterministic (children of the sum correspond to different instantiations

v). This implies that we can compute marginals and MAP in linear time in the size

of the network polynomial. The problem, however, is that the network polynomial

representation of any Bayesian network is itself exponential in the number of variables

|V |. In other words, the network polynomial is tractable, but not succinct. The goal

of compilation, then, is to find a probabilistic circuit C over variables V (usually

known in this context as an arithmetic circuit [42]) that more succinctly represents this

polynomial (more specifically, multilinear) function of the indicators and parameters,

while also satisfying the required properties for tractability. We say such a circuit

symbolically computes the Bayesian network.

To formalize this, we define the concept of a complete sub-circuit [23, 31, 33]:

44

Definition 4.2 (Complete Subcircuit). A complete subcircuit Csub = (Gsub,ωsub, gsub)

of a PC C is a circuit constructed by recursively traversing C starting from the root

R, choosing one child of every visited sum node T , and choosing all children of every

visited product node P . Gsub is the subgraph of G consisting of all visited nodes and

edges, ωsub the set of all weights of visited edges, and gsub the set of functions for each

visited leaf node. The term MCsub of a complete subcircuit is defined to be:

MCsub =
∏

ω∈ωsub

ω
∏

gL∈gsub

gnL
L (4.6)

where nL is the number of times L is reachable from the root in Csub 1.

The distribution pC(V) represented by the probabilistic circuit is given by the sum

over the terms of all complete subcircuits, when the leaf node functions are evaluated

at V . This gives rise to the polynomial interpretation of PCs, where the sum over

terms is a polynomial where the indeterminates (variables) are the leaf node functions

g (and possibly the weights ω). In our case, we will instead define a polynomial

over variables λ,Θ, by assuming that the weights ω and leaf node distributions g are

themselves given by indicators or parameters.

Definition 4.3 (PC polynomial). The polynomial of a probabilistic circuit C is defined

to be:

fC(ω, g) =
∑

Csub∈C

MCsub(ω, g) (4.7)

If every weight ω ∈ ω is either equal to 1 or a parameter θ, and each leaf node function

g ∈ g is either an indicator λ or a parameter θ, then we can equivalently write this as

a polynomial over λ,Θ:

fC(λ,Θ) =
∑

Csub∈C

MCsub(λ,Θ) (4.8)

For compiled PCs (arithmetic circuits), the parameter variables are typically all

represented in the leaf node functions, and all sum node weights are equal to 1.

However, the ability to incorporate parameters into ω will be important later on. We

will write ω(Θ) and g(λ,Θ) to highlight the dependence of the sum node weights

and leaf functions on the indicators/parameters.

1In this Chapter, and in general for decomposable circuits, nL will be equal to 1.

45

X W

Y
(a) Bayesian Network

+

× ×
+ +θx1X=x θx̄ 1X=x̄

× × × ×

1W=w 1W=w̄θw θw̄

+ ++ +

× × × ×× × × ×

1Y=y 1Y=ȳ

θy|w,xθȳ|w,x θy|w̄,x̄θȳ|w̄,x̄θy|w,x̄ θȳ|w,x̄ θy|w,x̄ θȳ|w,x̄

(b) Compiled Circuit

Figure 4.1: Example of Bayesian network and corresponding compiled circuit. All
sum node weights are equal to 1 in the circuit.

Definition 4.4 (PC symbolically computing Bayesian Network). A probabilistic circuit

C = (G,ω, g) symbolically computes a Bayesian network N if

fC(λ,Θ) = fN (λ,Θ) (4.9)

This definition says that the circuit must explicitly encode the same polynomial

over indicators and parameters; that is, the term of each subcircuit MCsub corresponds

to a term
∏d

i=1 1Vi=viθvi|pai
of the BN polynomial, and thus each subcircuit corresponds

to a specific instantiation v of the domain variables V . The importance of symbolic

computation is that the distribution over V encoded by the circuit is the same as that

of the Bayesian network for any values of the CPDs Pr.

The ability to represent the network polynomial more compactly rests on two

principles. Firstly, by taking advantage of the topology of the Bayesian network

graph, it is possible to exchange the order of sums and products. This is the basis

for exact inference methods for probabilistic inference in graphical models such as

variable elimination (VE) and jointree inference, whose efficiency depends on the

treewidth of the Bayesian network graph. Secondly, aside from the graph, one can

exploit knowledge of the values of the parameters of Pr, e.g. when Pri(vi|pai) = 0

(determinism) or Pri(vi|pai) = Pri(vi|pa′
i) (context-specific independence) for some

46

parameters [24, 25, 26]. However, the disadvantage is that the resulting circuits are

no longer valid for all values of the parameters, i.e. the circuit does not symbolically

compute the BN. This is particularly problematic for causal inference, as we will

shortly see. For this reason, we restrict to compilation methods that do not (or are

configured not to) make such assumptions.

We will now define a new property of probabilistic circuits, known as the decision

property. This property intuitively states that every sum node has product node

children corresponding to each of the values of a particular variable V .

Definition 4.5 (Decision Property). A sum node T in a probabilistic circuit decides

on a variable V if it has |val(V)| product node children {Pv}v∈val(V), such that Pv has

a child 1V=v. We say that a circuit satisfies the decision property if all of its sum

nodes decide on a variable, and write ψ(T) for the variable T decides on.

For example, if V was binary, we could have (1V=0 ×N0) + (1V=1 ×N1), where

N0, N1 are PC nodes. This property is also known as representing a variable [156],

and can be viewed as the functional/probabilistic analogue of the concept of decision-

DNNF circuits in propositional logic [48, 78], but replacing conjunctions with ×, and

disjunctions with + [79]. It is clear from the definition that the decision property

implies determinism, as it explicitly specifies conflicting indicators for each child;

however, not all deterministic circuits satisfy the decision property. We might wonder,

then, whether enforcing the stronger decision property allows for tractability of more

queries. It has been shown that enforcing certain constraints on the relative ordering

of decision nodes in a circuit allows for linear-time computation of marginal MAP,

or, more generally, functional E-MAJSAT with respect to a set of variables W ⊆ V

[128, 77, 143]. In particular, a Decision-PC is said to be W -constrained if all sum

nodes which decide on variables in W appear above variables deciding on V \W .

More generally, we can speak of a circuit satisfying a strict partial order. A

strict partial order < on a set V is a relation between elements of V , which satisfies

irreflexivity and transitivity. Importantly, not all elements of V need to be comparable.

We say that an PC satisfies a given partial order< if the topology of the PC is consistent

with the partial order:

47

Definition 4.6 (PC Satisfying Partial Order). A probabilistic circuit C satisfies a

partial order < over V , if it satisfies the decision property, and for any pair of sum

nodes T, T ′ in C,

ψ(T) < ψ(T ′) =⇒ T ′ is not a descendant of T (4.10)

Unfortunately, enforcing a partial order can increase the complexity of compilation

of circuits. Compilation methods based on variable elimination take as input an

elimination order σ, which is a total ordering over the variables. The resulting

compiled circuit satisfies the decision property and the total order σ′, where σ′ is the

reversal of σ. Thus, to enforce a partial order <, one needs to choose an elimination

ordering whose reversal is consistent with <. The treewidth of a Bayesian network is

given by the minimum width among all total elimination orders. Clearly, the minimum

width among all elimination orders (whose reversal is) consistent with a given partial

order (called the constrained treewidth by [127, 128] in the case of a W -constrained

partial order) is at least as large, and can be considerably larger depending on the

partial order. In practice, we cannot compute either the treewidth or <-constrained

treewidth efficiently (the former is NP-hard). As a result, we must rely on heuristics

to choose an elimination ordering. These heuristics typically choose the variables in

the ordering one-by-one, at each point computing a heuristic value for each remaining

variable and choosing the variable with the largest value. Given any partial order <,

we can find a <-constrained total order by choosing at each point the variable with

the largest heuristic value which would not violate <. In our experiments, we use the

empirically successful min-fill heuristic.

As an example of these definitions, in Figure 4.1 we show a simple Bayesian network

over three binary variables, and a decomposable, smooth, and deterministic circuit

over {X,W, Y } which computes the Bayesian network distribution. Note that we

have omitted weights from the edges of the sum nodes, by which we mean that all

such weights are equal to 1. It can be checked (e.g. by explicitly enumerating all

subcircuits) that the circuit symbolically computes the Bayesian network. Further,

the circuit satisfies the decision property, as the root sum node decides on X, the two

subsequent sum nodes on W , and the bottom four sum nodes on Y .

48

4.1.2 Compiled Representations for Causality

In a similar vein to probabilistic inference queries on Bayesian networks, our aim is

to identify tractable target representations for various causal (L2 and L3) queries on

structural causal models and causal Bayesian networks. We begin by noting that

both causal Bayesian networks and structural causal models can be compiled in a

similar manner to Bayesian networks. For causal Bayesian networks CBN , which share

syntax with Bayesian networks, the compilation is entirely similar. For structural

causal models M = (U ,V ,F ,Pr), we can instead compile to a circuit over both

the endogenous and exogenous variables U ∪ V , as follows. For every value u of a

exogenous variable U , we define an indicator variable 1U=u, and a parameter variable

θu := PrU(u). For every value vi of an endogenous variable Vi, we define an indicator

variable 1Vi=vi . Finally, for every value ui of its exogenous parents and pai of its

endogenous parents, we define a parameter variable θvi|ui,pai
:= 1vi=Fi(ui,pai). The

resulting “SCM polynomial” can be compiled exactly as if it were a Bayesian network

over U ∪ V .

Definition 4.7 (SCM polynomial). Given an SCMM, the SCM polynomial is defined

as:

fM(λ,Θ) :=
∑

u∈val(U),v∈val(V)

∏
U∈U

1U=uPrU(u)
d∏
i=1

1Vi=viθvi|ui,pai
(4.11)

where λ,Θ are the sets of all indicator and parameter variables respectively. Each

component
∏

U∈U 1U=uPrU(u)
∏d

i=1 1Vi=viθvi|ui,pai
of the summation is called a term,

and is associated with a complete instantiation u,v of the variables U ,V .

We now consider computing interventional L2 and counterfactual L3 queries. We

first identify a case in which interventional reasoning is no harder than associational

reasoning: namely, when the interventional query can be expressed as an associational

query on an intervened model. For example, for causal Bayesian networks, the

49

interventional distribution for intervention Pr′ is given by:

pCBN (VPr′) =
d∏
i=1

Pr′i(Vi|paG(Vi)) (4.12)

=
∑

v∈val(V)

d∏
i=1

1Vi=viθ
′
vi|pai

(4.13)

where θ′vi|pai
= Pr′i(Vi|paG(Vi)). Given a PC C = (G,ω(Θ), g(λ,Θ)) which symboli-

cally computes the Bayesian network, we can obtain a new PC C = (G,ω(Θ′), g(λ,Θ′))

where Θ′ has been modified by changing θvi|pai
to θ′vi|pai

for any leaf corresponding to

a parameter variable. As a result, using a compiled circuit it is possible to compute

any standard probabilistic inference query (e.g. marginals, MPE) which is tractable on

a decomposable, smooth, and deterministic circuit on any interventional distribution.

However, not all causal queries can be expressed as an associational query on an

intervened model; in particular, queries that involve reasoning over multiple different

interventions simultaneously do not fall under this category. In the rest of this Chapter,

we focus on two such classes of queries. Firstly, for interventional L2 reasoning, we may

be interested in the probability of some event under a set of different interventions,

that could represent different environments, or different actions. A natural query in

such a setting is to compute the maximum or minimum probability of the event over

the set of interventions. As we will see, such queries have important applications

for analyzing robustness and for decision-making in causal systems. Secondly, we

consider reasoning over counterfactual L3 distributions for SCMs. Whereas compiled

circuits allow us to tractably reason over interventional distributions, it is unclear

how we can even evaluate a counterfactual distribution pM(VF (1) , ...VF (n)), which

involves transferring information across counterfactual worlds induced by different

interventions. In both cases, we will derive tractability conditions on compiled circuits

and algorithms that allow us to compute or soundly approximate the query.

4.2 Interventional Robustness

In this section, we consider the query of maximizing the probability of an event E = e,

where E ⊆ V , over a specified set of interventions, which we call the interventional

50

robustness query. We begin by discussing how to specify sets of interventions using

credal sets, and then analyze the complexity of the problem. This motivates the need

for a scalable approximate procedure that can produce guaranteed bounds on the

query. We then describe a condition on circuits compiled from CBNs, which allows us

to efficiently upper bound any interventional robustness query. Finally, we show how

to tighten the upper bounds and additionally obtain lower bounds.

4.2.1 Interventional Robustness and Credal Sets

We first consider how to specify a set of interventions on a causal Bayesian network.

For this, we can use the concept of credal sets in the field of imprecise probability,

where one assigns a (closed and convex) set of probability measures representing

imprecise knowledge. In the case of Bayesian networks, this is done by specifying

credal sets Ki(Vi|PAi) on each individual CPD in the network. For example, for a

binary variable Vi with one parent PAi, one way to construct a credal set is to specify

intervals on each individual probability as follows:

Ki(Vi|PAi = 0) = {Pri : Pri(Vi = 1|PAi = 0) ∈ [0.2, 0.7]} (4.14)

Ki(Vi|PAi = 1) = {Pri : Pri(Vi = 1|PAi = 1) ∈ [0.6, 0.8]} (4.15)

If a CPD cannot be intervened on, then we can represent this with a credal set that

contains only one element, namely the original CPD. Now, given sets of interventions

on each CPD, and their corresponding credal sets Ki(Vi|PAi), we now consider

extending to a credal set for the parameters of the entire causal Bayesian network.

Here, we follow the principle of independent causal mechanisms (ICM) [141], which

informally states that in causal systems, the mechanisms/CPDs for each variable are

independent in the sense that they do not inform and influence each other. In other

words, intervening on one mechanism should not affect another mechanism, or indeed

in our case, affect the set of interventions that are available on the other mechanism.

For this reason, we consider credal sets that allow for any combination of interventions

on each CPD. In the credal inference literature, this is often known as the strong

extension of the credal sets [39].

K = {Pr : Pri ∈ Ki(Vi|PAi)} (4.16)

51

The pair of a Bayesian network (graph), and a credal set for the CPDs, is referred

to as a credal network. The problem of maximizing the probability of an event on a

credal network is known as the credal marginals problem. In the context of causal

interventions, we can define the query as follows:

Definition 4.8 (Interventional Robustness Query). Given a causal Bayesian net-

work CBN , the interventional robustness query is parameterized by a credal set of

interventions K = {Pr : Pri ∈ Ki(Vi|PAi)} and an event e, and is defined by:

INTROB(CBN ;K, e) = max
Pr′∈K

pCBN (ePr′) (4.17)

4.2.2 Bounding Interventional Robustness via Compilation

Our goal for the rest of this section will be to find a representation of causal Bayesian

networks that allows us to efficiently bound any interventional robustness query on

that CBN. As a starting point, let us consider a PC C compiled from the CBN.

Maximizing over a credal set K then corresponds to maximizing over the leaf node

functions corresponding to the parameters, that is:

max
Θ′∈K

pC(G,ω(Θ′),(λ,Θ′))(e) (4.18)

Unfortunately, maximizing over the values of parameters θvi|pai
is not straight-

forward, due to the constraint that (θvi|pai
)vi∈val(Vi) ∈ Ki(Vi|pai). In other words,

different parameters, which may be spread out in different parts of the circuit, are

jointly constrained. This prevents us from performing local optimizations in the

circuit in a similar manner to, for example, the computation of the MAP query in

deterministic circuits. A trivial way to resolve this would be to replace the simplex

constraints with the (much) weaker constraints that θvi|pai
∈ [0, 1] for all parameters.

The corresponding optimization problem produces an upper bound on 4.18, and can

easily be solved due to the independent constraints on each parameter. Unfortunately,

such a bound is clearly uninformative as it violates even the simplex constraint that∑
vi∈val(Vi) θvi|pai

= 1.

In order to make progress, we will impose additional constraints on the structure

of the PC. In particular, we consider compiled PCs satisfying <top, where <top is a

52

partial order corresponding to the topology of the causal Bayesian network graph G.

That is, Vi <top Vj iff Vi is an ancestor of Vj in G. Under this condition, we can show

the following result, which intuitively states that when a circuit splits on variable Vi,

the values of its parents are already “known”:

Lemma 4.1 (Known Parents). Let C be a compiled PC that symbolically computes

the CBN N , and satisfies topological ordering constraints <top. Then, for any sum

node T deciding on a variable Vi, every complete subcircuit Csub of C which contains T

must contain the same indicators for the parents PAi.

For example, in Figure 4.1, we see that the compiled circuit satisfies <top. By the

Lemma, we can deduce that, for example, the bottom four sum nodes, which decide

on Y , must also correspond to a specific value of (W,X). This can be checked to hold

by noting that e.g. the leftmost sum node only appears in the subcircuit with 1X=x

and 1W=w.

Given this result, and assuming topological ordering constraints, we propose below

an algorithm that converts the compiled PC into a new PC where the parameters

variables Θ are all assigned to weights ω of sum nodes in the PC, instead of leaves.

Intuitively, because the parent values pai are known at a sum node deciding on a

variable Vi, we can directly assign each θvi|pai
for vi ∈ val(Vi) to the respective children

of the sum node. Algorithmically, we can determine the value of the parents (for each

sum node) using a single pass through the PC, as follows. We use P (N, Vi) to denote

the set of “possible values” of the variable Vi at a PC node N :

P (N, Vi) := {vi : ∃L ∈ desc(N) : gN = θvj |paj
and vi ∈ paj} (4.19)

That is, this contains the set of all values of Vi, such that there is a descendant leaf

node of N corresponding to a parameter that specifies that value of Vi. The point of

this definition is that 1) at a sum node T deciding on Vi, this uniquely tells us the

value of the parents of Vi; and 2) this can be easily computed using a bottom up pass.

Proposition 4.1. Suppose T decides on variable Vi. Then, for any parent PAi ∈ PAi

of Vi, P (T, PAi) is a singleton set.

53

Algorithm 4.1: Transpilation of Compiled PC

Input: Compiled PC C = (G,ω = 1, g(λ,Θ)) symbolically computing CBN
and satisfying topological ordering constraints.

Result: PC C ′ = (G,ω(Θ), g(λ))
1 begin
2 For leaf nodes L corresponding to indicators, compute P (L, Vi) = {} for all

Vi ∈ V ;
3 For leaf nodes L corresponding to a parameter θvi|pai

, compute
P (L, PAi) = {pai} for PAi ∈ PAi and P (L, Vj) = {} for Vj ∈ V \ PAi;

4 For internal nodes N , compute P (N, Vi) =
⋃
Nj∈ch(N) P (Nj, Vi) for all

Vi ∈ V ;
5 For sum nodes T deciding on Vi, assign ωT,j ← θvi(j)|pai

, where vi(j) is the
value of Vi corresponding to the jth child of T , and for each PAi ∈ PAi,
pai is the unique value in PAi in P (T, PAi);

6 Remove all leaf nodes corresponding to parameters.

In Algorithm 4.1, we show the overall procedure for transferring the parameters

Θ to the weights of the sum nodes in the PC, which we call transpilation. The

algorithm executes a bottom-up computation through the PC, where for each node

we compute P , and at sum nodes, we assign the parameter values to the appropriate

weights. Finally, having assigned all weights, we remove all leaf nodes corresponding

to parameters from the circuit. The final PC has all of the parameter variables Θ in

the sum node weights, and all of the Crucially, we can show that the transpiled PC

represents the same function of the indicators and parameters, meaning that it also

symbolically computes CBN .

Proposition 4.2 (Correctness of Transpiled PC). The output of Algorithm 4.1

symbolically computes CBN .

4.2.2.1 Upper Bounding via Constraint Relaxation

The motivation behind transpilation is that this creates a direct correspondence

between the weights of a sum node ωT , and the set of causal parameters (θvi|pai
)vi∈val(Vi).

As such, we can now locally maximize the probability pT (e) of the event e, by

maximizing over ωT ∈ Ki(Vi|pai) given the maximal probability pNj
(e) of the event

under each of the children Nj of T .

54

Algorithm 4.2: Upper Bounding

Input: Transpiled PC C = (G,ω(Θ), g(λ)) symbolically computing CBN ,
credal set K, event e

Result: Upper bound on interventional robustness query
1 begin
2 For leaf nodes L corresponding to an indicator λ = 1Vi=vi , compute

pupper(L) = 1vi|=e if Vi ∈ E, and pupper(L) = 1 otherwise;
3 For product nodes P , compute pupper(P) =

∏
Nj∈ch(P) pupper(Nj);

4 For sum nodes T deciding on Vi with parent values pai, compute
maxωT∈Ki(Vi|pai)

∑
Nj∈ch(T) ωT,jpupper(Nj);

5 Return pupper(R) where R is the root of C.

The complication, however, is that the set of parameters (θvi|pai
)vi∈val(Vi) may

appear for multiple different sum nodes T in the transpiled circuit, which all split on

Vi and have parents value pai. That is, aside from the constraint ωT ∈ Ki(Vi|pai),

we also have a second constraint that ωT = ωT ′ for any two such sum nodes. This

prevents us from optimizing the weights in the transpiled PC for these sum nodes

independently.

We thus propose to upper bound the interventional robustness query by removing

this second equality constraint, so that the constrained optimization over ω ∈ K

becomes a local constrained optimization ωT ∈ Ki(Vi|pai) for each sum node. For

this relaxed problem, we can compute the maximum probability of any event using

the algorithm from [116], which we adapt in our context in Algorithm 4.2. In Figure

4.2, we show an example execution of the algorithm for the event Y = 1, and for a

credal set K the details of which we omit for brevity. Notice in particular that the

two sum nodes deciding on W have different optimized weights, even though they

correspond to the same parameters θw, θw̄. For this reason, the output 0.775 is only

an upper bound on the interventional robustness query.

4.2.2.2 Lower Bounding via Projection

We now consider deriving lower bounds on the interventional robustness query. By

definition, any assignment Θ′ to the parameters Θ ∈ K provides a lower bound, given

by pC(G,ω(Θ′),g(λ))(e). We can thus consider searching over the space of parameters in

order to find a tight lower bound. To aid in the search process, we propose to initialize

55

+

× ×
+ +θx1X=x θx̄ 1X=x̄

× × × ×

1W=w 1W=w̄θw θw̄

+ ++ +

× × × ×× × × ×

1Y=y 1Y=ȳ

θy|w,xθȳ|w,x θy|w̄,x̄θȳ|w̄,x̄θy|w,x̄ θȳ|w,x̄ θy|w,x̄ θȳ|w,x̄

(a) Compiled PC

(0.775)

× ×
(0.875) (0.575)1 1

× × × ×

1 1

(0.9) (0.6)(0.8) (0.5)

× × × ×× × × ×

1 0

0.66 0.33

0.75 0.25 0.25 0.75

0.9 0.1 0.5 0.50.6 0.4 0.8 0.2

(b) Upper bounding on transpiled PC

Figure 4.2: Example of upper bounding routine, for the event Y = 1

the search using projection from the obtained upper bound. In particular, we assign

each set of parameters (θvi|pai
)vi∈val(vi) ← ω∗

T , where ω
∗
T are the optimized parameters

for some arbitrary T that corresponds to Vi,pai. We then perform local changes to

the parameters, greedily keeping any that increase the lower bound.

4.2.3 Case Study: Robustness Analysis of Classifiers

In this case study, we look at a causal Bayesian network model which models car

insurance risks, shown in Figure 4.3 [13]. Suppose an insurance company wishes to

use a classifier to predict MedCost (the medical cost of an insurance claim), and has

access to an insurant’s Age, DrivHist, and MakeModel (categorical variables with 3-5

values). MedCost is either BelowThousand (0) or AboveThousand (1). They fit a

Näıve Bayes classifier to historical data, obtaining a decision function F . This is then

used as part of their decision-making policy determining what premiums to offer to

customers. We can represent this by adding an additional node F to the Bayesian

network, which has parents {Age, DrivHist, MakeModel}.

The company is particularly concerned about false negatives, as this could result

in the company losing a lot of money in payouts. Based on the original Bayesian

network model (Figure 4.3) and their new classifier, this should occur 2.5% of the

time. However, in reality, insurants may attempt to game the classifier to predict

BelowThousand (so that they get lower premiums), while actually being likely to have

56

Figure 4.3: INSURANCE Bayesian network [13]

a high medical cost. That is, we assume that insurants can causally intervene on some

of DrivHist (perhaps hide some accident history), MakeModel (drive a different type

of car than they would normally choose), and Cushioning (upgrade/downgrade the

degree of protection inside the car). The company would thus like to understand how

robust their classifier is to these adaptations. In order to model this scenario, we can

assign credal sets KDrivHist, KMakeModel, KCushioning to each of these mechanisms, while

leaving the parameters of the other mechanisms fixed (i.e. trivial credal set). For

simplicity (and modelling a situation where we want to be extremely conservative),

we define these credal sets to allow any value of the parameters in [0, 1], subject to

the simplex constraint that the appropriate parameters sum to 1.

We seek to obtain guaranteed upper bounds on these two quantities:

• FN: The probability of a false negative p(F = 0, MedCost = 1), i.e. predicted

low medical cost, but high actual medical cost.

• P: The probability of a positive p(MedCost = 1), i.e. high actual medical cost.

57

Intervenable Variables FN P

Empty Set 2.5% 7.2%
{DrivHist} 7.2% 7.2%
{MakeModel} 5.7% 10.0%
{Cushioning} 6.1% 12.9%
{DrivHist, MakeModel} 10.0% 10.0%
{DrivHist, Cushioning} 12.9% 12.9%
{MakeModel, Cushioning} 13.0% 13.9%
{DrivHist, MakeModel, Cushioning} 13.9% 13.9%

Table 4.1: Guaranteed upper bounds on FN and P, under different credal sets

The results are shown in Table 4.1, where in each column, we allow a different

subset of {DrivHist, MakeModel, Cushioning} to be intervened on. Note that all

of these are computed on the same transpiled circuit. The insurance company can

use these bounds to assess risk, and improve their classifier’s robustness if they deem

the false negative rate under intervention unacceptable.

The bounds can also provide further insight. We notice that whenever DrivHist is

intervenable, the percentage of false negatives is the same as positives, i.e. the classifier

always predicts wrong when MedCost is 1. This turns out to be because the Näıve

Bayes classifier always predicts 0 whenever DrivHist is None, regardless of the other

input variables. Thus, an insurant who can change their DrivHist can always fool

the classifier to predict 0. In addition, the percentage of positives doesn’t increase

from the original BN: this can be seen from the causal graph, where DrivHist has no

causal influence on MedCost. On the other hand, Cushioning significantly increases

the positive rate. Notice that, in the graph, intervening on Cushioning will not have

any influence on the inputs to the classifier; thus, the increase in FN to 6.1% is not due

to fooling the classifier, but rather making high medical expenses generally more likely,

by downgrading the quality of cushioning. In this way, the intervention is ”taking

advantage” of the classifier not having full information about cushioning.

4.3 Counterfactual Reasoning using Circuits

We now consider reasoning about L3 queries on structural causal models. As we

have seen in Section 4.1.2, any SCM can be represented as a polynomial function of

58

indicators and parameters, where the indicators correspond to values of the exogenous

variables U and endogenous variables V , and the parameters correspond to the

distributions on the exogenous variables and the causal mechanisms F . Recall also

that a general counterfactual distribution can be written as:

pM(VF (1) , ...VF (n)) =
∑
U

Pr(U)
n∏
j=1

(
d∏
i=1

1
V
F (j),i

=F
(j)
i (Ui,PA

F (j),i
)

)
(4.20)

where F (1), ...,F (n) are interventions. The most common type of counterfactual query

involves reasoning over two worlds: one corresponding to the observed reality, and

one corresponding to an imaginary world. These worlds are represented by two

interventions; a “null” intervention F (1) = F which represents the real world, and

an intervention F (2) which represents the changes to functional mechanisms in the

imaginary world. For example, suppose that the variables V represents the observed

course of a patient’s illness (for example, their pre-existing conditions, treatments

administered, etc.), and Y ∈ V represents the patient’s survival. Then, if vF represents

events in the observed world, where the patient died (YF = 0), and the intervention

F (2) represents a potential alternative treatment regimen, the query pM(YF (2) = 1|vF)

represents the probability that the patient would have survived had the alternative

regimen been administered.

More generally, for n worlds, counterfactual marginal reasoning simply corresponds

to computing a marginal of the counterfactual distribution in Equation 4.20, that is:

pM(e
(1)

F (1) , ...e
(n)

F (n)) =
∑

V
F (1)\E

(1)

F (1)
,...,V

F (n)\E
(n)

F (n)

pM(e
(1)

F (1) ,VF (1)\E(1)

F (1) , ..., e
(n)

F (n) ,VF (n)\E(n)

F (n))

(4.21)

where e
(1)

F (1) , ...e
(n)

F (n) are instantiations of variable subsets E
(1)

F (1) ⊆ VF (1) , ...,E
(n)

F (n) ⊆

VF (n) respectively, and correspond to events in each of the counterfactual worlds.

In order to perform counterfactual reasoning, the twin network technique [8]

augments the SCMM by explictly adding the set of new variables VF (j) corresponding

to each intervention to the SCM (the word “twin” refers to the case where there are

n = 2 interventions; more generally, we can refer to n-world networks2). Counterfactual

inference then directly corresponds to an associational inference query of the form

2The corresponding graph has been called the parallel worlds graph by [6, 169].

59

(4.21) on this augmented SCMM′. Unfortunately, n-world networks are much larger

than the original Bayesian network, resulting in a corresponding jump to inferential

complexity. It was recently shown that the treewidth w′ of n-world networks is at

most n(w + 1)− 1, where w is the treewidth of the original SCM graph over U ,V

[73]; in other words, if the number of worlds is bounded, then counterfactual reasoning

is only polynomially harder than associational reasoning. However, the significant

increase (at least doubling) in treewidth can still limit scalability in practice.

In this section, we consider a restricted case of counterfactual reasoning, which, as

we will show, can always be executed efficiently on a compilation of the original SCM

M, and, in particular, does not depend on the number of worlds. The restriction

we impose is all of the events in Equation 4.21 must be complete instantiations

of the variables in the corresponding world, except one. That is, we have that

E
(1)

F (1) = VF (1) , ...,E
(n−1)

F (n−1) = VF (n−1) and E
(n)

F (n) ⊆ VF (n) . While this is restrictive

compared to the general counterfactual marginal, it is still a fairly broad class of

queries: for example, it trivially includes evaluating any counterfactual probability

pM(vF (1) , ...vF (n)) (evidence query) for any number of worlds. Our method applies the

three-step process known as abduction-action-prediction [8]. In this approach, we seek

to compute a conditional of the form pM(e
(n)

F (n)|e
(1)

F (1) , ..., e
(n−1)

F (n−1)) using the following

steps:

1. Abduction: Compute a posterior pM(U |e(1)

F (1) , ..., e
(n−1)

F (n−1));

2. Action: Apply the intervention F (n);

3. Prediction: Compute the distribution:

pM(e
(n)

F (n)|e
(1)

F (1) , ..., e
(n−1)

F (n−1)) =
∑
U

pM(e
(n)

F (n) |U)pM(U |e(1)

F (1) , ..., e
(n−1)

F (n−1))

Unfortunately, this procedure is typically intractable as it involves summing over

all values of the exogenous variables U . Even though the distribution over U in the

original SCM is fully factorized, the posterior over U , in general, is highly correlated,

due to conditioning on the events. In order to make progress, as previously mentioned,

60

Algorithm 4.3: Posterior Circuit Computation

Input: Transpiled PC C = (G,ω(Θ), g(λ)) symbolically computingM,

satisfying topological ordering constraints, event v
(1)

F (1)

Result: Modified PC C ′ = (G,ω′(Θ), g(λ))
1 begin
2 For leaf nodes L corresponding to an indicator 1Vi=vi , compute

pcond(L) = 1vi|=v(1) ;

3 For leaf nodes L corresponding to an indicator 1U=u, compute pcond(L) = 1;
4 For product nodes P , compute pcond(P) =

∏
Nj∈ch(P) pcond(Nj);

5 For sum nodes T deciding on Vi with exogenous parent values ui and
endogenous parent values pai, compute pcond(T) = pcond(Nj), where Nj

corresponds to the value F
(1)
i (ui,pai) of Vi; further, replace T with a

product node P , which has two children: T , and a leaf L with constant
leaf function gL() = 1

v
(1)
i =F

(1)
i (ui,pa

(1)
i)

;

6 For sum nodes T deciding on U , compute
pcond(T) =

∑
Nj∈ch(T) ωT,jpcond(N);

7 For root node R, assign ω′
R,i ←

ωR,i

pcond(R)
.

8 Return C ′ = (G,ω′(Θ), g(λ))

we restrict to events e
(1)

F (1) , ..., e
(n−1)

F (n−1) that are complete instantiations of the variables,

i.e. of the form v
(1)

F (1) , ...,v
(n−1)

F (n−1) .

We now consider implementing the abduction step. First, let us consider computing

the posterior pM(U |v(1)

F (1)) for a single event v
(1)

F (1) . This can be written as:

pM(U |v(1)

F (1)) =
pM(U ,v

(1)

F (1))

pM(v
(1)

F (1))
(4.22)

Thus, if we have any compiled circuit that symbolically computes the SCM, we

can obtain a circuit that represents pM(U |v(1)

F (1)) over U , simply by evaluating at

v
(1)

F (1) and dividing by the scalar pM(v
(1)

F (1)). Unfortunately, the resulting posterior may

not permit efficient prediction, i.e. computation of the distribution pM(VF |v(1)

F (1)) =∑
U pM(VF |U)pM(U |v(1)

F (1)) for some new intervention F . To overcome this, we

need another condition; namely that the circuit satisfies topological constraints.

This ensures that we can assign the parameters θvi|ui,pai
∈ {0, 1} (corresponding to

functional mechanisms Fi(ui,pai)) to a sum node deciding on Vi (and with parent

values ui,pai) using our transpilation procedure.

In Algorithm 4.3, we provide a procedure for deriving a circuit that symbolically

61

computes the joint posterior over exogenous variables U and (intervened) endogenous

variables VF , pM(U ,VF |v(1)

F (1)) = pM(VF |U)pM(U |v(1)

F (1)). To understand what this

means, we first derive the polynomial for pM(U ,VF |v(1)

F (1)).

The SCM polynomial fM(λ,Θ) = pM(U ,VF), where the values of U ,V are en-

coded into the indicators and the mechanisms F into the parameters as in Section 4.1.2.

Every term
∏

U∈U PrU(u)
∏d

i=1 1Vi=viθvi|ui,pai
of the SCM polynomial corresponds to

a specific instantiation u,v of U ,V . The corresponding term pM(u,vF |v(1)

F (1)) is given

by:

pM(u,vF |v(1)

F (1)) = pM(vF |u)pM(u|v(1)

F (1)) (4.23)

=
pM(vF ,u)

pM(u)

pM(u)pM(v
(1)

F (1)|u)
pM(v

(1)

F (1))
(4.24)

= pM(vF ,u)
pM(v

(1)

F (1)|u)
pM(v

(1)

F (1))
(4.25)

= pM(vF ,u)
1

pM(v
(1)

F (1))

d∏
i=1

1
v
(1)
i =F

(1)
i (ui,pa

(1)
i)

(4.26)

=

∏d
i=1 1v(1)i =F

(1)
i (ui,pa

(1)
i)

pM(v
(1)

F (1))

∏
U∈U

1U=uPrU(u)
d∏
i=1

1Vi=viθvi|ui,pai
(4.27)

The polynomial of the model pM(U ,VF |v(1)

F (1)), which we write fM|v(1)

F (1)

, is then given

by:

fM|v(1)

F (1)

=
∑

u∈val(U),v∈val(V)

∏d
i=1 1v(1)i =F

(1)
i (ui,pa

(1)
i)

pM(v
(1)

F (1))

∏
U∈U

1U=uPrU(u)
d∏
i=1

1Vi=viθvi|ui,pai

(4.28)

This is in the form of an SCM polynomial, except that we have an extra factor∏d
i=1 1v

(1)
i

=F
(1)
i

(ui,pa
(1)
i

)

pM(v
(1)

F (1)
)

which affects the exogenous variables. Now, if we have a transpiled

PC C symbolically computing the SCM, then Algorithm 4.3 implements this extra

factor by attaching the indicators to sum nodes deciding on the appropriate variable,

and reweighting the root sum node weights by the scalar 1

pM(v
(1)

F (1)
)
, as computed by

pcond.

Proposition 4.3 (Correctness of Algorithm 4.3). The output C ′ of Algorithm 4.3 has

polynomial fM|v(1)

F (1)

.

62

As such, we can iterate this algorithm to condition on v
(2)

F (2) ,v
(3)

F (3) , ...v
(n−1)

F (n−1) , obtain-

ing a circuit computing the polynomial fM|v(1)

F (1)
,...,v

(n−1)

F (n−1)

= pM(U ,VF |v(1)

F (1) , ...v
(n−1)

F (n−1)).

Perfomring the prediction step to compute pM(e
(n)

F (n)|e
(1)

F (1) , ..., e
(n−1)

F (n−1)) then simply

amounts to a marginal query on the final circuit with F = F (n).

4.4 Experiments

In this section, we empirically evaluate our algorithms for the interventional robustness

problem. In particular, we are interested in evaluating the scalability of the approach

to large causal Bayesian networks, as well as the tightness of the upper and lower

bounds obtained.

4.4.1 Robustness of Classifiers to Causal Interventions

We extend the setting of the case study in Section 4.2.3 to different credal intervention

sets on five Bayesian networks, namely child, insurance, win95pts, hepar2 and

andes. In Table 4.2, we perform a quantitative analysis of the tightness of the bounds

produced on the false negative and false positive probabilities of the classifiers. For each

network, we compute lower and upper bounds on the false negative/positive probability

under different credal intervention sets. Overall, we find small or nonexistent gaps

between the lower and upper bounds across all networks and intervention sets evaluated,

suggesting that in many settings of interest it is possible to obtain tight guarantees

using our algorithms. Further, both bounding algorithms are very fast to execute,

taking no more than a few seconds for each run. This is remarkable given the sizes

of the intervention sets. For instance, for the insurance network, the parametric

intervention set P2 (second row) covers involves credal sets over the mechanisms for 6

variables, 248 parameters, and ∼ 1036 different possible interventions (extremal points

of the credal set).

4.4.2 Credal Inference Benchmarks

We additionally evaluate our method on the new CREPO [20] credal inference bench-

mark, which contains many small-to-moderately sized networks (< 10 nodes) and

63

Network
False Negatives False Positives

BeforeIntv LBound UBound ∆ BeforeIntv LBound UBound ∆

child 0.06922 0.07098 0.07098 0 0.1629 0.1947 0.1947 0
0.06922 0.07325 0.07329 0.00004 0.1629 0.2762 0.3069 0.0307
0.06922 0.06978 0.07127 0.00149 0.1629 0.1717 0.2009 0.0292

insurance 0.02453 0.1181 0.1276 0.0095 0.1981 0.4157 0.4161 0.0004
0.02453 0.3275 0.3433 0.0158 0.1981 0.9123 0.9130 0.0007
0.02453 0.02453 0.02453 0 0.1981 0.1981 0.1981 0
0.02453 0.1181 0.1297 0.0116 0.1981 0.4157 0.4168 0.0011

win95pts 0.2106 0.2111 0.2111 0 0.005170 0.005416 0.005445 0.000029
0.2106 0.2163 0.2191 0.0028 0.005170 0.007200 0.008665 0.001465
0.2106 0.2972 0.2985 0.0013 0.005170 0.01430 0.01445 0.00015
0.2106 0.2109 0.2117 0.0008 0.005170 0.05494 0.05674 0.00180

hepar2 0.03673 0.09445 0.09445 0 0.2360 0.2408 0.2408 0
0.03673 0.09585 0.09585 0 0.2360 0.9041 0.9041 0
0.03673 0.1029 0.1029 0 0.2360 0.43758 0.43773 0.00015
0.03673 0.1029 0.1029 0 0.2360 0.43758 0.43793 0.00035

andes 0.001400 0.001400 0.002540 0.001140 0 0 0 0
0.001400 0.001400 0.002656 0.001256 0 0 0 0

Table 4.2: Analysis of the tightness of bounds (on probability of false negatives/false
positives) produced by the upper bounding and lower bounding algorithms. For
each network, each row corresponds to a different credal intervention set. We show
the probability of false negatives/false positives in the original Bayesian network
(BeforeIntv), along with lower and upper bounds under each intervention set.

corresponding credal sets. We include three of our methods: i) CUB, which computes

an upper bound; ii) CUBmax, which searches over elimination orders satisfying the

required topological constraints, in order to obtain a better bound; and iii) CLB,

which computes a lower bound. We compare the performance of our method to exact

credal variable elimination [39] (where feasible) and ApproxLP [4], an approximate

method returning a lower bound which has been shown to be state of the art both in

terms of scalability and accuracy of inferences. We split CREPO into two subsets,

CREPO-exact where an exact solution could be computed, and CREPO-hard where

the exact method ran out of memory. For further comparison, we include the (much

larger) 70-node hepar2 network in our tests.

In Table 4.3, for all benchmarks we report the time taken by each method. For

CREPO-exact, we compute the average difference in computed probability to the

exact result (positive/negative for upper/lower bounds respectively), while for the

other sets, we report the average difference to the best upper bound, as the exact

64

Network Exact ApproxLP CLB CUB CUBmax

CREPO-exact
Diff 0 -0.0523 -0.0432 0.0018 0.0015
Time(ms) 626 384 46(6) 2(6) 209(618)

CREPO-hard
Diff - -0.0529 -0.0742 0.0220 0
Time(ms) - 1154 65(6) 2(6) 231(618)

Hepar2
Diff - - -0.0917 0 -
Time (s) - - 429(287) 4(287) -

Table 4.3: Average computation time (compilation time in parenthesis) and difference
in computed probability to exact/upper bound. − indicates the method failed to
complete due to time or memory limits.

result is not known. Remarkably, we see that our upper-bounding and lower-bounding

algorithms dominate ApproxLP on CREPO-exact, with better lower bounds being

produced in an order of magnitude less time. On CREPO-hard, our upper bounding

is the only method capable of providing guarantees. Meanwhile, our lower bound

performs worse on average than ApproxLP but only by a small amount while using

significantly less time. Finally, we see that our method is the only one to scale to the

hepar2 network, completing in a reasonable amount of time.

4.5 Discussion

In this Chapter, we consider causal reasoning in the setting where the causal graph is

known. In particular, we began by demonstrating that compiled representations of

causal graphs (either causal Bayesian network or structural causal model) are sufficient

to answer any interventional (L2) marginal query. Motivated by this, we investigated

two more difficult classes of causal queries; namely, interventional robustness on CBNs,

and computing counterfactuals on SCMs. In both cases, we found that the same

condition on compiled circuits (respecting topological orderings) was sufficient to

soundly approximate/compute the query. Crucially, this condition is purely a function

of the topology of the causal graph, meaning that once compiled, the circuit can be

used to answer any query in linear time in the size of circuit.

Empirically, we demonstrated the application of the interventional robustness

query to analysing the robustness of classifiers. We also compared our (guaranteed)

65

lower and upper bounding methods to existing methods for the equivalent problem of

credal marginal inference, and found that our methods are significantly more scalable.

Further, whereas credal inference methods typically can only infer a single credal

marginal query at a time starting from the Bayesian network, the cost of multiple

queries is amortized by our compilation procedure.

The tractability of compiled circuits for difficult causal queries makes them a good

candidate as a tractable causal model. However, there are two important factors

that limit the applicability of compilation. The first relates to the assumption that

all variables are discrete. To remedy this, it may be possible to adapt recent works

that extended weighted model counting (upon which arithmetic circuit compilation is

based) to weighted model integration [10, 54], which works on hybrid domains. The

second limitation is that we are limited to compiled circuits based on causal graphs,

the size of which is unavoidably controlled by the treewidth. As a result, scalability is

limited by the treewidth of the causal graph, which may be prohibitive even if the

observational distribution could be represented compactly (e.g. via context-specific

independences).

66

Chapter 5

Tractability of Causal Inference

Contents
5.1 On The Tractability of Exact Causal Inference 69

5.1.1 Causal and Probabilistic Inference 71

5.1.2 Conditioning in Probabilistic Circuits 74

5.1.3 Hardness of the Backdoor Query 76

5.2 A Theory of Marginal Determinism in Structured De-
composable Circuits . 78

5.2.1 Structured Marginal Determinism 78

5.2.2 Regular Md-vtrees and Enforcing Marginal Determinism . . 85

5.2.3 Succinctness: Exponential Separation 88

5.3 MDNet Architecture and Learning 95

5.3.1 Understanding Regular Md-vtrees and MDNets 95

5.3.2 MDNet Architecture: Definition and Illustration 98

5.4 Compositional Inference using Structured Marginal De-
terminism . 102

5.4.1 Support Properties in Compositional Inference 102

5.4.2 Operations on md-vtrees . 104

5.4.3 The MD-calculus . 106

5.4.4 Examples . 111

5.5 Causal Inference using MD-Calculus 111

5.5.1 MD-calculus for Causal Formulae 112

5.6 Experiments . 115

5.7 Discussion . 116

67

Diagram Query

Identifiability

Estimand

Result

Data

Probabilistic
Model(s)

Figure 5.1: Separating causal and probabilistic models

In the previous Chapter, we studied tractable representations of causal graphs as

compiled probabilistic circuits. In particular, we focused on symbolic compilation

methods, where the compiled PC contains symbolic parameters corresponding directly

to the parameters of the causal graph, allowing us to clearly define interventional

semantics on the circuit by reference to the corresponding interventions on the causal

graph. In this setting, applying interventions is as easy as changing the parameters

of the circuit. Further, we have seen how compiled circuits satisfying the decision

property, and particular orderings of the variables, admit causal interpretations of the

mixtures represented by sum nodes.

However, the tractability of causal learning and reasoning of such models comes at

a significant cost that we have ignored thus far: namely, that assumptions about the

causal graph are “baked in” to the compiled circuit. On the one hand, this introduces

an information bottleneck where we must commit to a specific, fully-specified graph

before performing any learning. On the other hand, there is a computational bottleneck

in which learning from different datasets for the same graph is easy, but learning over

different graphs, even with the same dataset, requires a separate expensive compilation

step for each graph.

Even if we are willing to commit to a particular, fully-specified causal graph,

another issue with compiled causal models is that we are limited to learning probability

distributions specified as a Bayesian network over discrete variables. While this is

sufficiently expressive to specify (or approximate) any causal model consistent with the

68

given causal graph, many high-dimensional distributions may lead to highly connected

graphs where inference is intractable. In the tractable probabilistic modelling literature,

dramatic advances in expressivity and scalability have been achieved moving beyond

traditional tractable graphical models such as hidden Markov models and low-treewidth

Bayesian networks, to tractable deep generative models such as sum-product networks

and probabilistic sentential decision diagrams, while retaining tractability of inference.

Learning algorithms for the structure and parameters of these circuit-based models can

exploit detailed information such as context-specific independences for compactness,

with recent learners showing the scalability of probabilistic circuits to high-dimensional

datasets outside of the reach of classical tractable probabilistic graphical models

[137, 107].

Taking a step back, there is no reason a-priori that compiled (arithmetic) circuits

should be the only representation in which causal inference queries are tractable. In

Figure 5.1, we depict an idealized conceptual setup of causal inference, in which the

causal graph and query are separated from the data/probability distribution until the

final reasoning step. For every identifiable query, the answer to the query is a function

of the observational probability distribution. The fundamental question we ask in this

chapter is, for which TPMs is this function tractable to compute? The answer to this

question will shed light on key computational challenges in causal inference, as well as

chart a way forward through a new subclass of probabilistic circuits.

5.1 On The Tractability of Exact Causal Inference

The problem of causal estimation is to estimate a given identifiable causal query

on a data-generating system, given some assumed causal diagram over observed

variables, and available data generated from that system. For example, consider a

data-generating system over V = W ∪X ∪ Y ∪ Z computing the observational

distribution, where W,X,Y ,Z are disjoint sets of variables. In Figure 5.2 we depict

two causal diagrams in which the interventional distribution pX(Y)1 is identifiable,

with the directed and bidirected edges indicating direct causation or confounding

1In this chapter, we will use pX(Y) to denote the interventional distribution pM(YX) in any
SCM inducing the causal diagram.

69

between these sets of variables2. Given these assumptions, the goal is then to estimate

the interventional distribution pX(Y). For the graph in Figure 5.2a, this is identified

exactly by the backdoor adjustment formula pX(Y) =
∑

Z p(Z)p(Y |X,Z). For

example, in a medical treatment setting, Z could constitute features of an individual

patient influencing whether they take a particular treatment X as well as their

clinical outcome Y . For the frontdoor graph, we instead have the frontdoor formula

pX(Y) =
∑

Z p(Z|X)
∑

X′ p(X ′)p(Y |X ′,Z), and in the case of the napkin graph in

Figure 5.2c we can obtain pX(Y) =
∑

W p(X,Y |W ,Z)p(W)∑
W p(X|W ,Z)p(W)

, by applying the do-calculus.

Even though the interventional distribution is identified in these cases, causal

estimation remains a significant practical challenge for complex, high-dimensional dis-

tributions p for two main reasons. The first challenge is to obtain accurate probabilistic

models for the observational distribution, perhaps learned from data. However, even

given an exact model for the observational distribution, a second computational chal-

lenge remains: to compute the function given by the causal formula. The identification

formulae involve potentially intractable summations, meaning that we must typically

resort to an approximate or heuristic algorithm such as a Monte Carlo estimate. For

other causal formulae, the situation is even more complex as the approximation scheme

may have to be hand-designed and/or come with little or no guarantees; for example,

for the frontdoor and napkin formulae, effective estimators have only very recently

been developed [63, 85].

To bypass these difficulties, we investigate in this Chapter whether it is feasible to

exactly compute the interventional distribution, by identifying and restricting to classes

of probabilistic models where the identifying formulae are tractable to compute. As a

natural starting point, we consider the class of decomposable and smooth probabilistic

circuits, as these are tractable for the corresponding associational (L1) queries of

computing marginal and conditional probabilities. The tractability of computing

interventional L2 probabilities for PCs, however, has remained an important open

question. For example, for the backdoor formula, though we can compute p(z) and

p(y|x, z) for any specific values of X,Y ,Z in linear time, we cannot directly use this

2This could also represent a cluster DAG, where there are additional causal relations between
the variables in a given set (cluster); the do-calculus has been shown to be valid for causal-effect
identification in this case as well [2].

70

X

Z

Y

(a) Backdoor

X Z Y

(b) Frontdoor

W Z X Y

(c) Napkin

Figure 5.2: Examples of causal diagrams

Σ Σ
×,Σ, |

×
×

Σ

×,Σ

×

×,Σ, |

×, |
pX,BD(V) p(V)

pX,BD(Y) p(Y)

[p(Z), p(X | Z), p(Y |X,Z)]

pX,NK(V)

pX,NK(Y)

[p(W), p(Z |W), p(X |W ,Z), p(Y |W ,X,Z)]

Figure 5.3: Probabilistic (blue) and causal (red) quantities, with probabilistic ()
and causal inference () for backdoor/napkin graphs. Note that pX,NK(V) has no
incoming arrows as it is non-identifiable.

to compute the interventional distribution, due to summation over Z which takes

time exponential in |Z|. In the rest of the section, we will investigate the fundamental

difficulties associated with computing interventional distributions.

5.1.1 Causal and Probabilistic Inference

To illustrate the computational challenge of causal inference as compared to probabilis-

tic inference, we illustrate the computational procedures underlying probabilistic and

causal inference tasks for the backdoor and napkin graphs in Figure 5.3. The Figure

consists of three layers of probabilistic/causal quantities. In the bottom layer, we have

two causal (i.e. following a topological order on the observed variables) factorizations

of the joint distribution, in the backdoor and napkin causal graphs respectively. In the

middle layer, we have three joint distributions over the variables V : the observational

joint p(V), and the interventional joints pX,BD(V), pX,NK(V) in the backdoor and

napkin cases respectively. Finally, in the top layer we have the observational and

71

interventional marginal distributions on Y ⊆ V .

In probabilistic inference, we are interested in computing marginal probabilities

p(Y), given the corresponding joint distribution p(V) expressed in some form. Given

either of the factorizations at the bottom of the Figure, probabilistic inference amounts

to computing products (×) of the factors, and then a single marginalization (Σ)

operation, i.e p(Y) =
∑

V \Y p(Z)× p(X|Z)× p(Y |X,Z) or p(Y) =
∑

V \Y p(W)×

p(Z|W) × p(X|W ,Z) × p(Y |W ,X,Z). Similarly, if we are given a model of the

interventional distribution pX(V) (under either the backdoor or napkin cases), then

computing interventional probabilities simply requires a single marginalization on the

intervened model. In other words, probabilistic inference is given by a marginalization

over products.

In causal inference, we instead wish to compute the interventional (marginal)

distribution pX(Y) using models of the observational distribution p(V). In the

backdoor case, if we are given the factorization p(Z), p(X|Z), p(Y |X,Z), then since

there are no latent confounders, we can derive the interventional joint distribution

as a product pX(V) = p(Z) × p(Y |X,Z), and then the interventional marginal

pX(Y) =
∑

X p(Z)×p(Y |X,Z) using a marginalization operation, as in probabilistic

inference. This is possible because the interventional joint distribution pX(V) is

identified, and can be expressed using a modified version of the causal factorization of

the observational joint distribution. As a result, given a causal factorization of the

observational joint in which all variables are modelled, causal (marginal) inference is

no harder than probabilistic inference. This is precisely the case we examined in the

previous Chapter.

However, this turns out to be a special case; if we do not have access to this

causal factorization, or if there exist latent confounders that are not present in the

probabilistic model, then causal inference becomes more complex. In the backdoor

case, if we are given the observational joint p(V), or a non-causal factorization

(e.g. p(Y), p(Z|Y), p(X|Y ,Z)), then we can no longer express the interventional

marginal as a marginalization over products. Instead, to use the backdoor adjustment

formula, we need to implement a conditioning (|) operation, which outputs a model

p(Y |X,Z) given p(V), followed by a product, and then a marginalization. In

72

the napkin case, where there are unobserved confounders, the interventional joint

pX(V) is not even identifiable (and so there is no incoming arrow in the diagram),

even though the interventional marginal pX(Y) is identifiable. The napkin formula

pX(Y) =
∑

W p(X,Y |W ,Z)p(W)∑
W p(X|W ,Z)p(W)

can also be expressed as a composition of products,

marginals and conditionals. To do so, we first formally define these operations:

Definition 5.1 (Marginalization). MARG(·;W) is a unary operation that takes as

input a probabilistic model P over variables V (and a subset W ⊆ V), and outputs a

probabilistic model over V \W representing
∑

W pP(W) = pP(V).

Definition 5.2 (Product). PROD(·, ·) is a binary operation that takes as inputs two

probabilistic models P ,P ′ over variables V ,V ′ and outputs a probabilistic model

representing pP(V)× pP ′(V ′) over variables V ∪ V ′.

Definition 5.3 (Conditioning). COND(·;W) is a unary operation that takes as input

a probabilistic model P over variables V (and a subset W ⊆ V), and outputs a

probabilistic model over V \W representing:

pP(V \W |W) :=

{
pP (V)
pP (W)

if pP(W) > 0

0 if pP(W) = 0
(5.1)

Now given a model P1 representing p(V), we have

P2 = COND(P1;W ∪Z); pP2(W ,X,Y ,Z) = p(X,Y |W ,Z) (5.2)

P3 = MARG(P1;X ∪ Y ∪Z); pP3(W) = p(W) (5.3)

P4 = PROD(P2;P3); pP4(W ,X,Y ,Z) = p(X,Y |W ,Z)p(W) (5.4)

P5 = MARG(P4;W); pP5(X,Y ,Z) =
∑
W

p(X,Y |W ,Z)p(W) (5.5)

P6 = COND(P5;X ∪Z); pP6(X,Y ,Z) =

∑
W p(X,Y |W ,Z)p(W)∑

W p(X|W ,Z)p(W)
(5.6)

Then, we have pP6(X,Y ,Z) = pX(Y) in the napkin case3. Note that in this case,

even if we were given the causal factorization, the interventional marginal is still not

expressible as a marginalization over products.

3Assuming that the distribution is generated by an SCM respecting the napkin diagram, the
napkin formula is valid and equivalent for any value of Z.

73

It turns out that we can, in theory, generalize this analysis to any identifiable

interventional distribution, as it is always possible to express the interventional

distribution as a composition of marginalization, product, and conditional operations.

This is implemented by the ID algorithm, which employs only these operations and is

complete for causal identification [168, 169, 153]. Thus, to analyze the tractability of

causal inference on a class of probabilistic models, we can analyze the tractability of

these operations on those models.

5.1.2 Conditioning in Probabilistic Circuits

Turning to probabilistic circuits, we know that the marginalization operation is

tractable for decomposable and smooth circuits. For computing products of two

circuits, the most direct approach is to simply introduce a product node, which has the

roots of the circuits as children. However, such a circuit would not be decomposable

if the circuits share any variables. Instead, if the circuits satisfy a property known as

structured decomposability (which we will introduce shortly), then it is possible to

compute the product as a structured decomposable (implying decomposability) circuit

in time linear in the product of the sizes of the input circuits [162, 185]. This allows

us to perform probabilistic inference simply by applying marginalization over products,

which is tractable so long as the number of products is fixed; such an approach is

sometimes called bottom-up compilation (in contrast to the top-down compilation

methods discussed in the previous Chapter) [162, 47].

However, the tractability of the conditioning operation for PCs is not yet well

understood. It is important to make a distinction between computing conditional

probabilities p(v \w|w), which is possible in linear time by computing the ratio of

two marginal probabilities, and the conditioning operation, which returns another

PC representing the function p(V \W |W). For this reason, we will refer to the

conditioning operation as symbolic conditioning. To analyze the tractability of this

operation, we need to define a new property, known as marginal determinism:

Definition 5.4 (Marginalized Support). Given a PC node N and set of variables

Q, we define the marginalized support of N with respect to Q as suppQ(N) := {q ∈

val(Q) : pN(q) > 0}.

74

Recall that any node N defines a function pN(ϕ(N)) over a set of variables

ϕ(N), known as its scope, and the support of N consists of all values of ϕ(N) such

that the function is positive. The marginalized support represents the set of partial

instantiations q of the scope, such that there exists a full instantiation with positive

value. Note that Q can also contain variables outside of ϕ(N); in a slight abuse of

notation, we write pN(q) for pN(q ∩ ϕ(N)).

Definition 5.5 (Marginal Determinism). A sum node T is marginal deterministic

with respect to a set of variables Q (written Q-deterministic) if the children of the sum

node have disjoint marginalized support, i.e. suppQ(Ni) ∩ suppQ(Nj) = ∅ for Ni, Nj

distinct children of T .

Definition 5.6 (Marginal Determinism of PC). A PC is marginal deterministic with

respect to a subset Q ⊆ V (written Q-deterministic) if for every sum node T , either:

• ϕ(T) does not overlap with Q, i.e. ϕ(T) ∩Q = ∅; or

• The sum node T is Q-deterministic.

Intuitively, a PC over variables V is Q-deterministic, if the circuit obtained after

marginalizing out V \Q is deterministic. In particular, V -determinism is equivalent

to the usual definition of determinism in PCs. Marginal determinism was very

recently introduced [33] as a sufficient condition for tractability of marginal MAP;

that is, computing maxQ pC(Q, e) for disjoint sets of variables Q,E ⊆ V and e an

instantiation of E. In particular, it was shown maxQ pC(Q, e) is tractable in linear

time if the circuit is Q-deterministic, for the same set Q. We show that the same

condition is sufficient for tractable conditioning in linear time:

Proposition 5.1 (Tractable Symbolic Conditioning). Let C be a decomposable, smooth

and Q-deterministic circuit over variables V . Then computing COND(C;Q) as a

decomposable, smooth and Q-deterministic circuit is tractable in O(|C|) time and

space.

The corresponding algorithm is shown in Figure 5.1, where each node N in the

output circuit represents pN(ϕ(N) \Q|Q). We assume that symbolic conditioning

75

Algorithm 5.1: COND(C;Q)

Input: Decomposable, smooth and Q-deterministic circuit C = (G,ω, g) over
V , conditioning set Q ⊆ V

Result: Decomposable, smooth and Q-deterministic circuit C ′ = (G,ω′, g′)
over V

1 c← [];
2 for nodes N ∈ G in bottom-up order do
3 if N is leaf L then
4 c[L]←

∑
ϕ(L) gL(ϕ(L)); // normalizing constant of leaf fn

5 g′L ← COND(gL;Q);

6 else if N is product P then
7 c[P]←

∏
Ni∈ch(P) c[Ni];

8 else if N is sum T then
9 c[T]←

∑
Ni∈ch(T) ωT,ic[Ni];

10 if ϕ(T) ∩Q ̸= ∅ then
11 ω′

T,i ← 1ωT,i>0; // Represents conditioning on Q

12 else

13 ω′
T,i ←

ωT,ic[Ni]∑
Nj∈ch(T) ωT,jc[Nj]

; // Renormalize weights

14 Return C ′ = (G,ω′, g′)

is tractable on the leaf node functions. For example, if each leaf node had a single

variable V in its scope, then if (a) V ∈ Q we would set g′L(V) = 1V ∈supp(L), while

if (b) V ̸∈ Q then we would set g′L(V) =
gL(V)∑
V gL(V)

. Intuitively, the algorithm takes

advantage of the fact that by Q-determinism, the support of Q is partitioned at (and

only at, as any other sum nodes do not contain variables from Q) sum nodes T where

ϕ(T) ∩Q ̸= ∅. We can thus implement the conditioning operation by equalizing the

weights at such nodes. In the following Sections, we will derive a systematic theory

and methodology for marginal determinism, that provides insight into why marginal

MAP and symbolic conditioning share this tractability condition.

5.1.3 Hardness of the Backdoor Query

Returning to causal inference, we have now seen that symbolic conditioning is tractable

with marginal determinism. For the backdoor formula, this means that if we have

a (X ∪ Z)-deterministic circuit, we can compute p(Y |X,Z) efficiently. In the fol-

lowing Sections, we will see how to compose this with products and marginalization

76

to tractably compute the interventional distribution. For now, we ask the opposite

question: is the backdoor formula tractable for existing classes of circuits not satisfying

marginal determinism? We consider the problem of computing a single interventional

probability px(y) for specific values x,y of X,Y , which we call the backdoor query.

Hardness of this query would imply hardness of representing the interventional dis-

tribution pX(Y) as any type of PC, since evaluating probabilities in PCs is always

tractable. Despite the tractability of marginal probabilities for decomposable and

smooth circuits, we now show that even the more restrictive conditions of structured

decomposability and determinism are not sufficient to avoid hardness of interventional

marginals:

Theorem 5.1 (Hardness of Backdoor Query). The backdoor query for decompos-

able and smooth PCs is #P-hard, even if the PC is structured decomposable and

deterministic.

It is worth noting that this hardness result pertains entirely to computing the

backdoor query
∑

Z pC(Z)pC(y|x,Z), and not to a specific causal graph. The backdoor

query is equal to the interventional marginal px(y) whenever the backdoor adjustment

criterion holds for X,Y ,Z, i.e. Z blocks all backdoor paths between X,Y . For

example, for the frontdoor graph in Figure 5.2b, the interventional probability pz(y)

is identifiable through a backdoor adjustment on X, and is thus hard to compute for

structured decomposable and deterministic circuits.

Corollary 5.1. For any interventional query px(y) and causal diagram G such that the

query is identifiable through a backdoor adjustment, and the observational distribution

p(V) given as a decomposable and smooth circuit C encoding p, computing px(y) is

#P-hard, even if the circuit is structured decomposable and deterministic.

Proof. By the identifiability condition, we have that px(y) =
∑

Z p(y|x,Z)p(Z) =∑
Z pC(Z)pC(y|x,Z), which is the backdoor query. Hardness of computing the causal

effect then follows from hardness of backdoor queries for the probabilistic circuit.

77

+

× ×
+ + + +

× ×
1Y =1 1Y =0

1X=1 1Z=1 1X=0 1Z=1

× ×
1Y =1 1Y =0

1X=1 1Z=0 1X=0 1Z=1

0.7 0.3

0.9 0.1
0.2 0.8

0.25 0.75
0.6 0.4

{X, Y, Z}

{X,Z} {Y }

{X} {Z}

Figure 5.4: Example of structured decomposable circuit, and vtree it respects.

5.2 A Theory of Marginal Determinism in Struc-

tured Decomposable Circuits

In the previous section, we have seen that marginal determinism enables tractable

computation of the symbolic conditioning operation, which, alongside marginalization

and products, is one of the key operations for causal inference. However, marginal

determinism is not a single property, but rather a family of properties that is defined

with respect to every subset of the variables of a PC. Previous work has shown that it

is not possible for a circuit to satisfy marginal determinism with respect to all variable

subsets unless the distribution represented by the circuit is fully factorized [33] (i.e.

losing expressivity); however, it is not yet well understood which marginal determinism

properties a circuit can simultaneously satisfy. Related to this, it is unclear how one

can practically check or enforce marginal determinism(s) on a circuit [32]. These

questions pose serious challenges to the ability to use circuits as a probabilistic model

for tractable causal inference.

5.2.1 Structured Marginal Determinism

5.2.1.1 Structured Decomposability

In this section, we will develop a systematic theory of marginal determinism in

structured decomposable circuits. Structured decomposability [142, 89, 165] is a

stronger version of decomposability that requires the scope of nodes in the circuit to

decompose according to a vtree.

Definition 5.7 (Vtree). A vtree v = (M,E) for a set of variables V is a rooted binary

tree with nodes M and edges E, whose leaves m each correspond to a distinct variable

ϕ(m) ∈ V .

78

We define the scope of a leaf m to be ϕ(m), and the scope of any other node to

be ϕ(m) = ∪mi∈ch(m)ϕ(mi) (treating leaf scopes as singleton sets). Further, we write

vm = (Mm, Em) to denote the vtree rooted at m. A vtree provides a “reference” for

the decomposition of scope in a circuit: in particular, it requires each product node to

have exactly two children4, and for the partitioning of scope for the product node to

match the partitioning of scope for a vtree node.

Definition 5.8 (PC respecting vtree). Let C be a PC and v = (M,E) be a vtree, both

over variables V . We say that C respects v if for every product node P corresponds to (is

normalized for) a vtree node m; that is, P has exactly two children ch(P) = {N1, N2},

and ϕ(Pi) = ϕ(mi) for i = 1, 2 where ch(m) = (m1,m2).

A PC C is structured decomposable if it respects some vtree v.

This immediately implies that the scope of P matches the scope of m, i.e. ϕ(P) =

ϕ(N1) ∪ ϕ(N2) = ϕ(m1) ∪ ϕ(m2) = ϕ(m). If we additionally assume smoothness, then

every node in the circuit has a corresponding vtree node with the same scope:

Proposition 5.2 (Scope of Structured Decomposable and Smooth Circuits). Given

a structured decomposable and smooth circuit C respecting vtree v, with at least one

product node, every node N in the circuit has a corresponding vtree node m such that

ϕ(N) = ϕ(m).

An example of a structured decomposable and smooth circuit, and the vtree

it respects, is shown in Figure 5.4. We restrict to structured decomposable (and

smooth) circuits for two main reasons. Firstly, this property is required for tractable

computation of the product of two circuits respecting compatible vtrees [162, 185],

which is important for causal inference. Secondly, as we will see, fixing the variable

decomposition using a vtree allows us to compactly describe the marginal determinisms

that a circuit satisfies, a formulation which we call structured marginal determinism.

We will show in particular how structured marginal determinism enables us to easily

and efficiently check and enforce arbitrary marginal determinisms on a circuit. Along

the way, we will critically examine how marginal determinism relates to other existing

support properties, such as determinism, the decision property, and strong determinism.

4This is not a significant restriction, as every product can be converted into a series of binary
products.

79

5.2.1.2 Properties of Marginal Determinism

We begin our study of marginal determinism, by noting that there is no straightforward

relation between Q-determinism and Q′-determinism for PCs, for different sets Q,Q′.

Recall that a PC C is defined to be Q-deterministic if every sum node T with

overlapping scope (i.e. Q ∩ ϕ(T)) is Q-deterministic. Note, however, that there is

no such requirement on sum nodes with disjoint scope from Q. Thus, for example,

neither determinism (V -determinism) nor Q-determinism imply each other in general;

for example, a circuit can be Q-deterministic but not deterministic if there exist some

sum nodes with ϕ(T) ∩Q = ∅. Thus, we use the following definition to capture the

Q-determinisms a circuit satisfies:

Definition 5.9 (md-signature). For a PC C, the md-signature Q(C) is defined to be

the family of all subsets Q ⊆ V such that C is Q-deterministic.

The md-signature Q(C) can be viewed as a signature of the tractability of the PC;

for example, two PCs with the same Q would enable efficient marginal MAP/symbolic

conditioning computation for the same sets Q. Unfortunately, the md-signature is

given by a powerset of the powerset over variables V , which is clearly not feasible

to characterize explicitly (there are 22
|V |

possible md-signatures). We thus propose

a more systematic approach to specifying support properties. The key idea is to

locally characterize the support properties that each sum node satisfies, as opposed

to specifying the global properties of the circuit as in the md-signature. For a given

PC C, let ψ be a function, that maps any sum node T in that PC, to the set of all

sets Q such that T is Q-deterministic; we call this a labelling function. Note that the

labelling function ψ is a specification of marginal determinism for the circuit; that

is, it is sufficient to determine whether the circuit is Q-deterministic for any Q (by

definition), and thus to deduce the md-signature Q(C).

Unfortunately, the labelling function is also too large to characterize explicitly.

We make two observations that allow us to simplify the labelling function, one

straightforward, and one more subtle. Firstly, we note that Q-determinism for a

circuit imposes the same requirement on all sum nodes with the same scope; thus

we restrict ψ to have the same value for all sum nodes with the same scope. For

80

structured decomposable circuits, where each sum node T corresponds to a vtree node

m (i.e. ϕ(T) = ϕ(m)), we can thus write ψ(m) as a function of the vtree node m.

The second observation is that, under some assumptions, we can actually specify

ψ(m) using a single set Q ⊆ V . In order to show this, we need to first show a couple

of results regarding marginal determinism.

Proposition 5.3 (ConflictingQ-Determinisms for Sum Nodes). Let T be a non-trivial5

sum node T , and let Q,Q′ be sets of variables such that neither is a subset of the other.

Then, if T is both Q-deterministic and Q′-deterministic, but not (Q∩Q′)-deterministic,

it cannot have full support, i.e. supp(T) ⊂ val(ϕ(T)).

Proposition 5.3 says that, if we want ψ(m) to contain two sets Q,Q′ which are

not subsets of each other, then this necessarily restricts the support of any sum node

T corresponding to m. As a simple example that shows the idea behind this result,

suppose that Q = {A} and Q′ = {B}, where A,B are binary variables, and that T

has two children. If T is both Q-deterministic and Q′-deterministic, then the children

must correspond to different values of A (say 0, 1 respectively), and to different values

of B (say 1, 0 respectively). But then neither child has support over (A,B) = (0, 0).

While it can be beneficial to enforce a restricted support on a PC if we have prior

knowledge [89], it is undesirable in our case where restricting support comes as a side

effect of enforcing tractability, as this can result in bias when learning. As such, we

only consider labellings ψ(m) where, for every Q,Q′ ∈ ψ(m), we have Q ⊆ Q′ or

Q′ ⊆ Q. We can further restrict possible labellings using the following result:

Proposition 5.4 (Superset Q-Determinisms for Sum Nodes). Suppose that a sum

node T is Q-deterministic. Then it is also Q′-deterministic for any Q ⊆ Q′ ⊆ V .

Using Proposition 5.4, it now follows that ψ(m) must take the form {Q′|Q ⊆ Q′ ⊆

V } for some Q. As a result, we can just label our vtree node m with a single set Q,

i.e. ψ(m) = Q.

To summarize, we have shown that for structured decomposable circuits, the

marginal determinism properties of the circuit can be effectively described using a

5A sum node is non-trivial if it has more than one child.

81

{V1, V2, V3, V4}

{V1, V2} {V3, V4}

{V1} {V2} {V3} {V4}

(a) vtree with scope
function ϕ

{V1, V2}

{V1} {V3}

{V1} {V2} {V3} {V4}

(b) vtree with label
ψ(str)

{V1, V2, V3, V4}

{V1, V2} {V3, V4}

{V1} {V2} {V3} {V4}

(c) vtree with label
ψ(det)

{V1, V2}

{V1, V2} {V3}

{V1} {V2} {V3} {V4}

(d) Regular label
ψ(opt) for ψ(str)

Figure 5.5: Example of md-vtree for variables V = {V1, V2, V3, V4}. In the leftmost
subfigure, we show each node m with its scope ϕ(m), whilst in each of the three other
subfigures, we show each node with its label ψ(m) (for each of three different labelling
functions).

labelling function ψ, which assigns a set of variables to each vtree node. Since a

vtree can have at most |V | nodes, and each labelling is a subset of V , the number of

possible labelling functions is bounded by 2|V |2 . This is a significant simplification

over the number of possible md-signature, which was doubly exponential in |V |.

5.2.1.3 Md-vtrees

We now formally characterize structured marginal determinism using the concept

of a md-vtree, which provides a means of specifying the support properties that a

structured decomposable circuit satisfies.

Definition 5.10 (md-vtree). A md-vtree w = (v, ψ) for a set of variables V consists

of a vtree v = (M,E) over V , together with a labelling function ψ.

The labelling function maps a vtree node m ∈M to some element in P(ϕ(m))∪{U},

where U is the universal set.6

Definition 5.11 (PC respecting md-vtree). Let C be a PC and w = (v, ψ) be a

md-vtree, both over variables V . Then we say that C respects w if 1) C respects v; and

2) for any sum unit T ∈ C, T is marginally deterministic with respect to ψ(m), where

m is the vtree node such that ϕ(T) = ϕ(m).

We denote the class of circuits respecting w by Cw.

Intuitively, md-vtrees capture both structured decomposability, as well as a

marginal determinism “pattern” that the circuit must follow.

6The universal set satisfies, for any set S, U ⊇ S, U ̸⊆ S (unless S is U), U ∩ S = S, and
U ∪ S = U .

82

Definition 5.12 (Implied Q-Determinisms). For any set Q ⊆ V , we say that Q-

determinism is implied by a md-vtree w if, for every vtree node m ∈ M such that

ϕ(m) ∩Q ̸= ∅, it is the case that Q ⊇ ψ(m). We write Q(w) to denote the set of all

sets Q s.t. Q-determinism is implied by w.

Proposition 5.5 (Validity of Implied Q-Determinisms). For any PC C respecting

md-vtree w, we have that Q(w) ⊆ Q(C).

Notice that there is a trade-off between the generality of the PC class, and the

support properties it supports. Increasing the size of the labelling sets will improve

the former, but hurt the latter.

Theorem 5.2 (Generality-Tractability Tradeoff). Let w = (v, ψ) and w′ = (v, ψ′)

be two md-vtrees, such that ψ′(m) ⊇ ψ(m) for all m ∈ M . Then we have that

Q(w) ⊇ Q(w′), and Cw ⊆ Cw′.

It is worth commenting on the two extremes of possible labels; namely, the universal

set, and the empty set. The role of the universal set label U is to indicate that no

Q-determinism properties hold (including normal determinism). On the other hand,

the empty set indicates that any sum node T corresponding to m can only have one

child Ni which is not zero, i.e. pNi
≡ 0; thus the sum node must be trivial. In practice,

this means that it must represent a factorized distribution with factors corresponding

to the scopes of the children of m.

5.2.1.4 Support Properties and Md-vtrees

Thus far in this thesis, we have seen three different types of support properties;

namely, determinism, the decision property, and marginal determinism. Another

important support property is strong determinism [44, 89, 47], which is enforced in the

probabilistic sentential decision diagram (PSDD) [89], arguably the most well-known

implementation of structured decomposable PCs. We now show how all of these

properties can be captured in the md-vtree framework. For structured decomposable

circuits, these properties can be formulated as follows:

83

Definition 5.13 (Right-linear vtree). A vtree v is right-linear if, for every non-leaf

vtree node m, the first (left) child m1 of m is a leaf node.

Definition 5.14 (Determinism, Strong Determinism, and Decision Properties). Let C

be a structured decomposable and smooth PC respecting vtree v. Let T be a sum node,

with children ch(T) = {N1, ..., NK}, corresponding to a vtree node m with children

ch(m) = (m1,m2). Then, we define the following properties:

• Determinism: For all sum nodes T , supp(Ni) ∩ supp(Nj) = ∅ for all i ̸= j;

• Strong Determinism: For all sum nodes T , suppϕ(m1)(Ni)∩suppϕ(m1)(Nj) = ∅

for all i ̸= j;

• Decision: The vtree v is right-linear and strong determinism holds.

These properties impose increasingly stringent requirements on the circuit. Deter-

minism specifies that the children of a sum node T must correspond to different values

of ϕ(T) = ϕ(m). Strong determinism specifies that the children must correspond to

different values of ϕ(m1). The decision property is a special case of strong determin-

ism, where, due to the assumed right-linear vtree structure, ϕ(m1) is always a single

variable. We can express these conditions as special cases of marginal determinism

of a sum node (Definition 5.5); determinism corresponds to ϕ(m)-determinism, while

strong determinism/decision correspond to ϕ(m1)-determinism. The corresponding

md-vtree (Definition 5.10) for determinism has the labelling function ψ(det)(m) = ϕ(m),

while for strong determinism we have ψ(det)(m) = ϕ(m1). We call these labelling

functions deterministic/strongly deterministic labelling functions respectively, and any

md-vtree with the labelling function as deterministic/strongly deterministic md-vtres

respectively.

For example, for the vtree over V = {V1, V2, V3, V4}, shown in Figure 5.5a together

with the scopes for each vtree node, the label function corresponding to determinism

ψ(det) is shown in Figure 5.5c, while the label function ψ(str) corresponding to strong

determinism is given in Figure 5.5b.

One might ask, what are the advantages of enforcing strong determinism or the

decision property over determinism? To analyse this in the md-vtree framework,

84

we compare the labelling function ψ(str), ψ(det) in the example in Figure 5.5. With

these representations, we can deduce the Q-determinism properties that any struc-

tured decomposable and strongly deterministic, or structured decomposable and

deterministic circuit, must satisfy, by finding the set Q(w) of sets Q which its md-

vtree implies. In this example, by enumerating all sets Q ⊆ V and checking the

condition, we can see that Q(wstr) = {{V1, V2}, {V1, V2, V3}, {V1, V2, V3, V4}}, while

Q(vdet) = {{V1, V2, V3, V4}}. This shows that enforcing strong determinism leads to

additional implied Q-determinisms, which means, for example, that strongly deter-

ministic circuits are more tractable with regards to MMAP queries. In fact, in the

particular case of strong determinism, the implied Q-determinisms Q(wstr) coincide

with the definition of Q-constrained vtrees [125].

We have now seen that determinism, the decision property and strong determinism

can be captured using particular labelling functions; however, the md-vtree framework

allows for the specification of many other possible labelling functions, which have not

been explored to date. In the next section, we will analyze these possible choices of

labelling functions in full generality.

5.2.2 Regular Md-vtrees and Enforcing Marginal Determin-
ism

Given the trade-off between generality and tractability for md-vtrees, we might ask

how to choose the labelling function to achieve a good balance. At the very least, any

labelling function should not be dominated by another labelling function that is more

general, yet achieves the same tractability in terms of marginal determinisms. We

capture this in the notion of admissibility :

Definition 5.15 (Admissibility of Labelling Function). Given a vtree v = (M,E),

a labelling function ψ is inadmissible if there exists a labelling function ψ′ such that

(i) ψ′(m) ⊇ ψ(m) for all m ∈ M , (ii) ∃m∗ ∈ M such that ψ′(m) ⊃ ψ(m), and (iii)

Q(w′) ⊇ Q(w), where w = (v, ψ), w′ = (v, ψ′).

The number of possible labelling functions for a vtree over variables V is strongly

exponential in |V |, as we can independently choose a subset of V (specifically, of

85

ϕ(m)) at every vtree node m. It turns out, however, that the number of admissible

labelling functions is much smaller.

Definition 5.16 (Regular Labelling Function). Given a vtree v, a labelling function

ψ is regular if for every non-leaf node m, and its children m1,m2, it holds that either

ψ(m) = ∅, ψ(m) = ψ(m1), ψ(m) = ψ(m2), or ψ(m) = ψ(m1) ∪ ψ(m2). In this case,

we will also say that the md-vtree w = (v, ψ) is regular.

Theorem 5.3 (Admissible Labelling Functions are Regular). Given a vtree v, let ψ

be any non-regular labelling function. Then there exists a regular labelling function ψ′

such that (i) ψ′(m) ⊇ ψ(m) for all m ∈ M , (ii) ∃m∗ ∈ M such that ψ′(m) ⊃ ψ(m),

and Q(w′) = Q(w), where w := (v, ψ), w′ := (v, ψ′).

This Theorem, which we prove constructively in Appendix B.1, implies that any

admissible labelling function must also be regular. This means that we can restrict our

attention to the much smaller space of regular md-vtrees. In particular, the labelling

function of a regular md-vtree is entirely determined by the labelling of each leaf

node ψ(mleaf), and a quaternary variable over values {f, s, b, n} for each non-leaf node,

indicating whether the label depends on the label of the first child, second child, both,

or neither. Thus, the number of labelling functions we need to consider is now only

exponential in the number of variables |V |, which is again a massive simplification

from general labelling functions. In Section 5.3, we will further analyze the properties

of regular md-vtrees, and show how to design PC architectures for them.

Now, we have shown that only regular labelling functions can be admissible, but

choosing a regular labelling function still involves a tradeoff between generality and

tractability. In practice, a common scenario is that we will want to choose the largest

class of circuits that satisfies the constraints that we need in order to efficiently

compute an inference query of interest (e.g. MMAP). To formalize this, suppose that

we are given a set of required marginal determinisms S, such that we require that

the md-vtree imply Q-determinism for each Q ∈ S. Suppose also that we are given a

vtree v, and need to choose the labelling function ψ. This means for each vtree node

m, and every Q ∈ S such that ϕ(m) ∩Q ̸= ∅, we must have Q ⊇ ψ(m). Given the

86

result of Theorem 5.2, we should set the label ψ(m) to be the largest set that fulfils

this condition. This can be done directly as in the following definition:

Definition 5.17 (S-constrained Label). Given a set S of subsets Q ⊆ V , and a vtree

v, the S-constrained labelling function ψS is defined by:

ψS(m) =

{
U if Q ∩ ϕ(m) = ∅ ∀Q ∈ S

ϕ(m) ∩ (
⋂

Q∈S:Q∩ϕ(m)̸=∅Q) otherwise
(5.7)

Proposition 5.6 (Correctness and Admissibility of S-constrained Label). For any

vtree v and set of marginal determinisms S, the md-vtree w := (v, ψS) satisfies

Q(w) ⊇ S. Further, ψS is admissible.

This proposition says that S-constrained labelling function is correct in the sense

that it does imply the required marginal determinisms, and is also admissible, meaning

that it is optimal in terms of generality among all labelling functions which imply the

required determinisms. It follows by Theorem 5.3 that the labelling is also regular;

this can be checked by directly inspecting the definition.

While S-constrained labels are always admissible for a given vtree, both the

expressivity and succinctness of the resulting circuit class may differ depending on

the vtree. For example, for some vtrees, the S-constrained labelling function may

induce an empty label ψ(m) for some vtree nodes m, i.e. a factorized distribution,

limiting expressivity. That is, though md-vtrees give us the power to separate scope ϕ

from support ψ, there still exists a certain scope configurations (vtrees) that are more

amenable to certain marginal determinisms.

5.2.2.1 Non-Admissibility of Strong Determinism

With the theory of admissibility and regularity in md-vtrees in hand, we now return

to the example from Figure 5.5. It can be easily checked that the correspond-

ing md-vtree w(str) in Figure 5.5b is not regular, and so there must be a regu-

lar md-vtree (with the same vtree) that is more general. We therefore construct

in Figure 5.5d an regular md-vtree w(opt) that retains the same Q-determinisms

S := Q(w(str)) = {{V1, V2}, {V1, V2, V3}, {V1, V2, V3, V4}}, but with the admissible S-

constrained labelling. The labels for each vtree node are the same as for strong

87

determinism, except that the label for the vtree node m with scope {V1, V2} is

ψ(opt)(m) = {V1, V2}, instead of ψ(str)(m) = {V1} for strong determinism. By Theorem

5.2, we can conclude that the resulting md-vtree w(opt) is more general than w(str), i.e.

admits a larger class of circuits. In other words, strong determinism imposes more

constraints than it “needs to” in order to obtain its marginal determinism properties.

5.2.3 Succinctness: Exponential Separation

To summarize the results so far, we have seen that md-vtrees provide a general,

structural specification of support properties, with determinism and strong determinism

corresponding to specific choices of the labelling function. One key insight from this

more general formulation is that we can enforce arbitrary sets of Q-determinisms onto

a given vtree, which correspond to new labelling functions which were not possible with

determinism or strong determinism. We now ask a slightly different question, inspired

by the observation that labelling functions for strong determinism are non-regular:

are classes of circuits corresponding to regular md-vtrees also more succinct?

For example, we saw at the start of this chapter that the symbolic conditioning,

marginal MAP and backdoor queries are tractable given a particular (single) Q-

determinism. This can already be implemented using existing techniques by choosing

the vtree appropriately and enforcing strong determinism [125]. However, as this

is a very restrictive subclass of circuits, it may not be possible to represent some

functions/probability distributions as succinctly as if we were allowed to use a larger

class of circuits. This is important as the computational cost of inference algorithms

on PCs depends on the size of the circuit. We have seen that strong determinism

is not, in general, regular, and therefore we might hope to uncover a larger class of

circuits that also respect the required Q-determinism. The question is, how much

more succinctly can this larger class of circuits represent functions/distributions? We

begin by formally defining important subclasses of circuits:

Definition 5.18 (Circuit Subclasses). Given a condition c, we define Cc to be the class

of all circuits respecting md-vtrees that satisfy c, i.e. Cc =
⋃
w|=c Cw. The conditions

are defined as follows:

88

• Strong Determinism: We use the suffix str to denote md-vtrees w = (v, ψ)

where for each vtree node m and its children m1,m2, we have ψ(m) = ϕ(m1).

• Vtree: We use the suffix v to denote md-vtrees w = (v, ψ) with vtree v.

• Marginal Determinisms: We use the suffix S to denote md-vtrees w = (v, ψ)

which imply all marginal determinisms in S, i.e. Q(w) ⊇ S.

For example, Cv,str is the class of all circuits respecting some md-vtree w =

(v, ψ(str)), where ψ(str) is a labelling function for v corresponding to strong determinism.

Now, we need a means of comparing the succinctness of different circuit classes.

Informally, a class of circuits C′ is at least as succinct as another class of circuits C, if

the function pC computed by any circuit C ∈ C is also computed by a circuit C ′ ∈ C

with size at most polynomial in the size of C [69, 50]. In our case, for reasons which

will become apparent shortly, we use a slightly different definition that compares two

sequences of circuit classes:

Definition 5.19 (Succinctness). Let (Cn)n∈N and (C′
n)n∈N be two sequences of circuit

classes. Then we say (Cn)n∈N is at least as succinct as (C′
n)n∈N, written (Cn)n∈N ≤

(C′
n)n∈N if there exists a polynomial q such that for all n ∈ N and C ∈ Cn, there exists

C ′ ∈ C′
n computing the same function, with |C ′|≤ q(|C|).

We will also say that a sequence of circuit classes is strictly more succinct than

another sequence, written (Cn)n∈N < (C′
n)n∈N, if it is the case that (Cn)n∈N ≤ (C′

n)n∈N,

but (Cn)n∈N ̸≤ (C′
n)n∈N. For example, it is known that (Cn)n∈N < (Cn,det)n∈N, where

Cn is the class of all n-variable decomposable and smooth circuits and Cn,str is the

class of all n-variable decomposable, smooth and deterministic circuits [31].

Using this notion of succinctness, there are several ways in which we can compare

the succinctness of strongly deterministic md-vtrees as compared to general md-vtrees.

One is to compare the succinctness of subclasses of circuits satisfying a single marginal

determinism Q; this is practically important for symbolic conditioning on Q, for

instance. Another is to compare the relative succinctness for the same vtree, in order

to isolate the effect of the labelling function. The following result states that in

89

X1

Y1

X2

Y2

Xn

Yn

...

(a) HMM graphical model

0.3 0.7

0.2 0.8 0.6 0.4

+

× ×

C1(0)

+ +

× × × ×

C1(1)

+ +

C2(0) C2(1)

... ...

(b) Circuit

Xn ∪ Yn

{X1, Y1} X2:n ∪ Y2:n

{X2, Y2}

Xn−1:n ∪ Yn−1:n

{Xn−1, Yn−1} {Xn, Yn}

...

(c) Vtree

Ci(j)
×

1Xi=j +

1Yi=0 1Yi=1

(d) Component

Figure 5.6: Illustration of PC computing hidden Markov model (HMM)

90

both of these cases, the general md-vtree class is strictly more succinct than strongly

deterministic md-vtrees.

Theorem 5.4 (Exponential Separation). The following separation results hold:

• ∃ a sequence (Qn)n∈N such that (C{Qn})n∈N < (C{Qn},str)n∈N

• ∃ a sequence (vn)n∈N such that (Cvn)n∈N < (Cvn,str)n∈N

Proof. Firstly, note that (C{Qn})n∈N ≤ (C{Qn},str)n∈N trivially holds for any sequence

(Qn)n∈N, as C{Qn} ⊇ C{Qn},str. Similarly, (Cvn)n∈N ⊇ (Cvn,str)n∈N for any sequence

(vn)n∈N. It remains to show strictness of the succinctness relation, that is, that ∃

a sequence (Qn)n∈N such that (C{Qn},str)n∈N ̸≤ (C{Qn})n∈N, and that ∃ a sequence

(vn)n∈N such that (Cvn,str)n∈N ̸≤ (Cvn)n∈N.

We can show this by constructing a distribution (function) that can be computed

by a polynomially sized circuit in the class corresponding to general md-vtrees, but

for which the smallest circuit in the class corresponding to strongly deterministic

md-vtrees is exponentially sized. Each of these examples will also provide insights into

how marginal determinism can be constructed through using labellings other than

strong determinism labelling functions.

We begin with the first result. In this case, we consider representing the distribution

given by a hidden Markov model (HMM) over (hidden) variables Xn = {X1, ..., Xn}

and (observed) variables Yn = {Y1, ..., Yn}, as depicted in Figure 5.6a. We take the

required marginal determinism to be Qn := Xn. If we have a PC computing p(Xn,Yn)

that is marginally deterministic w.r.t. Qn, then it becomes tractable to obtain a

circuit representing p(Yn|Xn), or compute the marginal MAP maxXn p(Xn) over the

hidden variables. The latter task in particular is a well-known task that can be solved

by the classical Viterbi algorithm based on dynamic programming (DP). In this case

applying the marginal MAP algorithm to a Qn-deterministic circuit would effectively

execute this DP algorithm.

Figure 5.6b shows a structured decomposable circuit that computes the hidden

Markov model distribution, where the components Ci(j) have scope {Xi, Yi}. The

corresponding vtree (with nodes notated using their scopes) is shown in Figure 5.6c.

91

By applying the S-constrained label with S = {Xn}, we obtain a labelling function for

the vtree such that the resulting mdvtree w implies Xn-determinism. This labelling

function is given by ψS(m) = ϕ(m) ∩Xn, or, in other words, imposes the condition

that the children of sum nodes correspond to distinct values of the X variables in the

scope of the sum node. This holds in the example circuit, as the components Ci(j)

for fixed i and distinct j correspond to different values of Xi. Thus, this circuit is in

C{Qn}. Further, the circuit size is clearly linear in n.

It remains to show that for any strongly deterministic md-vtree that implies Qn-

determinism, the smallest circuit respecting that md-vtree and computing the HMM

distribution is exponential in size. Explicitly, we will choose a HMM distribution

with p(Yi|Xi) = 1Yi=Xi
. Let w(str) be a strongly deterministic md-vtree that implies

Xn-determinism. By the definition of strong determinism, for any vtree node m with

ϕ(m) ∩Xn ̸= ∅, we must have Xn ⊇ ψ(m) = ϕ(m1). In other words, if a vtree node

contains any X variables in its scope, then no Y variables can be contained in the scope

of its first child m1. Let m2,1 denote the root vtree node with scope ϕ(m2,1) = Xn∪Yn,

and the sequence m2,1, ...,m2,K be the sequence of nodes obtained by starting at the

root vtree node and successively taking the second child of each vtree node. As only X

variables can be “removed” while the scope of the vtree node contains any X variables,

there must be some node in this sequence, say m2,k, with scope ϕ(m2,k) = Yn. Now,

let circuit C be a circuit respecting the md-vtree w(str), and computing the HMM

distribution. Let Tk be the set of sum nodes with scope Yn in the circuit7. Each node

Tk,j ∈ Tk represents a distribution pTk,j(Yn) over Yn. Now, for any value xn of Xn,

consider the distribution p(xn,Yn) = pC(xn,Yn) = pC(xn)1Yn=xn . By the semantics of

PCs, this distribution will be given by a weighted sum pC(xn,Yn) =
∑

Tk,j∈Tk
cjpTk,j (Yn)

where cj are some non-negative scalars (determined by the rest of the circuit). This

means that it must be possible to construct 1Yn=xn (up to a constant) using a weighted

sum of the sum nodes Tk. Further, this must be possible for all values of xn ∈ {0, 1}n.

This implies that the set Tk must contain at least 2n sum nodes, and as such the

circuit has exponential size in n.

7In general, for strongly deterministic circuits, these represent the conditional distribution of
Yn given some (logical formula over) Xn; we do not explicitly prove these semantics here, but the
interested reader can refer to [89] for more details.

92

+

× × × ×

× × × ×

1A=11A=0 1B=0 1B=1

+

+

+

+

p(Xn | 0, 0)

p(Xn | 0, 1)

p(Xn | 1, 0)

p(Xn | 1, 1)

× × × ×

+ + + + + + + +

+

+

+

+

p(Yn | 0, 0)

p(Yn | 0, 1)

p(Yn | 1, 0)

p(Yn | 1, 1)

(a) Circuit

{A,B} ∪Xn ∪ Yn

{A} ∪Xn {B} ∪ Yn

A Xn B Yn

(b) Vtree

A

B

X1 X2

Y1 Y2

Xn

Yn

...

...

(c) Graphical Model

Figure 5.7: Illustration of PC computing graphical model

It is important to note that we are not proving that strongly deterministic circuits

(e.g. PSDDs) cannot represent HMMs with Qn-determinism. In fact, this is not true,

as the circuit shown in Figure 5.6b is actually a strongly deterministic circuit (i.e.

respects wstr). Rather, the result states that for any strongly deterministic md-vtrees

such that all circuits respecting the md-vtree are Qn-deterministic, the smallest circuit

respecting that md-vtree and computing the HMM distribution is exponential. This

has important implications, for example, for learning: if we were to learn a circuit

(e.g. PSDD) respecting wstr, there is no guarantee that the resulting circuit would be

Qn-deterministic, while such a guarantee does exist for circuits respecting w. This

first example shows that even when strongly deterministic md-vtrees can enforce the

required marginal determinisms, this may come at the cost of succinctness.

The second result states, informally, that for the same vtree, the class of marginally

deterministic circuits is exponentially more succinct than strongly deterministic circuits.

Note that unlike the previous result, we do not impose any requirement on marginal

determinisms. The graphical model we wish to represent (Figure 5.7c) contains two

separate chain graphs, X1 → X2 → ... → Xn and Y1 → Y2 → ... → Yn, with two

confounders A,B. In Figure 5.7b, we show a (partial) vtree over variables A, B,

93

Xn = {X1, ...Xn} and Yn = {Y1, ..., Yn}. We also show a (partial) circuit in Figure

5.7a which computes the distribution given by the graphical model, and which respects

the given vtree. To represent the graphical model distribution, the root node of

the circuit has four children, representing the four different values of (A,B). These

are then connected to the sum nodes at the bottom, which compute the conditional

distributions of Xn or Yn given A,B (each of these is just a chain graph distribution,

so can be represented with a circuit with linear size in n). This circuit is {A,B}-

deterministic, respecting a md-vtree with labelling function ψ(mroot) = {A,B} for the

root vtree node. It is also linear in the size of n.

In contrast, for this vtree, the strongly deterministic labelling of the root node

is ψ(mroot) = {A} ∪Xn , giving a md-vtree wstr. However, the shown circuit would

not respect such a md-vtree. In fact, any circuit respecting wstr and computing the

distribution of the graphical model is exponential in size. To show this, let P be

the set of immediate product node descendants of the root sum node (i.e. product

nodes such that all paths between the root and product node contain only sum

nodes). By ({A} ∪Xn)-determinism, all of the product nodes {Pj}Kj=1 must have

distinct marginalized support w.r.t ({A} ∪Xn). This means that given any value

{a} ∪ xn of ({A} ∪Xn), the corresponding distribution pC({a} ∪ xn, {B} ∪ Y) =

c× pPk
({a} ∪ xn, {B} ∪ Y) where c is some non-negative scalar and Pk is a product

node in P . However, for the graphical model, in general p({a} ∪xn, {B} ∪Y) will be

different for every value {a} ∪ xn. As such, there must be a different product node

corresponding to each value {a} ∪ xn, and so the circuit has size at least 2n+1. The

reason the circuit in Figure 5.7a achieves linear size is because there we are allowed to

have different product nodes with support over the same value {a} ∪ xn (this holds

for the left two product nodes, and the right two product nodes, in the top product

layer).

To summarize, we have shown two ways in which general md-vtrees result in

more succinct circuits compared with strongly deterministic md-vtrees. In the first

case, we saw the benefits of general labelling functions, in that they are decoupled

from the scopes of the vtree nodes. This means there are a lot more vtrees using

94

general labelling functions that can imply Qn-determinism, as compared to strongly

deterministic labelling functions. In the second case, we saw further how it can

be beneficial to select labels ψ(m) for a vtree node that contain variables from the

scopes ϕ(m1), ϕ(m2) of both the children of m. This enables the given graphical model

distribution to be encoded using the given vtree, where it would not be possible for

strongly deterministic labellings (or indeed, any labelling which only included variables

from the scope of only one of the children of m).

5.3 MDNet Architecture and Learning

In this section, we show how to construct and learn a probabilistic circuit that respects

a particular md-vtree. It is worth noting that, as special cases of md-vtrees, we can

use existing architectures and learning algorithms for PCs such as PSDDs [103] and

structured decomposable and deterministic circuits [41, 53]. However, we have seen

that PSDDs are not optimally succinct, and to enforce tractability, we may need to

target md-vtrees that do not fall into these existing categories, such as those generated

using the Y -constrained label function in Definition 5.17. We thus propose a novel

PC architecture, MDNet, which enforces a given regular md-vtree by design.

5.3.1 Understanding Regular Md-vtrees and MDNets

Before explaining the architecture of MDNets, we begin by discussing the intuition and

motivation behind the chosen architecture. The key desiderata that we set for MDNets

is to be able to enforce arbitrary md-vtrees and to do so in a scalable manner. By

scalable, we mean that it should be possible to easily trade off expressivity/complexity

of the architecture with the size of the model (and thus inferential complexity) by

configuring hyperparameters; this is a key feature of the most successful modern PC

architectures [139, 137, 107], drawing inspiration from neural networks.

To better illustrate the nature of regular md-vtrees, we show in Figure 5.8 a

partitioning of the values of ψ(m1) ∪ ψ(m2). Let m be a vtree node with children

m1,m2 in the md-vtree. Suppose we have sum nodes T1, T2 with scopes ϕ(T1) =

ϕ(m1), ϕ(T2) = ϕ(m2). We can represent the marginalized support suppψ(m1)(T1) ⊆

95

val(ψ(m2))

va
l(
ψ
(m

1
))

(a) Mixing layer

val(ψ(m2))

va
l(
ψ
(m

1
))

(b) Synthesizing layer

Figure 5.8: Illustration of support partitioning in mixing and synthesizing layers, for
a vtree node m and its children m1,m2. Vertical/horizontal axes represent different
values of ψ(m1)/ψ(m2) respectively. Colors represent partitioning of support for sum
nodes within a group.

val(ψ(m1)), suppψ(m2)(T2) ⊆ val(ψ(m2)) as segments along the vertical/horizontal

axis respectively. Given this, a product node P with children T1, T2 will then

have marginalized support suppψ(m1)∪ψ(m2)(P) given by the Cartesian product of

suppψ(m1)(T1), suppψ(m2)(T2), represented pictorially by a rectangle in the Figure.

Now, recall that regular md-vtrees w have the property that for a vtree node m and

its children m1,m2, the label of m satisfies ψ(m) = ∅, ψ(m) = ψ(m1), ψ(m) = ψ(m2),

or ψ(m) = ψ(m1) ∪ ψ(m2). Let us consider a sum node T with scope ϕ(T) = ϕ(m) in

a circuit C, and which has a number of product node children P1, ..Pn, each of which

in turn has two sum node children Ti,1, Ti,2 with scopes ϕ(m1), ϕ(m2) respectively. In

order for C to respect w, we need T to satisfy ψ(m)-determinism. We consider each of

the cases of the label separately:

• ψ(m) = ∅: As we have previously seen, to enforce an empty label we need to

ensure that T only has a single child P1, i.e. represents a factorized distribution.

In the Figure, this would correspond to selecting a single rectangle.

• ψ(m) = ψ(m1) or ψ(m) = ψ(m2): Without loss of generality, we assume that

ψ(m) = ψ(m1). We need to ensure that the product node children P1, ..., Pn

have distinct marginalized support suppψ(m1)(Pi) with respect to ψ(m1). This is

somewhat similar to strong determinism in PSDDs, except that the required

96

marginal determinism is not the scope ϕ(m1) as it is for PSDDs, but rather

ψ(m1) which is a subset of ϕ(m1).

To visualize this, in Figure 5.8a we show a possible partitioning of the values

of ψ(m1) ∪ ψ(m2). In order for T to satisfy the required marginal determinism

property, each product node child must have distinct marginalized support w.r.t

ψ(m1); that is, they must cover different values along the vertical axis. For

example, T could have four product node children corresponding to each of the

colored rectangles, but would not be able to add any other product node without

violating ψ(m1)-determinism.

• ψ(m) = ψ(m1) ∪ ψ(m2): In this case, we need to ensure that the product node

children P1, ..., Pn has distinct marginalized support suppψ(m1)∪ψ(m2)(Pi) with

respect to ψ(m1) ∪ ψ(m2).

To visualize this, in Figure 5.8b we again show the partitioning of the support

of ψ(m1) ∪ ψ(m2). This time, however, the children of T need only correspond

to different values of ψ(m1) ∪ ψ(m2); visually, this means that they need only

not overlap. For example, T could have product node children corresponding to

each of the rectangles.

The analysis above suggests a strategy for implementing the required marginal

determinisms in C, that restricts the product nodes that T is connected to, i.e. selecting

an appropriate subset of the rectangles. However, this relies implicitly on the sum

nodes {Ti,1}ni=1 having disjoint marginalized support suppψ(m1)(Ti,1), and {Ti,2}
n
i=1

having disjoint marginalized support suppψ(m2)(Ti,2), such that the product nodes

(rectangles) do not overlap. This motivates our key insight: namely, the concept of

a sum node group. Intuitively, a group is a set of sum nodes with the same scope,

corresponding to some vtree node m, which have disjoint marginalized support w.r.t.

ψ(m). By implementing groups corresponding to m1 and m2, we can ensure that the

products of sum nodes from these groups have no overlap. Importantly, we do not

need to know the functions that the sum nodes in the groups represent, or even their

(marginalized) support, in order to be able to construct the PC structure.

97

5.3.2 MDNet Architecture: Definition and Illustration

We are now ready to define the architecture of MDNets. Given a md-vtree m, a

MDNet consists of a layer of sum nodes for each vtree node m in w. Each layer in

turn consists of a set of Gm groups, each of which contain Km sum nodes. To ensure

structured decomposability (that is, that the sum nodes in a layer have scope ϕ(m)),

each sum node in a layer corresponding to m has only product node children, which

in turn have two sum node children in layers corresponding to m1 and m2, where m1

and m2 are the children of m in the vtree.

The key modular component of MDNets is the node group, which is a vector of

sum nodes with the same scope (i.e. corresponding to the same vtree node m) with the

property that the nodes in the group have disjoint marginalized support suppψ(m)(N).

We use groups as an invariant in order to enforce the required marginal determinisms

throughout the circuit. More formally, suppose that we have a non-leaf vtree node

m, and let m1,m2 be its children. In the layer corresponding to m, we have Gm

groups T1, ...TGm to the layer for vtree node m, and similarly T
(1)
1 , ...T

(1)
G1

, T
(2)
1 , ...T

(2)
G2

to the layers for m1,m2. For regular md-vtrees, the label ψ(m) is either equal to ∅, or

is ψ(m1) or ψ(m2), or is their union. We handle these cases separately, as product,

mixing and synthesizing layers.

The difference between these layers lies in the restrictions that we place on the

connectivity of sum nodes within a group. For each group Ti = (Ti,1, ..., Ti,Km), and

for each sum node Ti,k in the group, we assign a vector of product nodes Pi,k to Ti,k.

Each product node has two children; the first child being a node from T
(1)
1 , ...T

(1)
K1

and

the second child being a node from T
(2)
1 , ...T

(2)
K2

. We write T
(1)
i,k for the vector of first

children of Pi,k, and T
(2)
i,k for the vector of second children of Pi,k.

Product Layer If ψ(m) = ∅, we implement a product layer. Product layers impose

the restriction that there is only one sum node in each group, i.e. |Ti|= 1, and that

sum node has only one product node child, i.e. |Pi,1|= 1.

Mixing Layer If ψ(m) = ψ(m1) or ψ(m2), we implement a mixing layer. Without

loss of generality, we assume ψ(m) = ψ(m1). Mixing layers impose the restriction

98

that, for a given group of sum nodes in layer m, all product node children must have

different sum nodes in the same group in layer m1 as children. More formally, no

sum node can appear more than once in T
(1)
i,1 , ...,T

(1)
i,Km

, and the sum nodes must all

come from a single group, i.e ∪kT (1)
i,k ⊆ T

(1)
k′ for some k′. We call this group in layer

m1 the reference group. Note that there is no restriction on which sum nodes in layer

m2 the product nodes are connected to. This ensures that all of the sum nodes are

ψ(m) = ψ(m1)-deterministic, and further that each group Ti satisfies the invariant.

As an example, in Figure 5.8a, we show a single group Ti of a mixing layer,

consisting of three sum nodes Ti,1, Ti,2, Ti,3. Each sum node corresponds to a distinct

color, with each of the colored rectangles corresponding to a product node. Notice

that the product nodes all correspond to different values of ψ(m1), resulting in the

sum nodes also having this property.

Synthesizing Layer If ψ(m) = ψ(m1) ∪ ψ(m2), we implement a synthesizing layer.

Synthesizing layers also require that, for a given group of sum nodes in layer m, the

product node children have a corresponding reference group. However, there are two

differences. Firstly, the reference group can be in either layer m1 or layer m2, whereas

for mixing layers this is determined by the value of ψ(m). Secondly, the restriction

that the product nodes must have different sum nodes as children (in the reference

group) is relaxed. Instead, we impose the restriction that if two product nodes have

the same child sum node in the reference group, then the other child of the product

nodes must be different sum nodes in the same group.

As an example, in Figure 5.8b, we show a single group Ti of a synthesizing layer,

consisting of three sum nodes Ti,1, Ti,2, Ti,3. Each sum node corresponds to a distinct

color, with each of the colored rectangles corresponding to a product node. Notice

that the product nodes all correspond to different values of ψ(m1) ∪ ψ(m2), resulting

in the sum nodes also having this property.

We show explicit examples of each of these types of layers in Figures 5.9-5.11, which

consist of three layers corresponding to m,m1,m2. We have two sum node groups

in layer m, each of which has a set of product node children which implement the

99

+ + + + + +

× ×

+ +

x1 x̄1 x2, x3
x̄2, x̄3

x2, x̄3
x̄2, x3

x2, x3
x2, x̄3

x̄2, x̄3
x̄2, x3

x1, x2, x3
x1, x̄2, x̄3

x1, x2, x3
x1, x2, x̄3

Figure 5.9: Example of product layer. Groups are highlighted in boxes, with the top
two groups corresponding to layer m, the bottom left group corresponding to layer
m1, and the bottom right groups corresponding to layer m2. Sum nodes labelled with
their support. Sum node weights omitted for clarity.

restrictions described. As the restrictions become less strenuous, the connectivity

of the PC can become more dense. Intuitively, mixing layers achieve their marginal

determinism by “copying” the marginal determinism of one of their child layers, while

mixing over groups in the other child layer. On the other hand, synthesizing layers

enforce marginal determinism by combining, or synthesizing, the marginal determinism

properties of both of their children. This allows synthesizing layers to increase the

size or “expressivity” of groups, as the number of available product nodes is equal to

the product of the group sizes in the child layers.

The scalability of the MDNet architecture comes from the fact that we can control

the size of the architecture by choosing the hyperparameters Gm (number of groups)

and Km (number of nodes per group) for each vtree node m. For simplicity, we

propose to learn MDNets exploiting recent advancements in random structures for

PC learning [137, 139, 53]: in particular, we propose to choose the MDNet structure

randomly within the constraints, and then learn the parameters using standard MLE

estimation if the md-vtree implies (V -)determinism, or use expectation-maximization

otherwise [134].

100

+ + + + + +

× × × ×

+ + + +

x1 x̄1 x2, x3
x̄2, x̄3

x2, x̄3
x̄2, x3

x2, x3
x2, x̄3

x̄2, x̄3
x̄2, x3

x1, x2, x3
x1, x̄2, x̄3

x̄1, x̄2, x̄3
x̄1, x̄2, x3

x1, x2, x3
x1, x2, x̄3
x̄1, x̄2, x̄3
x̄1, x̄2, x3

Figure 5.10: Example of mixing layer. Groups are highlighted in boxes, with the top
two groups corresponding to layer m, the bottom left group corresponding to layer
m1, and the bottom right groups corresponding to layer m2. Sum nodes labelled with
their support. Sum node weights omitted for clarity.

+ + + + + +

× × × × × × × ×

+ + + + + +

x1 x̄1 x2, x3
x̄2, x̄3

x2, x̄3
x̄2, x3

x2, x3
x2, x̄3

x̄2, x̄3
x̄2, x3

x1, x2, x3
x1, x̄2, x̄3

x1, x2, x̄3
x1, x̄2, x3
x̄1, x2, x3
x̄1, x2, x̄3

x̄1, x̄2, x̄3
x̄1, x̄2, x3

x1, x2, x3
x1, x̄2, x̄3
x1, x̄2, x̄3
x1, x̄2, x3

x̄1, x2, x3
x̄1, x2, x̄3

x̄1, x̄2, x̄3
x̄1, x̄2, x3

Figure 5.11: Example of synthesizing layer. Groups are highlighted in boxes, with
the top two groups corresponding to layer m, the bottom left group corresponding to
layer m1, and the bottom right groups corresponding to layer m2. Sum nodes labelled
with their support. Sum node weights omitted for clarity.

101

5.4 Compositional Inference using Structured Marginal

Determinism

With the theory of structured marginal determinism in hand, we now turn to our

original goal of analyzing tractability for compositions of operations such as marginal-

ization, products and conditioning. That is, given an (arbitrary) composition of

operations, we would like to determine conditions/properties on the input circuit

that enable tractable computation, and an algorithm for applying the composition

when it is tractable. Compared to analyzing tractability of individual operations,

the additional challenge is that we need to consider not only the input properties

needed for tractability of each operation, but also the properties that the output of

the operations satisfy. This is particularly problematic for support properties such

as (V -)determinism, where we have seen that marginalizing out a subset of variables

results in determinism being lost.

In this section, we will describe a methodology that exploits our md-vtree framework

as a language for deriving tractability conditions for arbitrary compositions of basic

operations on probabilistic circuits. We begin by defining the set of basic operations

that we work with, and elaborating on the challenges associated with analysing

support properties in compositions of these operations. Next, we derive algorithms

for transforming md-vtrees through each operation. These algorithms are an abstract

implementation of the corresponding algorithms for implementing the operation on

circuits, such that the output md-vtree precisely characterizes the properties that the

output circuit is guaranteed to respect. Finally, we derive a set of rules called the

MD-calculus, which enable us to derive tractability conditions for compositions of

operations by propagating marginal determinisms back through the compositional

pipeline.

5.4.1 Support Properties in Compositional Inference

In Table 5.1, we define a collection of basic probabilistic inference operations, including

marginalization, products, instantiation, conditioning, powers, maximization, and

logarithms, along with the properties (requirements) under which there exist efficient

102

Operation Input Condition Output Encodes Complexity

MARG(C;W) -
∑

W pC(V) O(|C|)
INST(C;w) - pC(w,V \W) O(|C|)
PROD(C1, C2) Str.Dec. w/ Compatible Vtrees pC1(V)× pC2(V) O(|C1||C2|)

COND(C;W) W -Det pC(V \W |W)|suppW (C) O(|C|)
POW(C;α) Det pC(V)α|supp(C) O(|C|)
MAX(C) Det maxV pC(V) O(|C|)
LOG(C) Det log pC(V)|supp(C) O(|C|)

Table 5.1: Definitions of basic operations.

(polytime) algorithms for computing them on PCs [185] and the complexity; note that

we assume decomposability and smoothness by default. These operations produce

a circuit encoding the specified function (or scalar in the case of MAX). We use | to

denote the restricted conditional/power/logarithm, with the output circuit C ′ defined

to take the value pC′(V) = 0 for any value of V where the function is not well defined.

Each of the operations in the top half of the table is tractable for structured

decomposable and smooth circuits (respecting compatible vtrees for products). That

is, they do not require support properties for tractability. On the other hand, the

tractability of the operations in the bottom half, which we term deterministic opera-

tions, depends on the input circuit being (marginally) deterministic. In particular,

without determinism, MAX is known to be NP-complete (MAX), while POW and LOG are

#P-hard [31, 185].

As we have previously discussed in Section 5.1.1, probabilistic marginal inference

corresponds to a composition of marginalization and product operations, and does

not require any deterministic operations; this means that we do not need to consider

support properties. More generally, in [185] it is also shown how to compositionally

analyze a range of other inference queries, when deterministic operations appear before

non-determinstic operations in the composition. However, for classes of inference

queries that involve deterministic operations at arbitrary points in the composition,

more careful analysis is required. Even though MARG, INST, PROD do not require support

properties on the input circuit, they do affect the support properties that the output

circuit satisfies. As a result, if we have a compositional inference query that consists

103

of one of these operations followed by a deterministic operation, we need to make sure

that the output satisfies the required support property.

As an example, let us again consider the napkin formula, expressed as a composition

of operations:

C2 = COND(C1;W ∪Z); pC2(W ,X,Y ,Z) = p(X,Y |W ,Z) (5.8)

C3 = MARG(C1;X ∪ Y ∪Z); pC3(W) = p(W) (5.9)

C4 = PROD(C2; C3); pC4(W ,X,Y ,Z) = p(X,Y |W ,Z)p(W) (5.10)

C5 = MARG(C4;W); pC5(X,Y ,Z) =
∑
W

p(X,Y |W ,Z)p(W) (5.11)

C6 = COND(C5;X ∪Z); pC6(X,Y ,Z) =

∑
W p(X,Y |W ,Z)p(W)∑

W p(X|W ,Z)p(W)
(5.12)

In order to be able to compute the final conditional, we require C5 to be (X ∪Z)-

deterministic. However, C5 is itself defined as a marginalization of a product of other

circuits; and it is not clear how, or even if, we can enforce properties on the original

circuit C1 to ensure that C5 is (X ∪Z)-deterministic.

5.4.2 Operations on md-vtrees

To tackle these challenges, we apply our md-vtree framework as a unified language for

scope and support in structured decomposable circuits. The first step is to understand

how each basic operation “transforms” md-vtrees. In other words, if we have input

circuit(s) that respect some given md-vtree(s), can we obtain a md-vtree that the

output of a basic operation is guaranteed to respect? In Algorithms 5.2-5.4 we show

algorithms for applying MARG, INST, COND to md-vtrees. These algorithms are based

on, and follow the structure of, the corresponding algorithms for circuits, but act at

the level of vtree nodes rather than sum nodes.

The key component of these algorithms is the labelling function assigned to the

output md-vtree. For MARGMDV, we have that the label for each node is unchanged from

the input md-vtree if no variable in the original label is marginalized out, and is set to

the universal label otherwise. This reflects the fact that for a ψ(m)-deterministic sum

node T , where each child has distinct marginalized support over ψ(m), marginalizing

any variable in ψ(m) means that we can no longer separate the children in this way.

104

Algorithm 5.2: MARGMDV(w,W)

Input: Input md-vtree w = (v, ψ); set of variables to be marginalized W
Result: Output md-vtree w′ = (v′, ψ′)

1 m← root(v);
2 m′ ← newnode();
3 if m is leaf then
4 v′ ← createvtree(m′); // create vtree with single node

5 else
6 m1,m2 ← children(m);
7 v′1, ψ

′
1 ← MARGMDV((vm1 , ψ),W);

8 v′2, ψ
′
2 ← MARGMDV((vm2 , ψ),W);

9 v′, ψ′ ← v′1 ∪ v′2, ψ′
1 ∪ ψ′

2; // combine the vtrees/labelling fn

10 v′ ← addnode(v′;m′); v′ ← addchildren(v′;m′, root(v′1), root(v
′
2));

11 ϕ′(m′)← ϕ(m) \W ; // Update scope function

12 if ψ(m) ∩W = ∅ then // Update labelling function

13 ψ′(m′)← ψ(m);

14 else
15 ψ′(m′)← U ;
16 Return (v′, ψ′)

On the other hand, for INSTMDV, we remove the instantiated variables from the original

label for each node. It can thus be seen that, while marginalization and instantiation

affect the scope of the vtree in the same way, their effect on support properties is very

different. In particular, given the same input md-vtree, the output md-vtree provides

more stringent constraints (smaller labels) on the output circuit in the instantiation

case.

For PRODMDV, we combine the labels of vtree nodes from the input md-vtrees, by

taking their union in Line 11. Given two sum nodes T (1), T (2), the product algorithm

on circuits creates a new sum node, T ′, that has a child corresponding to every

combination of children from T (1) and T (2). The intuition behind this labelling, then,

is that if any two children of T (1) correspond to distinct values of ψ(1)(m), and any

two children of T (2) correspond to distinct values ψ(2)(m), then any two children of

T ′ will correspond to distinct values of either ψ(1)(m) or ψ(2)(m). For simplicity of

presentation, we have shown the product algorithm on md-vtrees in the case where

the input vtrees are the same; however, it can be extended to compatible vtrees with

some more effort, the details of which we defer to Appendix B.2.

105

Algorithm 5.3: INSTMDV(w,W)

Input: Input md-vtree w = (v, ψ); set of variables to be instantiated W
Result: Output md-vtree w′ = (v′, ψ′);

1 m← root(v);
2 m′ ← newnode();
3 if m is leaf then
4 v′ ← createvtree(m′); // create vtree with single node

5 else
6 m1,m2 ← children(m);
7 v′1, ψ

′
1 ← INSTMDV((vm1 , ψ),W);

8 v′2, ψ
′
2 ← INSTMDV((vm2 , ψ),W);

9 v′, ψ′ ← v′1 ∪ v′2, ψ′
1 ∪ ψ′

2; // combine the vtrees/labelling fn

10 v′ ← addnode(v′;m′); v′ ← addchildren(v′;m′, root(v′1), root(v
′
2));

11 ϕ′(m′)← ϕ(m) \W ; // Update scope function

12 ψ′(m′)← ψ(m) \W ; // Update labelling function

13 Return (v′, ψ′)

Now, given any pipeline, and input md-vtree(s), we can determine if the compo-

sitional query is tractable, simply by propagating md-vtree(s) forward through the

composition, and checking that the input md-vtree(s) to any intermediate operation

satisfy the requirements in Table 5.1. Importantly, this can be done without doing the

computation of the query itself ; all of our algorithms run in polytime in the number of

variables |V |, which is much smaller than the circuits themselves. If the composition

is tractable, then we can apply the corresponding circuit algorithms according to the

composition, which are polytime in the sizes of the input circuits.

5.4.3 The MD-calculus

So far, we have now reduced reasoning about tractability given the input circuits,

to reasoning about tractability given the input md-vtrees. However, when learning

circuits from data, we have the freedom to choose the input md-vtree(s), for instance

through MDNets, in order to enable tractable inference. That is, rather than asking

“is the backdoor query tractable given input md-vtree w?”, we now consider the question

“for which input md-vtrees w is the backdoor query tractable?”. This requires backward

analysis through a composition, to find what input md-vtrees will lead to a given

output md-vtree. Unfortunately, none of the algorithms shown for marginalization,

106

Algorithm 5.4: PRODMDV(C(1), C(2))
Input: Input md-vtrees w(1) = (v, ψ(1)), w(2) = (v, ψ(2)) with same vtree v
Result: Output circuit w′ = (v′, ψ′)

1 m← root(v);
2 (m1,m2)← children(m); // null if m is leaf

3 m′ ← newvtreenode();
4 if m is leaf then
5 v′, ψ′ ← createvtree(m’);
6 else
7 v′1, ψ

′
1 ← PRODMDV((vm1 , ψ

(1)), (vm1 , ψ
(2)));

8 v′2, ψ
′
2 ← PRODMDV((vm2 , ψ

(1)), (vm2 , ψ
(2)));

9 v′, ψ′ ← v′1 ∪ v′2, ψ′
1 ∪ ψ′

2; // combine the vtrees/labelling fn

10 ϕ′(m′)← ϕ(m); // Update scope function

11 ψ′(m′)← ψ(1)(m) ∪ ψ(2)(m); // Update labelling function

12 v′ ← addnode(v′;m′);
13 v′ ← addchildren(v′;m′, root(v′1), root(v

′
2));

14 Return (v′, ψ′)

instantiation, or products are invertible, making this a challenging combinatorial

problem.

Thus, instead of explicitly enumerating all input md-vtrees that enable tractable

computation of the compositional query, we propose a simpler approach that is sound

(that is, always derives tractable input md-vtrees), but not necessarily complete

(may fail to find all tractable input md-vtrees). We observe that the key barriers

to tractability in compositions are the deterministic operations, which require the

input circuit to be (marginally) deterministic. We thus propose to propagate sets of

required marginal determinism backwards through the composition. To this end, in

Table 5.2 we show a set of input-output conditions called the MD-calculus. These are

sufficient conditions on the input(s) to an operation to guarantee that the output is

Q-deterministic. The MD-calculus forms a set of rules that we can apply backwards

from deterministic operations (which require V -determinism), in order to determine a

sufficient set of marginal determinisms S for each intermediate circuit. Finally, we can

enforce those marginal determinisms on the input md-vtree(s) using Definition 5.17.

Theorem 5.5 (MD-calculus). The conditions in Table 5.2 hold.

107

Operation Input Condition Output

MARG(C;W) Q-det Q-det
INST(C;w) ∃W ′ ⊆W : (Q ∪W ′)-det Q-det

PROD(C(1), C(2))
∃Q(1),Q(2) : Q(1)-det,Q(2)-det, and:

Q-det• Either (a) Q ⊆ V (1) ∩ V (2) and Q(1) = Q(2) = Q;
• Or (b) Q(1),Q(2) ⊇ V (1) ∩ V (2) and Q = Q(1) ∪Q(2)

COND(C;W) Q-det Q-det
POW(C;α) Q-det Q-det
MAX(C) N/A N/A
LOG(C) - -

Table 5.2: MD-calculus: sufficient input-output conditions for each basic operation

Proof. (Sketch) We provide here proofs of these results for marginalization, instantia-

tion, and products (in the case of same vtrees); the rest of the proof can be found in

Appendix B.1. For each, we need to show that, assuming the input md-vtree satisfies

the input condition, applying the algorithm on md-vtrees results in an output md-vtree

satsifying the output condition.

MARG(·;W) For the marginalization operation, the output md-vtree is over variables

V \W . Thus, let Q be any subset of V \W .

• Input Condition: The input condition requires that the input md-vtree w implies

Q-determinism; that is, for every vtree node m, either ϕ(m) ∩Q = ∅, or else

Q ⊇ ψ(m).

• Algorithm: In Algorithm 5.2, every vtree node m′ in the output md-vtree

corresponds to a vtree node m′ in the input md-vtree, such that ϕ′(m′) =

ϕ(m) \W , and ψ′(m′) = ψ(m) if ψ(m) ∩W = ∅, or ψ′(m′) = U otherwise.

• Proof for Output Condition: For each vtree node m′, if ϕ′(m′) ∩Q ̸= ∅, then,

108

we have that:

(ϕ(m) ∩Q) \W ̸= ∅ (by effect of algorithm)

=⇒ ϕ(m) ∩Q ̸= ∅ (weaker statement)

=⇒ ψ(m) ⊆ Q (by input condition)

=⇒ ψ′(m′) ⊆ Q

The last line follows since Q ∩W = ∅, so ψ(m) ∩W = ∅, and so we are in

the algorithm case where the label is ”copied”. Thus, we have shown that the

output md-vtree implies Q-determinism, as required.

INST(·;w) For the instantiation operation, the output md-vtree is over variables

V \W . Thus, let Q be any subset of V \W .

• Input Condition: The input condition requires that the input md-vtree w implies

(Q∪W ′)-determinism for some W ′ ⊆W ; that is, for every vtree node m, either

ϕ(m) ∩ (Q ∪W ′) = ∅, or else Q ∪W ′ ⊇ ψ(m).

• Algorithm: In Algorithm 5.3, every vtree node m′ in the output md-vtree

corresponds to a vtree node m′ in the input md-vtree, such that ϕ′(m′) =

ϕ(m) \W , and ψ′(m′) = ψ(m) \W .

• Proof for Output Condition: For each vtree node m′, if ϕ′(m′) ∩Q ̸= ∅, then,

we have that:

(ϕ(m) ∩Q) \W ̸= ∅ (by effect of algorithm)

=⇒ ϕ(m) ∩Q ̸= ∅ (weaker statement)

=⇒ ϕ(m) ∩ (Q ∪W ′) ̸= ∅ (weaker statement)

=⇒ ψ(m) ⊆ Q ∪W ′ (by input condition)

=⇒ ψ′(m′) ⊆ Q

Here, the last line follows since the new label ψ′(m′) = ψ(m) \W removes all

elements of W , and thus W ′, from ψ(m). Thus, we have shown that the output

md-vtree implies Q-determinism, as required.

109

PROD(·, ·) For the product operation, in the case the input vtrees are the same, the

output md-vtree is over variables V (1) ∪ V (2) = V ∪ V = V . Thus, let Q be any

subset of V .

• Input Condition: The input condition requires that the first input md-vtree

w(1) implies Q(1)-determinism, and the second input md-vtree w(2) implies

Q(2)-determinism, where one of the following holds:

(a) Q ⊆ V and Q(1) = Q(2) = Q;

(b) Q(1),Q(2) ⊇ V and Q = Q(1) ∪Q(2)

Here, case (b) is not relevant (the only possible case of Q = Q(1) = Q(2) is also

captured by (a)).

• Algorithm: In Algorithm 5.4, every vtree node m′ in the output md-vtree

corresponds to a vtree node m in the input md-vtrees respectively, such that

ϕ′(m′) = ϕ(m). The label is given by the union ψ′(m′) = ψ(1)(m) ∪ ψ(2)(m).

• Proof for Output Condition: We need to show that for either input condition (a),

(b), the condition for implied Q-determinism holds on m′; that is, if ϕ′(m′)∩Q ̸=

∅, then ψ′(m′) ⊆ Q. If ϕ′(m′) ∩Q ̸= ∅, we have:

ϕ(m) ∩Q ̸= ∅ (as scope does not change

=⇒ ψ(1)(m) ⊇ Q(1) and ψ(2)(m) ⊇ Q(2) (by marginal determinisms)

=⇒ ψ(1)(m) ∪ ψ(2)(m) ⊇ Q(1) ∪Q(2) (combining previous statements)

=⇒ ψ′(m) ⊇ Q ̸= ∅ (rewriting both sides)

Thus we have shown the md-calculus rule for PROD when the input vtrees are the same,

which essentially says that if both input md-vtrees imply a Q-determinism, then so

does the output md-vtree.

110

5.4.4 Examples

We conclude this section by demonstrating the application of the MD-calculus to

previously studied compositional probabilistic inference queries, where it provides

additional insight. Firstly, we consider the marginal MAP query maxQ pC(Q, e). This

can be written as a composition MAX(MARG(INST(C; e),V \ (Q∪E))). In order for the

maximization query to be tractable, we need its input to be deterministic. Applying

the MD-calculus backwards through the composition, we obtain:

1. Requirement: C1 = MARG(INST(C; e),V \ (Q ∪E)) is Q-deterministic.

2. C2 = INST(C; e) is Q-deterministic =⇒ C1 is Q-deterministic.

3. Sufficient Condition: ∃W ′ ⊆ E s.t. C is (Q ∪W ′)-deterministic =⇒ C2 is

Q-deterministic.

That is, the input circuit C needs to be (Q ∪W ′)-deterministic for some W ′ ⊆ E.

This is a weaker condition than was previously known for tractable computation of

marginal MAP, which instead required the circuit to be Q-deterministic regardless of

the evidence [128, 77, 33, 32]. The practical implication is that a W -deterministic

circuit can answer marginal MAP queries for any Q,E such that Q ⊆W ⊆ Q ∪E.

As a second example, we consider the mutual information between two sets of

variables: ∑
X,Y

pC(X,Y) log
pC(X,Y)

pC(X)pC(Y)
(5.13)

For mutual information, applying a similar approach we obtain that C should be both

X-deterministic and Y -deterministic. However, this would require that the root sum

node is both X-deterministic and Y -deterministic, and we have seen in Proposition

5.3 that this is not possible without restricting support.

5.5 Causal Inference using MD-Calculus

In this section, we apply our md-vtree framework to analyse tractability conditions

for exact causal inference for PCs. In particular, we constructively derive tractability

111

conditions for exactly computing interventional distributions for the backdoor, front-

door, and (extended) napkin formulae. The resulting algorithms constitute the first

poly-time algorithms for causal inference on probabilistic circuits that do not rely on

a compilation assumption, and can be used whenever the interventional distribution is

identified by one of these formulae. Representing the interventional distribution as a

(structured decomposable and smooth) circuit then enables us to reason about causal

queries of interest, such as average causal effects, as the moments (e.g. expectation)

of such a circuit are tractable [33]. Throughout this section, we assume positivity,

that is, p(V) > 0; this is a standard assumption in causal inference to ensure that the

interventional distributions are well-defined [168].

5.5.1 MD-calculus for Causal Formulae

5.5.1.1 Backdoor

We begin with the backdoor formula. Recall that in cases where there is a valid

backdoor adjustment set, such as in Figure 5.2a, we have the following formula for

the interventional distribution:

pC,X(Y) =
∑
Z

pC(Z)pC(Y |X,Z) (5.14)

Before continuing, it is worth noting that the expression above is valid for any

value of X,Y , though in causal inference it is more typical that we are interested

in the interventional distribution pC,X(Y) for specific values x of X, i.e. a specific

intervention, or a small set of interventions. This distinction is important as we will

see, interestingly, that instantiating X makes the query more tractable in the sense

that the marginal determinism requirements for the circuit C are more relaxed. Now,

given a circuit C representing the observational distribution p(V), the interventional

112

distribution can be expressed using the following composition:

C1 = MARG(C;V \ (X ∪ Y ∪Z)); pC1(X,Y ,Z) = pC(X,Y ,Z) (5.15)

C2 = MARG(C1;X ∪ Y); pC2(Z) = pC(Z) (5.16)

C3 = COND(C1;X ∪Z); pC3(X,Y ,Z) = pC(Y |X,Z) (5.17)

C4 = PROD(C2, C3); pC4(X,Y ,Z) = pC(Z)pC(Y |X,Z) (5.18)

C5 = MARG(C4;Z); pC5(X,Y) =
∑
Z

pC(Z)pC(Y |X,Z) (5.19)

Finally, we have pC5(X,Y) = pC,X(Y). To apply the MD-calculus, we first

identify the deterministic operations in the pipeline. For the backdoor query, the

only deterministic operation is the COND(·;X ∪Z) operation, which requires X ∪Z-

determinism, and is applied to C1. Then, we can work backwards through the pipeline

from C1 in order to derive tractability conditions on C.

1. Requirement: C1 = MARG(C;V \ (X ∪ Y ∪Z)) is (X ∪Z)-deterministic.

2. Sufficient Condition: C is (X ∪Z)-deterministic.

This simple derivation shows that it suffices for C to be (X ∪ Z)-deterministic to

compute the backdoor query. Now, let us consider the case in which we instantiate X

with a specific value x. In this case, the composition becomes:

C1 = INST(C;x); pC1(V \X) = pC(V \X,x) (5.20)

C2 = MARG(C1;V \ (X ∪ Y ∪Z)); pC2(Y ,Z) = pC(x,Y ,Z) (5.21)

C3 = MARG(C;V \Z); pC3(Z) = pC(Z) (5.22)

C4 = COND(C2;Z); pC4(Y ,Z) = pC(Y |x,Z) (5.23)

C5 = PROD(C3, C4); pC4(Y ,Z) = pC(Z)pC(Y |x,Z) (5.24)

C6 = MARG(C5;Z); pC6(Y) =
∑
Z

pC(Z)pC(Y |x,Z) (5.25)

We have that pC6(Y) = pC,x(Y). In the composition above, note in particular

that for C4 we only condition with respect to Z, and not X ∪ Z, as pC(Y |x,Z) =

pC(x,Y ,Z)
pC(x,Z)

=
pC2 (X,Z)

pC2 (Z)
. Here, employing the MD-calculus starting from C2 gives us the

following:

113

1. Requirement: C2 = MARG(C1;V \ (X ∪ Y ∪Z)) is Z-deterministic.

2. C1 = INST(C;x) is Z-deterministic.

3. Sufficient Condition: C is (X ′ ∪Z)-deterministic for some X ′ ⊆X.

This shows that the instantiated backdoor adjustment is tractable for a wider

range of circuits than if we insisted on a circuit encoding pC,X(Y) as a function of X

(and Y).

Proposition 5.7 (Tractable Backdoor Adjustment). Let C be a structured decompos-

able and smooth circuit. Then, in the backdoor case:

• Computing the interventional distribution pC,X(Y) as a structured decomposable

and smooth circuit is tractable in O(|C|2) time, if C is additionally (X ∪ Z)-

deterministic;

• Computing the instantiated interventional distribution pC,x(Y) as a structured

decomposable and smooth circuit is tractable in O(|C|2) time, if C is additionally

(X ′ ∪Z)-deterministic for some X ′ ⊆X.

5.5.1.2 Frontdoor

pC,X(Y) =
∑
Z

pC(Z|X)
∑
X′

pC(X
′)pC(Y |X ′,Z) (5.26)

We can similarly derive results for the frontdoor formula, where again it is the

case that instantiating X leads to weaker conditions for tractability.

Proposition 5.8 (Tractable Frontdoor Adjustment). Let C be a structured decompos-

able and smooth circuit. Then, in the frontdoor case:

• Computing the interventional distribution pC,X(Y) as a structured decompos-

able and smooth circuit is tractable in O(|C|3) time, if C is additionally X-

deterministic and (X ∪Z)-deterministic;

• Computing the instantiated interventional distribution pC,x(Y) as a structured

decomposable and smooth circuit is tractable in O(|C|3) time, if C is additionally

(X ∪Z)-deterministic.

114

Dataset |Z| Error Time
MD Counting MD Counting

Asia 4 0.269 0.0143 0.5 1.0
Sachs 4 0.180 0.0219 1.7 0.7
Child 13 0.0802 0.135 1.9 0.9
Win95pts 59 0.0044 0.0511 3.2 0.9
Andes 202 0.0382 0.0982 7.9 1.3

Table 5.3: Backdoor Estimation (averaged over 10 runs)

5.5.1.3 Napkin

pC,X(Y) =

∑
W pC(X,Y |W ,Z)pC(W)∑

W pC(X|W ,Z)pC(W)
(5.27)

Finally, for the napkin formula, it turns out that we cannot derive a valid tractability

condition for pX(Y) using the MD-calculus. The reason is basically that we would

require pC(X,Y |W ,Z)pC(W) to satisfy (X ∪ Z)-determinism, which cannot be

propagated through the product according to the MD-calculus product rule. However,

if we instantiate X, and take advantage of the fact that the napkin formula is valid

for any value of Z, then computing the interventional distribution becomes possible:

Proposition 5.9 (Tractable Napkin). Let C be a structured decomposable and smooth

circuit. Then, in the napkin case:

• Computing the instantiated interventional distribution pC,x(Y) as a structured

decomposable and smooth circuit is tractable in O(|C|2) time, if C is additionally

(W ∪X ′ ∪Z)-deterministic for some X ′ ⊆X.

5.6 Experiments

In this section, we empirically evaluate our tractable algorithm for backdoor adjustment

derived using MD-calculus. We generate datasets by sampling 1000 datapoints from

the (discrete variable) Bayesian network (BN) models in the bnrepository [160], and

learn a MDNet over all variables V from data. For each Bayesian network (causal

graph), we select a single treatment variable X and single outcome variable Y , as well

as a set of variables Z forming a valid backdoor adjustment set for (X, Y), and seek

115

to estimate
∑

Z p(Y |X,Z)p(Z). We manually select a vtree that splits the scope into

(X ∪Z) and Y at the root, and thereafter generates the rest of the vtree randomly.

Given a vtree, we use the S-constrained labelling (Definition 5.17) with S = X ∪Z.

The required tractability properties for backdoor adjustment are then enforced through

the structure of the corresponding MDNet.

The results are shown in Table 5.3; for comparison, we also show results for the

counting approach, where we estimate p(Y |X,Z) as
NY,X,Z

NX,Z
, where N refers to the

number of datapoints with the subscripted assignment of variables (this is set to 0

if NX,Z = 0). It can be seen that, while the counting approach is generally more

robust in lower dimensions, the advantage in terms of learning a full model becomes

apparent with the higher-dimensional adjustment sets, as shown by the lower error on

the Win95pts and Andes datasets. Remarkably, as the size of the adjustment set Z

increases, the time taken for the algorithm based on the MD-calculus increases only

approximately linearly in the dimension. This illustrates the attractiveness of tractable

probabilistic modelling, in that we can systematically control the computational cost

of exact inference by restricting the size of the PC model.

5.7 Discussion

To summarize, this Chapter has focused on two related problems; performing causal

reasoning given a learned model of the observational distribution, and designing classes

of circuits where such queries (and other similar queries) are tractable. For the latter,

we introduced the md-vtree framework for compactly specifying classes of structured

decomposable circuits according to their support properties. The framework naturally

provides insight into the properties of previously proposed PC classes such as strongly

deterministic circuits, as well as inspiring our newly designed MDNet architecture

for constructing circuits according to a md-vtree. We further showed how to derive

tractability conditions, in terms of the md-vtree, for compositions of basic operations

on circuits. This includes, in particular, prominent causal identification formulae,

but the compositional framework is general and can, in theory, be applied to derive

tractability conditions for many inference queries beyond those we have discussed.

116

Though we have presented the framework with discrete variables, the theory applies

also to continuous variables, with the only modification being to replace summation

in marginalization operations with integration.

On the causal reasoning side, we began this Chapter with the motivation of de-

coupling the learning or specification of probabilistic models (of the observational

probability distribution) from the causal assumptions (diagram) that enable identifia-

bility of interventional probabilities. Our first result showed that there is no existing

class of PCs that enables tractable computation of interventional probabilities in

general. Investigating further, we found that marginal determinism is the key support

property that enables tractable computation of common do-calculus formulae such as

the backdoor, frontdoor, and napkin formulae. That is, from the perspective of compu-

tational difficulty, there is still a very real gap between reasoning on the observational

distribution represented by a PC (which typically only requires decomposability and

smoothness), and transferring this information and reasoning on an interventional

distribution. Further, in each of these cases, we found a different marginal determinism

condition for tractability, and further that this condition depends on the identities of

the variables in the causal diagram. The consequence is that we still require some

knowledge of the underlying causal diagram before designing/learning the circuit from

data.

Though we have chosen to focus on exact computation of the interventional distri-

bution, as is typically demanded of TPMs, a promising future direction is to leverage

the insights from our exact analysis to aid designing effective approximate inference

routines. For example, the KL-divergence between two structured decomposable

and smooth circuits with compatible vtrees is tractable [105, 185]. Thus, if we have

learned a PC representing the observational distribution, but which does not satisfy

the required marginal determinisms for tractability of some interventional query, we

can employ a md-vtree which does imply the required marginal determinisms (and

with the same vtree) as a tractable variational family. This could resolve the need to

know the identity of the causal variables in advance.

We have taken the view in this Chapter that PCs are just a model for the

observational probability distribution, and not inherently causal. However, it is also

117

interesting to consider whether circuits can be used as a causal model of a system; that

is, expressing causality without the need for an external causal diagram [126, 201]. We

have already seen an example of such a “causal probabilistic circuit”, in the form of

arithmetic circuits compiled from Bayesian networks in the last Chapter. In this case,

applying interventions is as simple as instantiating the value of symbolic parameters

in the circuit. However, for a generic probabilistic circuit, whose structure and/or

parameters may have been learned from data, there is no corresponding reference

point to a graphical model [31].

This observation has spurred recent efforts towards finding interpretations of

probabilistic circuits as latent variable models [210, 136, 19], by assigning discrete

latent variables corresponding to the mixture components (children) of sum nodes; this

interpretation has proven fruitful for designing new learning algorithms for circuits

[209, 107]. Given this interpretation, one might wonder if it is possible to interpret a

general probabilistic circuit as a causal graphical model, such as a causal Bayesian

network or structural causal model. Unfortunately, most latent-variable interpretation

schemes are typically not particularly human-interpretable or necessarily representative

of underlying structure in the domain, due to the large number of latent variables

introduced. More pertinently for causality, the resulting graphical models have a

bipartite structure such that there are no edges between endogenous variables, leading

to a lack of causal expressivity : in particular, intervening on any endogenous variable

has no effect on the distribution of any other endogenous variable [126]8. Even if

it were possible to introduce some causal semantics for computing interventional

distributions into a general PC (as in compiled PCs), such a causal PC would not be

learnable (identifiable) from observational data, as is the case with neural probabilistic

models [198]. Our work in this Chapter identifies a third challenge; namely that,

even if there exists a sufficiently causally expressive interpretation of PCs, which is

learnable (for example, using both observational and experimental data), inference on

the causal PC may not be tractable.

8The notable exception is the decompilation algorithm of [19]; however, this assumes that the PC
is compiled from a Bayesian network using a reverse topological order and so is not applicable unless
the graphical model (BN) was previously known.

118

Chapter 6

Tractable Causal Reasoning with
Structural Uncertainty

Contents
6.1 Bayesian Causal Reasoning 119

6.1.1 Bayesian Structure Learning 121

6.1.2 Statistical and Causal Uncertainty 123

6.1.3 Hierarchical Conditional Independences 125

6.2 Tractable Representations for Bayesian Structure Learning129

6.2.1 OrderSPNs . 129

6.2.2 Reasoning on Leaf Distributions 132

6.2.3 Tractable Queries on OrderSPNs 136

6.3 Learning OrderSPNs . 143

6.3.1 Learning OrderSPN structures 143

6.3.2 Parameter Learning via Variational Inference 144

6.4 Experiments . 146

6.4.1 Learning Performance . 147

6.4.2 Ablation Study on OrderSPN Learning 149

6.4.3 Exact and Approximate Computation 150

6.4.4 Coverage and Query Answering 152

6.5 Discussion . 154

6.1 Bayesian Causal Reasoning

In previous Chapters, we focused on models of the observed probability distribution

p(V), whilst assuming that sufficient information about the causal graph was either

119

Diagram
Prob Model

Query

Data

Causal
Discovery

Overall
Prob Model

Result

Figure 6.1: Reasoning under diagram uncertainty

known a priori, or would be available at the time of reasoning to identify the query

of interest. On the other hand, in this Chapter, we turn to the problem of causal

reasoning in the setting where we are fundamentally uncertain about the underlying

causal graph. This is significantly more challenging from a computational perspective,

as we need both a means of representing or modelling this uncertainty over graphs,

as well as reasoning to make inferences about not only the causal graph, but also

downstream quantities such as interventional probabilities.

Given the conceptual separation between the causal graph and the observational

distribution in causal inference, it is tempting to try modelling the distributions on the

graph and variables independently to reduce complexity. For example, for the former,

we could learn a MDNet for p(V), while for the latter, we could separately specify or

learn a distribution p(G) over graphs. However, this is arguably not the right approach

when we have uncertainty over graphs, for two reasons. Firstly, from a learning

perspective, causal graphs have testable implications on the observational distribution

p(V |G) that they generate. This includes conditional independences that follow from

the graphical structure, as well as additional signals if parametric assumptions about

the local conditional probability distributions are made [167]. The consequence is the

domain variables V and graph G over those variables are correlated, which cannot be

learned if we specify separate models for p(V) and p(G). Secondly, from the reasoning

120

perspective, a significant issue is that there is no known probabilistic model, including

MDNets, that enables tractable causal reasoning for all causal graphs G. As such, it is

likely that we will need to specialize the specification of the observational distribution

to particular graphs (or sets of graphs). For these reasons, we need to model the joint

distribution p(G,V) over graphs and variables.

The overall schematic of the learning and reasoning framework we propose is shown

in Figure 6.1. Given data (and any domain knowledge specified in the prior), we

obtain a probabilistic model that represents our uncertainty over the causal diagram.

This can then be combined with the distribution on the domain variables given a

graph, in order to form an overall probabilistic model p(G,V). Finally, given a causal

reasoning query, such as an interventional probability, we return a result that accounts

for the uncertainty over the graphical structure. The key challenge that we aim to

address is how to efficiently represent, learn and reason over these probabilistic models,

which fundamentally involve discrete graphical structures.

6.1.1 Bayesian Structure Learning

We begin by setting up the learning problem. Recall that, given a causal Bayesian

network CBN = (G,Pr), the joint distribution over variables V is given by the

factorization:

p(V |G,Pr) =
d∏
i=1

Pri(Vi|Gi) (6.1)

where we have emphasized the dependence of the distribution on the graph G and

local conditional probability distributions Pr, and written Gi to denote the set of

parents paG(Vi) of variable Vi in DAG G. Now, given a dataset D = {v(1), ...,v(n)}

of observations of the variables, in Bayesian structure learning, the goal is to learn a

distribution that represents uncertainty over the space of causal graphs. This requires

specifying priors for the BN graph and CPDs, in addition to the likelihood above.

• Prior over Graphs pprior(G): This should capture our prior belief about the

causal graph. It is possible to either place a non-informative prior on the graph

(e.g. a sparsity that penalizes more dense graphs), or we can impose domain

121

knowledge which indicates the presence (or absence) of certain edges. If the

prior decomposes as pprior(G) =
∏d

i=1 pprior,i(Gi), then we say it is modular.

• Prior over CPDs p(Pr|G): We also need to specify a prior over the distribution

of the Bayesian network, given the graph. For example, in the common case

of linear Gaussian Bayesian networks, we have Vi = bj +
∑

j BijVj + ϵi, with

ϵi ∼ Gaussian(0,Σ2
ii)), where b ∈ Rd, B ∈ Rd×d,Σ ∈ Rd×d are parameters. The

dependence on the graph comes from the fact that we have Bij = 0 whenever

Gij = 0, i.e. there is no edge from Vi to Vj. The prior p(Pr|G) over CPDs can

then be expressed using a prior over the parameters p(b, B,Σ|G). If the CPD

prior decomposes as p(Pr|G) =
∏d

i=1 pi(Pri|Gi), then we say it is modular.

Together, this specifies a joint distribution p(G,Pr,V) = pprior(G)p(Pr|G)p(V |G,Pr).

We can marginalize out Pr to obtain a distribution over just graph and variables:

p(G,V) = pprior(G)

∫
Pr

p(V |G,Pr)p(Pr|G)dPr (6.2)

The quantity plh(V |G) :=
∫
Pr
p(V |G,Pr)p(Pr|G)dPr is known as the marginal

likelihood. If the prior over CPDs is modular, then the marginal likelihood can also be

written in a modular fashion, as:

plh(V |G) =
∫
Pr

p(V |G,Pr)p(Pr|G)dPr (6.3)

=

∫
Pr

d∏
i=1

Pri(Vi|Gi)pi(Pri|Gi)dPr (6.4)

=
d∏
i=1

plh,i(Vi|Gi) (6.5)

where we define plh,i(Vi|Gi) :=
∫
Pri

Pri(Vi|Gi)pi(Pri|Gi)dPri for the marginal likeli-

hood of Gi given the datapoint V .

Now, given an observed dataset D = {v(1), ...,v(n)}, and writing plh(D|G) =∫
Pr

(∏n
j=1 p(v

(j)|G,Pr)
)
p(Pr|G)dPr for the marginal likelihood of the dataset, we

can apply Bayes’ theorem to obtain a posterior distribution over graphs:

pG(G|D) ∝ pprior(G)plh(D|G) (6.6)

122

Given a modular graph prior and CPD prior, this can be written as:

pG(G|D) ∝ pprior(G)plh(D|G) (6.7)

=

(
d∏
i=1

pprior,i(Gi)

)∫
Pr

(
n∏
j=1

d∏
i=1

Pri(v
(j)
i |Gi)

)(
d∏
i=1

pi(Pri|Gi)

)
dPr (6.8)

=

(
d∏
i=1

pprior,i(Gi)

)
d∏
i=1

∫
Pri

(
n∏
j=1

Pri(v
(j)
i |Gi)

)
pi(Pri|Gi)dPri (6.9)

=
d∏
i=1

pprior,i(Gi)plh,i(D|Gi) (6.10)

=
d∏
i=1

pGi
(Gi|D) (6.11)

where we write plh,i(D|Gi) =
∫
Pri

(∏n
j=1 Pri(v

(j)
i |Gi)

)
pprior,i(Pri|Gi)dPri for the

marginal likelihood of Gi given the dataset, and pGi
(Gi|D) for the (unnormalized)

posterior distribution on Gi. For example, for linear Gaussian models, we can employ

the BGe score [95], which is a closed-form expression for the marginal likelihood of a

variable given its parent set plh,i(D|Gi).

It may seem that the posterior is now a fully factorized distribution, with indepen-

dent components for each parent set Gi. However, the distribution is defined over the

space of directed acyclic graphs, and not all directed graphs; as a result, two parent

sets Gi, Gj will still be correlated due to the acyclicity condition. This leads to the

posterior being highly complex and multi-modal in general.

6.1.2 Statistical and Causal Uncertainty

Where does the uncertainty over graphs in the posterior come from? Firstly, as we

only have a finite dataset D, many graphs could have generated the dataset, albeit

with different (positive) likelihoods. The posterior belief is given by the prior belief of

a graph, reweighted by the likelihood of the graph given the observed data. We call

this statistical uncertainty. However, there may be a second source of uncertainty that

does not go away even in the limit of infinite data. This occurs when two different

graphs have the same marginal likelihood p(V |G), and thus we cannot distinguish

them with certainty from observational data. We call this causal uncertainty.

123

In structure learning, this is known as non-identifiability1, and occurs when

two different graphs imply the same conditional independences in the data; the

graphs form equivalence classes known as Markov equivalence classes (MECs), which

cannot be distinguished from any amount of data without additional (e.g. parametric)

assumptions. Even for certain parametric families of distributions, such as discrete

BNs and linear Gaussian BNs, different graphs G,G′ in a MEC can generate the same

observed distributions i.e. p(V |G) ≡ p(V |G′). Of course, if we were only interested

in the observational distribution that the graphs induced, then this would not be a

problem. However, causal quantities such as interventional probabilities differ between

members of an equivalence class.

This is an example of the more general problem of model identifiability in frequentist

statistics [21], where non-identifiability precludes us from determining the correct

model. In Bayesian statistics, however, non-identifiability is not, conceptually, an

issue, as the posterior distribution is well-defined regardless of whether the likelihood

may be the same for different hypotheses (e.g. graphs) [106, 194]. This is because

the prior provides information on hypotheses even when the likelihood is (partially)

uninformative. For example, given infinite data, a Bayesian posterior would assign

weight to each graph in a MEC proportional to their weights in the prior. However,

this comes at two practical costs. Firstly, the posterior can become highly reliant on

the information contained within the prior. Secondly, even when it is not important

to distinguish between equivalent models that have different parameterizations, this

can lead to very multi-modal posteriors (i.e. posteriors with multiple local maxima),

which are notoriously difficult to infer; this has been observed in Bayesian mixture

models [175, 118], and Bayesian neural networks [82], to name a couple of examples.

For the first problem, a recent study [55] examined a number of possible prior

choices for the Bayesian structure learning problem, finding that sparsity favouring

priors (i.e those which assign lower probability to DAGs with more edges) strike a good

balance in practice, assigning greater probability to DAGs with smaller in-degrees

(number of incoming edges to a variable) a priori but also demonstrating the ability to

1Note that in causal structure learning, identifiability is typically used to mean identifiability of
the causal graph, rather than identifiability of a specific causal inference query given the graph as is
the case in causal inference.

124

+
∅

{1, 2, 3, 4}

× × × × × ×
+ + + + + + + + + + + +
∅

{1, 2}
{1, 2}
{3, 4}

∅
{2, 3}

{2, 3}
{1, 4}

∅
{1, 4}

{1, 4}
{2, 3}

∅
{1, 3}

{1, 3}
{2, 4}

∅
{2, 4}

{2, 4}
{1, 3}

∅
{3, 4}

{3, 4}
{1, 2}

0.37 0.13 0.4 0.02 0.05 0.03

Figure 6.2: Width-limited approximation to posterior distribution

adapt to larger in-degrees given enough data. In particular, we will use the Fair prior

[62], which assigns pprior(G) ∝
∏

i=1 1/
(
d

|Gi|

)
, where

(
d

|Gi|

)
is a binomial coefficient, and

Gi is the set of parents of node Vi. Intuitively, this prior is uniform over the number

of parents that a node has. As for the second problem of multi-modal posteriors, we

will introduce in the next sections a hierarchical decomposition and approximation of

the posterior that enables us to efficiently express these multi-modal distributions.

6.1.3 Hierarchical Conditional Independences

In this chapter, we consider Bayesian structure learning over the joint space of

topological orders and DAGs, where each order σ is a permutation of {1, ..., d}. Let

σ<i be the set of variables preceding variable i in σ. We say that a parent set Gi is

consistent with an order σ if Gi ⊆ σ<i, and that graph G is consistent if all of its

parent sets are consistent (written G |= σ). It follows that any DAG is consistent with

at least one order, and further any directed graph consistent with an order must be

acyclic. Thus we can specify a joint distribution over orders and DAGs as follows:

p(σ,G|D) ∝ pG(G|D)1G|=σ ∝ pprior(G)plh(D|G)
d∏
i=1

1Gi⊆σ<i

Notice that the marginal posterior over graphs p(G|D) =
∑

G p(σ,G|D) is not the

same as the original posterior pG(D|G) ∝ pprior(G)plh(D|G), as p will assign higher

relative probability graphs which are consistent with more orders as compared to pG.

This imparts a bias for learning with respect to pG. On the other hand, the space of

orders is much smaller than the space of DAGs, enabling more efficient exploration of

125

the distribution [62]. In the case where the prior and marginal likelihood are modular,

the resulting distribution p is said to be order-modular. In this case, pG(G) factorizes

as pG(G) =
∏

i pGi
(Gi), giving:

p(σ,G) ∝ pG(G)1G|=σ =
d∏
i=1

pGi
(Gi)1Gi⊆σ<i (6.12)

where we have now omitted the dependence on the dataset and write p(σ,G) for the

Bayesian posterior. Unfortunately, the representation of the order-modular distribution

in Equation 6.12 is not tractable: we cannot easily sample from it, nor can we efficiently

deduce, for instance, the marginal probability of a given edge. Our goal is thus to

obtain a representation approximating this distribution which does possess tractability

properties. The key idea is that by exploiting exact conditional independences (CIs)

in the distribution, we can hierarchically break the approximation of the original

distribution into smaller subproblems.

To illustrate this, we first define some notation. Given any subset S ⊆ {1, ..., d}

of the variable indices, let σS denote an ordering (permutation) over S, and GS ≜

{Gi : i ∈ S} denote the set of parent sets for each variable Vi for i ∈ S. Now,

suppose we partition the set of indices {1, ..., d} into two subsets (S1, S2), and consider

conditioning on the event that all indices in S1 come before S2 in the ordering, that

is, the order partitions as σ = (σS1 , σS2). In this case, the conditional distribution can

be written as:

p(σ,G | σ = (σS1 , σS2)) ∝
d∏
i=1

pGi
(Gi)1Gi⊆(σS1

,σS2
)<i (6.13)

=
∏
i∈S1

pGi
(Gi)1Gi⊆σ<i

S1

∏
i∈S2

pGi
(Gi)1Gi⊆S1∪σ<i

S2

(6.14)

In other words, conditioning on the order partition, variables corresponding to indices

in S1 can only (potentially) have parents also in S1, while variables corresponding to

indices in S2 can have parents in either S1 or S2. Notice that the distribution has

factorized into two terms, which respectively mention only (σS1 , GS1) and (σS2 , GS2).

This motivates defining the following function over (σS2 , GS2), which intuitively is the

(unnormalized) density of (σS2 , GS2) given that S1 (and only S1) can be parents of

variables in S2:

126

Definition 6.1 (Partial Distributions). Given any disjoint subsets S1, S2 ⊆ {1, ..., d},

we define the partial distribution:

p̃S1,S2(σS2 , GS2) ≜
∏
i∈S2

pGi
(Gi)1Gi⊆S1∪σ<i

S2

(6.15)

The full posterior p(σ,G) corresponds to a special case of this definition where

S1 = ∅ and S2 = {1, ..., d}; then p(σ,G) = p̃∅,{1,...,d}(σ,G). However, this generalized

definition of partial distributions allows us to additionally express the factorization

above purely in terms of these partial distributions:

p(σ,G | σ = (σS1 , σS2)) = p∅,{1,...,d}(σ,G | σ = (σS1 , σS2)) (6.16)

∝ p̃∅,S1(σS1 , GS1)p̃S1,S2(σS2 , GS2) (6.17)

Thus, we have shown that the distribution on orders and graphs (σ,G) can be

decomposed into a product of two distributions on (σS1 , GS1) and (σS2 , GS2) respec-

tively, conditional on σ = (σS1 , σS2), i.e. the event that all indices in S1 come before

S2 in the ordering. Using these conditional independences, we can exactly represent

the order-modular posterior, by summing over mutually exclusive partitions of the

variable indices {1, ..., d}. For example, when d = 4, we have that:

p(σ,G) =
∑

S1∈{(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)}
S2={1,2,3,4}\S

p(σ = (σS1 , σS2))p(σ,G | σ = (σS1 , σS2))

(6.18)

=
∑

S1∈{(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)}
S2={1,2,3,4}\S

p(σ = (σS1 , σS2))p̃∅,S1(σS1 , GS1)p̃S1,S2(σS2 , GS2)

(6.19)

In Figure 6.2, we represent this expression as a decomposable, smooth and de-

terministic probabilistic circuit, where each sum node is labelled with its associated

S1, S2. The weights of the edges then correspond to the probability of each parti-

tion p(σ = (σS1 , σS2)). As we will later see, we can exploit these circuit properties

to tractably reason about posterior over graphs. In higher dimensions, however, it

will be infeasible to represent the posterior in this way; for example, if we consider

partitions which split the variables into two equally sized sets, the number of possible

127

partitions is given by
(
d
d/2

)
. On the other hand, many of these partitions will have very

low proability under the posterior. This motivates the idea of using a width-limited

approximation, where we only keep a subset of the possible partitions.

The second component that enables us to scale to higher dimensions is to hier-

archically decompose the posterior distribution. In Equation 6.17, we showed how

to decompose the distribution over orders on {1, ..., d}, to distributions on orders

on S1 and S2. We now present the generalization of this result, which allows us

to decompose p̃S1,S2(σS2 , GS2) for any disjoint sets S1, S2. Let us consider arbitrary

disjoint subsets S1, S2 ⊆ {1, ..., d}, and the distribution p̃S1,S2(σS2 , GS2). We can apply

similar reasoning to conditionally decompose p̃S1,S2(σS2 , GS2) into distributions over

S21, S22, where S21, S22 partition S2, given by the following Proposition:

Proposition 6.1 (Hierarchical Conditional Independences). Let p(σ,G) ∝ pG(G)1G|=σ

be an order-modular distribution. Suppose that S1, S2 are any disjoint subsets of the

variables {1, ..., d}, and let (S21, S22) be a partition of S2. Then the following CI holds:

p̃S1,S2(σS2 , GS2 |σS2 = (σS21 , σS22)) ∝ p̃S1,S21(σS21 , GS21)p̃S1∪S21,S22(σS22 , GS22)

These conditional independencies suggest an approximation strategy: select K par-

titions (S1, S2) of {1, ..., d} to form the approximation and, conditional on a partition,

then independently approximate the resulting distributions p̃∅,S1(σS1 , GS1), p̃S1,S2(σS2 , GS2),

which are simpler problems of dimensions |S1|, |S2|, respectively. The decomposition

process can be viewed as a rooted tree, where we alternate between nodes that select

partitions, and those which decompose the conditional distribution. Using Proposition

6.1, this can be done recursively, until we obtain as a base case distributions where S2

is a singleton {i}, where:

p̃S1,{i}(σ{i}, Gi) = pGi
(Gi)1Gi⊆S1∪σ<i

{i}
= pGi

(Gi)1Gi⊆S1 (6.20)

Note that σ{i} is an order over a single item, and so can be considered as a constant.

This base case then corresponds to the posterior distribution over Gi (parents of

variable Vi), conditional on Gi being a subset of S1. In general, for each i ∈ {1, ..., d},

there will be many different base distributions p̃S1,{i}(σ{i}, Gi) over Gi, indexed by

different sets S1 ⊆ {1, ..., d} \ {i}.

128

+
∅

{1, 2, 3, 4}

× × ×
+ + + + + +
∅
{1, 2}

{1, 2}
{3, 4}

∅
{2, 3}

{2, 3}
{1, 4}

∅
{1, 4}

{1, 4}
{2, 3}

× × × ×
L L L L L L L L
∅
{1}

{1}
{2}

∅
{2}

{2}
{1}

{1, 2}
{3}
{1, 2, 3}
{4}

{1, 2}
{4}
{1, 2, 4}
{3}

0.4 0.15 0.45

0.7 0.3 0.5 0.5

(a) Regular OrderSPN, with expansion factors K =
(3, 2). Each sum/leaf node is labelled with its associ-
ated (S1, S2). Only one expansion beyond the first
level is shown for clarity.

(S1, S2)
Example
Orders

Example
Graph

(∅, {1, 2, 3, 4})
(1, 2, 4, 3)
(2, 3, 1, 4)
(4, 1, 3, 2)

1 2

3 4

({1, 2}, {3, 4}) (3, 4)
(4, 3)

1 2

3 4

({1, 2}, {4}) (4)

1 2

4

(b) Example orders and
graphs for 3 sum/leaf nodes.
Graphs only include parent
sets of S2 (filled) variables.

Figure 6.3: Example of regular OrderSPN for d = 4. Best viewed in color.

6.2 Tractable Representations for Bayesian Struc-

ture Learning

6.2.1 OrderSPNs

Inspired by the above discussion on approximating order-modular posteriors, we

now formally propose a class of tractable circuit models, called OrderSPNs, that

express distributions over orders, and directed acyclic graphs respecting those orders.

OrderSPNs exploit hierarchical conditional independence assumptions (product nodes)

in order to represent distributions over orders and graphs more compactly.

Definition 6.2 (OrderSPN). An OrderSPN C is a probabilistic circuit over (σ,G), in

which each node N is associated with a tuple ρ(N), and which satisfies the following

structure:

• Leaf: Each leaf node L is associated with ρ(L) = (S1, {i}), for some subset S1

of {1, ..., d} and i /∈ S1, and has scope ϕ(L) = (σ{i}, Gi).

In addition, the leaf node distribution pL(σ{i}, Gi) must have support only over

graphs Gi ⊆ S1, i.e. pL(σ{i}, Gi) = 0 for Gi ̸⊆ S1.

• Sum: Each sum node T is associated with ρ(T) = (S1, S2), where S1, S2 are

disjoint subsets of {1, ..., d} with |S2|> 1, and has scope ϕ(T) = (σS2 , GS2).

129

It has KT children and weights ωT,i for i = 1, ..., KT , where the ith child is

a product node P associated with ρ(P) = (S1, S21,i, S22,i) for some partition

(S21,i, S22,i) of S2.

• Product: Each product node P is associated with ρ(P) = (S1, S21, S22), where

S1, S21, S22 are disjoint subsets of {1, ...d}, and has scope ϕ(P) = (σS21∪S22 , GS21∪S22),

where σS21∪S22 = (σS21 , σS22).

It has two children, where the first child is associated with (S1, S21), and the

second with (S1 ∪ S21, S22). These children are either sum nodes or leaves.

We can interpret each sum (or leaf) node T associated with (S1, S2) as representing

a distribution over DAGs over variables S2, where these variables can additionally have

parents from among S1. In other words, every sum node represents a (smaller) Bayesian

structure learning problem over a set of variables S2 and a set of potential confounders

S1. Each product node then represents a product of independent distributions over

DAGs/orders over 1) S21, where the variables can additionally have parents from

among S1; and 2) S22, where the variables can additionally have parents from among

S1 ∪ S21. The topology of the OrderSPN (in particular, the splits of S2 into S2,1 and

S2,2 at a product node) induces the distribution over orders.

In practice, we propose to organize the OrderSPN into alternating layers of sum

and product nodes, starting with the root sum node. In the jth sum layer, we create a

fixed number Kj of children for each sum node T in the layer. Further, for each child i

of each sum node T , we choose (S21,i, S22,i) such that |S21,i|= ⌊ |S2|
2
⌋, |S22,i|= ⌈ |S2|

2
⌉, and

further require that the partitions are distinct for different children i of T . Under these

conditions, the OrderSPN will have ⌈log2(d)⌉ sum (and product) layers. This allows us

to easily control the size of the representation, and further enables efficient tensorized

computation over layers. We call such OrderSPNs regular, and the associated list K

of numbers of children for each layer are called the expansion factors. An example of

a regular OrderSPN is shown in Figure 6.3. At the top sum layer, we create a child

for K1 = 3 different partitions of {1, 2, 3, 4} into equally sized subsets, each of which

has an associated weight. In the second sum layer, we set K2 = 2 partitions for each

sum nodes. Sum and product layers alternate until we reach the leaf nodes.

130

The leaf nodes L represent distributions over some column of the graph: if L is

associated with (S1, i), then it expresses a distribution over the parents Gi of variable

i. The interpretation of S1 is that this distribution should only have support over sets

Gi ⊆ S1. This restriction ensures that OrderSPNs are consistent, in the sense that

they represent distributions over valid (σ,G) pairs (in particular, all graphs in the

support of an OrderSPN are guaranteed to be acyclic):

Proposition 6.2 (Consistency of Graph and Order). Let C be an OrderSPN. Then,

for all pairs (σ,G) in the support of C (i.e. pC(σ,G) > 0), it holds that G |= σ.

By design, (regular) OrderSPNs satisfy the standard PC properties that make them

an efficient representation for inference, which we show in the following Proposition.

In the following sections, we will exploit these properties for query computation, as

well as for learning the PC parameters.

Proposition 6.3 (Properties of OrderSPNs). Any OrderSPN is smooth and decom-

posable, and regular OrderSPNs are additionally deterministic.

The key advantage of OrderSPNs is in their compactness, or expressive efficiency,

obtained by encoding hierarchical conditional independence assumptions. For regular

OrderSPNs, we can precisely characterize the compactness of the representation, in

terms of the expansion factors.

Proposition 6.4 (Compactness of OrderSPNs). Given a regular OrderSPN C over

d = 2l variables, with l sum (and product) layers and expansion factors (K0, ...Kl−1)

as above, then we have that:

• The size (number of edges) of C is given by:
∑l

i=1(2
i + 2i−1)

∏
j<iKj

• The size (number of orders) of the support of C is given by:
∏l−1

i=0K
2i

i

For example, if we used the same expansion factor K for all layers, then the

size of the circuit is O(K l), while the size of the support is O(Kd). In other words,

OrderSPNs can be exponentially more compact than maintaining a list/sample of

orders. Unfortunately, Kd is still much less than the super-exponential number of

possible orders, meaning that practically sized OrderSPNs will only have support on a

131

small subset of possible orders. We will later use OrderSPNs as a variational family for

approximating the posterior distribution. The limited support of the OrderSPN is the

price that is paid for tractability and respecting the acyclicity constraint; we will soon

see how, compared to other intractable variational families for the Bayesian structure

learning problem [110, 40], this leads to advantages both in terms of reasoning and

learning.

6.2.2 Reasoning on Leaf Distributions

We now have a class of models, OrderSPNs, for modelling uncertainty over causal

graphs. Further, OrderSPNs satisfy the properties of decomposability, smoothness,

and determinism, which are sufficient for tractable marginal and MAP inference in

PCs. However, this overlooks the assumption in PCs that reasoning on the functions

represented by the leaf nodes is tractable (in constant time). In the case of OrderSPNs,

each leaf node represents a different distribution on the parent set of a variable, and

it is not at all obvious that e.g. marginal or MAP queries on these distributions can

be computed efficiently. Thus, we investigate in this section how to implement these

distributions efficiently.

Given a leaf node L associated with ρ(L) = (S1, i), corresponding to a distribution

on Gi, the definition of OrderSPNs imposes the restriction that the distribution must

have support only on graphs Gi ⊆ S1. The question is then how to select a leaf

node distribution that best approximates the posterior over orders/graphs, within

these constraints. Given that we are approximating an order-modular distribution

p(σ,G) ∝
∏

i pGi
(Gi)1Gi⊆σ<i , the natural choice of (unnormalized) leaf distributions

is:

pL(Gi) = pS1,{i}(Gi) =
pGi

(Gi)1Gi⊆S1∑
Gi⊆S1

pGi
(Gi)

(6.21)

That is, we simply reallocate the weight of the disallowed parent sets Gi, in proportion

to the probability of each of the allowed parent sets. We will provide formal justification

for this choice in Proposition 6.7 when deriving the evidence lower-bound (ELBO) for

the OrderSPN as a variational approximation to the posterior.

Unfortunately, as the dimension d increases, evaluating the density pS1,{i}(Gi)

is computationally challenging due to the (exponential) sum over subsets in the

132

normalizing constant. Further, different leaves of the OrderSPNs (for the same

variable i) will in general have different sets S1, due to the conditions on variable

ordering imposed by the OrderSPN structure. Thus, following previous work [62, 96],

we globally limit the parents of variable i to a candidate set Ci. That is, for each leaf

node for variable i with distribution pS1,{i}(Gi), we replace S1 with S1 ∩ Ci. While

this inevitably restricts the coverage of the distribution over DAGs, we can choose the

candidate parents Ci in such a way as to preserve as much posterior mass as possible2.

In contrast to previous work, we are interested not just in the densities/normalizing

constants, but also more complex forms of inference; as we will shortly see, this

restriction also enables us to design precomputation schemes that then allow for these

inference queries on pS1,{i}(Gi) to be answered efficiently for any S1 ⊆ Ci.

In order to be able to compute inference queries on the overall distribution over

(σ,G) efficiently, we require that the corresponding inference queries for the leaf

distributions are tractable. In particular, we will be interested in three types of

tasks: marginal/conditional inference, MAP inference, and (conditional) sampling. To

formalize this, let ai,j be a Boolean variable indicating whether j ∈ Gi, i.e. j is a parent

of i. Further, let ci be any logical conjunction of the corresponding positive or negative

literals, i.e. ai,j or ¬ai,j. For instance, ci = ai,0 ∧ ai,1 ∧ ¬ai,2 represents the event that

0, 1 are parents of i, but not 2. Then, the task of marginal inference is to evaluate the

probability pS1,{i}(ci = 1). Conditional inference is the task of pS1,{i}(ci = 1|c′i = 1) for

two conjunctions ci, c
′
i. MAP inference is maxGi

pS1,{i}(Gi|ci = 1), while conditional

sampling is the task of sampling from pS1,{i}(Gi|ci = 1).

The key component is to precompute the following function, previously proposed

in the Appendix of [188] (for a different purpose):

fi(Ai, A
′
i) =

∑
Gi|=

(∧
j∈Ai

ai,j∧
∧

j∈A′
i
¬ai,j

) pGi
(Gi) (6.22)

whereAi, A
′
i are disjoint subsets of Ci. Intuitively, this is the (unnormalized) probability

that all variables in Ai are parents of i, and all those in A′
i are not parents of i.

2[188] studied a number of different strategies for selecting these candidate parents; we use the
Greedy heuristic, which was found empirically to be most effective.

133

This function can be precomputed in time and space O(3|Ci|) as follows. In the

base case where Ai, A
′
i partition Ci, then we simply have:

fi(Ai, A
′
i) = pGi

(Ai) (6.23)

since Ai, A
′
i fully specify the parents of i. In any other case, we have the recurrence:

fi(Ai, A
′
i) = fi(Ai ∪ {b}, A′

i) + fi(Ai, A
′
i ∪ {b}) (6.24)

for any b ∈ Ci \ (Ai ∪ A′
i). This can be seen from the definition of fi; the RHS

corresponds to conditioning on the cases where b either is or is not a parent of i.

Notice that, for each Ai, A
′
i, we need just a constant-time addition; thus the overall

complexity is given by the number of partitions of Ci into three subsets, i.e. O(3|Ci|).

Now, let ci be any conjunction of (positive or negative) literals of the atoms

{ai,j : j ∈ Ci}, i.e. a partial specification of which edges can and can’t be included.

We now propose methods for performing marginal, conditional, MAP, and sampling

inferences:

• Marginal/Conditional: For distribution pS1,{i}, the marginal for formula ci is

given by:

pS1,{i}(ci = 1) =

∑
Gi|=ci pGi

(Gi)1Gi⊆S1∑
Gi⊆S1

pGi
(Gi)

=

∑
Gi|=(ci∧

∧
j∈Ci\S1

¬ai,j) pGi
(Gi)∑

Gi|=
∧

j∈Ci\S1
¬ai,j pGi

(Gi)

(6.25)

where we have expressed the condition that Gi ⊆ S1 as the logical formula∧
j∈Ci\S1

¬ai,j . Notice that both the numerator and denominator are of the form

of the precomputed fi, so we can compute the marginal probability simply by

two lookups, i.e. O(1) per query.

Any conditional probability pS1,{i}(ci = 1|c′i = 1) can be computed from marginals

as pS1,{i}(ci = 1|c′i = 1) =
pS1,{i}(ci∧c

′
i=1)

pS1,{i}(c
′
i=1)

.

• MAP: For distribution pS1,{i}, the MAP for formula ci is given by:

pS1,{i}(ci = 1) = max
Gi

pS1,{i}(Gi|ci = 1) = max
Gi|=ci

pS1,{i}(Gi|ci = 1) (6.26)

=
maxGi|=ci∧

∧
j∈Ci\S1

¬ai,j pGi
(Gi)∑

Gi|=ci∧
∧

j∈Ci\S1
¬ai,j pGi

(Gi)
(6.27)

134

The maximum is over Gi satisfying a logical conjunction, similarly to how fi

expresses sums over Gi satisfying logical conjunctions. Thus, we propose to

precompute another function fmax
i , which is entirely similar to fi except that

the recurrence is given by:

fmax
i (Ai, A

′
i) = max(fmax

i (Ai ∪ {b}, A′
i), f

max
i (Ai, A

′
i ∪ {b})) (6.28)

Analogously to fi, f
max
i computes the maximal probability pGi

(Gi) for all Gi

satisfying the logical formula. Thus, once this function is precomputed, we can

compute any MAP query through a lookup of fmax
i and a lookup of fi, i.e. O(1)

per query.

• (Conditional) Sampling: Given the condition ci, we would like to sample Gi

from pS1,{i}(Gi|ci = 1). Let B ⊆ Ci contain the variables that ci does not specify

(as either definitely being a parent, or definitely not being a parent).

Then, given any ordering b1, ...bK of the elements of B, we can sample whether

bk is present sequentially. When sampling bk, let d
(k)
i be a conjunction formula

representing the sampling of b1, ...bk−1, e.g. di = ai,b1 ∧¬ai,b2 ∧ ...∧¬ai,bk−1
. Then

we have:

pS1,{i}(abk = 1|d(k)i = 1, ci = 1) = pS1,{i}(abk = 1|d(k)i ∧ ci = 1) (6.29)

This takes the form of a conditional probability, which we can compute in

constant time. We must apply this operation K = O(|Ci|) times, which leads to

an overall complexity of O(|Ci|) per sampling query.

To summarize, we can perform a precomputation with O(d3|Ci|) time and space

complexity to obtain the functions/tables fi, f
max
i , after which all of these queries

require just a O(1) lookup, except (conditional) sampling, which takes time O(|Ci|).

The tractability of inference queries on the leaf nodes of the OrderSPN is crucial to

enable tractability of queries for the OrderSPN as a whole, which we investigate in

the next section.

135

6.2.3 Tractable Queries on OrderSPNs

We now turn to reasoning over the OrderSPN as a whole. In Table 6.1, we show a

collection of queries, together with their time and space complexity (where M is the

size of the OrderSPN). The first four queries correspond purely to the distribution

over orders and graphs pC(σ,G) represented by the OrderSPN. The algorithms (and

complexity) for these queries are a simple application of standard inference routines

on decomposable, smooth and deterministic probabilistic circuits. On the other hand,

the last two involve reasoning about the joint distribution over graphs and variables,

and in particular causal reasoning about the effect of interventions. In the following,

we describe how to compute each of these queries, together with their interpretation

in the context of structure learning, when the OrderSPN is an approximation to the

posterior. Below we will write pC(G) :=
∑

σ pC(σ,G) to denote the marginal of G in

pC(σ,G).

Marginal and conditional inference Let ci, c
′
i be conjunctions over the graph

column Gi. Then the marginal inference problem is to compute pC(
∧d
i=1 ci). This

can be interpreted as the probability of any arbitrary combination of edges (direct

causal relations) simultaneously being present. As marginal/conditional inference on

decomposable and smooth PCs is tractable in linear time, and since marginal inference

for the individual leaves requires just a constant-time lookup, the overall complexity

is O(M).

MAP inference MAP inference is the problem of finding the most likely instantia-

tion of the variables, given some evidence
∧d
i=1 ci. More precisely, we wish to compute

maxσ,G pC(σ,G|
∧d
i=1 ci), which allows us to, for instance, find the most likely extension

of a partially specified DAG. This is tractable in linear time for regular OrderSPNs

as they are deterministic. As MAP inference on the individual leaves requires just

a constant-time lookup, the overall complexity is once again O(M). Note, however,

that computing maxG pC(G|
∧d
i=1 ci) (i.e. with order marginalized out) is not tractable.

This would require the sum nodes to be marginally deterministic with respect to the

136

Query Time Complexity Space Complexity

Marginal/Conditional O(M) O(M)
MAP O(M) O(M)
Sampling O(d2) O(d2)
Conditional Sampling O(d2 +M) O(d2 +M)
(Interventional) Data Density O(dM) O(M)
Linear Pairwise Causal Effects O(d3M) O(d2M)

Table 6.1: Per-query complexity for OrderSPNs, for d variables and OrderSPN of size
M

graph variables, which does not hold for OrderSPNs (for example, the graph with no

edges is consistent with any order).

Sampling Unconditional sampling from the OrderSPN is straightforward and effi-

cient; we traverse the circuit top-down, randomly choosing one child of each sum-node

in proportion to its weight, and all children of each product-node, until we reach the

leaf nodes, taking linear time in d. Coupled with the cost of sampling the leaf-node

distributions, the overall complexity is O(dmaxi|Ci|) per sample. Conditional sam-

pling is more involved, and requires an O(M) bottom-up computation which updates

the OrderSPN weights/probabilities according to the evidence, before sampling via

top-down traversal [186].

Data Density We now turn to the computation of other types of queries specific to

the causal reasoning setting. Whereas the previous queries were concerned entirely

with the posterior distribution over graphs (approximated by the OrderSPN), here we

are concerned with the posterior predictive distribution over the variables, defined by:

p(V |D) =
∑
G

p(G|D)plh(V |G) = EG∼p(G|D)[plh(V |G)] (6.30)

where p(G|D) is the posterior over graphs, and plh(V |G) is the marginal likelihood.

Given the OrderSPN pC(G) as an approximation to p(G|D), we can approximate the

posterior predictive as:

pC(V |D) :=
∑
G

pC(G)plh(V |G) (6.31)

137

Recall that the marginal likelihood plh(V |G) takes the form plh(V |G) =
∏

i plh,i(Vi|Gi).

This factorized distribution enables us to express the posterior predictive of any sum

node in the OrderSPN, and any product node in the OrderSPN, as a function of the

posterior predictives of their children. More formally, for any node N in the OrderSPN

with scope ϕ(N) = (σS, GS), define pN(V |D) :=
∑

GS
pN(GS)

∏
i∈S plh,i(Vi|Gi).

Now, let T be a sum node associated with ρ(T) = (S1, S2), and with children

N1, ...NK with corresponding weights ω1, ..., ωK . Then we have that:

pT (V |D) =
∑
GS2

pT (GS2)
∏
i∈S2

plh,i(Vi|Gi) =
∑
GS2

k∑
i=1

ωipNi
(GS2)

∏
i∈S2

plh,i(Vi|Gi) (6.32)

=
k∑
i=1

ωi
∑
GS2

pNi
(GS2)

∏
i∈S2

plh,i(Vi|Gi) =
k∑
i=1

ωipN(V |D) (6.33)

For product nodes P associated with ρ(P) = (S1, S21, S22), where the first child N1

is associated with ρ(N1) = (S1, S21) and the second N2 is associated with ρ(N2) =

(S1 ∪ S21, S22), we have that:

pP (V |D) =
∑
GS2

pP (GS2)
∏
i∈S2

plh,i(Vi|Gi) =
∑
GS2

pN1(GS21)pN2(GS22)
∏
i∈S2

plh,i(Vi|Gi)

(6.34)

=
∑
GS21

∑
GS22

(
pN1(GS21)

∏
i∈S21

plh,i(Vi|Gi)

)(
pN2(GS22)

∏
i∈S22

plh,i(Vi|Gi)

)
(6.35)

= pN1(V |D)pN2(V |D) (6.36)

This means that we can compute the posterior predictive for a circuit by performing

a standard evaluation of the circuit. The caveat is that we need to be able to

compute the leaf posterior predictives given by pL(V |D) =
∑

Gi
pL(Gi)plh,i(Vi|Gi) =

EpL [plh,i(Vi|Gi)] when ρ(L) = (S1, {i}). Unfortunately, it is not possible to compute

this exactly in constant time. Instead, we propose to approximate the expectation

with a Monte-Carlo estimate by sampling parent sets from pL. As each sample from a

leaf node takes time O(|Ci|), the overall time complexity is O(dM) (assuming that

the sample size is held constant).

The above derivation concerned evaluating the posterior predictive observational

distribution. However, it is straightforward to extend the method to posterior predictive

138

interventional distributions. For example, if we wanted to intervene to set a variable

Vi to a specific value v′i, then we can compute the posterior predictive interventional

distribution using the same method as above, but replacing the evaluation of pL(V |D)

with 1Vi=v′i for any leaf node with ρ(L) = (S1, {i}). This reflects the fact that we have

“fixed” the mechanism for Vi by intervention.

In other words, we can tractably evaluate interventional probabilities/densities for

a complete instantiation of V , averaged over the (approximate posterior) distribution

over graphs given by the OrderSPN. Given this, we might wonder whether it is possible

to evaluate more complex quantities that involve reasoning over the interventional

distribution, such as interventional marginals. Unfortunately, this is not possible in

general, for similar reasons to those we discussed in the previous chapter; namely, that

the same probabilistic model cannot be tractable for all causal graphs. However, it

turns out that there is a specific case where we can tractably reason about pairwise

causal effects, which we explain next.

Causal effects In linear Gaussian Bayesian networks the distribution is given by the

structural equation V = V B + ϵ, where ϵ ∼ Gaussian(b,Σ) represents the Gaussian

noise. Here, the parameters of the Bayesian network consist of the edge coefficients

B ∈ Rd×d, the bias term b ∈ Rd, and the diagonal matrix of noise variances Σ ∈ Rd×d
≥0 .

For a given DAG G, we have Bij = 0 for all i, j such that i is not a parent of j in G.

In this setting, one of the most important quantities for causal inference is pairwise

causal effects, first studied in [197] as the“method of path coefficients”. In particular,

for a given graph G and weights B, the causal effect of Vi on Vj, written Eij(B), is

given by summing the weight of all directed paths from i to j, where the weight of a

path is given by the product of the weights of the edges along that path. Notice that,

in cases where i is not an ancestor of j, Eij(B) = 0. Now, a priori, when we do not

know the graph or weights, the causal effect is a random variable given by:

Eij(B) :=
∑

π∈F ({1,...,d}\{i,j})

Bi,π1Bπ|π|,j

|π|−1∏
i=1

Bπi,πi+1
(6.37)

where F (S) is the family of all ordered subsets of the variables S.

139

Pairwise causal effects are often of great practical interest, as they allow us to

understand, on average, how increasing or decreasing a variable Vi by intervention (e.g.

dosage of a treatment) affects another variable Vj (e.g. patient outcome). For a given

causal graph, evaluating this effect is possible in O(d3) time. However, if we do not

know the causal graph, then from the Bayesian perspective, the natural approach is to

employ Bayesian model averaging to estimate the causal effect, in the hope that the

result will be more robust than if we committed to a single (e.g. most likely) graph.

To perform Bayesian model averaging, we take the expectation of Eij with respect to

posterior over graphs G ∼ p(G|D), and then with respect to the posterior over edge

coefficients B ∼ p(B|G,D) given the graph.

BCE(i, j) := EG∼p(G|D)

[
EB∼p(B|G,D)[Eij(B)]

]
(6.38)

Given the approximate posterior G ∼ pC(G), we can approximate this as:

BCE(i, j)(C) := EG∼pC(G)

[
EB∼p(B|G,D)[Eij(B)]

]
(6.39)

Proposition 6.5 (Pairwise Causal Effects). Given an OrderSPN representation C

of the distribution over DAGs, the matrix of all pairwise Bayesian averaged causal

effects BCE(i, j)(C) can be computed in O(d3M) time and O(d2M) space, where M is

the size of the OrderSPN.

Proof. Recall that all nodes N in the OrderSPN can be associated with the variable

subsets ρ(N) = (S1, S2), and represent a distribution over the set of edges GS2 (in the

case of product nodes, we define S2 = S21 ∪ S22). Thus, they also define a distribution

over causal effects for any distinct i ∈ S1 ∪ S2, j ∈ S2, given by:

E
(N)
ij (BS2) =

∑
π∈F (S2\{j})

Bi,π1Bπ|π|,j

|π|−1∏
i=1

Bπi,πi+1
(6.40)

Notice that this only counts paths from i to j which immediately enter (and stay in)

S2; thus all edges are in GS2 . As such, this causal effect depends only on BS2 . By

taking the expectation, we can similarly define Bayesian averaged causal effects for

node N :

BCE(i, j)(N) := EGS2
∼pN (GS2

)

[
EB∼p(BS2

|GS2
,D)[E

(T)
ij (BS2)]

]
(6.41)

140

Given this, we now show how it is possible to decompose the computation of

BCE(i, j) through the structure of the OrderSPN.

Given a sum node T , with children nodes N1, .., NK and corresponding weights

ω
(T)
1 , ...ω

(T)
K we simply have that:

BCE(i, j)(T) = EGS2
∼pT (GS2

)

[
EB∼p(BS2

|GS2
,D)[E

(T)
ij (BS2)]

]
(6.42)

=
∑

c=1,...,K

ω(T)
c EGS2

∼pNc (GS2
)

[
EB∼p(BS2

|GS2
,D)[E

(Nc)
ij (BS2)]

]
(6.43)

=
∑

c=1,...,K

ω(T)
c BCE(i, j)(Nc) (6.44)

where we have used linearity of expectations to bring the sum outside.

Given a product node P , then it has two children N1, N2, which are associated

with variable subsets ρ(N1) = (S1, S21), ρ(N2) = (S1 ∪ S21, S22), respectively. We now

consider three separate cases, depending on where i ∈ S1 ∪ S2, j ∈ S2 are located

within the subsets.

• If i ∈ S22, j ∈ S21, then BCE(i, j)(P) = 0 since by construction edges (and by

extension paths) from S22 to S21 are disallowed.

• If i ∈ S1 ∪S21 and j ∈ S21, or alternatively i ∈ S22 and j ∈ S22, then notice that

all paths between i, j must stay within S21 or S22 respectively, since there are no

edges from S22 to S21. Thus, we have that E
(P)
ij = E

(N1)
ij or E

(N2)
ij (respectively)

and

BCE(i, j)(P) = BCE(i, j)(N1) or BCE(i, j)(N2) (6.45)

• In the final case, i ∈ S1 ∪ S21 while j ∈ S22. Here we must consider all possible

paths between i and j. To do so, we will condition on the last variable in S1∪S21

141

(“exit-point”) k along a path. Then we have:

E
(P)
ij =

∑
π∈F (S2\{j})

Bi,π1Bπ|π|,j

|π|−1∏
i=1

Bπi,πi+1
(6.46)

=
∑

k∈F (S21)

 ∑
π∈F (S21\{k})

Bi,π1Bπ|π|,k

|π|−1∏
i=1

Bπi,πi+1

 (6.47)

 ∑
π∈F (S22\{j})

Bk,π1Bπ|π|,j

|π|−1∏
i=1

Bπi,πi+1

 (6.48)

=
∑

k∈F (S21)

E
(N1)
ik E

(N2)
kj (6.49)

The last equality follows as the two summations are precisely the causal effects

i → k and k → j for N1, N2, respectively, which correspond to variable sub-

sets (S1, S21) and (S1 ∪ S21, S22). Now, by linearity of expectations, and the

independence of E
(N1)
ik , E

(N2)
kj , this gives the matrix multiplication:

BCE(i, j)(P) =
∑

k∈F (S21\{i})

BCE(i, k)(N1)BCE(k, j)(N2)

Finally, we consider the leaf nodes L of the OrderSPN, where |S2|= 1 (say, S2 = {j}).

In such cases, the causal effect reduces to E
(L)
ij = Bi,j , and the expectation is given by:

BCE(i, j)(L) = EGj∼pL(Gj)[EBj∼p(Bj |Gj ,D)[Bi,j]]

Given the graph column (set of parents) Gj, the posterior distribution of Bj,

p(Bj|Gj,D), is given by a multivariate t-distribution [188], and so the inner expectation

can be computed exactly for a given Gj. The outer expectation can be approximated

using sampling from the leaf distribution. Though this involves sampling, the crucial

aspect of our method is that the expectation through the OrderSPN (and thus through

different orders) is exact. We will later see in our experiments that this can have a

significant impact on the accuracy of the causal effect estimates.

Finally, analysing the complexity, we see that at each node N corresponding to

variable subsets (S1, S2), we must maintain an arrayBCE(i, j)(N) for i ∈ S1∪S2, j ∈ S2,

i.e. of size (|S1|+|S2|)× |S2|< d2. Computations at any sum or product node N take

linear time in the number of children (outgoing edges) of the node, except for the

142

matrix multiplication at product nodes, which takes (|S1|+|S21|) × |S21|×|S22|< d3

time. At leaf nodes, we have to sample graph columns Gi, which takes |Ci|< d time.

Thus, the overall space and time complexity is O(d2M) and O(d3M) respectively.

The factor of O(d3) in the time complexity is unsurprising and arises from the

inference cost of causal effects in linear Gaussian BNs [93]; the significance is in the

linear complexity in the size of the OrderSPN, given that BCE(i, j) averages over

potentially exponentially more DAGs. Intuitively, this is achieved by “summing-out”

over different causal (directed) paths between variables i, j at each node.

6.3 Learning OrderSPNs

In this section, we propose a two-stage method for learning regular OrderSPNs from

data, which we refer to as Trust (TRactable Uncertainty for STructure learning).

In the first stage, we learn the structure of OrderSPN by hierarchically choosing

partitions for each sum node. This characterizes the support of the distribution over

orders and graphs. In the second stage, we optimize the parameters of the circuit

using a variational inference scheme.

6.3.1 Learning OrderSPN structures

In Section 6.1.3, we introduced the idea of a (hierarchical) width-limited approximation

to the graph posterior, in which we choose a subset of the possible partitions of a

variable set S2 into S21, S22. In a regular OrderSPN, for each sum node T in layer j

we must choose the Kj partitions (S21,i, S22,i) of S2. A reasonable strategy is to choose

to keep the partitions (set of orders) which have the greatest posterior probability

p(σS2 = (σS21 , σS22)). However, we cannot actually implement this strategy in practice,

as this posterior probability is intractable to compute.

To define the problem more concretely, we need access to an oracle O which takes

as input the dataset D, disjoint sets S1, S2, and a number of partitions K, and returns

K partitions (S21,i, S22,i) of S2. The goal of the oracle is to maximize coverage of the

posterior distribution, i.e. the posterior mass over orders and graphs consistent with

143

the sampled partitions. In practice, we can instantiate the oracle with any structure

learning method that can 1) produce a set of high-probability DAGs, rather than a

single DAG; and 2) can be modified to produce a DAG over S2, which can additionally

have parents from S1, for arbitrary sets S1, S2. In our experiments, we adapt two

recent Bayesian structure learners, Dibs [110] and Gadget [188], which can produce

samples of DAGs approximately from the posterior. Given such a method, we can

define the oracle by (i) taking K samples of such DAGs; (ii) for each sample, choosing

a random ordering consistent with the DAG; and (iii) splitting the ordering into a

partition. Each partition (S21,i, S22,i) influences the support of the corresponding child

of T , by restricting that S21 comes before S22 in the ordering.

The proposed strategy involves calling the oracle O for each sum node in the

OrderSPN. This improves exploration of the space over the base structure learning

method (oracle), by recursively exploring subspaces of DAGs over smaller subsets

of variables S2 ⊆ {1, ..., d}. However, it also appears to introduce a computational

challenge since the number of sum nodes in the circuit could be very large. Thankfully,

though each successive sum layer has 2Kj times more sum nodes than the previous

layer, the dimension of the DAG space is halved, meaning that the oracle requires

much less time. In practice, we ensure efficient implementation by the following

methods: (i) we set a time budget appropriately for the oracle in each layer, so that

the time spent by the oracle in each layer is roughly the same; (ii) for small dimensions

|S2|≤ d′ (chosen to be 4), we avoid the constant-time overhead of each oracle run by

instead explicitly enumerating over all partitions.

6.3.2 Parameter Learning via Variational Inference

Given an OrderSPN structure, we now consider the task of learning the parame-

ters/weights of the OrderSPN. We formulate this as a discrete variational inference (VI)

problem. Given an unnormalized order-modular distribution p̃(σ,G) = pG(G)1G|=σ,

the evidence lower bound (ELBO) is given by:

ELBO(C) = EpC(σ,G)[log p̃(σ,G)] +H(pC(σ,G)) (6.50)

144

where H(pC(σ,G)) = −EpC(σ,G)[log pC(σ,G)] is the entropy of the OrderSPN C. The

goal of VI is then to maximize the ELBO with respect to the OrderSPN param-

eters ω. Typically, such discrete VI problems are very difficult, since the ELBO

requires computing (gradients of) the expectation using high-variance estimators such

as REINFORCE, leading to unstable optimization (due to the discrete space, the

reparameterization trick is not applicable). However, for OrderSPNs, the ELBO can

be computed exactly due to the tractability of the circuit model. The following result

is similar to the corresponding result (Thm 1) from [166] for using deterministic PCs

as a variational approximation to discrete graphical models, and we defer the full

proof to Appendix C.1.

Proposition 6.6 (Tractable ELBO). The ELBO and its gradients for any regular

OrderSPN C and order-modular distribution p can be computed in linear time in the

size of the circuit.

Aside from showing that the ELBO can be propagated through sum and product

nodes, to prove this result we need to be able to compute the ELBO for the leaf node

distributions. For a leaf node L associated with (S1, i), which represents a distribution

pL(Gi) over the parents of variable Vi, the ELBO is defined to be:

ELBO(L) := EpL [log p̃(σ{i}, Gi)] +H(pL(σ{i}, Gi))

= EpL [log pGi
(Gi)] +H(pL(Gi)) (6.51)

Recall that, for OrderSPNs, it is required that pL(Gi) has support only over Gi ⊆ S1.

Previously, in Equation 6.21, we chose to set pL(Gi) ∝ pGi
(Gi)1Gi⊆S1 . We now provide

justification for this choice:

Proposition 6.7 (Optimal Leaf Distribution). pL(Gi) ∝ pGi
(Gi)1Gi⊆S1 maximizes

(6.51) subject to the support condition.

Proof. The ELBO for a leaf distribution (6.51) can be written as:

ELBO(L) = EpL [log pGi
(Gi)] +H(pL(Gi)))

= EpL [log pGi
(Gi)]− EpL [log pL(Gi)]

= −KL(pL||pGi
)

145

where KL is the KL-divergence. Thus, to maximize the ELBO, we need to minimize

this KL-divergence. Let C =
∑

Gi⊆S1
pGi

(Gi). Assuming L satisfies the support

condition, this can be written as:

KL(pL||pGi
) = EpL

[
log

pL(Gi)

pGi
(Gi)

]
= EpL

[
log

pL(Gi)

pGi
(Gi)

]
= EpL

[
log

pL(Gi)

pGi
(Gi)/C

]
− logC

This KL-divergence is minimized by pL(Gi) ∝ pGi
(Gi)1Gi⊆S1 , as required. In this case,

the ELBO is given by:

ELBO(L) = logC −KL(pL||
pGi

1Gi⊆S1

C
)

= logC

We see that, with this choice of pL, the ELBO is a constant logC that we can

precompute using the methods for computation of leaf distribution described in Section

6.2.2. Thus, the computation of ELBO for leaf distributions can be done in an O(1)

lookup, and the overall ELBO computation is linear in the size of the OrderSPN (in

particular, independent of the dimension). This allows us to learn the weights using

gradient-based optimization of the ELBO, leveraging tensor learning frameworks and

hardware acceleration.

6.4 Experiments

In this section, we perform an empirical investigation and evaluation of the Trust

framework. In particular, we implement two state-of-the-art Bayesian structure

learning methods, (marginal) Dibs [110]3 and Gadget [188], and compare them

3There are two variants of Dibs; namely joint Dibs and marginal Dibs. While joint Dibs is
generally more performant, we use marginal Dibs here so that all models are using a marginal
likelihood, for fairness of comparison; [150] indicated that joint likelihood might exploit features that
are unavailable to (score-equivalent) marginal likelihoods.

146

(a) (b) (c) (d)

Figure 6.4: Performance evaluation of the Trust framework. We find that across all
metrics and for both dimensionalities that the Trust framework outperforms the
seed method, in some instances considerably. Top Row: Learning structures with
d = 16. Bottom Row: Learning structures with d = 32. (a) Expected Structural
Hamming Distance, lower is better. (b) Marginal Log Likelihood (higher is better).
(c) Area Under the Receiver Operator Characteristic curve (higher is better). (d)
MSE of Causal Effects (lower is better).

with their Trust-enhanced counterparts, Trust-d and Trust-g, which use the

respective method as the oracle for learning the structure of the OrderSPN. We apply

each inference method to synthetic structure learning problems, where the ground

truth causal structures are Erdős-Rényi random graphs with dimension d ∈ {16, 32}

and 2d expected edges, and the Bayesian network distribution is linear Gaussian. All

methods tested employ the BGe marginal likelihood score [95] for linear Gaussian

networks. For each experiment, a dataset Dtrain of N = 100 datapoints is generated

for each graph for inference, in order to capture the regime where there is uncertainty

due to limited data. We defer full experimental details to Appendix C.3.

6.4.1 Learning Performance

We begin by evaluating the quality of the inferred posterior pC(G) for each inference

method. Unfortunately, the true posterior p(G) is intractable, meaning that we cannot

use it as a reference point to compare. Instead, we use a variety of standard metrics

147

for measuring the posterior quality. As the graphs are synthetically generated, we

have access to the true graph and edge coefficients (of the linear Gaussian BN), which

we denote with G,B respectively. Further, we write Dtest to denote a held-out dataset

of 1000 datapoints generated independently from the training data.

• The expected structural Hamming distance E-SHD(pC, G) measures the expected

number of edge changes (SHD) between the essential graphs of G and G′, where

G′ is sampled from the inferred posterior p:

E-SHD(p,G) = EG′∼pC [SHD(essential(G
′), essential(G))] (6.52)

• The area under the receiver operating characteristic curve AUROC(p,G) for

Bayesian structure learning [62] is computed using marginal edge probabilities

p(G′
ij = 1) for each potential edge G′

ij, while varying the confidence threshold

to construct the ROC curve.

• The marginal log-likelihood MLL(p,G,Dtest) measures how well the posterior

fits the held-out test data [123, 110], using the BGe marginal likelihood plh:

MLL(p,Dtest) = EG′∼p[log plh(Dtest|G′)] (6.53)

• Finally, the mean-squared error of causal effects MSE-CE(p,B) measures the

squared difference between the expected posterior causal effect BCE(i, j)(p), and

the true causal effect Eij(B) (for variable pair i, j) [140]. This is then averaged

over all (distinct) pairs i, j:

MSE-CE(p,B) =
1

d(d− 1)

∑
i ̸=j

|BCE(i, j)(p) − Eij(B)|2 (6.54)

For the sample-based posterior approximations Dibs and Gadget, the expec-

tations over p are computed by explicitly averaging over all samples. For Trust-d

and Trust-g, we also sample from pC to approximate the expectation. However,

for AUROC and MSE-CE, we employ exact computation of the expectations (with

respect to the OrderSPN distribution pC) using our query answering algorithms for

marginal edge probabilities/causal effects respectively.

148

We show the results in Figure 6.4 for all methods. Trust-d and Trust-g match

or outperform their counterparts across all metrics, with especially strong performance

on E-SHD, where Trust-g is best by a clear margin for both d = 16, 32. This

indicates that hierarchical exploration can lead to more accurate discovery, compared

to sampling directly on the full space of DAGs. Another interesting phenomenon that

we observe is that Trust-d significantly improves upon the marginal log-likelihood

of Dibs, which the authors in [110] hypothesized was due to high variance in their

variational inference procedure. This suggests that the exact parameter learning in the

second stage of Trust helps to correct for errors in the relative weighting of samples.

6.4.2 Ablation Study on OrderSPN Learning

In Section 6.3, we proposed to use a two-step procedure for learning OrderSPNs,

in which we (i) propose a structure for the OrderSPN using an oracle method; and

(ii) further learn the parameters of the OrderSPN via variational inference. We

now perform an ablation study to examine each of these steps and their impact on

performance. In particular, we evaluate four different versions of Trust, including

Trust-g, and the following variants:

• Random In this case, instead of using an oracle method O to split S2 into a

partition (S21,i, S22,i), we instead perform this split randomly throughout the

OrderSPN. We also do not perform any parameter learning, instead setting the

parameters at each sum-node in the OrderSPN to be equal (e.g. if a sum-node

has 4 children, we set each parameter to 0.25).

• Parameter Only We randomly propose the structure as above, but do perform

parameter learning using VI in the second stage.

• Structure Only We do perform structure learning using Gadget as an oracle,

but do not learn parameters using VI in the second stage.

The first step of structure learning determines the support of the OrderSPN, i.e.

the orders and DAGs to which it assigns positive probability, while the second step

of parameter learning aims to optimize the fit to the posterior given the support

149

constraints imposed by the first step. By randomizing one (or both) of these steps, we

can see how this affects the approximation.

The results are shown in Figure 6.5. As expected, the fully random method

performs by far the worst, on all metrics. Performing parameter learning only and

structure learning only provide significant improvements, but interestingly on different

metrics. Structure learning only performs quite well on AUROC, while parameter

learning only performs comparatively better on E-SHD and MLL (even outperforming

Gadget on E-SHD). The performance of using parameter learning only is quite

remarkable, given that the graphs covered by the OrderSPN were chosen at random.

We hypothesize that this can be attributed to the compactness and capacity of

OrderSPNs as a representation; as a result, even the randomly chosen OrderSPN

structure will contain some orders/DAGs in its support which are close to the ground

truth DAG both in structure (E-SHD) and marginal likelihood (MLL). Nonetheless,

adding OrderSPN structure learning as well, as in Trust-g, does provide the best

overall performance, and shows that both steps are important to obtain the best

possible representation.

6.4.3 Exact and Approximate Computation

One of the key features of OrderSPNs is the tractability of the representation, eliminat-

ing error from statistical sampling. In particular, we saw that for linear causal models,

it is possible to compute the matrix of pairwise causal effects BCEq(i, j), averaged over

the posterior over graphs induced by the OrderSPN. Alternatively, we could sample

a set of graphs from the OrderSPN, and obtain an empirical average ̂BCEq(i, j) of

pairwise causal effects. In Figure 6.6, we compare the exact and approximate methods

in terms of their mean squared error (MSE-CE) compared to the weight matrix of

the true, data-generating graph (averaged over multiple runs/data-generating graphs).

For the approximate estimate, we use 10000 graph samples. Along the horizontal

axis, we additionally vary the mean of edge coefficients in generating random linear

Gaussian BNs. The rationale is that larger weights will lead to larger pairwise causal

effects (on average), making the estimation task more challenging. For example, for a

150

Figure 6.5: Ablation study evaluating performance of different variants of Trust-g
(and Gadget), for d = 16.

chain causal graph with an edge Vi → Vj whenever j = i+1, and d = 16, the pairwise

causal effect of V1 on V16 would be around 215, but with significant variance.

The results show that exact computation is much more accurate than approximate

computation for all mean edge weights. The difference becomes more pronounced for

larger edge weights, with the average error being ∼ 100 times less for exact computation

with edge weight 2.0. Further, the variance across different runs (i.e. sampled true

graphs/edge coefficients) is much smaller, indicating that the performance of exact

computation is much more robust to different underlying causal systems.

151

Figure 6.6: MSE-CE for approximate (10000 graph samples) and exact computation
of pairwise causal effects, as a function of the mean edge weight magnitude. Data
shown is over 10 runs per weight.

6.4.4 Coverage and Query Answering

We now compare the query answering capabilities of Trust to Dibs and Gadget,

for d = 16 networks. We set up the task by selecting n edges randomly from the true

graph, which we use to form the condition
∧d
i=1 c

′
i in Section 6.2.3 (requiring that all

n edges are present). A good representation of the posterior should consistently have

posterior mass over this condition. For Dibs and Gadget, we obtain sample-based

approximations q of the posterior, for which we take 30 and 10000 samples respectively,

as indicated by the respective papers and reference implementations. For Trust-d

and Trust-g we directly perform the inference queries on the learned OrderSPN.

We begin by considering the marginal probability p(
∧d
i=1 c

′
i). In Figure 6.7, we

compute this over 30 different runs and 50 random edge selections for each run,

for different values of n, and plot the proportion of times that the probability is

non-zero. We see that, as n increases, both methods based on Trust consistently

outperform their counterparts. This demonstrates how Trust can be used to augment

an oracle method to significantly improve the reliability of posterior coverage. This is

152

Figure 6.7: As we specify more edges in our query, the probability that sample-based
posteriors (Dibs and Gadget) have support over the queried edges drops. Trust-d
and Trust-g, in contrast, maintain much greater coverage.

particularly noteworthy for Dibs, whose coverage is otherwise limited by its quadratic

time complexity in the number of samples.

From a practical perspective, this is especially important for conditional inference.

In Table 6.2, we simulate a scenario where we obtain information on the true causal

graph after learning. In particular, given n = 4, 8, 16 randomly specified edges from

the true graph as a condition, we compute conditional probabilities for all unspecified

(potential) edges. This can be viewed as ”injecting” causal information, which, for

instance, could permit distinguishing between DAGs in the same Markov equivalence

class where observational data would not suffice. To evaluate, we compute the AUROC

given the computed probabilities for each edge. In the case where the representation

q has no probability over the condition, we simply take the overall AUROC for

the unconditional distribution. Table 6.2 shows mean and standard deviation for

AUROC over 30 runs for each method. As the number of specified edges increases,

we see that the performance of Gadget degrades despite the extra information,

since the sample-based representation suffers from prohibitively high variance when

estimating conditional probability. On the other hand, the greater coverage of Trust-

g ensures that we can take advantage of the extra information, improving the quality

of inferences.

153

No. Edges Method AUROC

4 Gadget 0.905± 0.073
Trust-g 0.903± 0.057

8 Gadget 0.888± 0.089
Trust-g 0.933± 0.048

16 Gadget 0.876± 0.081
Trust-g 0.957± 0.077

Table 6.2: Quality of inference for conditional queries. Results show Trust-g is
significantly better at inferring conditional distributions, especially as the condition
becomes more restrictive.

6.5 Discussion

In this Chapter, we studied the problem of causal learning and reasoning when there

is uncertainty over the causal graphical structure of the domain. In this setting, we

need to consider both learning a distribution over structures from data, as well as

reasoning on the resulting joint distribution over graphs and variables. Instead of

maintaining a set of DAGs or orders, we introduced OrderSPNs, a new approximate

probabilistic representation of distributions over orders and DAGs. We showed that

OrderSPNs enable tractable and exact inference over the representation for a variety

of important classes of causal reasoning queries, including, remarkably, inference of

causal effects for linear Gaussian networks.

In comparison to current approaches to Bayesian structure learning, OrderSPNs

can, in some sense, be considered to be the most expressive and general representations

upon which we can reason tractably. While it is, of course, possible to approximately

fit the posterior using expressive (but intractable) probabilistic models, we can only

perform sampling of orders, or graphs, from the model, which provides a bottleneck

for downstream reasoning. This is reflected in the empirical results, where learned

OrderSPNs not only perform competitively on standard metrics, but can also be used

to reason effectively in ways that maintaining a sample of graphs/orders cannot.

A limitation of the approach is the assumption that there is no unobserved

confounding (i.e. Markovianity), which is typical in Bayesian structure learning due

154

to the complexity of the problem (with the recent exception of [5]). Extending our

Bayesian approach to settings with unobserved confounding has two main challenges.

The first is how to specify a reasonable prior over the degree and nature of unobserved

confounding; for example, over semi-Markovian causal diagrams with bidirected

edges. A promising direction in this respect is to adapt scoring functions for causal

models with confounding in score-based causal discovery [181, 11, 12]. The second

challenge relates to tractably learning and reasoning about the distribution, given

that the exogenous variables are unobserved. Adapting latent-variable methods such

as expectation-maximization may be a possible solution.

Another challenge for future work is to consider tractable approximate represen-

tations for the leaf node distributions pS1,{i}(Gi). In Section 6.2.2, we showed that

under the assumption that the parents of each variable come from a candidate set (of

size up to 16), it is possible to precompute all leaf node distributions in a tractable

tabular representation in exponential time and space. However, the time and memory

requirements are onerous in practice, and the candidate set assumption becomes

increasingly untenable as we scale up the dimension. Instead, we could consider

modelling the posterior over parents pGi
(Gi) using a tractable probabilistic circuit,

as an approximation to the true posterior. The advantage is that conditioning on

membership in S1, and computing marginal/MAP/sampling queries on this distribu-

tion remain tractable, while we can freely configure the size of the circuit according

to available computational resources. This could also open up the application of the

method to models with intractable marginal likelihoods (e.g. non-linear, non-Gaussian

noise).

155

Chapter 7

Conclusions

The implementation of causal reasoning into intelligent systems is a major ongoing

research challenge, due to its utility as an abstraction of an underlying physical

system that goes beyond purely probabilistic information; its corresponding ability

to capture important concepts such as robustness, fairness, and distribution shift

that cannot be expressed by purely probabilistic models; and its close connection

with how humans reason about the world, making causal reasoning queries naturally

interpretable. The conceptual frameworks that have been developed in the last few

decades for understanding causality, notably that of the structural causal model and

information hierarchy, have elucidated what we can hope to infer about the underlying

causal system given the information available to the modeler. This thesis has been

concerned with the parallel question of when the computational process of performing

this inference, which is often more complex than probabilistic inference, is tractable.

We have argued that, rather than building separate models every time we want to

answer a causal reasoning query, it is more natural and often more desirable to

consolidate all of the information available to the modeler in a unified model, that

can then be used to answer any causal query of interest. The key challenge, however,

is that structural causal models are not particularly useful for this purpose due to

intractable reasoning, as well as a lack of flexibility. We have hypothesized that

tractable probabilistic models are a natural fit due to their ability to consistently,

efficiently, and exactly reason over probability distributions.

To this end, we identified three different scenarios corresponding to differing states

of knowledge of the modeler; in each, we identified conditions (and algorithms) for

156

being able to tractably compute various causal reasoning queries, as well as pushing the

boundaries of expressivity/generality of the underlying TPM (circuit) while satisfying

these conditions. These theoretical and methodological results provide strong evidence

in support of the hypothesis that TPMs can be used (possibly in conjunction with

a causal diagram) as unified, tractable causal models. We also hope, more broadly,

that the perspective and results of this thesis will help to inspire a new paradigm

for causal reasoning in which alternative models/representations of the underlying

SCM reality are used for computational, or other, benefits. This is in alignment, for

example, with recent work on causal abstraction [155, 2, 64], which aims to make

a SCM more interpretable by clustering variables; and in a similar manner to how

the field of tractable probabilistic modelling has emerged out of attempts to make

Bayesian networks more practical to learn and reason over.

7.1 Discussion

Our primary subject of inquiry in this thesis has been the tractability of causal inference

queries on probabilistic circuit models. Answering this question has required a clearer

picture of what the PC represents, in the context of the causal information hierarchy.

In Chapter 4, we considered the case where the causal model is fully specified and

known to the modeler in one of the standard forms (causal Bayesian networks or SCMs).

The computational task is then to reason efficiently over this given (graphical) model.

Towards our goal of producing tractable models that can answer any causal query

efficiently, compiled representations are appealing as they convert the intractable model

into a tractable form. We showed that, besides interventional marginals, applying

additional (topological) constraints to the compiled circuit structure allowed for the

tractability of an even wider range of advanced causal queries. These methods are

suitable for (fairly) low-dimensional problems, where each variable and the relationships

between them are meaningful, and one needs to extract detailed causal information.

However, compilation is not a silver bullet; the size of the compiled circuit depends

on the complexity of reasoning on the underlying CBN/SCM. Thus in Chapter 5 we

assumed instead that the modeler had access to a causal diagram (possibly over sets of

157

variables) and observational data. Crucially, rather than requiring that the PC follows

(is compiled from) a granular graphical causal model, and then imposing conditions for

tractability on top of that assumption, we started from minimal assumptions for causal

inference (structured decomposability and smoothness) and systematically derived

tractability conditions based on these. The resulting circuits, MDNets, can be freely

scaled depending on the desired trade-off between expressivity and size (and thus cost

of inference). In Chapter 6, in the setting where the casual diagram was additionally

unknown, we applied a similar principle in the design of OrderSPNs, which can be

scaled using the expansion factors (number of children of each sum node). These more

general, learned circuits can be much more practical as a scalable, black-box causal

model that takes in data and returns answers to causal reasoning queries, but are not

as reliable or tractable as compiled circuits when we have all information about the

underlying SCM.

It is now also apparent that as we decrease the knowledge available to the modeler,

the tractability of the representations of that knowledge is lessened. In particular,

interventional marginals are almost trivially tractable in compiled circuits, while

they are only tractable in certain circumstances given a learned circuit and diagram

separately, and not tractable at all (except in the particular linear Gaussian case)

when we additionally model diagram uncertainty. This has important implications for

knowledge representation of causal models; namely that there is a tradeoff between

the flexibility of the representation, and its tractability. As a result, there is not

necessarily one representation that is optimal in all cases, but instead we may want to

choose different types of representations depending on our level of certainty about the

underlying causal structure of the domain.

7.2 Future Work

We now highlight some overall directions for future work based on this thesis.

Firstly, and most directly, the results and discussion in this thesis raise new

open questions about the tractability of causal reasoning. In Chapter 5, we showed

tractability results for the backdoor, frontdoor, and napkin formulae for probabilistic

158

circuits. This raises the question of whether any do-calculus formula or ID algorithm

estimand can be computed in polynomial time (in the size of the circuit); and if not (as

might be suggested by the restrictive conditions of the MD-calculus), how the class of

tractable causal estimands can be characterized. Another important goal is to discover

other types of tractable models (circuit-based or otherwise) that are well-suited to

causal inference. This may include not only models that are tractable for exact causal

inference queries but also models which can produce guaranteed approximations. In

view of the results in Chapter 6 regarding causal effects in linear models, it is also

worth investigating whether making parametric assumptions can also aid with making

more causal queries tractable.

Secondly, an important direction is to exploit the results of this thesis to design

practical causal inference algorithms using probabilistic circuits. We have already

explored in Chapter 6 the application of probabilistic circuits to causal structure, and

showed that it produces competitive results compared to the state-of-the-art. However,

for causal inference, the results of Chapter 5 are primarily theoretical in nature, due

to the quadratic/cubic complexity in the size of the original circuit (which can be

prohibitive in practice). Overcoming this is a key challenge; as is integrating with

techniques for improving the statistical performance of causal estimation, such as

double machine learning [28].

Finally, an ambitious future direction is to connect the work in this thesis with

the nascent field of causal representation learning [159]. Throughout this work, we

have assumed that the causal variables (i.e. the variables constituting nodes in an

SCM) are given in advance. However, in many practical scenarios this might not be

the case; consider, for example, analyzing the causal structure of a video. Attempting

to construct a causal diagram or SCM on the space of pixels is hardly feasible, but

there may be an underlying causal structure between features of the video frames.

Causal representation learning aims to automatically extract these causal variables and

relationships from data. Clearly, one can employ representation learning methods as

a pre-processing step before reasoning on the obtained variables and graph. However,

the resulting distribution over causal variables will not usually be tractable. Perhaps

the most promising approach is to integrate the tools and theory developed in this

159

thesis as a “reasoning engine” on the lower dimensional space of causal variables,

while offloading the representation learning component to neural networks. Such a

synthesis could both aid learning of representations, as well as ensure that the final

learned representation can be efficiently and consistently reasoned over.

160

Bibliography

[1] Tameem Adel, David Balduzzi, and Ali Ghodsi. Learning the structure of

sum-product networks via an SVD-based algorithm. In Uncertainty in Artificial

Intelligence - Proceedings of the 31st Conference, UAI 2015, 2015.

[2] Tara V. Anand, Adèle H. Ribeiro, Jin Tian, and Elias Bareinboim. Causal Effect

Identification in Cluster DAGs. In AAAI 2023, 2023.

[3] Yashas Annadani, Jonas Rothfuss, Alexandre Lacoste, Nino Scherrer, Anirudh

Goyal, Yoshua Bengio, and Stefan Bauer. Variational Causal Networks:

Approximate Bayesian Inference over Causal Structures. arXiv preprint

arXiv:2106.07635, 2021.

[4] Alessandro Antonucci, Cassio P. De Campos, David Huber, and Marco Zaffalon.

Approximate credal network updating by linear programming with applications

to decision making. International Journal of Approximate Reasoning, 58:25–38,

3 2015.

[5] Matthew Ashman, Chao Ma, Agrin Hilmlkil, Joel Jennings, and Cheng Zhang.

Causal Reasoning in the Presence of Latent Confounders via Neural ADMG

Learning. In Proceedings of the Eleventh International Conference on Learning

Representations, 2023.

[6] Chen Avin, Ilya Shpitser, and Judea Pearl. Identifiability of path-specific effects.

In IJCAI International Joint Conference on Artificial Intelligence, 2005.

[7] Francis R. Bach and Michael I. Jordan. Thin junction trees. In Advances in

Neural Information Processing Systems, 2002.

161

[8] Alexander Balke and Judea Pearl. Probabilistic evaluation of counterfactual

queries. In Proceedings of the National Conference on Artificial Intelligence,

volume 1, 1994.

[9] Elias Bareinboim, Juan D. Correa, Duligur Ibeling, and Thomas Icard. On

Pearl’s Hierarchy and the Foundations of Causal Inference. In Probabilistic and

Causal Inference, pages 507–556. 2022.

[10] Vaishak Belle, Andrea Passerini, and Guy Van den Broeck. Probabilistic

inference in hybrid domains by weighted model integration. In Proceedings of

24th International Joint Conference on Artificial Intelligence (IJCAI), volume

2015, pages 2770–2776, 2015.

[11] Daniel Bernstein, Basil Saeed, Chandler Squires, and Caroline Uhler. Ordering-

based causal structure learning in the presence of latent variables. In Inter-

national Conference on Artificial Intelligence and Statistics, pages 4098–4108.

PMLR, 2020.

[12] Rohit Bhattacharya, Tushar Nagarajan, Daniel Malinsky, and Ilya Shpitser.

Differentiable Causal Discovery Under Unmeasured Confounding. In Arindam

Banerjee and Kenji Fukumizu, editors, Proceedings of The 24th International

Conference on Artificial Intelligence and Statistics, volume 130 of Proceedings

of Machine Learning Research, pages 2314–2322. PMLR, 2021.

[13] John Binder, Daphne Koller, Stuart Russell, and Keiji Kanazawa. Adaptive

probabilistic networks with hidden variables. Machine Learning, 29:213–244,

1997.

[14] Stephan Bongers, Patrick Forré, Jonas Peters, and Joris M. Mooij. Foundations

of structural causal models with cycles and latent variables. Annals of Statistics,

49(5), 2021.

[15] Craig Boutilier, Nir Friedman, Moises Goldszmidt, and Daphne Koller. Context-

Specific Independence in Bayesian Networks. In Proceedings of the Twelfth

162

International Conference on Uncertainty in Artificial Intelligence, UAI’96, page

115–123, San Francisco, CA, USA, 1996. Morgan Kaufmann Publishers Inc.

[16] Marius Bozga and Oded Maler. On the representation of probabilities over struc-

tured domains. In Computer Aided Verification: 11th International Conference,

CAV’99 Trento, Italy, July 6–10, 1999 Proceedings 11, pages 261–273, 1999.

[17] Philippe Brouillard, Sébastien Lachapelle, Alexandre Lacoste, Simon Lacoste-

Julien, and Alexandre Drouin. Differentiable Causal Discovery from Interven-

tional Data. In H Larochelle, M Ranzato, R Hadsell, M F Balcan, and H Lin,

editors, Advances in Neural Information Processing Systems, volume 33, pages

21865–21877. Curran Associates, Inc., 2020.

[18] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan,

Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda

Askell, and others. Language models are few-shot learners. Advances in neural

information processing systems, 33:1877–1901, 2020.

[19] Cory Butz, Jhonatan S. Oliveira, and Robert Peharz. Sum-Product Network

Decompilation. In Manfred Jaeger and Thomas Dyhre Nielsen, editors, Pro-

ceedings of the 10th International Conference on Probabilistic Graphical Models,

volume 138 of Proceedings of Machine Learning Research, pages 53–64. PMLR,

2020.

[20] Rafael Cabanas and Alessandro Antonucci. Crepo: An open repository to

benchmark credal network algorithms. In International Symposium on Imprecise

Probability: Theories and Applications, pages 352–356. PMLR, 2021.

[21] George Casella and Roger L Berger. Statistical inference, volume 2. Duxbury

Pacific Grove, CA, 2002.

[22] Federico Castelletti and Guido Consonni. Bayesian inference of causal effects

from observational data in Gaussian graphical models. Biometrics, 77(1):136–149,

2021.

163

[23] Hei Chan and Adnan Darwiche. On the Robustness of Most Probable Ex-

planations. In Proceedings of the Twenty-Second Conference on Uncertainty

in Artificial Intelligence, UAI’06, page 63–71, Arlington, Virginia, USA, 2006.

AUAI Press.

[24] Mark Chavira and Adnan Darwiche. Compiling Bayesian Networks with Local

Structure. In Proceedings of the 19th International Joint Conference on Artificial

Intelligence, page 1306–1312, 8 2005.

[25] Mark Chavira and Adnan Darwiche. Encoding CNFs to empower component

analysis. In Lecture Notes in Computer Science (including subseries Lecture

Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), volume

4121 LNCS, 2006.

[26] Mark Chavira and Adnan Darwiche. Compiling Bayesian networks using variable

elimination. In IJCAI International Joint Conference on Artificial Intelligence,

2007.

[27] Yizuo Chen and Adnan Darwiche. On the definition and computation of causal

treewidth. In Proceedings of the 38th Conference on Uncertainty in Artificial

Intelligence, 2022.

[28] Victor Chernozhukov, Denis Chetverikov, Mert Demirer, Esther Duflo, Christian

Hansen, Whitney Newey, and James Robins. Double/debiased machine learning

for treatment and structural parameters. Econometrics Journal, 21(1), 2018.

[29] David Chickering. Optimal Structure Identification With Greedy Search. Journal

of Machine Learning Research, 3:507–554, 2002.

[30] David Maxwell Chickering. Learning Bayesian Networks is NP-Complete. 1996.

[31] Arthur Choi and Adnan Darwiche. On Relaxing Determinism in Arithmetic

Circuits. In International Conference on Machine Learning, volume 70 of

Proceedings of Machine Learning Research, page 825–833, 2017.

164

[32] YooJung Choi, Tal Friedman, and Guy den Broeck. Solving Marginal MAP

Exactly by Probabilistic Circuit Transformations. In Proceedings of the 25th

International Conference on Artificial Intelligence and Statistics (AISTATS), 3

2022.

[33] YooJung Choi, Antonio Vergari, and Guy den Broeck. Probabilistic Circuits: A

Unifying Framework for Tractable Probabilistic Models. Technical report, 10

2020.

[34] C. K. Chow and C. N. Liu. Approximating Discrete Probability Distributions

with Dependence Trees. IEEE Transactions on Information Theory, 14(3):462–

467, 1968.

[35] Diego Colombo, Marloes H. Maathuis, Markus Kalisch, and Thomas S. Richard-

son. Learning high-dimensional directed acyclic graphs with latent and selection

variables. Annals of Statistics, 40(1), 2012.

[36] Gregory F Cooper. The computational complexity of probabilistic inference

using Bayesian belief networks. Artificial intelligence, 42(2-3):393–405, 1990.

[37] Juan Correa and Elias Bareinboim. General transportability of soft interventions:

Completeness results. Advances in Neural Information Processing Systems,

33:10902–10912, 2020.

[38] Juan D. Correa and Elias Bareinboim. A calculus for stochastic interventions:

Causal effect identification and surrogate experiments. In AAAI 2020 - 34th

AAAI Conference on Artificial Intelligence, volume 34, pages 10093–10100.

AAAI press, 4 2020.

[39] Fabio G. Cozman. Credal networks. Artificial Intelligence, 120(2):199–233, 2000.

[40] Chris Cundy, Aditya Grover, and Stefano Ermon. BCD Nets: Scalable Vari-

ational Approaches for Bayesian Causal Discovery. In Advances in Neural

Information Processing Systems, volume 34, 2021.

165

[41] Meihua Dang, Antonio Vergari, and Guy den Broeck. Strudel: Learn-

ing Structured-Decomposable Probabilistic Circuits. In Manfred Jaeger and

Thomas Dyhre Nielsen, editors, Proceedings of the 10th International Confer-

ence on Probabilistic Graphical Models, volume 138 of Proceedings of Machine

Learning Research, pages 137–148. PMLR, 2020.

[42] Adnan Darwiche. A Differential Approach to Inference in Bayesian Networks. J.

ACM, 50(3):280–305, 2003.

[43] Adnan Darwiche. Modeling and reasoning with Bayesian networks, volume

9780521884. 2009.

[44] Adnan Darwiche. SDD: A New Canonical Representation of Propositional

Knowledge Bases. In IJCAI, 2011.

[45] Adnan Darwiche. An advance on variable elimination with applications to tensor-

based computation. In Frontiers in Artificial Intelligence and Applications,

volume 325, 2020.

[46] Adnan Darwiche. Causal inference using tractable circuits. In NeurIPS Workshop

on Causal Inference and Machine Learning: Why Now? (WHY21), 2021.

[47] Adnan Darwiche. Tractable Boolean and Arithmetic Circuits. 2 2022.

[48] Adnan Darwiche and Pierre Marquis. A Knowledge Compilation Map. Journal

of Artificial Intelligence Research, 17:229–264, 2002.

[49] Cassio Polpo De Campos and Fabio Gagliardi Cozman. The inferential complex-

ity of bayesian and credal networks. In IJCAI International Joint Conference

on Artificial Intelligence, 2005.

[50] Alexis de Colnet and Stefan Mengel. A Compilation of Succinctness Results

for Arithmetic Circuits. In Proceedings of the 18th International Conference

on Principles of Knowledge Representation and Reasoning, KR 2021, pages

205–215, 10 2021.

166

[51] Dempster, A. P., Laird, N. M., and Rubin, D. B. Maximum Likelihood from

Incomplete Data via the EM Algorithm. Journal of the Royal Statistical Society.

Series B (Methodological), 39(1), 1977.

[52] Guy den Broeck, Anton Lykov, Maximilian Schleich, and Dan Suciu. On the

Tractability of SHAP Explanations. J. Artif. Int. Res., 74, 8 2022.

[53] Nicola Di Mauro, Gennaro Gala, Marco Iannotta, and Teresa M A Basile.

Random probabilistic circuits. In Cassio de Campos and Marloes H Maathuis,

editors, Proceedings of the Thirty-Seventh Conference on Uncertainty in Artificial

Intelligence, volume 161 of Proceedings of Machine Learning Research, pages

1682–1691. PMLR, 2021.

[54] Pedro Zuidberg Dos Martires, Anton Dries, and Luc de Raedt. Exact and

approximate weighted model integration with probability density functions using

knowledge compilation. In 33rd AAAI Conference on Artificial Intelligence,

AAAI 2019, 2019.

[55] Ralf Eggeling, Jussi Viinikka, Aleksis Vuoksenmaa, and Mikko Koivisto. On

Structure Priors for Learning Bayesian Networks. In International Conference

on Artificial Intelligence and Statistics, volume 89 of Proceedings of Machine

Learning Research, pages 1687–1695, 2019.

[56] Thomas Eiter and Thomas Lukasiewicz. Complexity results for structure-based

causality. Artificial Intelligence, 142(1), 2002.

[57] Gal Elidan and Stephen Gould. Learning bounded treewidth Bayesian networks.

Journal of Machine Learning Research, 9, 2008.

[58] Bradley J. Erickson, Panagiotis Korfiatis, Zeynettin Akkus, and Timothy L.

Kline. Machine learning for medical imaging. Radiographics, 37(2):505–515, 3

2017.

[59] Ronald Fagin, Joseph Y. Halpern, and Nimrod Megiddo. A logic for reasoning

about probabilities. Information and Computation, 87(1-2), 1990.

167

[60] Ronald A. Fisher. Cancer and smoking. Nature, 182(4635), 1958.

[61] Tiago M. Fragoso, Wesley Bertoli, and Francisco Louzada. Bayesian Model

Averaging: A Systematic Review and Conceptual Classification. International

Statistical Review, 86(1), 2018.

[62] Nir Friedman and Daphne Koller. Being Bayesian About Network Structure.

{A} Bayesian Approach to Structure Discovery in Bayesian Networks. Machine

Learning, 50(1-2):95–125, 2003.

[63] Isabel R Fulcher, Ilya Shpitser, Stella Marealle, and Eric J Tchetgen Tchetgen.

Robust inference on population indirect causal effects: the generalized front

door criterion. Journal of the Royal Statistical Society: Series B (Statistical

Methodology), 82(1):199–214, 2020.

[64] Atticus Geiger, Chris Potts, and Thomas Icard. Causal Abstraction for Faithful

Model Interpretation. arXiv preprint arXiv:2301.04709, 2023.

[65] Robert Gens and Pedro Domingos. Discriminative learning of sum-product

networks. In Advances in Neural Information Processing Systems, volume 4,

2012.

[66] Robert Gens and Domingos Pedro. Learning the Structure of Sum-Product

Networks. In Proceedings of the 30th International Conference on Machine

Learning, volume 28 of Proceedings of Machine Learning Research, pages 873–

880, 2013.

[67] Paolo Giudici and Robert Castelo. Improving Markov chain Monte Carlo model

search for data mining. Machine Learning, 50(1):127–158, 2003.

[68] Stanton A Glantz, John Slade, Lisa A Bero, Peter Hanauer, and Deborah E

Barnes. The cigarette papers. Univ of California Press, 1998.

[69] Goran Gogic, Henry Kautz, Christos Papadimitriou, and Bart Selman. The

Comparative Linguistics of Knowledge Representation. In Proceedings of the 14th

International Joint Conference on Artificial Intelligence - Volume 1, IJCAI’95,

168

page 862–869, San Francisco, CA, USA, 1995. Morgan Kaufmann Publishers

Inc.

[70] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-

Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative Adver-

sarial Nets. In Advances in Neural Information Processing Systems, volume 27,

2014.

[71] Marco Grzegorczyk and Dirk Husmeier. Improving the structure MCMC sampler

for Bayesian networks by introducing a new edge reversal move. Machine

Learning, 71(2-3):265, 2008.

[72] Lewis Hammond and Vaishak Belle. Learning tractable probabilistic models

for moral responsibility and blame. Data Mining and Knowledge Discovery,

35(2):621–659, 3 2021.

[73] Yunqiu Han, Yizuo Chen, and Adnan Darwiche. On the Complexity of Coun-

terfactual Reasoning. arXiv preprint arXiv:2211.13447, 2022.

[74] David Heckerman, Christopher Meek, and Gregory Cooper. A Bayesian Ap-

proach to Causal Discovery. In Innovations in Machine Learning: Theory and

Applications, pages 1–28. Springer Berlin Heidelberg, Berlin, Heidelberg, 2006.

[75] Jennifer A. Hoeting, David Madigan, Adrian E. Raftery, and Chris T. Volinsky.

Bayesian model averaging: A tutorial. Statistical Science, 14(4), 1999.

[76] Patrik O. Hoyer, Dominik Janzing, Joris Mooij, Jonas Peters, and Bernhard

Schölkopf. Nonlinear causal discovery with additive noise models. In Advances in

Neural Information Processing Systems 21 - Proceedings of the 2008 Conference,

2009.

[77] Jinbo Huang, Mark Chavira, and Adnan Darwiche. Solving MAP Exactly by

Searching on Compiled Arithmetic Circuits. In AAAI, 2006.

169

[78] Jinbo Huang and Adnan Darwiche. DPLL with a trace: From SAT to knowledge

compilation. In IJCAI International Joint Conference on Artificial Intelligence,

2005.

[79] Jinbo Huang and Adnan Darwiche. The Language of Search. J. Artif. Int. Res.,

29(1):191–219, 6 2007.

[80] Yimin Huang and Marco Valtorta. Pearl’s Calculus of Intervention is Complete.

In Proceedings of the Twenty-Second Conference on Uncertainty in Artificial

Intelligence, UAI’06, page 217–224, Arlington, Virginia, USA, 2006. AUAI Press.

[81] Duligur Ibeling and Thomas Icard. Probabilistic reasoning across the causal

hierarchy. In AAAI 2020 - 34th AAAI Conference on Artificial Intelligence,

2020.

[82] Pavel Izmailov, Sharad Vikram, Matthew D Hoffman, and Andrew Gordon Gor-

don Wilson. What Are Bayesian Neural Network Posteriors Really Like? In

Marina Meila and Tong Zhang, editors, Proceedings of the 38th International

Conference on Machine Learning, volume 139 of Proceedings of Machine Learning

Research, pages 4629–4640. PMLR, 2021.

[83] Manfred Jaeger. Probabilistic decision graphs—combining verification and AI

techniques for probabilistic inference. International Journal of Uncertainty,

Fuzziness and Knowledge-Based Systems, 12(supp01):19–42, 2004.

[84] Manfred Jaeger, Jens D. Nielsen, and Tomi Silander. Learning probabilistic

decision graphs. International Journal of Approximate Reasoning, 42(1-2), 2006.

[85] Yonghan Jung, Jin Tian, and Elias Bareinboim. Estimating Causal Effects

Using Weighting-Based Estimators. In Proceedings of the AAAI Conference on

Artificial Intelligence, volume 34, 2020.

[86] Guy Katz, Clark W Barrett, David L Dill, Kyle Julian, and Mykel J Kochenderfer.

Reluplex: An Efficient {SMT} Solver for Verifying Deep Neural Networks. In

Proceedings of the 29th International Conference on Computer Aided Verification

- Part {I}, pages 97–117, 2017.

170

[87] Pasha Khosravi, YooJung Choi, Yitao Liang, Antonio Vergari, and Guy Van den

Broeck. On Tractable Computation of Expected Predictions, 12 2019.

[88] Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv

preprint arXiv:1312.6114, 2013.

[89] Doga Kisa, Guy den Broeck, Arthur Choi, and Adnan Darwiche. Probabilistic

sentential decision diagrams. In International Conference on Principles of

Knowledge Representation and Reasoning, 7 2014.

[90] Yaroslav Kivva, Ehsan Mokhtarian, Jalal Etesami, and Negar Kiyavash. Revisit-

ing the general identifiability problem. In Uncertainty in Artificial Intelligence,

pages 1022–1030, 2022.

[91] Mikko Koivisto. Advances in Exact Bayesian Structure Discovery in Bayesian

Networks. In Proceedings of the Twenty-Second Conference on Uncertainty in

Artificial Intelligence, UAI’06, page 241–248, Arlington, Virginia, USA, 2006.

AUAI Press.

[92] Mikko Koivisto and Kismat Sood. Exact Bayesian structure discovery in Bayesian

networks. The Journal of Machine Learning Research, 5:549–573, 2004.

[93] Daphne Koller and Nir Friedman. Probabilistic Graphical Models: Principles

and Techniques. The MIT Press, 2009.

[94] Janne H. Korhonen and Pekka Parviainen. Exact learning of bounded tree-width

Bayesian networks. In Journal of Machine Learning Research, volume 31, 2013.

[95] Jack Kuipers, Giusi Moffa, and David Heckerman. Addendum on the scoring of

Gaussian directed acyclic graphical models. The Annals of Statistics, 42(4), 8

2014.

[96] Jack Kuipers, Polina Suter, and Giusi Moffa. Efficient sampling and structure

learning of Bayesian networks. Journal of Computational and Graphical Statistics,

31(3):639–650, 2021.

171

[97] Alex Kulesza and Ben Taskar. Determinantal point processes for machine

learning. Foundations and Trends in Machine Learning, 5(2-3), 2012.

[98] Matt J Kusner, Joshua Loftus, Chris Russell, and Ricardo Silva. Counterfactual

Fairness. In I Guyon, U Von Luxburg, S Bengio, H Wallach, R Fergus, S Vish-

wanathan, and R Garnett, editors, Advances in Neural Information Processing

Systems, volume 30. Curran Associates, Inc., 2017.

[99] Johan H.P. Kwisthout, Hans L. Bodlaender, and L. C. Van Der Gaag. The

necessity of bounded treewidth for efficient inference in Bayesian networks. In

Frontiers in Artificial Intelligence and Applications, volume 215, 2010.

[100] Emanuele La Malfa, Min Wu, Luca Laurenti, Benjie Wang, Anthony Hartshorn,

and Marta Kwiatkowska. Assessing Robustness of Text Classification through

Maximal Safe Radius Computation. In Findings of the Association for Computa-

tional Linguistics: EMNLP 2020, pages 2949–2968, Online, 11 2020. Association

for Computational Linguistics.

[101] D Larkin and Rina Dechter. Bayesian inference in the presence of determinism.

Proceedings of the Ninth International Workshop on Artificial Intelligence and

Statistics, (January 2003), 2003.

[102] Sanghack Lee, Juan D Correa, and Elias Bareinboim. General identifiability

with arbitrary surrogate experiments. In Uncertainty in artificial intelligence,

pages 389–398, 2020.

[103] Yitao Liang, Jessa Bekker, and Guy den Broeck. Learning the Structure of

Probabilistic Sentential Decision Diagrams. In Proceedings of the 33rd Conference

on Uncertainty in Artificial Intelligence (UAI), 8 2017.

[104] Yitao Liang and Guy den Broeck. Learning logistic circuits. In Proceedings of

the AAAI Conference on Artificial Intelligence, volume 33, pages 4277–4286,

2019.

172

[105] Yitao Liang and Guy van den Broeck. Towards Compact Interpretable Models:

Shrinking of Learned Probabilistic Sentential Decision Diagrams. In IJCAI

Workshop on Explainable AI (XAI), 2017.

[106] D V Lindley. Bayesian Statistics. Society for Industrial and Applied Mathematics,

1972.

[107] Anji Liu, Honghua Zhang, and Guy den Broeck. Scaling Up Probabilistic

Circuits by Latent Variable Distillation. arXiv preprint arXiv:2210.04398, 2022.

[108] Qiang Liu and Alexander Ihler. Variational algorithms for marginal map. Journal

of Machine Learning Research, 14, 2013.

[109] Qiang Liu and Dilin Wang. Stein Variational Gradient Descent: A General

Purpose Bayesian Inference Algorithm. In Advances in Neural Information

Processing Systems, volume 29, 2016.

[110] Lars Lorch, Jonas Rothfuss, Bernhard Schölkopf, and Andreas Krause. DiBS:

Differentiable Bayesian Structure Learning. In Advances in Neural Information

Processing Systems, volume 34, 2021.

[111] Daniel Lowd and Pedro Domingos. Learning Arithmetic Circuits. In Proceed-

ings of the Twenty-Fourth Conference on Uncertainty in Artificial Intelligence,

UAI’08, page 383–392, Arlington, Virginia, USA, 2008. AUAI Press.

[112] Marloes H. Maathuis, Markus Kalisch, and Peter Bühlmann. Estimating high-

dimensional intervention effects from observational data. Annals of Statistics,

37(6 A), 2009.

[113] David Madigan, Jeremy York, and Denis Allard. Bayesian graphical models

for discrete data. International Statistical Review/Revue Internationale de

Statistique, 63(2):215–232, 1995.

[114] Radu Marinescu, Akihiro Kishimoto, and Adi Botea. Parallel AND/OR search for

marginal MAP. In AAAI 2020 - 34th AAAI Conference on Artificial Intelligence,

2020.

173

[115] Robert Mateescu, Rina Dechter, and Radu Marinescu. AND/OR multi-valued

decision diagrams (AOMDDs) for graphical models. Journal of Artificial Intelli-

gence Research, 33, 2008.

[116] Denis Deratani Mauá, Fabio Gagliardi Cozman, Diarmaid Conaty, and Cas-

sio Polpo De Campos. Credal sum-product networks. In Proceedings of the 10th

International Symposium on Imprecise Probability: Theories and Applications,

ISIPTA 2017, 2019.

[117] Marina Meilǎ and Michael I. Jordan. Learning with mixtures of trees. Journal

of Machine Learning Research, 1(1), 2001.

[118] Ramsés H. Mena and Stephen G. Walker. On the Bayesian Mixture Model and

Identifiability. Journal of Computational and Graphical Statistics, 24(4), 2015.

[119] Thomas Mitchell. Machine Learning (McGraw-Hill International Editions Com-

puter Science Series): Tom M. Mitchell: 9780071154673. McGraw-Hill Pub. Co.

(ISE Editions), 1997.

[120] Shakir Mohamed, Mihaela Rosca, Michael Figurnov, and Andriy Mnih. Monte

carlo gradient estimation in machine learning. The Journal of Machine Learning

Research, 21(1):5183–5244, 2020.

[121] Milan Mossé, Duligur Ibeling, and Thomas Icard. Is Causal Reasoning Harder

than Probabilistic Reasoning? Review of Symbolic Logic, 2022.

[122] Sajjad Mozaffari, Omar Y. Al-Jarrah, Mehrdad Dianati, Paul Jennings, and

Alexandros Mouzakitis. Deep Learning-Based Vehicle Behavior Prediction for

Autonomous Driving Applications: A Review, 1 2022.

[123] Kevin P. Murphy. Active learning of causal bayes net structure, 2001.

[124] Michael Oberst and David Sontag. Counterfactual off-policy evaluation with

gumbel-max structural causal models. In 36th International Conference on

Machine Learning, ICML 2019, volume 2019-June, 2019.

174

[125] Umut Oztok, Arthur Choi, and Adnan Darwiche. Solving PPPP-Complete

Problems Using Knowledge Compilation. In Proceedings of the Fifteenth Inter-

national Conference on Principles of Knowledge Representation and Reasoning,

KR’16, page 94–103. AAAI Press, 2016.

[126] Ioannis Papantonis and Vaishak Belle. Interventions and Counterfactuals in

Tractable Probabilistic Models: Limitations of Contemporary Transformations.

arXiv preprint, abs/2001.1, 2020.

[127] James Park and Adnan Darwiche. Solving MAP Exactly using Systematic

Search. In Proceedings of the Nineteenth Conference Conference on Uncertainty

in Artificial Intelligence (UAI 2003), 2003.

[128] James D. Park and Adnan Darwiche. Complexity results and approximation

strategies for MAP explanations. Journal of Artificial Intelligence Research, 2

2004.

[129] Judea Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of Plau-

sible Inference. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA,

1988.

[130] Judea Pearl. Causal diagrams for empirical research. Biometrika, 82(4), 1995.

[131] Judea Pearl. Probabilities Of Causation: Three Counterfactual Interpretations

And Their Identification. Synthese, 121(1/2):93–149, 1999.

[132] Judea Pearl. Causality. Cambridge University Press, Cambridge, UK, second

edition, 2009.

[133] Judea Pearl. Causality: Models, Reasoning and Inference. Cambridge University

Press, USA, 2nd edition, 2009.

[134] Robert Peharz. Foundations of sum-product networks for probabilistic modeling.

PhD thesis, Medical University of Graz, 2015.

175

[135] Robert Peharz, Bernhard C Geiger, and Franz Pernkopf. Greedy Part-Wise

Learning of Sum-Product Networks. In Hendrik Blockeel, Kristian Kersting,

Siegfried Nijssen, and Filip Železný, editors, Machine Learning and Knowledge

Discovery in Databases, pages 612–627, Berlin, Heidelberg, 2013. Springer Berlin

Heidelberg.

[136] Robert Peharz, Robert Gens, Franz Pernkopf, and Pedro M Domingos. On the

Latent Variable Interpretation in Sum-Product Networks. IEEE Trans. Pattern

Anal. Mach. Intell., 39(10):2030–2044, 2017.

[137] Robert Peharz, Steven Lang, Antonio Vergari, Karl Stelzner, Alejandro Molina,

Martin Trapp, Guy den Broeck, Kristian Kersting, and Zoubin Ghahramani.

Einsum Networks: Fast and Scalable Learning of Tractable Probabilistic Cir-

cuits. In Proceedings of the 37th International Conference on Machine Learning

(ICML), 7 2020.

[138] Robert Peharz, Sebastian Tschiatschek, Franz Pernkopf, and Pedro Domingos.

On Theoretical Properties of Sum-Product Networks. In Guy Lebanon and S V N

Vishwanathan, editors, Proceedings of the Eighteenth International Conference

on Artificial Intelligence and Statistics, volume 38 of Proceedings of Machine

Learning Research, pages 744–752, San Diego, California, USA, 6 2015. PMLR.

[139] Robert Peharz, Antonio Vergari, Karl Stelzner, Alejandro Molina, Xiaoting

Shao, Martin Trapp, Kristian Kersting, and Zoubin Ghahramani. Random

Sum-Product Networks: A Simple and Effective Approach to Probabilistic Deep

Learning. In Ryan P Adams and Vibhav Gogate, editors, Proceedings of The

35th Uncertainty in Artificial Intelligence Conference, volume 115 of Proceedings

of Machine Learning Research, pages 334–344. PMLR, 2020.

[140] Johan Pensar, Topi Talvitie, Antti Hyttinen, and Mikko Koivisto. A Bayesian

Approach for Estimating Causal Effects from Observational Data. Proceedings

of the AAAI Conference on Artificial Intelligence, 34(04):5395–5402, 2020.

[141] Jonas Peters, Dominik Janzing, and Bernhard Schlkopf. Elements of Causal

Inference: Foundations and Learning Algorithms. The MIT Press, 2017.

176

[142] Knot Pipatsrisawat and Adnan Darwiche. New Compilation Languages Based

on Structured Decomposability. In AAAI, pages 517–522. {AAAI} Press, 2008.

[143] Knot Pipatsrisawat and Adnan Darwiche. A new d-DNNF-based bound com-

putation algorithm for functional E-MAJSAT. In Twenty-First International

Joint Conference on Artificial Intelligence. Citeseer, 2009.

[144] Thammanit Pipatsrisawat and Adnan Darwiche. A Lower Bound on the Size of

Decomposable Negation Normal Form. In Proceedings of the AAAI Conference

on Artificial Intelligence, 2010.

[145] Drago Plecko and Elias Bareinboim. Causal fairness analysis. arXiv preprint

arXiv:2207.11385, 2022.

[146] Hoifung Poon and Pedro Domingos. Sum-product networks: A new deep

architecture. In Conference on Uncertainty in Artificial Intelligence, 2011.

[147] Biao Qin. Differential semantics of intervention in Bayesian networks. In

Proceedings of the 24th International Joint Conference on Artificial Intelligence,

pages 710–716, 7 2015.

[148] Tahrima Rahman, Shasha Jin, and Vibhav Gogate. Cutset Bayesian networks:

A new representation for learning rao-blackwellised graphical models. In IJCAI

International Joint Conference on Artificial Intelligence, volume 2019-Augus,

2019.

[149] Tahrima Rahman, Prasanna Kothalkar, and Vibhav Gogate. Cutset Networks:

A Simple, Tractable, and Scalable Approach for Improving the Accuracy of

Chow-Liu Trees. In Toon Calders, Floriana Esposito, Eyke Hüllermeier, and

Rosa Meo, editors, Machine Learning and Knowledge Discovery in Databases,

pages 630–645, Berlin, Heidelberg, 2014. Springer Berlin Heidelberg.

[150] Alexander Reisach, Christof Seiler, and Sebastian Weichwald. Beware of the

Simulated DAG! Causal Discovery Benchmarks May Be Easy to Game. In

M Ranzato, A Beygelzimer, Y Dauphin, P S Liang, and J Wortman Vaughan,

177

editors, Advances in Neural Information Processing Systems, volume 34, pages

27772–27784. Curran Associates, Inc., 2021.

[151] Danilo Rezende and Shakir Mohamed. Variational inference with normalizing

flows. In International conference on machine learning, pages 1530–1538. PMLR,

2015.

[152] Danilo Jimenez Rezende and Shakir Mohamed. Variational inference with

normalizing flows. In 32nd International Conference on Machine Learning,

ICML 2015, volume 2, 2015.

[153] Thomas S Richardson, Robin J Evans, James M Robins, and Ilya Shpitser.

Nested Markov properties for acyclic directed mixed graphs. The Annals of

Statistics, 51(1):334–361, 2023.

[154] Amirmohammad Rooshenas and Daniel Lowd. Learning Sum-Product Networks

with Direct and Indirect Variable Interactions. In International Conference on

International Conference on Machine Learning, volume 32 of Proceedings of

Machine Learning Research, 2014.

[155] Paul K. Rubenstein, Sebastian Weichwald, Stephan Bongers, Joris M. Mooij,

Dominik Janzing, Moritz Grosse-Wentrup, and Bernhard Schölkopf. Causal

consistency of structural equation models. In Uncertainty in Artificial Intelligence

- Proceedings of the 33rd Conference, UAI 2017, 2017.

[156] Raquel Sanchez-Cauce, Iago Paris, and Francisco Javier Diez. Sum-Product

Networks: A Survey, 7 2022.

[157] Mauro Scanagatta, Giorgio Corani, Cassio P. De Campos, and Marco Zaffalon.

Learning Treewidth-Bounded Bayesian networks with thousands of variables. In

Advances in Neural Information Processing Systems, 2016.

[158] Bernhard Schölkopf. Causality for Machine Learning. In Probabilistic and Causal

Inference, pages 765–804. 11 2022.

178

[159] Bernhard Schölkopf, Francesco Locatello, Stefan Bauer, Nan Rosemary Ke, Nal

Kalchbrenner, Anirudh Goyal, and Yoshua Bengio. Toward causal representation

learning. Proceedings of the IEEE, 109(5):612–634, 2021.

[160] Marco Scutari. Bayesian Network Repository.

\url{https://www.bnlearn.com/bnrepository/}, 2022.

[161] Xiaoting Shao, Alejandro Molina, Antonio Vergari, Karl Stelzner, Robert Peharz,

Thomas Liebig, and Kristian Kersting. Conditional sum-product networks:

Modular probabilistic circuits via gate functions. International Journal of

Approximate Reasoning, 140, 2022.

[162] Yujia Shen, Arthur Choi, and Adnan Darwiche. Tractable Operations for

Arithmetic Circuits of Probabilistic Models. In D Lee, M Sugiyama, U Luxburg,

I Guyon, and R Garnett, editors, Advances in Neural Information Processing

Systems, volume 29, 2016.

[163] Yujia Shen, Arthur Choi, and Adnan Darwiche. Conditional PSDDs: Modeling

and Learning With Modular Knowledge, 2018.

[164] Yujia Shen, Anchal Goyanka, Adnan Darwiche, and Arthur Choi. Structured

bayesian networks: From inference to learning with routes. In 33rd AAAI

Conference on Artificial Intelligence, AAAI 2019, 31st Innovative Applications

of Artificial Intelligence Conference, IAAI 2019 and the 9th AAAI Symposium

on Educational Advances in Artificial Intelligence, EAAI 2019, 2019.

[165] Andy Shih, Guy den Broeck, Paul Beame, and Antoine Amarilli. Smoothing

Structured Decomposable Circuits. In H Wallach, H Larochelle, A Beygelzimer,

F d\textquotesingle Alché-Buc, E Fox, and R Garnett, editors, Advances in

Neural Information Processing Systems, volume 32, 2019.

[166] Andy Shih and Stefano Ermon. Probabilistic Circuits for Variational Inference

in Discrete Graphical Models. In Advances in Neural Information Processing

Systems, volume 33, 2020.

179

[167] Shohei Shimizu, Patrik O. Hoyer, Aapo Hyvärinen, and Antti Kerminen. A

linear non-gaussian acyclic model for causal discovery. Journal of Machine

Learning Research, 7, 2006.

[168] Ilya Shpitser and Judea Pearl. Identification of Joint Interventional Distributions

in Recursive Semi-Markovian Causal Models. AAAI’06, page 1219–1226. AAAI

Press, 2006.

[169] Ilya Shpitser and Judea Pearl. Complete identification methods for the causal

hierarchy. Journal of Machine Learning Research, 9:1941–1979, 2008.

[170] Yang Song and Stefano Ermon. Generative modeling by estimating gradients of

the data distribution. In Advances in Neural Information Processing Systems,

volume 32, 2019.

[171] Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano

Ermon, and Ben Poole. Score-Based Generative Modeling through Stochastic

Differential Equations. In 9th International Conference on Learning Representa-

tions, {ICLR} 2021, Virtual Event, Austria, May 3-7, 2021. OpenReview.net,

2021.

[172] Peter Spirtes. Introduction to causal inference. Journal of Machine Learning

Research, 11, 2010.

[173] Peter Spirtes, Clark N Glymour, Richard Scheines, and David Heckerman.

Causation, prediction, and search. MIT press, 2000.

[174] Peter Spirtes and Kun Zhang. Causal discovery and inference: concepts and

recent methodological advances. In Applied informatics, volume 3, pages 1–28,

2016.

[175] M Stephens. Dealing with multimodal posteriors and non-identifiablity in

mixture models. Journal of the Royal Statistical Society, Series B, xx(xx), 2000.

[176] Adarsh Subbaswamy, Peter Schulam, and Suchi Saria. Preventing Failures Due

to Dataset Shift: Learning Predictive Models That Transport. In Proceedings

180

of the 22nd International Conference on Artificial Intelligence and Statistics,

Proceedings of Machine Learning Research, pages 3118–3127, 2019.

[177] Jin Tian and Judea Pearl. On the testable implications of causal models with

hidden variables. In Proceedings of the 18th Conference on Uncertainty in

Artificial Intelligence, 2002.

[178] Panagiotis Tigas, Yashas Annadani, Andrew Jesson, Bernhard Schölkopf, Yarin

Gal, and Stefan Bauer. Interventions, Where and How? Experimental Design

for Causal Models at Scale. In S Koyejo, S Mohamed, A Agarwal, D Belgrave,

K Cho, and A Oh, editors, Advances in Neural Information Processing Systems,

volume 35, pages 24130–24143. Curran Associates, Inc., 2022.

[179] Santtu Tikka, Antti Hyttinen, and Juha Karvanen. Identifying causal effects

via context-specific independence relations. In Advances in Neural Information

Processing Systems, volume 32, 2019.

[180] Christian Toth, Lars Lorch, Christian Knoll, Andreas Krause, Franz Pernkopf,

Robert Peharz, and Julius von Kügelgen. Active Bayesian Causal Inference.

In S Koyejo, S Mohamed, A Agarwal, D Belgrave, K Cho, and A Oh, editors,

Advances in Neural Information Processing Systems, volume 35, pages 16261–

16275. Curran Associates, Inc., 2022.

[181] Konstantinos Tsirlis, Vincenzo Lagani, Sofia Triantafillou, and Ioannis Tsamardi-

nos. On scoring Maximal Ancestral Graphs with the Max–Min Hill Climbing

algorithm. International Journal of Approximate Reasoning, 102:74–85, 2018.

[182] Benigno Uria, Marc-Alexandre Côté, Karol Gregor, Iain Murray, and Hugo

Larochelle. Neural autoregressive distribution estimation. The Journal of

Machine Learning Research, 17(1):7184–7220, 2016.

[183] Benito van der Zander, Markus Bläser, and Maciej Lískiewicz. The Hardness of

Reasoning about Probabilities and Causality. arXiv preprint arXiv:2305.09508,

2023.

181

[184] Artem Velikzhanin, Benjie Wang, and Marta Kwiatkowska. Bayesian Network

Models of Causal Interventions in Healthcare Decision Making: Literature

Review and Software Evaluation. arXiv preprint arXiv:2211.15258, 2022.

[185] Antonio Vergari, YooJung Choi, Anji Liu, Stefano Teso, and Guy den Broeck. A

Compositional Atlas of Tractable Circuit Operations for Probabilistic Inference.

In M Ranzato, A Beygelzimer, Y Dauphin, P S Liang, and J Wortman Vaughan,

editors, Advances in Neural Information Processing Systems, volume 34, pages

13189–13201, 2021.

[186] Antonio Vergari, Nicola Di Mauro, and Floriana Esposito. Visualizing and

Understanding Sum-Product Networks. Machine Learning, 108(4):551–573, 4

2019.

[187] Thomas Verma and Judea Pearl. Equivalence and Synthesis of Causal Models.

In Proceedings of the Sixth Annual Conference on Uncertainty in Artificial

Intelligence, UAI ’90, pages 255–270, USA, 1990. Elsevier Science Inc.

[188] Jussi Viinikka, Antti Hyttinen, Johan Pensar, and Mikko Koivisto. Towards

scalable Bayesian learning of causal DAGs. In Advances in Neural Information

Processing Systems, volume 2020-Decem, pages 6584–6594, 2020.

[189] Benjie Wang and Marta Kwiatkowska. Symbolic Causal Inference via Operations

on Probabilistic Circuits. In NeurIPS 2022 Workshop on Neuro Causal and

Symbolic AI (nCSI), 2022.

[190] Benjie Wang and Marta Kwiatkowska. Compositional Probabilistic and Causal

Inference using Tractable Circuit Models. In International Conference on

Artificial Intelligence and Statistics, pages 9488–9498. PMLR, 2023.

[191] Benjie Wang, Clare Lyle, and Marta Kwiatkowska. Provable Guarantees on the

Robustness of Decision Rules to Causal Interventions. In IJCAI International

Joint Conference on Artificial Intelligence, 2021.

182

[192] Benjie Wang, Stefan Webb, and Tom Rainforth. Statistically robust neural

network classification. In Uncertainty in Artificial Intelligence, pages 1735–1745.

PMLR, 2021.

[193] Benjie Wang, Matthew R Wicker, and Marta Kwiatkowska. Tractable Uncer-

tainty for Structure Learning. In Kamalika Chaudhuri, Stefanie Jegelka, Le Song,

Csaba Szepesvari, Gang Niu, and Sivan Sabato, editors, Proceedings of the 39th

International Conference on Machine Learning, volume 162 of Proceedings of

Machine Learning Research, pages 23131–23150. PMLR, 2022.

[194] Sergio Wechsler, Rafael Izbicki, and Lúıs Gustavo Esteves. A Bayesian Look at

Nonidentifiability: A Simple Example. American Statistician, 67(2), 2013.

[195] Matthew Wicker, Luca Laurenti, Andrea Patane, Zhuotong Chen, Zheng Zhang,

and Marta Kwiatkowska. Bayesian Inference with Certifiable Adversarial Ro-

bustness. In Arindam Banerjee and Kenji Fukumizu, editors, Proceedings of The

24th International Conference on Artificial Intelligence and Statistics, volume

130 of Proceedings of Machine Learning Research, pages 2431–2439. PMLR,

2021.

[196] Hjalmar Wijk, Benjie Wang, and Marta Kwiatkowska. Robustness Guarantees

for Credal Bayesian Networks via Constraint Relaxation over Probabilistic

Circuits. In International Joint Conference on Artificial Intelligence, 2022.

[197] Sewall Wright. The Method of Path Coefficients. The Annals of Mathematical

Statistics, 5(3):161–215, 1934.

[198] Kevin Xia, Kai Zhan Lee, Yoshua Bengio, and Elias Bareinboim. The Causal-

Neural Connection: Expressiveness, Learnability, and Inference. In Advances in

Neural Information Processing Systems, volume 13, 2021.

[199] Yue Yu, Jie Chen, Tian Gao, and Mo Yu. {DAG}-{GNN}: {DAG} Structure

Learning with Graph Neural Networks. In Kamalika Chaudhuri and Ruslan

Salakhutdinov, editors, Proceedings of the 36th International Conference on

183

Machine Learning, volume 97 of Proceedings of Machine Learning Research,

pages 7154–7163. PMLR, 2019.

[200] Marco Zaffalon, Alessandro Antonucci, and Rafael Cabañas. Structural Causal

Models Are (Solvable by) Credal Networks. 8 2020.

[201] Matej Zecevic, Devendra Singh Dhami, Athresh Karanam, Sriraam Natarajan,

and Kristian Kersting. Interventional Sum-Product Networks: Causal Inference

with Tractable Probabilistic Models. In A Beygelzimer, Y Dauphin, P Liang,

and J Wortman Vaughan, editors, Advances in Neural Information Processing

Systems, 2021.

[202] Matej Zecevic, Devendra Singh Dhami, and Kristian Kersting. A Taxonomy for

Inference in Causal Model Families. CoRR, abs/2110.1, 2021.

[203] Honghua Zhang, Steven Holtzen, and Guy Broeck. On the relationship between

probabilistic circuits and determinantal point processes. In Conference on

Uncertainty in Artificial Intelligence, pages 1188–1197, 2020.

[204] Honghua Zhang, Brendan Juba, and Guy den Broeck. Probabilistic generating

circuits. In International Conference on Machine Learning, pages 12447–12457,

2021.

[205] Junzhe Zhang, Jin Tian, and Elias Bareinboim. Partial counterfactual identifi-

cation from observational and experimental data. In International Conference

on Machine Learning, pages 26548–26558. PMLR, 2022.

[206] Kun Zhang and Lai-Wan Chan. Extensions of ICA for Causality Discovery in the

Hong Kong Stock Market. In Proceedings of the 13th International Conference

on Neural Information Processing - Volume Part III, ICONIP’06, pages 400–409,

Berlin, Heidelberg, 2006. Springer-Verlag.

[207] Kun Zhang and Aapo Hyvärinen. On the Identifiability of the Post-Nonlinear

Causal Model. In Proceedings of the Twenty-Fifth Conference on Uncertainty in

Artificial Intelligence, UAI ’09, pages 647–655, Arlington, Virginia, USA, 2009.

AUAI Press.

184

[208] Xiyue Zhang, Benjie Wang, and Marta Kwiatkowska. On Preimage Approxima-

tion for Neural Networks. arXiv preprint arXiv:2305.03686, 2023.

[209] Han Zhao, Tameem Adel, Geoff Gordon, and Brandon Amos. Collapsed Vari-

ational Inference for Sum-Product Networks. In Maria Florina Balcan and

Kilian Q Weinberger, editors, Proceedings of The 33rd International Conference

on Machine Learning, volume 48 of Proceedings of Machine Learning Research,

pages 1310–1318, New York, New York, USA, 2016. PMLR.

[210] Han Zhao, Mazen Melibari, and Pascal Poupart. On the Relationship between

Sum-Product Networks and Bayesian Networks. In Francis Bach and David Blei,

editors, Proceedings of the 32nd International Conference on Machine Learning,

volume 37 of Proceedings of Machine Learning Research, pages 116–124, Lille,

France, 2015. PMLR.

[211] Han Zhao, Pascal Poupart, and Geoff Gordon. A unified approach for learning

the parameters of Sum-Product Networks. In Advances in Neural Information

Processing Systems, 2016.

[212] Xun Zheng, Bryon Aragam, Pradeep K Ravikumar, and Eric P Xing. DAGs

with NO TEARS: Continuous Optimization for Structure Learning. In S Ben-

gio, H Wallach, H Larochelle, K Grauman, N Cesa-Bianchi, and R Garnett,

editors, Advances in Neural Information Processing Systems, volume 31. Curran

Associates, Inc., 2018.

[213] Xun Zheng, Chen Dan, Bryon Aragam, Pradeep Ravikumar, and Eric Xing.

Learning Sparse Nonparametric DAGs. In Silvia Chiappa and Roberto Calandra,

editors, Proceedings of the Twenty Third International Conference on Artificial

Intelligence and Statistics, volume 108 of Proceedings of Machine Learning

Research, pages 3414–3425. PMLR, 2020.

185

Appendix A

Advanced Causal Reasoning via
Compilation

A.1 Proofs

Lemma 4.1 (Known Parents). Let C be a compiled PC that symbolically computes

the CBN N , and satisfies topological ordering constraints <top. Then, for any sum

node T deciding on a variable Vi, every complete subcircuit Csub of C which contains T

must contain the same indicators for the parents PAi.

Proof. Suppose for contradiction that this was not the case; then there are two

subcircuits Csub,1, Csub,2 containing conflicting indicators for the parents PAi of Vi. We

will split each subcircuit into a prefix and a suffix. Let CT denote the circuit rooted

at T . The suffix Csub,S of a subcircuit Csub is defined to be all nodes, edges, weights,

and leaf functions which are contained within CT and Csub, while the prefix Csub,P is

all nodes, edges, weights and leaf functions contained in Csub but not contained within

CT , i.e. external to CT .

We thus have Csub,1 = (Csub,1,P , Csub,1,S) and Csub,2 = (Csub,2,P , Csub,2,S). By the

topological ordering constraints, CT cannot contain any sum nodes deciding on any

parent variable in PAi, and thus there cannot be any indicator corresponding to any

parent variable in PAi in CT (and thus in any suffix subcircuit). Now, we define

C ′sub,2 := (Csub,2,P , Csub,1,S). Since no indicators for parent variables are contained in

Csub,1,S or Csub,2,S, C ′sub,2 contains indicators corresponding to the same values of the

parent variables as Csub,2. In particular, this is still different from Csub,1.

186

As the circuit symbolically computes a Bayesian network, each subcircuit corre-

sponds to some instantiation of the variables. Now, comparing Csub,1, C ′sub,2, we see that

they have the same suffix subcircuit, meaning that they specify the same value of Vi

(say vi), but different values pai,pa
′
i of PAi. This means that the subcircuits contain

parameters θvi|pai
, θvi|pa′

i
respectively. Since these parameters depend on the value of

Vi, they must appear in CT . But this is a contradiction as both suffix subcircuits are

identical.

Proposition 4.1. Suppose T decides on variable Vi. Then, for any parent PAi ∈ PAi

of Vi, P (T, PAi) is a singleton set.

Proof. Recall the definition:

P (N, Vi) := {vi : ∃L ∈ desc(N) : gN = θvj |paj
and vi ∈ paj} (A.1)

In particular, P (T, PAi) contains the set of all values of PAi such that there is a

descendant leaf node of T corresponding to a parameter that specifies that value of

PAi. Such a parameter exists: namely θVi|pai
, which is contained within CT . Thus

P (T, PAi) is non-empty. Further, by Lemma 4.1, it cannot contain more than one

element.

Proposition 4.2 (Correctness of Transpiled PC). The output of Algorithm 4.1

symbolically computes CBN .

Proof. Given a compiled PC C = (G,ω = 1, g(λ,Θ)) symbolically computing CBN ,

the algorithm outputs a transpiled circuit C ′ = (G,ω(Θ), g(λ)). We will show that

fC(λ,Θ) = fC(λ,Θ), which implies that C ′ symbolically computes CBN .

The only changes the algorithm makes are to remove leaves corresponding to

parameter variables, and encode those parameters in the sum node weights. In

particular, the leaf nodes corresponding to indicator nodes are not changed. Thus

we can put the complete subcircuits of C, C ′ in one-to-one correspondence such that

(Csub, C ′sub) both correspond to the same value v of the domain variables V . For each

187

variable Vi ∈ V , the subcircuit Csub contains exactly one sum node Ti deciding on

Vi, and one parameter of the form θvi|pai
. The algorithm moves this parameter to

be the weight (in the subcircuit) of Ti, so that the overall term is unchanged in C ′sub.

Applying this to all variables, we have that the terms of every corresponding pair of

subcircuits (Csub, C ′sub) is the same and so fC(λ,Θ) = fC(λ,Θ).

Proposition 4.3 (Correctness of Algorithm 4.3). The output C ′ of Algorithm 4.3 has

polynomial fM|v(1)

F (1)

.

Proof. Firstly, we note that the computation of pcond in the algorithm corresponds

to a marginal inference query for the event v
(1)

F (1) on the original circuit C, such that

pcond(R) = pM(v
(1)

F (1)), where R is the root sum unit.

Consider any subcircuit Csub of C, corresponding to some particular values u,v

of the endogenous and exogenous variables. Further, let C ′sub be the corresponding

subcircuit in C ′ (also corresponding to u,v. The terms of these subcircuits differ only

in the parts changed by the algorithm: that is, the indicators 1
v
(1)
i =F

(1)
i (ui,pa

(1)
i)

, and

the reweighting of the weight associated with the root sum node. Since each subcircuit

has exactly one sum node deciding on each endogenous variable Vi ∈ V , we have that

the term of C ′sub is equal to the term of Csub weighted by a factor

∏d
i=1 1v

(1)
i

=F
(1)
i

(ui,pa
(1)
i

)

pM(v
(1)

F (1)
)

.

Applying this result for all subcircuits, we have that:

fC′ =
∑

C′
sub∈C′

MC′
sub

(A.2)

=
∑

Csub∈C

∏d
i=1 1v(1)i =F

(1)
i (ui,pa

(1)
i)

pM(v
(1)

F (1))
MCsub (A.3)

=
∑

u∈val(U),v∈val(V)

∏d
i=1 1v(1)i =F

(1)
i (ui,pa

(1)
i)

pM(v
(1)

F (1))

∏
U∈U

1U=uPrU(u)
d∏
i=1

1Vi=viθvi|ui,pai
(A.4)

= fM|v(1)

F (1)

(A.5)

188

Appendix B

Tractability of Causal Inference

B.1 Proofs

Proposition 5.1 (Tractable Symbolic Conditioning). Let C be a decomposable, smooth

and Q-deterministic circuit over variables V . Then computing COND(C;Q) as a

decomposable, smooth and Q-deterministic circuit is tractable in O(|C|) time and

space.

Proof. Firstly, it is clear that Algorithm 5.1 runs in O(|C|) time, using a single forward

pass through the circuit starting at the leaves (and keeping track of the value of c[N],

which computes the normalizing constant pN (∅) at each node N). Further, the output

circuit C ′ is decomposable and smooth as the operations do not change the scope of

any of the nodes, and is further Q-deterministic as the support of the leaf nodes do

not change.

It remains to show that C ′ faithfully represents the conditional distribution accord-

ing to Definition 5.3, i.e.:

pC′(V) = COND(pC′ ;Q)

{
pC(V)
pC(Q)

if pC(Q) > 0

0 if pC(Q) = 0
(B.1)

We prove this by induction over for all nodes N (children before parents); namely, by

showing that:

p′N(V)1 = COND(p′N ;Q) =

{
pN (V)
pN (Q)

if pN(Q) > 0

0 if pN(Q) = 0
(B.2)

1Recall that for node distributions, we write e.g. p′N (V) to mean p′N (V ∩ ϕ(N)).

189

where p′ represents the distribution in C ′, and p the distribution in C. The above

result then follows from this result for the root node R.

Leaf Nodes For the base case, we consider leaf nodes L. Here, by Line 5 the result

follows immediately.

Sum Nodes Now, we consider sum nodes T . Firstly, let us consider the case that

pT (Q) = 0; then, we must have that pNi
(Q) = 0 whenever ωT,i > 0, and so by the

inductive hypothesis, p′Ni
(V) = 0. Further, note that the changes to the weights in

Lines 11, 13 never makes a weight ω′
T,i positive if the original ωT,i = 0. This implies

that p′T,i(V) = 0, as required.

Now, suppose instead that pT (Q) > 0. If ϕ(T) ∩ Q ̸= ∅, then by Line 11 we

set ω′
T,i = 1ωT,i>0 for all i. Further, by Q-determinism of C, only one child Nj has

pNj
(Q) > 0. This child must have ωT,j > 0 in order that pT (Q) > 0, and so ω′

T,j = 1.

Thus:

pT (V)

pT (Q)
=
ωT,jpNj

(V)

ωT,jpNj
(Q)

= p′Nj
(V) = p′T (V) (B.3)

Here, the second equality follows by the inductive hypothesis, while the third equality

follows from the fact that ω′
T,j = 1.

If instead ϕ(T) ∩Q = ∅, then by Line 13 we set ω′
T,i =

ωT,ipNi
(∅)∑

Nj∈ch(T) ωT,jpNj
(∅) for all i.

We thus have:

pT (V)

pT (Q)
=

∑
i ωT,ipNi

(V)∑
j ωT,jpNj

(Q)
=

∑
i ωT,ipNi

(V)∑
j ωT,jpNj

(∅)
=
∑
i

ω′
T,i

pNi
(V)

pNi
(∅)

(B.4)

=
∑
i

ω′
T,i

pNi
(V)

pNi
(Q)

=
∑
i

ω′
T,ip

′
Ni
(V) = p′Ti(V) (B.5)

The second equality follows because ϕ(T) = ϕ(Tj) (smoothness), and so ϕ(Tj)∩Q = ∅.

The third equality follows by the definition of the new weight, the fourth again by

ϕ(Tj) ∩Q = ∅, and the fifth by the inductive hypothesis.

Thus we have shown in all cases that the inductive hypothesis holds for T .

190

Product Node Finally, we consider product nodes P . If pP (Q) = 0, then one of

its children (say N1 has pNi
(Q) = 0. By the inductive hypothesis, p′Ni

(V) = 0 and

thus p′P (V) = 0.

If pP (Q) > 0, then we have:

pP (V)

pP (Q)
=

∏
i=1,2 pNi

(V)∏
i=1,2 pNi

(Q)
=
∏
i=1,2

pNi
(V)

pNi
(Q)

=
∏
i=1,2

p′Ni
(V) = p′P (V) (B.6)

Here, the first inequality follows because of decomposability, the third inequality by

the inductive hypothesis, and the final equality by Line 7.

Theorem 5.1 (Hardness of Backdoor Query). The backdoor query for decompos-

able and smooth PCs is #P-hard, even if the PC is structured decomposable and

deterministic.

Proof. We prove this in the case of binary variables for brevity of presentation, though

the proof can be easily extended to non-binary discrete variables. Our proof is based

on a reduction from the problem of computing the expectation of a logistic regression

model, which was defined and shown to be #P-hard in [52] and which we refer to as

the EXPLR problem. In particular, for any EXPLR problem over variables Z, with input

size nZ = |Z|, we construct a circuit in time and with size linear in Z and where

computing the backdoor query px(y) =
∑

Z p(Z)p(y|x,Z) is equivalent to solving

the EXPLR problem.

The EXPLR problem is defined as computing the following quantity (where wi ∈ R):

EXPLR(w) =
∑
Z

1

1 + e−(w0+
∑

i wiZi)
(B.7)

We will construct a circuit over variables V = {X,Y ,Z}, where the setsX = {X}

and Y = {Y } each consist of a single variable, and consider the backdoor query for

instantiations x, y of X, Y . We begin by defining a number of auxiliary circuits/nodes

for X,Y and Z individually, all structured decomposable, smooth and deterministic,

which will be part of the construction of the main circuit.

First, for Y we define the leaf nodes 1y,1¬y to encode the functions p1y(Y) :=

1Y=y, p1¬y(Y) := 1Y=¬y respectively. For X, we define 1x,1¬x to encode p1x(X) :=

191

1X=x, p1¬x(X) := 1X=¬x (respectively) in a similar manner. Finally, for Z, we define

two circuits, 1Z and CZ , as follows. Let Z := {Z1, ..., ZnZ
} be an arbitrary ordering

of the variables in Z, and let Z≥i denote {Xi, ..., XnZ
} for any 1 ≤ i ≤ nZ . Then we

define the circuit 1Z recursively as follows, where 1Z := 1Z≥1
(where × indicates a

product node with its arguments as children):

1Z≥i
:=

{
1Zi
× 1Z≥i+1

1 ≤ i < nZ

1Zi
i = nZ

(B.8)

This circuit consists of a series of product units, and leaf units 1Zi
for each Zi ∈ Z

which we define to encode the function p1Zi
(Zi) ≡ 1 (for all values of Zi). Thus, the

circuit as a whole encodes p1Z
(Z) ≡ 1 for all values of Z. In terms of structural and

support properties, the circuit is trivially deterministic and smooth as it does not

contain any sum nodes, and is clearly also structured decomposable. Finally, it can

also be seen that the size |1Z | (number of edges) of 1Z is O(nZ).

We now design a circuit CZ to encode the function e−(w0+
∑

i wiZi) as follows, where

CZ := CZ≥1
:

CZ≥i
:=

{
CZi
× CZ≥i+1

1 ≤ i < nZ

CZi
i = nZ

(B.9)

where we define leaf nodes CZi
to encode pCZi

(Zi) := e−wiZi for 1 ≤ i < nZ and

pCZi
(Zi) := e−(w0+wiZi) for i = nZ . By recursion it can be seen that this circuit does

indeed encode pCZ (Z) = e−(w0+
∑

i wiZi). This circuit is deterministic and smooth, and

also decomposes in the same way as 1Z , i.e. they are structured decomposable with

the same vtree. It can also be seen that the size |CZ | of CZ is O(nZ).

Now, consider the following probabilistic circuit over V = X ∪Y ∪Z (where ×,+

represent product, sum nodes respectively):

C := 1y × (1x × 1Z + 1¬x × 1Z) + 1¬y × (1x × CZ + 1¬x × 1Z) (B.10)

C is structured decomposable as all of the product units with the same scope in

the equation above decompose in the same way, and we have seen that 1Z and CZ
are structured decomposable with respect to the same vtree. It is also smooth and

deterministic as the individual circuits 1Z and CZ are smooth and deterministic, and

the sum nodes in the equation satisfy determinism by the fact that (1y,1¬y) and

192

(1x,1¬x) have disjoint support. Finally, as the sizes of 1Z and CZ are O(nZ), |C(V))|

is also O(nZ).

Now, we show that the backdoor query on C is equivalent to solving the correspond-

ing EXPLR problem. First, we derive expressions for all of the individual components

of the backdoor formula on the circuit C, by evaluating according to Equation B.10:

pC(x, y,Z) = p1y(y)× (p1x(x)× p1Z
(Z) + p1¬x(x)× p1Z

(Z))

+ p1¬y(y)× (p1x(x)× pCZ (Z) + p1¬x(x)× p1Z
(Z))

= 1× (1× 1 + 0× 1) + 0× (1× 1 + 0× 1)

= 1

pC(x,Z) = pC(x, y,Z) + pC(x,¬y,Z)

= 1 + CZ(Z)

pC(Z) = pC(x,Z) + pC(¬x, y,Z) + pC(¬x,¬y,Z)

= pC(x,Z) + 1 + 1

= pC(x,Z) + 2

The backdoor query for C can then be expressed as

px(y) =
∑
Z

pC(Z)pC(y|x,Z) =
∑
Z

(pC(x,Z) + 2)
pC(x, y,Z)

pC(x,Z)
=
∑
Z

[
1 +

2

1 + pCZ (Z)

]
= 2nZ + 2

∑
Z

1

1 + e−(w0+
∑

i wiZi)

Thus, if we can compute the backdoor query for C, then we can compute the given

EXPLR problem, completing the reduction.

Proposition 5.2 (Scope of Structured Decomposable and Smooth Circuits). Given

a structured decomposable and smooth circuit C respecting vtree v, with at least one

product node, every node N in the circuit has a corresponding vtree node m such that

ϕ(N) = ϕ(m).

Proof. By structured decomposability, the scope of each product node matches the

scope of a vtree node, and the scope of its children match the scope of the vtree node’s

193

children. By smoothness, the scope of a sum node is equal to the scope of each of its

children. Thus, if there is at least one product node, the scope of the root sum node

is given by the the scope of any immediate descendant product node (that is, any

product node such that the path between the root and product node does not contain

another product node).

We can then recursively apply the above rules for the scope of the children of sum

and product nodes starting from the root, which ensures that the scope of all nodes

matches the scope of some vtree node.

Proposition 5.3 (ConflictingQ-Determinisms for Sum Nodes). Let T be a non-trivial2

sum node T , and let Q,Q′ be sets of variables such that neither is a subset of the other.

Then, if T is both Q-deterministic and Q′-deterministic, but not (Q∩Q′)-deterministic,

it cannot have full support, i.e. supp(T) ⊂ val(ϕ(T)).

Proof. Since the sum node T is non-trivial, it has at least two children. Let N1, N2

be two distinct children of T . Let I1, I2 be the sets of values q of Q such that

pN1(q) > 0, pN2(q) > 0 respectively. Define I ′1, I
′
2 similarly for Q′. Note that, by

Q-determinism and Q′-determinism, I1, I2 are disjoint, and similarly I ′1, I
′
2 are disjoint.

Now, we claim that there exists values q ∈ I1 and q′ ∈ I ′2 such that they agree over

the intersection Q ∩Q′. If not, then pN1 and pN2 are non-zero for disjoint subsets of

values of (Q∩Q′), which implies (Q∩Q′)-determinism, which is a contradiction of the

assumption of the Proposition. Now consider the value q∪q′ of Q∪Q′. pN1(q∪q′) = 0

since pN1(q
′) = 0 (by the disjointness of I ′1, I

′
2), and similarly pN2(q ∪ q′) = 0 since

pN2(q) = 0. For any other child N3 of T , we have that I1 and I3 are disjoint by

Q-determinism, so pN3(q) = 0 and we get pN3(q ∪ q′) = 0. Putting it all together,

pT (q ∪ q′) = 0 and thus T does not have full support.

Proposition 5.4 (Superset Q-Determinisms for Sum Nodes). Suppose that a sum

node T is Q-deterministic. Then it is also Q′-deterministic for any Q ⊆ Q′ ⊆ V .

2A sum node is non-trivial if it has more than one child.

194

Proof. By definition, a sum node T is Q-deterministic if for any instantiation q of

Q, at most one of its children Ni evaluate to a nonzero output under q. If Q′ ⊇ Q,

then any instantiation q′ of Q′ will imply a specific instantiation of q, and so at

most one of the children of T evaluate to a nonzero output under q′. More formally,

pNi
(q) =

∑
Q′\Q pNi

(q,Q′ \Q) = 0 =⇒ pNi
(q′) = 0.

Proposition 5.5 (Validity of Implied Q-Determinisms). For any PC C respecting

md-vtree w, we have that Q(w) ⊆ Q(C).

Proof. Since C respects w, every sum unit T ∈ C has scope ϕ(T) = ϕ(m) for some

m ∈ M , and T is ψ(m)-deterministic. Further, since w implies Q-determinism, we

have that ϕ(m) ∩Q = ∅, or else Q ⊇ ψ(m). Combining these statements, we see that

for all sum units T ∈ C, either ϕ(T)∩Q = ∅, or else T is ψ(m)-deterministic and thus

(by Proposition 5.4) Q-deterministic. This shows that C is Q-deterministic.

The following theorem justifies the intuition that having smaller labels ψ(m)

corresponds to a stronger restriction on the circuit, such that less circuits respect the

md-vtree, but more marginal determinisms are implied:

Theorem 5.2 (Generality-Tractability Tradeoff). Let w = (v, ψ) and w′ = (v, ψ′)

be two md-vtrees, such that ψ′(m) ⊇ ψ(m) for all m ∈ M . Then we have that

Q(w) ⊇ Q(w′), and Cw ⊆ Cw′.

Proof. For the first part, suppose Q ∈ Q(w′). Then for all m ∈ M , it holds that

ϕ(m) ∩Q = ∅, or else Q ⊇ ψ′(m). Since ψ′(m) ⊇ ψ(m), it holds that ϕ(m) ∩Q = ∅,

or else Q ⊇ ψ(m) also, so Q ∈ Q(w). This shows that Q(w) ⊇ Q(w′).

For the second part, suppose that C ∈ Cw. Then, for any sum unit T ∈ C, there is

an m ∈ M that T is marginally deterministic w.r.t. ψ(m). As ψ′(m) ⊇ ψ(m), this

means that T is also marginally deterministic w.r.t. ψ′(m). Thus C respects w′ also,

i.e. C ∈ Cw′ .

Theorem 5.3 (Admissible Labelling Functions are Regular). Given a vtree v, let ψ

be any non-regular labelling function. Then there exists a regular labelling function ψ′

such that (i) ψ′(m) ⊇ ψ(m) for all m ∈ M , (ii) ∃m∗ ∈ M such that ψ′(m) ⊃ ψ(m),

and Q(w′) = Q(w), where w := (v, ψ), w′ := (v, ψ′).

195

We will prove this Theorem explicitly by constructing a regular labelling function

with these properties. To do this, we prove two Lemmas which define operations which

do not change Q(w), while keeping the same or increasing the label set ψ(m) for each

m; the result of iterative application of the two operations being a regular labelling

function.

Definition B.1 (Expand Child Labels). Given a md-vtree w = (v, ψ), and any vtree

nodes mpa∗ ,mch∗ such that mch∗ is a child of mpa∗, the operation ECL(w,mpa∗ ,mch∗)

returns a new md-vtree w′ = (v, ψ′), defined as follows:

ψ′(m) =

{
ψ(mch∗) ∪ (ψ(mpa∗) ∩ ϕ(mch∗)) if m = mch

ψ(m) otherwise
(B.11)

Lemma B.1. The output w′ = ECL(w,mpa∗ ,mch∗) satisfies Q(w′) = Q(w), and for

all m ∈M , ψ′(m) ⊇ ψ(m).

Proof. The only difference between w and w′ is the label of mch∗ . Suppose that

Q ∈ Q(w), then we have that either ϕ(mch∗) ∩Q = ∅, or else Q ⊇ ψ(mch∗). In the

former case, since the vtrees and thus scopes are the same between w,w, it follows that

Q ∈ Q(w′) also. In the latter case, since the scope of the parent ϕ(mpa∗) ⊇ ϕ(mch∗),

Q overlaps with the parent scope as well, implying that that Q ⊇ ψ(mpa∗). Thus

we have that Q ⊇ ψ(mch∗) ∪ ψ(mpa∗) ⊇ ψ(mch∗) ∪ (ψ(mpa∗) ∩ ϕ(mch∗)) = ψ′(mch∗).

Thus, Q ∈ Q(w′) also. That is, Q(w) ⊆ Q(w′).

To complete the result, note that ψ(m) ⊆ ψ′(m) for all vtree nodes m. Thus

by Theorem 5.2, it follows that Q(w) ⊇ Q(w′) and Cw ⊆ Cw′ . Combining with the

paragraph above we have shown that Q(w) = Q(w′).

Intuitively, this operation ”pushes down” elements of ψ(mpa∗) to its children. If

we apply this operation to all pairs of parent/child vtree nodes (mpa,mch), then it

can be seen that the new labels will have the property that all elements of the parent

label that are contained in the scope of a child, will be in the label of that child. More

formally, ψ′(mpa) ∩ ϕ(mch) = ψ′(mpa) ∩ ψ′(mch). This is the starting point for the

next operation:

196

Definition B.2 (Expand Parent Labels). Let w = (v, ψ) be a md-vtree such that

ψ(mpa) ∩ ϕ(mch) = ψ(mpa) ∩ ψ(mch) holds for all pairs of parents mpa and children

mch. Then, given any non-leaf vtree node mpa∗, the operation EPL(w,mpa∗) returns a

new md-vtree w′ = (v, ψ′), defined as follows:

ψ′(m) =

{⋃
mch∗∈Mactive

ψ(mch∗) if m = mpa

ψ(m) otherwise
(B.12)

where we define Mactive = {mch∗|mch∗ ∈ Mch∗ , ψ(mch∗) ∩ ψ(mpa∗) ̸= ∅} to be the set

of all children whose labellings have non-empty intersection with the labelling of the

parent.

Lemma B.2. The output w′ = EPL(w,mpa∗) satisfies Q(w′) = Q(w), and for all

m ∈M , ψ′(m) ⊇ ψ(m).

Further, the property that ψ′(mpa)∩ ϕ(mch) = ψ′(mpa)∩ψ′(mch) holds for all pairs

of parents mpa and children mch in w′ (i.e. is maintained in w′).

Proof. Firstly, we show that ψ(mpa∗) ⊆ ψ′(mpa∗). This follows by taking a union over

children of both sides of the assumption ψ(mpa∗)∩ϕ(mch∗) = ψ(mpa∗)∩ψ(mch∗), where

the LHS becomes
⋃
mch∗∈Mch∗

(ψ(mpa∗) ∩ ϕ(mch∗)) = ψ(mpa∗) ∩
⋃
mch∗∈Mch∗

ϕ(mch∗) =

ψ(mpa∗)∩ϕ(mpa∗) = ψ(mpa∗), and the RHS becomes
⋃
mch∗∈Mch∗

(ψ(mpa∗) ∩ ψ(mch∗)) =⋃
mch∗∈Mactive

(ψ(mpa∗) ∩ ψ(mch∗)) = ψ(mpa∗)∩
⋃
mch∗∈Mactive

ψ(mch∗) ⊆ ψ′(mpa∗). Thus

ψ(m) ⊆ ψ′(m) for all vtree nodesm, and by Theorem 5.2, it follows thatQ(w) ⊇ Q(w′)

and Cw ⊆ Cw′ .

Now suppose Q ∈ Q(w). We consider two cases. Firstly, if ϕ(mpa∗) ∩Q = ∅, then

since vtrees and scopes are the same between w,w′, we have Q ∈ Q(w′). Otherwise,

we have ϕ(mpa∗)∩Q ̸= ∅ and Q ⊇ ψ(mpa∗). Now, for those children inMactive, we have

that ψ(mch∗)∩ψ(mpa∗) ̸= ∅ and so sinceQ ⊇ ψ(mpa∗) and ϕ(mch∗) ⊇ ψ(mch∗), we have

Q ∩ ϕ(mch∗) ̸= ∅. The marginal determinism property on these children then implies

that Q ⊇ ψ(mch∗) for all mch∗ ∈Mactive; and so Q ⊇
⋃
mch∗∈Mactive

ψ(mch∗) = ψ′(mpa∗).

This shows that Q ∈ Q(w′) also. This gives Q(w) ⊆ Q(w′), and combined with the

previous result, Q(w) = Q(w′).

Finally, we show that the property that ψ′(mpa) ∩ ϕ(mch) = ψ′(mpa) ∩ ψ′(mch)

holds for all pairs of parents mpa and children mch in w′. The only label which has

197

changed is that of mpa, so we need only consider the pairs (mpa,mch) with either (a)

mpa = mpa∗ and mch is a child of mpa∗ or (b) mch = mpa∗ and mpa is the parent of

mpa∗ .

• In case (a), by definition we have that ψ′(mpa) = ψ′(mpa∗) =
⋃
mch∗∈Mactive

ψ(mch∗),

and ψ′(mch) = ψ′(mch). If mch is an active child of m∗
pa, then we have that

the LHS of the property ψ′(mpa) ∩ ϕ(mch) =
⋃
mch∗∈Mactive

ψ(mch∗) ∩ ϕ(mch) =

ψ(mch), and the RHS of the property ψ′(mpa)∩ψ′(mch) =
⋃
mch∗∈Mactive

ψ(mch∗)∩

ψ′(mch) = ψ(mch). If mch is not an active child of m∗
pa, then both sides of the

property correspond to the empty set.

• In case (b), by definition we have ψ′(mpa) = ψ(mpa), and ψ
′(mch) = ψ′(mpa∗).

We have shown above that ψ(mpa∗) ⊆ ψ′(mpa∗), so ψ(mch) ⊆ ψ′(mch). By the

precondition for applying the EPL operation, we have that ψ(mpa) ∩ ϕ(mch) =

ψ(mpa) ∩ ψ(mch). Substituting, we get ψ′(mpa) ∩ ϕ(mch) = ψ′(mpa) ∩ ψ(mch) ⊆

ψ′(mpa) ∩ ψ′(mch). The other direction ψ′(mpa) ∩ ϕ(mch) ⊇ ψ′(mpa) ∩ ψ′(mch)

is immediate as the label of a node is contained in its scope.

Thus, we have shown that ψ′(mpa)∩ϕ(mch) = ψ′(mpa)∩ψ′(mch) holds for all pairs

of parents mpa and children mch in w′, concluding the proof.

Intuitively, this operation ”pulls up” elements ψ(mch) of the active children to

the parent. After applying this operation to all nodes, we obtain a regular md-vtree,

which has the same set Q of marginal determinisms, and is at least as expressive.

More formally:

Proof. (of Theorem) Starting from w, apply the ECL operation to each pair of parent

and child nodes, in a topological order starting from the root. For each mpa,mch pair,

we have that ψ′(mpa) = ψ(mpa) and ψ
′(mch) = ψ(mch)∪(ψ(mpa)∩ϕ(mch)) by definition

of the operation. Then ψ′(mpa)∩ψ′(mch) = ψ(mpa)∩(ψ(mch) ∪ (ψ(mpa) ∩ ϕ(mch))) =

(ψ(mpa)∩ψ(mch))∪ (ψ(mpa)∩ϕ(mch)) = ψ(mpa)∩ϕ(mch) = ψ′(mpa)∩ϕ(mch), which

is the required property for applying the EPL operation. As we proceed in a topological

order, and the operation only modifies the label of the child, it follows that the

198

property ψ′(mpa) ∩ ψ′(mch) = ψ′(mpa) ∩ ϕ(mch) holds for all parent/children pairs at

the end.

This allows us to apply the EPL operation. We apply this operation to every non-

leaf node, in a reverse topological order from the leaves to the root. The precondition

for applying the operation holds at all points due to the result of Lemma B.2. This

operation only modifies the label of the parent, and so after we have modified all

the labels, we have the property that ψ′(mpa) =
⋃
mch∈Mactive

ψ(mch) for every non-

leaf node mpa. That is, it satisfies the conditions to be a regular md-vtree, i.e.

ψ′(mpa) = ∅, ψ′(m1), ψ
′(m2), or ψ

′(m1) ∪ ψ′(m2), where m1,m2 are the children of

mpa.

We have already shown that applications of ECL and EPL do not change the implied

marginal determinisms (i.e. point (iii) of the Theorem), and keep the same or increase

the size of the label (i.e. point (i) of the Theorem). The strictness of the label change

(point (ii) of the Theorem) follows from the fact that the original labelling function

was not regular, while the output labelling function is regular; thus, there must be a

difference in the label of at least one vtree node m.

Proposition 5.6 (Correctness and Admissibility of S-constrained Label). For any

vtree v and set of marginal determinisms S, the md-vtree w := (v, ψS) satisfies

Q(w) ⊇ S. Further, ψS is admissible.

Proof. Recall the definition of the S-constrained label:

ψS(m) =

{
U if Q ∩ ϕ(m) = ∅ ∀Q ∈ S

ϕ(m) ∩ (
⋂

Q∈S:Q∩ϕ(m)̸=∅Q) otherwise
(B.13)

For correctness, we need to show that, for each m ∈M and Q ∈ S, if ϕ(m) ∩Q ̸= ∅,

then Q ⊇ ψS(m). This is immediate by the definition of the otherwise clause.

For admissibility, suppose for contradiction that there was a labelling function ψ′

such that ψ′(m) ⊇ ψS(m) for all nodes m, and ψ′(m∗) ⊃ ψS(m
∗) for some node m∗,

and Q(ψ′) ⊇ Q(ψS). Since the universal set has no strict superset, this must mean

that ψS(m
∗) = ϕ(m∗) ∩ (

⋂
Q∈S:Q∩ϕ(m∗)̸=∅Q).

Let Q∗ be some Q ∈ S such that Q ∩ ϕ(m∗) ̸= ∅. Then ψ′(m∗) must contain an

variable V ∈ ϕ(m∗) such that V ̸∈ ψ′(m∗). But this means that ψ′ does not imply

Q-determinism. Thus ψ′(m∗) ̸⊃ ψS(m
∗) and we have a contradiction.

199

Theorem 5.5 (MD-calculus). The conditions in Table 5.2 hold.

Proof. See section B.2.2.

Proposition 5.8 (Tractable Frontdoor Adjustment). Let C be a structured decompos-

able and smooth circuit. Then, in the frontdoor case:

• Computing the interventional distribution pC,X(Y) as a structured decompos-

able and smooth circuit is tractable in O(|C|3) time, if C is additionally X-

deterministic and (X ∪Z)-deterministic;

• Computing the instantiated interventional distribution pC,x(Y) as a structured

decomposable and smooth circuit is tractable in O(|C|3) time, if C is additionally

(X ∪Z)-deterministic.

Proof. The frontdoor formula is given by:

pC,X(Y) =
∑
Z

pC(Z|X)
∑
X′

pC(X
′)pC(Y |X ′,Z) (B.14)

The interventional distribution can be expressed through the composition:

C1 = MARG(C;V \ (X,Z)); pC1(X,Z) = pC(X,Z) (B.15)

C2 = COND(C1;X); pC2(X,Z) = pC(Z|X) (B.16)

C3 = BACKDOOR(C;Z,Y ,X); pC3(Y ,Z) =
∑
X′

pC(X
′)pC(Y |X ′,Z) (B.17)

C4 = PROD(C2, C3); pC4(X,Y ,Z) = pC(X,Z)
∑
X′

pC(X
′)pC(Y |X ′,Z) (B.18)

C5 = MARG(C4;Z); pC5(X,Y) =
∑
Z

pC(X,Z)
∑
X′

pC(X
′)pC(Y |X ′,Z) (B.19)

where we have written BACKDOOR to represent the composition of operations in the

backdoor formula (note that X takes the position of Z in the backdoor formula here).

As before, we can analyze the tractability of the pipeline by propagating backwards from

the deterministic operations. In this case, the backdoor and conditioning operations

are deterministic. For the backdoor operation, we saw that (Z ∪X)-determinism was

sufficient, while for conditioning, we need X-determinism. Working back through

200

the marginalization operation MARG(C;V \ (X,Z)) does not change the marginal

determinism (by the MD-calculus), so the final requirement (sufficient condition) is

for C to be (Z ∪X)-deterministic and X-deterministic. The complexity follows from

the fact that the backdoor formula produces a circuit that is O(|C|2) in size, and so

the time complexity of the product is O(|C|∗|C2|) = O(|C|3).

For the instantiated case, we have:

C1 = INST(C;x); pC2(V \X) = pC(x,V \X) (B.20)

C2 = MARG(C1;V \ (X,Z)); pC2(X,Z) = pC(x,Z) (B.21)

pC3(X,Z) = pC(Z|x) (B.22)

C4 = BACKDOOR(C;Z,Y ,X); pC4(Y ,Z) =
∑
X′

pC(X
′)pC(Y |X ′,Z) (B.23)

C5 = PROD(C3, C4); pC5(X,Y ,Z) = pC(Z|x)
∑
X′

pC(X
′)pC(Y |X ′,Z) (B.24)

C6 = MARG(C5;Z); pC6(X,Y) =
∑
Z

pC(Z|x)
∑
X′

pC(X
′)pC(Y |X ′,Z) (B.25)

Note that to obtain the third line, rather than conditioning symbolically on X, we

can just divide through by the scalar pC(x); this does not impose any marginal

determinism requirements. Thus, we only require C to be (Z ∪X)-deterministic (due

to the backdoor) in this case.

Proposition 5.9 (Tractable Napkin). Let C be a structured decomposable and smooth

circuit. Then, in the napkin case:

• Computing the instantiated interventional distribution pC,x(Y) as a structured

decomposable and smooth circuit is tractable in O(|C|2) time, if C is additionally

(W ∪X ′ ∪Z)-deterministic for some X ′ ⊆X.

Proof. The instantiated napkin formula is:

pC,x(Y) =

∑
W pC(x,Y |W ,Z)pC(W)∑

W pC(x|W ,Z)pC(W)
(B.26)

Recall that, if the interventional distribution is identifiable through the napkin formula,

then this formula is valid (i.e. represents the same, correct interventional distribution

201

pX(Y) for any value of Z; thus, we can instantiate with an arbitrary value z.

C1 = INST(C;x); pC1(V \X) = pC(V \X,x) (B.27)

C2 = MARG(C1;V \ (W ,X,Y ,Z)); pC2(W ,Y ,Z) = pC(W ,x,Y ,Z) (B.28)

C3 = COND(C2;W ,Z); pC3(W ,Y ,Z) = pC(x,Y |W ,Z) (B.29)

C4 = INST(C3; z); pC4(W ,Y) = pC(x,Y |W , z) (B.30)

C5 = MARG(C;V \W); pC5(W) = pC(W) (B.31)

C6 = PROD(C4, C5); pC6(W ,Y) = pC(x,Y |W , z)pC(W) (B.32)

C7 = MARG(C6,W); pC7(Y) =
∑
W

pC(x,Y |W , z)pC(W) (B.33)

pC8(Y) =

∑
W pC(x,Y |W , z)pC(W)∑

W pC(x|W , z)pC(W)
(B.34)

On the last line, the denominator is just a scalar so we can divide through without

any marginal determinism requirements. The only deterministic operation is the

conditioning operation, which requires C2 to be (W ∪Z)-deterministic. Propagating

backwards, we get:

1. Requirement: C2 = MARG(C1;V \ (W ,X,Y ,Z)) is (W ∪Z)-deterministic.

2. C1 = INST(C;x) is (W ∪Z)-deterministic.

3. Sufficient Condition: C is (W ∪X ′ ∪Z)-deterministic for some X ′ ⊆X.

B.2 Operations and MD-Calculus

In this section, we provide further details on the results in Chapter 5.4 regarding

inference on md-vtrees. First, for the forward problem, we describe algorithms

for soundly propagating the md-vtree forward under each basic circuit operation,

as mentioned in Section 5.4.2. Then, for the backward problem, we analyze these

algorithms to prove the MD-calculus for propagating marginal determinisms backwards

through operations.

202

Notation In the rest of this section, we will write ml,mr (left, right) for the children

of m instead of m1,m2; this is to avoid confusion with the notation m(1),m(2) which

we use to denote vtree nodes in two different vtrees. We will use the shorthand

ϕW (m) := ϕ(m) ∩W to denote the scope of m restricted to W .

B.2.1 Algorithms and the Forward Problem

For each of the basic operations, there exist efficient (polynomial time) algorithms

for computing them on probabilistic circuits satisfying the requirement column in

Table 5.1 [33, 185]. In this section, we will also describe, for each basic operation, an

algorithm for computing the operation on md-vtrees w, that is a sound abstraction

of the corresponding algorithm on circuits. By sound, we mean that, given an input

md-vtree w and the output of the md-vtree algorithm w′, it is guaranteed for any

input PC respecting w, the output of the corresponding PC algorithm will respect w′.

The construction of these md-vtrees algorithms is based upon the corresponding

PC algorithm. Thus, we present the algorithms as applying to both the md-vtree and

PC. For convenience, we assume that the PC satisfies the following condition, which

we call exactly respecting a md-vtree:

Definition B.3 (PC exactly respecting md-vtree). A PC C exactly respects a md-vtree

w if (1) it respects w and (2) the children of any sum node T corresponding to a

non-leaf vtree node m are all product nodes P , where P has two children which are

sum nodes, each corresponding to a child of m.

PC architectures are typically designed with these alternating sum and product

nodes, where the product nodes are binary; for example, both MDNets and PSDDs

satisfy this property. Further, any PC which respects a md-vtree can be transformed

into an equivalent PC which exactly respects the md-vtree, as follows. For every sum

node T which has a sum node child T ′, we can directly attach the children of the T ′

to T (with the appropriate combination of weights). Then, for every product node P

which has a product node child P ′, we can replace P ′ with a new single-child sum node

T ′, which has P ′ as its child. The resulting circuit still encodes the same function,

and has the same marginal determinisms as the original circuit.

203

Given that a PC exactly respects a md-vtree, for each non-leaf vtree nodem, we can

represent the corresponding PC layer simply as a vector of sum nodes Tm with length

Km := |Tm|, and a weight/parameter matrix ωm with shape (Km, Km1 , Km2), with

the semantics that pTm,i
(V) =

∑
jk ωm,ijkpTm1,j

(V)pTm2,k
(V) (where m1,m2 are the

children of m). Note that for any pair of sum nodes Tm1,j, Tm2,k for which there isn’t

a product in the PC connected to Tm,i, we can simply set the weight ωm,ijk to zero3.

For leaf vtree nodes, the corresponding layer can consist of both sum and leaf nodes

(with the sum nodes being mixtures over the leaf nodes, e.g. 0.71X=0 + 0.31X=1). In

this case, we represent the sum and leaf nodes as a vector Tm with length Km := |Tm|,

and ωm, and a weight matrix ωm, with ωm,ij > 0 iff Tm,j is a leaf node that is a child

of sum node Tm,i.

This characterization of a PC as a pair τ(m) := (Tm, ωm) for each vtree node,

which we call the parameter function, allows us to efficiently describe algorithms

for the basic operations. Thus, in the algorithms below we will represent C exactly

respecting some md-vtree using the triple C = (v, ψ, τ), where v is the vtree, ψ is the

labelling function, and τ the parameter function.

MARG(·;W) The marginalization algorithm is depicted in Algorithm B.1. For the

marginalization operation, we can take advantage of the fact that marginalization

commutes with both product and sum nodes in a decomposable and smooth PC

(which is the basis of tractable marginal inference).∑
W

pP (ϕ(P)) =
∑
W

pN1(ϕ(N1))pN2(ϕ(N2)) = (
∑
W

pN1(ϕ(N1)))(
∑
W

pN2(ϕ(N2)))

(B.35)∑
W

pT (ϕ(T)) =
∑
W

∑
Ni∈ch(T)

ωipNi
(ϕ(Ni)) =

∑
Ni∈ch(T)

ωi(
∑
W

pNi
(ϕ(Ni))) (B.36)

where the last equality on the first line holds because ϕ(N1) ∩ ϕ(N2) = ∅ by decom-

posability. This means that, in order to marginalize a circuit, we simply need to

marginalize the leaf nodes. In Algorithm B.1, we show the (recursive) procedure of

3While this is sufficient to represent any PC exactly respecting an md-vtree, it may be inefficient
to represent ωm,ijk as a dense matrix if the connections in the PC are sparse, i.e. ωm,ijk = 0 for
many i, j, k. In the evaluation of a sum vector as a function of its child sum vectors, we only require
the sum

∑
jk ωm,ijkpTm1,jpTm2,k

to be computed, so this can be implemented in a sparse manner if
that is more appropriate. Similar reasoning applies to the product algorithm.

204

marginalizing a circuit represented as (v, ψ, τ). In lines 3-5 we marginalize out W

from the leaf nodes in the PC, and in lines 6-12, we handle non-leaf vtree nodes simply

by copying the existing circuit. To update the md-vtree, in line 13, we update the

scope of the vtree node, removing the marginalized variables, and in lines 14-17, we

assign a label to the new vtree node m′.

The new label is justified as follows. Suppose we have a sum node T ∈ Tm,

with children N1, ..., Nn; by definition, T is marginally deterministic with respect

to ψ(m). After marginalization, the function encoded by each child N ′
i satisfies

pN ′
i
(q) =

∑
W pNi

(q) for any value q of ψ(m) by definition. Now:

• If ψ(m) ∩W = ∅, then this is just proportional to pNi
(q) and so the marginal-

ized support will remain the same for each child, and T ′ will maintain ψ(m)-

determinism.

• On the other hand, if ψ(m) ∩W ̸= ∅, then we do not have any such guarantee;

in fact, we cannot be sure that T ′ will be Q-deterministic for any Q, so we

assign the universal set.

INST(·;w) For the instantiation operation, we have Algorithm B.2. At first glance,

this seems to be very similar to the marginalization operation; it changes the scope in

the same way, and the changes to the circuit can be implemented through the leaf

nodes. However, the crucial difference is in the label function.

The new label of ψ′(m) = ψ(m) \W is justified as follows. Suppose that we have

a sum node T ∈ Tm, with children N1, ..., Nn, with T marginally deterministic with

respect to ψ(m). After instantiation (of W with the value w), the function encoded

by each child N ′
i satisfies pN ′

i
(q \W) = pNi

(w, q \W), for any value q of ψ(m) by

definition4.

Now, we claim that N ′
i is (ψ(m) \W)-deterministic, i.e. N ′

i , N
′
j have distinct

marginalized support suppψ(m)\W (N ′
i), suppψ(m)\W (N ′

j) for i ̸= j. Suppose for contra-

diction there exists a value q∗ \W of (ψ(m) \W) such that pN ′
i
(q∗ \W) > 0 and

4Note that we write q \W to represent the value of ψ(m) \W given by q restricted to this
variable set.

205

Algorithm B.1: MARG(C,W)

Input: Input circuit C = (v = (M,E, ϕ), ψ, τ); set of variables to be
marginalized W

Result: Output circuit C ′ = (v′, ψ′, τ ′)
1 m← root(v);
2 m′ ← newnode();
3 if m is leaf then // Update vtree structure and parameter function

(leaf)

4 v′ ← createvtree(m′); // create vtree with single node

5 τ ′(m′)← (MARG(L;W) for L ∈ Tm, ωm); // marginalize leaf PC

nodes

6 else // Update vtree structure and parameter function (non-leaf)

7 ml,mr ← children(m);
8 v′l, ψ

′
l, τ

′
l ← MARG((vml

, ψ, τ),W);
9 v′r, ψ

′
r, τ

′
r ← MARG((vmr , ψ, τ),W);

10 v′, ψ′, τ ′ ← v′l ∪ v′r, ψ′
l ∪ ψ′

r, τ
′
l ∪ τ ′r; // combine the vtrees/labelling

fn/param fn

11 v′ ← addnode(v′;m′); v′ ← addchildren(v′;m′, root(v′l), root(v
′
r));

12 τ ′(m′)← τ(m);

13 ϕ′(m′)← ϕ(m) \W ; // Update scope function

14 if ψ(m) ∩W = ∅ then // Update labelling function

15 ψ′(m′)← ψ(m);

16 else
17 ψ′(m′)← U ;
18 Return (v′, ψ′, τ ′)

pN ′
j
(q∗ \W) > 0. Then we have

pN ′
i
(q∗ \W) > 0 and pN ′

j
(q∗ \W) > 0

(B.37)

pNi
(w, q∗ \W) > 0 and pNj

(w, q∗ \W) > 0
(B.38)∑

W \Q

pNi
(W \Q,w ∩Q, q∗ \W) > 0 and

∑
W \Q

pNj
(W \Q,w ∩Q, q∗ \W) > 0

(B.39)

pNi
(w ∩Q, q∗ \W) > 0 and pNj

(w ∩Q, q∗ \W) > 0
(B.40)

The second line follows by definition of the instantiation algorithm, the third

line is a sum of non-negative terms including a positive term from the previous line

(when W \Q = w \Q), and the fourth line rewrites the sum. Now we have a value

206

Algorithm B.2: INST(C,w)

Input: Input circuit C = (v = (M,E, ϕ), ψ, τ); instantiation w of some subset
of variables W

Result: Output circuit C ′ = (v′, ψ′, τ ′)
1 m← root(v);
2 m′ ← newnode();
3 if m is leaf then // Update vtree structure and parameter function

(leaf)

4 v′ ← createvtree(m′); // create vtree with single node

5 τ ′(m′)← (INST(L;w) for L ∈ Tm, ωm); // instantiate leaf PC

nodes

6 else // Update vtree structure and parameter function (non-leaf)

7 ml,mr ← children(m);
8 v′l, ψ

′
l, τ

′
l ← INST((vml

, ψ, τ),w);
9 v′r, ψ

′
r, τ

′
r ← INST((vmr , ψ, τ),w);

10 v′, ψ′, τ ′ ← v′l ∪ v′r, ψ′
l ∪ ψ′

r, τ
′
l ∪ τ ′r; // combine the vtrees/labelling

fn/param fn

11 v′ ← addnode(v′;m′); v′ ← addchildren(v′;m′, root(v′l), root(v
′
r));

12 τ ′(m′)← τ(m);

13 ϕ′(m′)← ϕ(m) \W ; // Update vtree scope function

14 ψ′(m′)← ψ(m) \W ; // Update labelling function

15 Return (v′, ψ′, τ ′)

q := (w ∩ Q, q∗ \W) of ψ(m), such that pNi
(q) > 0 and pNj

(q) > 0, which is a

contradiction as T is ψ(m)-deterministic.

PROD(·, ·) Now, we consider the product of two circuits exactly respecting compatible

vtrees.

Definition B.4 (Vtree Compatibility). Let v(1) = (M (1), E(1), ϕ(1)) and v(2) =

(M (2), E(2), ϕ(2)) be two vtrees, with root nodes m(1),m(2) respectively. Define C :=

ϕ(1)(m(1)) ∪ ϕ(2)(m(2)) to be the common variables. Then we say that v(1), v(2) are

compatible if any of the following hold:

1. There are no common variables, C = ∅;

2. Both of m(1),m(2) are leaf vtree nodes;

3. One of the root nodes has the same restricted scope on C as one of the children

of the other root node, and the vtrees rooted at these nodes are compatible. For

207

A

A1 A2

B

B1 B2

(a) No shared vari-
ables

A ∪C B ∪C

(b) Leaf vtrees

A ∪C

C A

B ∪C

B1 ∪C1B2 ∪C2

(c) Matching parent +
child

A ∪C

A1 ∪C1A2 ∪C2

B ∪C

B1 ∪C1B2 ∪C2

(d) Matching children

Figure B.1: Examples of (possibly) compatible vtrees, where A ∩B = ∅, and C are
the shared variables

example, ϕ
(1)
C (m(2)) = ϕ

(1)
C (m

(1)
r), and v

(2)

m(2) and v
(1)

m
(1)
r

are compatible.

4. The children of the root nodes have matching restricted scopes, and are com-

patible. For example, ϕ
(1)
C (m

(1)
l) = ϕ

(2)
C (m

(2)
l) and v

(1)

m
(1)
l

, v
(2)

m
(2)
l

are compatible, and

ϕ
(1)
C (m

(1)
r) = ϕ

(2)
C (m

(2)
r) and v

(1)

m
(1)
r

, v
(2)

m
(2)
r

are compatible.

This recursive definition allows for products of circuits not necessarily respecting

the same vtree, but merely vtrees which “essentially have the same structure” over the

shared variables. Intuitively, there are four cases that allow us to maintain (structured)

decomposability in the output circuit, illustrated in Figure B.1. The first two are base

cases where the product is directly tractable: namely, when the root vtree nodes have

disjoint scopes, or when they are both leaves. Note, in particular, that the product

of a leaf region and a non-leaf region that have overlapping variables is considered

intractable here (unless condition 3. holds). The last two are cases where we can

recursively call the product algorithm on the children of the root vtree nodes. Each of

the four cases above correspond to a slightly different algorithm for computing the

product of the corresponding PC sum nodes, which we will explain next.5

The product algorithm, depicted in Algorithm B.3, (recursively) constructs a circuit

C = (v′, ψ′, τ ′) that is the product of the input circuits C(1) = (v(1), ψ(1), τ (1)) and

C(2) = (v(2), ψ(2), τ (2)) respectively. In particular, at each recursive step, it computes

the root node m′ of the new vtree, its label ψ′(m′), and the parameter function value

τ ′(m′) = (Tm′ , ωm′) of that node6. We consider each of the four compatibility cases

5The notion of compatibility between vtrees is somewhat similar to the notion of compatibility
between circuits [185], but acts at the level of groups of circuit nodes with the same scope (i.e. a
vtree node) rather than individual circuit nodes.

6Consider the root nodes of the input vtrees m(1),m(2), and their parameter function values
τ (1)(m(1)) = (Tm(1) , ωm(1)), τ (2)(m(2)) = (Tm(2) , ωm(2)). In every case, Tm′ will contain one node
Tm′,i(1),i(2) corresponding to every pair of nodes Tm(1),i(1) ∈ Tm(1) , Tm(2),i(2) ∈ Tm(2) ; we thus notate it

208

separately:

1. Firstly, if there are no common variables, i.e. C = ∅, then we can simply

introduce product nodes for each pair of sum nodes, while maintaining decom-

posability, as in Figure B.2a.

• Vtree node: We create a vtree node m′ with (m′
l = m(1), m′

r = m(2)) as

children.

• Parameter function: The parameter function value for the new node

τ ′(m′) = (Tm′ , ωm′) is given as follows. For each pair of sum nodes Tm(1),j ∈

Tm(1) , Tm(2),k ∈ Tm(2) , we create a sum node Tm′,i(1)i(2) , representing the

product of Tm(1),j, Tm(2),k. To achieve this, the weights ωm′,i(1)i(2)jk are

defined to be 1 if i(1) = j and i(2) = k, and 0 otherwise. Note that j, k only

have a single index as the children m′
l,m

′
r correspond to the input circuits,

which only have a single dimension.

• Md-vtree labelling: The label is set to be ψ′(m′) := ∅; this is since all

sum nodes only effectively have a single child, so they are trivially Q-

deterministic for any Q. An example can be seen in Figure B.2a.

2. Secondly, if both m(1),m(2) are leaves, then the PC nodes corresponding to these

vtree nodes are also either leaves, or simple mixtures (sum nodes) of leaves.

To compute the product of two sum nodes, we expand all combinations of the

children of the sum nodes, as shown in Figure B.2c.

• Vtree node: We create a leaf vtree node m′.

• Parameter function: The parameter function value for the new node

τ ′(m′) = (Tm′ , ωm′) is given as follows. For each pair of nodes Nm(1),j ∈

Tm(1) , Nm(2),k ∈ Tm(2) , we create a sum/leaf node Nm′,i(1)i(2) , representing the

product of Nm(1),j, Nm(2),k. The weights are defined as ωm′,i(1),i(2),j(1),j(2) :=

ωm′,i(1),j(1)ωm′,i(2),j(2) .

with two dimensions. Correspondingly, in general, ωm′ will contain one weight ωm′,i(1)i(2)j(1)j(2)k(1)k(2)

for every combination of nodes Tm′,i(1),i(2) ∈ Tm′ , Tm′
l,j

(1),j(2) ∈ Tm′
l
, Tm′

r,k
(1),k(2) ∈ Tm′

r
, where m′

l

and m′
r are the left and right children of m′ in the new md-vtree.

209

• Md-vtree labelling: The label is set to be ψ(m′) := ψ(1)(m(1)) ∪ ψ(2)(m(2)).

This is best seen with an example; in Figure B.2c, we see an example of

the product of two sum nodes with leaf node children, where one node is

A-deterministic and the other is B-deterministic. The resulting sum node

in the output circuit has children corresponding to (the product of) each

combination of the children of the original two sum nodes; as a result, each

child of the output sum node corresponds to a different value of (A,B),

and so the output sum node is {A,B}-deterministic.

3. Thirdly, if one of the nodes has the same restricted scope as a child of the other

node, e.g. ϕ
(1)
C (m(2)) = ϕ

(1)
C (m

(1)
r), we “defer” the product as shown in Figure

B.2b.

• Vtree node: We create a vtree nodem′ with (m′
l = m

(1)
l ,m′

r = PROD(v
(1)

m
(1)
r

, v
(2)

m(2)))

as children.

• Parameter function: The parameter function value for the new node

τ ′(m′) = (Tm′ , ωm′) is given as follows. For every pair of sum nodes

Tm(1),i(1) ∈ Tm(1) , Tm(2),i(2) ∈ Tm(2) , we create a sum node Tm′,i(1)i(2) . The

weights are defined as ωm′,i(1)i(2)j(1)k(1)k(2) := ωm(1),i(1)j(1)k(1)1i(2)=k(2) . Note

that the index j only has a single index as the left child m′
l = m

(1)
l , and so

the sum nodes Tm′
l
are copies of the sum nodes from T

m
(1)
l
.

• Md-vtree labelling: The label is set to be ψ′(m′) := ψ(1)(m(1)), as the

marginalized support of the children of the output sum nodes is a subset

of the marginalized support of the corresponding sum node from m(1), as

can be seen in Figure B.2b.

4. Finally, in any other case, the children of m(1),m(2) have matching restricted

scopes, e.g. ϕ
(1)
C12

(m
(1)
l) = ϕ

(2)
C12

(m
(2)
l) and ϕ

(1)
C (m

(1)
r) = ϕ

(2)
C (m

(2)
r), we expand all

combinations:

• Vtree node: We create a vtree node m′ with (m′
l = PROD(m

(1)
l ,m

(2)
l),

m′
r = PROD(m

(1)
r ,m

(2)
r)) as children.

210

+

ψ = {A}

L

A = 0

L

A = 1

× +

ψ = {B}

L

B = 0

L

B = 1

+

ψ = {}

×

+

L

A = 0

L

A = 1

+

L

B = 0

L

B = 1

(a) Direct Product

+

ψ = {A}

× ×

L

A = 0

L

C = 0, 1, 2

L

A = 1

L

C = 0, 1, 2

× +

ψ = {C}

L

C = 0

L

C = 1

+

ψ = {A}

× ×

L

A = 0

L

C = 0, 1

L

A = 1

L

C = 0, 1

(b) Deferred Product

+

ψ = {A}

L

AB = 00,01

L

AB = 10,11

× +

ψ = {B}

L

AB=00,10

L

AB=01,11

+

ψ = {A,B}

L

AB=00

L

AB=01

L

AB=10

L

AB=11

(c) Product by Expan-
sion

Figure B.2: Examples of product of the two sum nodes on the top half, with the result
shown in the bottom half. The root sum node is labelled with the corresponding vtree
node label, while the leaves are labelled with their support.

• Parameter function: The parameter function value for the new node

τ ′(m′) = (Tm′ , ωm′) is given as follows. For every pair of sum nodes

Tm(1),i(1) ∈ Tm(1) , Tm(2),i(2) ∈ Tm(2) , we create a sum node Tm′,i(1)i(2) . The

weights are defined as ωm′,i(1)i(2)j(1)j(2)k(1)k(2) := ωm(1),i(1)j(1)k(1)ωm(1),i(2)j(2)k(2) .

• Md-vtree labelling: The label is set to be ψ(m′) := ψ(1)(m(1)) ∪ ψ(2)(m(2)),

for similar reasons to the product of two leaf vtree nodes above.

With this, we have shown how to each recursive step of the product algorithm.

Now, taking a step back, we consider the entire run of the recursive algorithm.

Starting from md-vtrees v(1), v(2) over variables V (1),V (2), with common variables

Cglobal := V (1) ∩ V (2), in each recursive call, we reduce the common variables, until

either we reach two vtree nodes that do not have common variables, or we reach leaf

vtree nodes. One property of the algorithm, which will be important for the proof of

the MD-calculus rule below, is that at each recursive step of the product algorithm,

the two input vtree nodes have the same restricted scope over Cglobal.

Proposition B.1. At each recursive step of Algorithm B.3, we have that ϕ
(1)
Cglobal

(m(1)) =

ϕ
(2)
Cglobal

(m(2)).

211

Proof. Proof is by inspection; in each recursive case (3, 4), we have that C =

ϕ
(1)
Cglobal

(m(1)) = ϕ
(2)
Cglobal

(m(2)), and match up the common variables among the recur-

sive call(s).

POW(·;α) For the power operation, we have Algorithm B.4. This algorithm simply

inverts all the weights/parameters of the circuit, as well as replacing the leaves with

their reciprocals. Provided that the input circuit is deterministic, the output circuit

faithfully represents the reciprocal of the input circuit [185]. As the transformation is

simply numerical (i.e. not affecting the support of any node), the labels of all nodes

remain the same.

MAX(·;α) This operation returns a scalar.

LOG(·) This operation returns a circuit which respects the same vtree, but does not

have (marginal) determinism [185].

B.2.2 MD-calculus and the Backward Problem

The algorithms for each of the basic operations in the above section allow us to derive a

md-vtree for the output circuit, given the md-vtree that the input circuit respects. The

MD-calculus in Table 5.2 (repeated for convenience in Table B.1) turns these results

into a series of straightforward rules that can easily be applied to derive sufficient (but

possibly not necessary) conditions for tractability of compositions of operations.

Theorem 5.5 (MD-calculus). The conditions in Table 5.2 hold.

Proof. To state the result more formally, we claim that if the input circuit(s) respect

md-vtrees(s) implying the input condition, then the result of the operation applied to

the input circuit(s) will respect a md-vtree implying the output condition.

MARG(·;W) For the marginalization operation, the output md-vtree is over variables

V \W . Thus, let Q be any subset of V \W .

212

• Input Condition: The input condition requires that the input md-vtree w

implies Q-determinism; that is, for every vtree node m, either ϕQ(m) = ∅, or

else Q ⊇ ψ(m).

• Algorithm: In Algorithm B.1, every vtree node m′ in the output md-vtree

corresponds to a vtree node m′ in the input md-vtree, such that ϕ′(m′) =

ϕ(m) \W , and ψ′(m′) = ψ(m) if ψ(m) ∩W = ∅, or ψ′(m′) = U otherwise.

• Proof for Output Condition: For each vtree node m′, if ϕ′
Q(m

′) ̸= ∅, then, we

have that:

ϕQ(m) \W ̸= ∅ (by effect of algorithm)

=⇒ ϕQ(m) ̸= ∅ (weaker statement)

=⇒ ψ(m) ⊆ Q (by input condition)

=⇒ ψ′(m′) ⊆ Q

The last line follows since Q ∩W = ∅, so ψ(m) ∩W = ∅, and so we are in

the algorithm case where the label is ”copied”. Thus, we have shown that the

output md-vtree implies Q-determinism, as required.

INST(·;w) For the instantiation operation, the output md-vtree is over variables

V \W . Thus, let Q be any subset of V \W .

• Input Condition: The input condition requires that the input md-vtree w implies

(Q∪W ′)-determinism for some W ′ ⊆W ; that is, for every vtree node m, either

ϕQ∪W ′(m) = ∅, or else Q ∪W ′ ⊇ ψ(m).

• Algorithm: In Algorithm B.2, every vtree node m′ in the output md-vtree

corresponds to a vtree node m′ in the input md-vtree, such that ϕ′(m′) =

ϕ(m) \W , and ψ′(m′) = ψ(m) \W .

• Proof for Output Condition: For each vtree node m′, if ϕ′
Q(m

′) ̸= ∅, then, we

213

have that:

ϕQ(m) \W ̸= ∅ (by effect of algorithm)

=⇒ ϕQ(m) ̸= ∅ (weaker statement)

=⇒ ϕQ∪W ′(m) ̸= ∅ (weaker statement)

=⇒ ψ(m) ⊆ Q ∪W ′ (by input condition)

=⇒ ψ′(m′) ⊆ Q

Here, the last line follows since the new label ψ′(m′) = ψ(m) \W removes all

elements of W , and thus W ′, from ψ(m). Thus, we have shown that the output

md-vtree implies Q-determinism, as required.

PROD(·, ·) For the product operation, the output md-vtree is over variables V (1)∪V (2).

Thus, let Q be any subset of V (1) ∪ V (2).

• Input Condition: The input condition requires that the first input md-vtree

w(1) implies Q(1)-determinism, and the second input md-vtree w(2) implies

Q(2)-determinism, where one of the following holds:

(a) Q ⊆ V (1) ∩ V (2) and Q(1) = Q(2) = Q;

(b) Q(1),Q(2) ⊇ V (1) ∩ V (2) and Q = Q(1) ∪Q(2)

• Algorithm: In Algorithm B.3, every vtree node m′ in the output md-vtree

corresponds to a pair m(1),m(2) in the input md-vtrees respectively, such that

ϕ′(m′) = ϕ(1)(m(1))∪ϕ(2)(m(2)). There are four cases of the algorithm to consider,

in which the label is:

1. ψ′(m′) = ∅.

2. ψ′(m′) = ψ(1)(m(1)) ∪ ψ(2)(m(2))

3. ψ′(m′) = ψ(1)(m(1))

4. ψ′(m′) = ψ(1)(m(1)) ∪ ψ(2)(m(2))

214

• Proof for Output Condition: We need to show that for each case 1-3 of the

algorithm, and for either input condition (a), (b), that the condition for implied

Q-determinism holds on m′; that is, if ϕ′
Q(m

′) ̸= ∅, then ψ′(m′) ⊆ Q. Assuming

that ϕ′
Q(m

′) ̸= ∅, we have that

ϕ′
Q(m

′) ̸= ∅

=⇒ ϕ′(m′) ∩Q ̸= ∅ (by definition of restricted scope)

=⇒ (ϕ(1)(m(1)) ∪ ϕ(2)(m(2))) ∩Q ̸= ∅ (by effect of algorithm)

=⇒ ϕ
(1)
Q (m(1)) ∪ ϕ(2)

Q (m(2)) ̸= ∅ (rewriting)

However, this does not in general imply that ϕ
(1)

Q(1)(m
(1)) ̸= ∅ or ϕ(2)

Q(2)(m
(2)) ̸= ∅.

Thus, we look at the special cases defined by (a) and (b), and the algorithm

variations 1, 2, 3, 4.

(a1, a2, a3, a4) In case (a), we have Q(1) = Q(2) = Q ⊆ Cglobal.

ϕ
(1)
Cglobal

(m(1)) = ϕ
(2)
Cglobal

(m(2)) (by Proposition B.1)

=⇒ ϕ
(1)
Cglobal

(m(1)) ∩Q = ϕ
(2)
Cglobal

(m(2)) ∩Q

=⇒ ϕ
(1)
Cglobal∩Q

(m(1)) = ϕ
(2)
Cglobal∩Q

(m(2))

=⇒ ϕ
(1)
Q (m(1)) = ϕ

(2)
Q (m(2)) (as Q ⊆ Cglobal)

=⇒ ϕ
(1)
Q (m(1)) ̸= ∅, ϕ(2)

Q (m(2)) ̸= ∅ (as ϕ
(1)
Q (m(1)) ∪ ϕ(2)

Q (m(2)) ̸= ∅)

=⇒ ϕ
(1)

Q(1)(m
(1)) ̸= ∅, ϕ(2)

Q(2)(m
(2)) ̸= ∅ (as Q(1) = Q(2) = Q)

Thus, we have that Q ⊇ ψ(1)(m(1)) and Q ⊇ ψ(2)(m(2)), and so Q ⊇

ψ(1)(m(1))∪ψ(2)(m(2)). Finally, in each of the cases 1-4, we haveQ ⊇ ψ′(m′),

so the output md-vtree implies Q-determinism as required.

(b1) In case (b), we need to consider the cases of the algorithm separately. In

case 1, ψ′(m′) ⊆ Q holds trivially as ψ′(m′) = ∅, so we are done.

(b2, b3, b4) We have that Q(1),Q(2) ⊇ Cglobal and Q = Q(1) ∪ Q(2). The

key observation is that, as we are not in case 1 of the Algorithm, C =

215

ϕ(1)(m(1)) ∩ ϕ(2)(m(2)) must be non-empty.

C ̸= ∅

=⇒ ϕ
(1)
C (m(1)) ̸= ∅, ϕ(2)

C (m(2)) ̸= ∅ (by definition of C)

=⇒ ϕ
(1)

Q(1)(m
(1)) ̸= ∅, ϕ(2)

Q(1)(m
(2)) ̸= ∅ (as Q(1),Q(2) ⊇ Cglobal ⊇ C)

Thus, we have that Q(1) ⊇ ψ(1)(m(1)) and Q(2) ⊇ ψ(2)(m(2)), and so

Q = Q(1)∪Q(2) ⊇ ψ(1)(m(1))∪ψ(2)(m(2)). In each of the cases 2-4, we have

Q ⊇ ψ′(m′), so the output md-vtree implies Q-determinism as required.

We previously showed in Proposition 5.1 that the conditioning algorithm on circuits

(Algorithm 5.1) satisfies the property that a Q-deterministic input circuit will result

in a Q-deterministic output circuit.

POW Since the power algorithm does not change the marginal determinisms of any

sum node (retains the same labelling function), it follows that a Q-deterministic input

circuit will result in a Q-deterministic output circuit.

MAX This operation returns a scalar.

LOG This operation does not have any marginal determinism conditions.

216

Algorithm B.3: PROD(C(1), C(2))
Input: Input circuits C(1) = (v(1) = (M (1), E(1), ϕ(1)), ψ(1), τ (1)), C(2) = (v(2) =

(M (2), E(2), ϕ(2)), ψ(2), τ (2))
Result: Output circuit C ′ = (v′, ψ′, τ ′)

1 m(1),m(2) ← root(v(1)), root(v(2));

2 (m
(1)
l ,m

(1)
r), (m

(2)
l ,m

(2)
r)← children(m(1)), children(m(2)); // null if

m(1)/m(2) are leaf

3 m′ ← newvtreenode();

4 C ← ϕ(1)(m(1)) ∩ ϕ(2)(m(2));
5 if C = ∅ then
6 v′l, ψ

′
l, τ

′
l ← v(1), ψ(1), τ (1);

7 v′r, ψ
′
r, τ

′
r ← v(2), ψ(2), τ (2);

8 v′, ψ′, τ ′ ← v′l ∪ v′r, ψ′
l ∪ ψ′

r, τ
′
l ∪ τ ′r; // combine the vtrees/labelling

fn/param fn

9 ψ′(m′)← ∅; // Update label function

10 Tm′ ←
(
Tm′,i(1)i(2) for i(1) = 1, ..., |Tm(1) |, i(2) = 1, ...|Tm(2)|

)
;

11 ωm′,i(1)i(2)jk ← 1i(1)=j,i(2)=k;

12 else if m(1) and m(2) are leaves then
13 v′, ψ′, τ ′ ← createemptyvtree();

14 ψ′(m′) = ψ(1)(m(1)) ∪ ψ(2)(m(2));

15 Tm′ ←
(
Tm′,i(1)i(2) for i(1) = 1, ..., |Tm(1)|, i(2) = 1, ...|Tm(2)|

)
;

16 ωm′,i(1)i(2)j(1)j(2)k(1)k(2) ← ωm(1),i(1)j(1)k(1)ωm(1),i(2)j(2)k(2) ;

17 else if ϕ
(1)
C (m(2)) = ϕ

(1)
C (m

(1)
r) then

18 v′l, ψ
′
l, τ

′
l ← v

(1)

m
(1)
l

, ψ(1), τ (1);

19 v′r, ψ
′
r, τ

′
r ← PROD(m

(1)
r ,m(2));

20 v′, ψ′, τ ′ ← v′l ∪ v′r, ψ′
l ∪ ψ′

r, τ
′
l ∪ τ ′r; // combine the vtrees/labelling

fn/param fn

21 ψ′(m′) = ψ(1)(m(1)); // Update label function

22 Tm′ ←
(
Tm′,i(1)i(2) for i(1) = 1, ..., |Tm(1)|, i(2) = 1, ...|Tm(2)|

)
;

23 ωm′,i(1)i(2)j(1)k(1)k(2) ← θm(1),i(1)j(1)k(1)1i(2)=k(2) ;

24 else if ϕ
(1)
C (m

(1)
l) = ϕ

(2)
C (m

(2)
l) and ϕ

(1)
C (m

(2)
r) = ϕ

(1)
C (m

(2)
r) then

25 v′l, ψ
′
l, τ

′
l ← PROD(m

(1)
l ,m

(2)
l);

26 v′r, ψ
′
r, τ

′
r ← PROD(m

(1)
r ,m

(2)
r);

27 v′, ψ′, τ ′ ← v′l ∪ v′r, ψ′
l ∪ ψ′

r, τ
′
l ∪ τ ′r; // combine the vtrees/labelling

fn/param fn

28 ψ′(m′) = ψ(1)(m(1)) ∪ ψ(2)(m(2));

29 Tm′ ←
(
Tm′,i(1)i(2) for i(1) = 1, ..., |Tm(1) |, i(2) = 1, ...|Tm(2)|

)
;

30 ωm′,i(1)i(2)j(1)j(2)k(1)k(2) ← ωm(1),i(1)j(1)k(1)ωm(1),i(2)j(2)k(2) ;

31 else
32 Return fail (not compatible)

33 ϕ′(m′)← ϕ(1)(m(1)) ∪ ϕ(2)(m(2)); // Update scope function

34 τ ′(m′)← (Tm′ , ωm′) // Update parameter function

35 v′ ← addnode(v′;m′);
36 v′ ← addchildren(v′;m′, root(v′l), root(v

′
r));

37 Return (v′, ψ′, τ ′)

217

Algorithm B.4: POW(C, α)
Input: Input circuit C = (v = (M,E, ϕ), ψ, τ); power α
Result: Output circuit C ′ = (v′, ψ′, τ ′)

1 m← root(v);
2 m′ ← newnode();
3 if m is leaf then // Update vtree structure and parameter function

(leaf)

4 v′ ← createvtree(m′); // create vtree with single node

5 τ ′(m′)← (POW(L;α) for L ∈ Tm, ωm); // apply power to leaf PC

nodes

6 else // Update vtree structure and parameter function (non-leaf)

7 ml,mr ← children(m);
8 v′l, ψ

′
l, τ

′
l ← POW((vml

, ψ, τ), α);
9 v′r, ψ

′
r, τ

′
r ← POW((vmr , ψ, τ), α);

10 v′, ψ′, τ ′ ← v′l ∪ v′r, ψ′
l ∪ ψ′

r, τ
′
l ∪ τ ′r; // combine the vtrees/labelling

fn/param fn

11 v′ ← addnode(v′;m′); v′ ← addchildren(v′;m′, root(v′l), root(v
′
r));

12 τ ′(m′)← τ(m);

13 ϕ′(m′)← ϕ(m); // Update scope function

14 ψ′(m′)← ψ(m); // Update labelling function

15 Return (v′, ψ′, τ ′)

Operation Input Condition Output

MARG(C;W) Q-det Q-det
INST(C;w) ∃W ′ ⊆W : (Q ∪W ′)-det Q-det

PROD(C(1), C(2))
∃Q(1),Q(2) : Q(1)-det,Q(2)-det, and:

Q-det• Either (a) Q ⊆ V (1) ∩ V (2) and Q(1) = Q(2) = Q;
• Or (b) Q(1),Q(2) ⊇ V (1) ∩ V (2) and Q = Q(1) ∪Q(2)

COND(C;W) Q-det Q-det
POW(C;α) Q-det Q-det
MAX(C) N/A N/A
LOG(C) - -

Table B.1: MD-calculus: sufficient input-output conditions for each basic operation

218

Appendix C

Tractable Causal Reasoning with
Structural Uncertainty

C.1 Proofs

Proposition 6.1 (Hierarchical Conditional Independences). Let p(σ,G) ∝ pG(G)1G|=σ

be an order-modular distribution. Suppose that S1, S2 are any disjoint subsets of the

variables {1, ..., d}, and let (S21, S22) be a partition of S2. Then the following CI holds:

p̃S1,S2(σS2 , GS2 |σS2 = (σS21 , σS22)) ∝ p̃S1,S21(σS21 , GS21)p̃S1∪S21,S22(σS22 , GS22)

Proof. By definition, we have that p̃S1,S2(σS2 , GS2) =
∏

i∈S2
pGi

(Gi)1Gi⊆S1∪σ<i
S2

. Condi-

tioning on the event σS2 = (σS21 , σS22), we have that:

p̃S1,S2(σS2 , GS2 |σS2 = (σS21 , σS22)) ∝
∏
i∈S2

pGi
(Gi)1Gi⊆S1∪σ<i

(S21,S22)
(C.1)

=
∏
i∈S21

pGi
(Gi)1Gi⊆S1∪σ<i

S21

∏
i∈S22

pGi
(Gi)1Gi⊆S1∪S21∪σ<i

S22

(C.2)

= p̃S1,S21(σS21 , GS21)p̃S1∪S21,S22(σS22 , GS22) (C.3)

as required. The second line follows due to conditioning on the event that S21 comes

before S22 in the ordering, and the final line is again by definition of p̃.

Proposition 6.2 (Consistency of Graph and Order). Let C be an OrderSPN. Then,

for all pairs (σ,G) in the support of C (i.e. pC(σ,G) > 0), it holds that G |= σ.

Proof. Recall that a complete subcircuit Csub = (Gsub,ωsub, gsub) (Definition 4.2) is

obtained by traversing the circuit top-down and i) selecting one child of every sum-node;

219

ii) selecting all children of every product-node; Csub is itself an OrderSPN expressing a

distribution over (σ,G). The key point is that the order is determined in any complete

subcircuit. At the leaf nodes, the orders σ{i} over singletons are trivially deterministic.

At the product nodes in the subcircuit, the order is determined by the order specified

by the first (left) and second (right) child. That is, for a product node P in the

subcircuit associated with ρ(P) = (S1, S21, S22), if the left child specifies an order σS21

and the right child an order σS22 , then the order for P is determined as (σS21 , σS22).

Finally, the sum nodes in the subcircuit only have one child, so the order is determined

from its child. Let the uniquely determined order for subcircuit C be denoted σC .

Now, consider any path from the root node to a leaf node in the subcircuit. Label

the sum nodes (and leaf node) reached Ti for i = 1, ...,m (for some m), associated

with ρ(Ti)(S1,i, S2,i) respectively. We will now show, by induction, that for each sum

node Ti, it is the case that all variables in S1,i come before S2,i in the ordering σC .

• The root R is associated with ρ(R) = (S1,1, S2,1) = (∅, {1, ...d}), so the condition

is trivially satisfied.

• Now, given node Ti with i < m, by definition Ti has a product node child Pi

such that Ti+1 is either the first or second child of Pi. Let Pi be associated

with ρ(Pi) = (S1,i, S21,i, S22,i). Then, (i) if Ti+1 is the first child of Pi, then

(S1,i+1, S2,i+1) = (S1,i, S21,i), while (ii) if Ti+1 is the second child of Pi, then

(S1,i+1, S2,i+1) = (S1,i ∪ S21,i, S22,i). Now, σC has the property that all nodes in

S21,i come before those in S22,i. Given the inductive hypothesis that S1,i comes

before S2,i in the ordering, in both cases (i) and (ii) we have that all nodes in

S1,i+1 come before nodes in S2,i+1 in the ordering.

This means that, at any leaf node L associated with some ρ(L) = (S1, {i}), it will be

the case that S1 comes before i in σC . Since the leaf distribution only has support

over graphs with Gi ⊆ S1, it follows that all graphs G in the support satisfy G |= σC .

The overall distribution of the OrderSPN is given by a (weighted) sum over all

complete subcircuits, so the result follows.

220

Proposition 6.3 (Properties of OrderSPNs). Any OrderSPN is smooth and decom-

posable, and regular OrderSPNs are additionally deterministic.

Proof. Given any sum node T in the OrderSPN, completeness follows since the ith

product node has scope (σS21,i∪S22,i
, GS21,i∪S22,i

) = (σS2 , GS2), as S21,i, S22,i partitions

S2 by definition. Decomposability follows immediately from the scopes of the product

nodes P and their children, where the variables (σS21∪S22 , GS21∪S22) are split into sum

(or leaf) nodes with scope (σS21 , GS21) and (σS22 , GS22), where S21, S22 are disjoint.

Determinism holds for regular OrderSPNs since every sum node has children which

split the order into different partitions, so that the children have distinct support over

orders (in fact, the choice of child at each sum node can be viewed as determining the

order).

Proposition 6.4 (Compactness of OrderSPNs). Given a regular OrderSPN C over

d = 2l variables, with l sum (and product) layers and expansion factors (K0, ...Kl−1)

as above, then we have that:

• The size (number of edges) of C is given by:
∑l

i=1(2
i + 2i−1)

∏
j<iKj

• The size (number of orders) of the support of C is given by:
∏l−1

i=0K
2i

i

Proof. Let Ti, Pi be the ith sum and product layers of the OrderSPN, with |Ti|, |Pi|

nodes respectively, for i = 0, ..., l − 1. We will also write Tl to denote the leaf layer

following all of the other layers. Then, by definition, the nodes in the lth sum layer

each have Kj children. Thus, |Pi|= Ki|Ti|. Each product node has two children, so we

have the relationship |Tl+1|= 2|Pl|. Since the first sum layer T0 consists of just a single

root node, |T0|= 1, and it can be easily checked by iteration that |Ti|= 2i
∏

j<iKj

and |Pi|= 2i
∏

j<i+1Kj. Thus the total number of nodes is given by:

l∑
i=0

|Ti|+
l−1∑
i=0

|Pi| =
l∑

i=0

2i
∏
j<i

Kj +
l−1∑
i=0

2i
∏
j<i+1

Kj

= 1 +
l∑

i=1

(2i + 2i−1)
∏
j<i

Kj

221

Note that the structure of an OrderSPN takes the form of a tree, i.e., each node has a

unique parent (except the root). Thus, the number of edges in the OrderSPN is equal

to the number of nodes, excluding the root, i.e.
∑l

i=1(2
i + 2i−1)

∏
j<iKj.

Now, each node represents a distribution over orders and graphs restricted to some

subset of variables. Let n(Ti) denote the number of distinct orders in the support of

the first node in Ti (similar for n(Pi)). Notice that, since d = 2l, all nodes in the layer

Ti have support over the same number of orders. Thus, we need only consider how the

number of orders covered changes as we move through the layers. Firstly note that,

for the leaf layer Tl, all nodes express distributions over (σ{i}, Gi) for some variable i.

There is only one possible permutation over a singleton set, so n(Tl) = σ{i}. Then,

for any sum-node in Ti, by determinism, each child of Ti has disjoint support over

orders, so it follows that n(Ti) = Ki × n(Ti). For any product-node in Pi, we have

that the two children of Pi express distributions over orders/permutations σS21 , σS22 ,

where S21, S22 are disjoint sets. Since each of the children have support over n(Ti+1)

orders, the product node expressing a distribution over σS21∪S22 has n(Pi) = n(Ti+1)
2.

It is worth comparing this to the corresponding relation |Tl+1|= 2|Pl| above; the

conditional independence asserted by the OrderSPN results in the compactness of

the representation. We can now see (by induction) that n(Pi) =
∏l−1

j=i+1K
2j−i+1

j and

n(Ti) =
∏l−1

j=iK
2j−i

j , and so the root node has support size:

n(T0) =
l−1∏
j=0

K2j

j

Proposition 6.6 (Tractable ELBO). The ELBO and its gradients for any regular

OrderSPN C and order-modular distribution p can be computed in linear time in the

size of the circuit.

Proof. This proof is based upon the corresponding result (Thm 1) in [166], but we

provide it explicitly for OrderSPNs for completeness. Recall that an order-modular

distribution takes the form p̃(σ,G) =
∏

i pGi
(Gi)1Gi⊆σ<i . Further, recall the definition

of partial distributions (Definition 6.1):

p̃S1,S2(σS2 , GS2) ≜
∏
i∈S2

pGi
(Gi)1Gi⊆S1∪σ<i

S2

(C.4)

222

We can interpret each node of the OrderSPN as approximating a partial distribution;

as such, we define the ELBO for a node as follows:

• Sum: For sum node T associated with ρ(T) = (S1, S2), approximating p̃S1,S2(σS2 , GS2),

we define:

ELBO(pT) = EpT [log p̃S1,S2(σS2 , GS2)] +H(pT (σS2 , GS2)) (C.5)

• Product: For product node P associated with ρ(P) = (S1, S21, S22), approxi-

mating p̃S1,S21∪S22(σS21∪S22 , GS21∪S22), we define:

ELBO(pP) = EpP [log p̃S1,S21∪S22(σS21∪S22 , GS21∪S22)] +H(pP (σS21∪S22 , GS21∪S22))

(C.6)

• Leaf: For leaf node L associated with ρ(L) = (S1, {i}), approximating p̃S1,{i}(σ{i}, Gi),

we define:

ELBO(pL) = EpL [log p̃S1,{i}(σ{i}, Gi)] +H(pL(σ{i}, Gi)) (C.7)

We will now show how to decompose the computation of the ELBO of a node

in terms of the ELBO of its children. Firstly, given a sum node T associated with

ρ(T) = (S1, S2), with children N1, ..., NK and corresponding weights ωT,1, ..., ωT,K , we

can write the expectation and entropy in Equation C.5 as:

EpT [p̃S1,S2(σS2 , GS2)] =
K∑
i=1

ωT,iEpNi
[p̃S1,S2(σS2 , GS2)] (C.8)

H(pT (σS2 , GS2)) = −EpT [log pT (σS2 , GS2)] (C.9)

= −
K∑
i=1

ωT,iEpNi
[log

K∑
j=1

ωT,jpNj
(σS2 , GS2)] (C.10)

= −
K∑
i=1

ωT,iEpNi
[logωT,ipNi

(σS2 , GS2)] (C.11)

= −
K∑
i=1

ωT,i logωT,i −
K∑
i=1

ωT,iEpNi
[log pNi

(σS2 , GS2)] (C.12)

= −
K∑
i=1

ωT,i logωT,i +
K∑
i=1

ωT,iH(pNi
(σS2 , GS2)) (C.13)

223

In other words, the expectation decomposes as a weighted sum over expectations

with respect to the child distributions, and the entropy decomposes as a sum of the

entropy of the sum-node weights, and a weighted sum over entropies with respect to

the child distributions. Note that the third equality in the derivation of the entropy

decomposition holds only due to the fact that OrderSPNs are deterministic; this means

that the children Ni have disjoint supports, and thus we can drop all terms with j ̸= i

in the summation inside the expectation. Together, we have that:

ELBO(pT) =
K∑
i=1

ωT,iEpNi
[p̃S1,S2(σS2 , GS2)]−

K∑
i=1

ωT,i logωT,i +
K∑
i=1

ωT,iH(pNi
(σS2 , GS2))

(C.14)

= −
K∑
i=1

ωT,i logωT,i +
K∑
i=1

ωT,i(EpNi
[p̃S1,S2(σS2 , GS2)] +H(pNi

(σS2 , GS2)))

(C.15)

= −
K∑
i=1

ωT,i logωT,i +
K∑
i=1

ωT,iELBO(pNi
) (C.16)

i.e. the ELBO of a sum-node can be expressed in terms of the ELBO of its children.

Secondly, given a product node P associated with ρ(P) = (S1, S21, S22), with

children N1, N2 associated with ρ(N1) = (S1, S21) and ρ(N2) = (S1 ∪ S21, S22), we can

write the expectation and entropy in Equation C.6 as:

EpP [log p̃S1,S21∪S22(σS21∪S22 , GS21∪S22)] = EpP

[
log

∏
i∈S21∪S22

pGi
(Gi)1Gi⊆S1∪σ<i

S21∪S22

]
(C.17)

= EpP

[
log

∏
i∈S21

pGi
(Gi)1Gi⊆S1∪σ<i

S21

]
+ EpP

[
log

∏
i∈S22

pGi
(Gi)1Gi⊆S1∪S21∪σ<i

S22

]
(C.18)

= EpP [log p̃S1,S21(σS21 , GS21)] + EpP [log p̃S1∪S21,S22(σS22 , GS22)] (C.19)

= EpN1
[log p̃S1,S21(σS21 , GS21)] + EpN2

[log p̃S1∪S21,S22(σS22 , GS22)] (C.20)

H(pP (σS21∪S22 , GS21∪S22)) = −EpP [log pP (σS21∪S22 , GS21∪S22)] (C.21)

= −EpN1
[log pN1(σS21 , GS21)]− EpN2

[log pN2(σS22 , GS22)]

(C.22)

= H(pN1(σS21 , GS21)) +H(pN2(σS22 , GS22)) (C.23)

224

This follows from decomposability, which ensures that the child distributions are over

disjoint sets of variables (and are thus independent). Together, we have that:

ELBO(pN) = EpN1
[log p̃S1,S21(σS21 , GS21)] + EpN2

[log p̃S1∪S21,S22(σS22 , GS22)] (C.24)

+H(pN1(σS21 , GS21)) +H(pN2(σS22 , GS22)) (C.25)

= ELBO(pN1) + ELBO(pN2) (C.26)

i.e. the ELBO of a product node can be expressed in terms of the ELBO of its children.

By recursively applying ELBO equalities, we can express the ELBO for the overall

OrderSPN pC in terms of the weights ω and ELBO for the leaf node distributions.

Since each equality involves a sum/product over the children of the node (i.e., the

outgoing edges), the overall computation takes linear time in the size (number of

edges) of the SPN. The ELBO for the leaf nodes can be computed as in Proposition

6.7.

C.2 OrderSPN Structure Learning Oracles

In this section we elaborate further the oracles O used for generating the structure

of the OrderSPN in Section 6.3.1. As previously defined, the O takes as input some

data D, disjoint sets S1, S2, and a number of samples K, and returns K partitions

(S21,i, S22,i) of S2. The goal of the oracle is to maximize coverage of the posterior

distribution, i.e. the posterior mass of orders consistent with at least one of the

sampled partitions. Solving such a problem exactly is clearly intractable; thus we

would like heuristic methods which can obtain good coverage.

A possible oracle would simply be to take K random partitions of S2. However,

this does not make efficient usage of the capacity of the OrderSPN. Thus, we consider

adapting other Bayesian structure learning methods to take the role of the oracle.

This can be done by sampling DAGs from the method; each such DAG naturally

induces an order over the variables S2, and thus a partition. Intuitively, we utilize

their ability to find promising areas of the space of orders and DAGs to choose a

better structure for our SPN.

The key practical challenge is that, is in contrast to the typical use case, we are not

just interested in learning a DAG over a set S2, but also want to allow the variables in

225

S2 to have parents from some disjoint set S1. This will require adaptations specific to

the particular method chosen. In the rest of this section, we provide brief descriptions

of how this can be done for Dibs and Gadget.

Dibs is a Bayesian structure learning approach based on particle variational

inference [109]. In particular, in the marginal form, it assumes the following latent-

variable generative model:

p(Z,G,D) = p(Z)p(G|Z)p(D|G)

where Z = [U, V] with U, V ∈ Rk×d (for some k < d) is a latent variable, generating

the graph G ∈ {0, 1}d×d and D is the dataset. In particular, the distribution for the

graph takes the form:

p(G|Z) =
∏
i,j

p(Gij|Z) =
∏
i,j

σ(uTi vj)

Now suppose that we want to learn a DAG over S2, where variables can additionally

have parents in S1. In this case, the natural generative model is to simply restrict to

the components of the graph which are being modelled:

pS1,S2(G|Z) =
∏

i∈S1∪S2

∏
j∈S2

σ(uTi vj)

The marginal likelihood p(D|G) is modular, so we can additionally restrict the likeli-

hood to only concern the likelihood of S2:

pS2(D|G) =
∏
j∈S2

p(Dj|Gj)

With these modifications, we have a valid generative model for any (S1, S2), to

which the Dibs particle variational inference scheme can be applied with no further

changes, giving us an oracle.

Gadget [188] is a MCMC method which samples over the space of ordered

partitions of the set of variables (note this is distinct from the 2-partitions we use in

OrderSPNs). Informally speaking, the ordered partition represents a partial ordering of

the variables, where a variable must have a parent from the partition directly preceding

its partition. For example, for d = 6, a partition might be ({3, 4, 5}, {1}, {2, 6}), where

226

variable 1 must have one of 3, 4, 5 as parent (but not any of 2, 6). A k−partition R is

scored using a modular score:

π(R) =
k∏
t=1

∏
j∈Rt

τj(∪t−1
i=1Ri, Rt−1)

where τj(U, T) is the summed score (posterior probability) that variable j has all

parents contained in the set U , and at least one parent in the set T .

Gadget uses a similar type of precomputation to that used in Trust to precom-

pute the functions τj(U, T), where a candidate parent set Cj of each variable is chosen

in advance (using a heuristic) so that we actually compute τj(U ∩ Cj, T ∩ Cj).

Now, suppose we are given sets (S1, S2), and as usual seek to learn DAGs over S2

which additionally have parents from S1. This can be achieved by simply restricting

the MCMC to only learn ordered partitions over S2, while also allowing the parent

sets of variables S2 to be contained in S1 ∪ S2. In particular, if we have precomputed

τj(U ∩ Cj, T ∩ Cj) for all j and U, T ⊆ {1, ..., d}, this includes all of the necessary

scores τj(U ∩Cj, T ∩Cj) for all j ∈ S2 and U, T ⊆ S1 ∪S2, for any restriction (S1, S2).

The MCMC proceeds as if it were over a |S2| dimensional problem, over the set of

variables S2, but with modified scores involving S1 as above, thus providing an oracle

for TRUST.

C.3 Experimental Details

Bayesian network hyperparameters In our experiments, we consider linear

Gaussian Bayesian networks, and generate Erdos-Renyi random structures, with

expected numbers of edges given by 2d. We generate data using fixed observation

noise σ2 = 0.1, and edge weights drawn independently from N (0, 1).

Posterior setup We use the fair prior over graph structures [55], where the prior

probability of a mechanism having k edges is proportional to the inverse of the number

of different parents sets of size k. In addition, we use the BGe marginal likelihood [95]

with hyperparameters αµ = 1, αw = d+ 2, and T = 1
2
I where I is the d× d identity

matrix.

227

Implementation details Our implementations of Dibs and Gadget are based

on the reference implementations with the default settings of hyperparameters. In

particular, we ran Dibs with N = 30 particles and 3000 epochs using the marginal

inference method, while Gadget was run using 16 coupled chains and for 320000

MCMC iterations, extracting N = 10000 samples.

Our implementation of TRUST uses the PyTorch framework to tensorize passes

through the SPN, following the regular OrderSPN structure described in the main pa-

per. In the d = 16, 32 cases, we used expansion factors ofK = [64, 16, 6, 2], [32, 8, 2, 6, 2]

respectively; these were chosen empirically to approximately match oracle computation

across layers. Parameter learning in the SPN was performed by optimizing the ELBO

objective using the Adam optimizer with learning rate 0.1 and for 700 iterations.

Operations in the circuit are performed in log-space for numerical stability.

Inference Queries We perform inference for DiBS and Gadget by applying the

appropriate calculation over the sample (for instance, the marginal probability of an

edge Gij is simply the proportion of sampled DAGs in which it appears), while for

Trust, we perform inference directly on the OrderSPN using the queries described in

the Chapter when this is possible, and by sampling otherwise (e.g. E-SHD).

228

	Introduction
	Contributions
	Thesis Outline
	Publications

	Preliminaries
	Causality
	Structural Causal Models
	The Causal Hierarchy of Queries
	Causal Inference
	L_1 Inference
	L_2 Inference
	L_3 inference

	Summary

	Tractable Probabilistic Models
	Probabilistic Models and Queries
	Probabilistic Circuits
	Summary

	Literature Review
	Tractable Probabilistic Models
	The Spectrum of Tractable Probabilistic Models
	Tractable Probabilistic Models for Causality

	Computational Causality
	Structural Causal Models and Causal Identification
	Causal Structure Learning

	Advanced Causal Reasoning via Compilation
	Compiled Representations of Models
	Compiling Bayesian Networks
	Compiled Representations for Causality

	Interventional Robustness
	Interventional Robustness and Credal Sets
	Bounding Interventional Robustness via Compilation
	Upper Bounding via Constraint Relaxation
	Lower Bounding via Projection

	Case Study: Robustness Analysis of Classifiers

	Counterfactual Reasoning using Circuits
	Experiments
	Robustness of Classifiers to Causal Interventions
	Credal Inference Benchmarks

	Discussion

	Tractability of Causal Inference
	On The Tractability of Exact Causal Inference
	Causal and Probabilistic Inference
	Conditioning in Probabilistic Circuits
	Hardness of the Backdoor Query

	A Theory of Marginal Determinism in Structured Decomposable Circuits
	Structured Marginal Determinism
	Structured Decomposability
	Properties of Marginal Determinism
	Md-vtrees
	Support Properties and Md-vtrees

	Regular Md-vtrees and Enforcing Marginal Determinism
	Non-Admissibility of Strong Determinism

	Succinctness: Exponential Separation

	MDNet Architecture and Learning
	Understanding Regular Md-vtrees and MDNets
	MDNet Architecture: Definition and Illustration

	Compositional Inference using Structured Marginal Determinism
	Support Properties in Compositional Inference
	Operations on md-vtrees
	The MD-calculus
	Examples

	Causal Inference using MD-Calculus
	MD-calculus for Causal Formulae
	Backdoor
	Frontdoor
	Napkin

	Experiments
	Discussion

	Tractable Causal Reasoning with Structural Uncertainty
	Bayesian Causal Reasoning
	Bayesian Structure Learning
	Statistical and Causal Uncertainty
	Hierarchical Conditional Independences

	Tractable Representations for Bayesian Structure Learning
	OrderSPNs
	Reasoning on Leaf Distributions
	Tractable Queries on OrderSPNs

	Learning OrderSPNs
	Learning OrderSPN structures
	Parameter Learning via Variational Inference

	Experiments
	Learning Performance
	Ablation Study on OrderSPN Learning
	Exact and Approximate Computation
	Coverage and Query Answering

	Discussion

	Conclusions
	Discussion
	Future Work

	Bibliography
	Advanced Causal Reasoning via Compilation
	Proofs

	Tractability of Causal Inference
	Proofs
	Operations and MD-Calculus
	Algorithms and the Forward Problem
	MD-calculus and the Backward Problem

	Tractable Causal Reasoning with Structural Uncertainty
	Proofs
	OrderSPN Structure Learning Oracles
	Experimental Details

