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Abstract

Solving conditional moment restrictions (CMRs) is a key problem considered in statistics,
causal inference, and econometrics, where the aim is to solve for a function of interest
that satisfies some conditional moment equalities. Specifically, many techniques for causal
inference, such as instrumental variable (IV) regression and proximal causal learning (PCL),
are CMR problems. Most CMR estimators use a two-stage approach, where the first-stage
estimation is directly plugged into the second stage to estimate the function of interest.
However, naively plugging in the first-stage estimator can cause heavy bias in the second
stage. This is particularly the case for recently proposed CMR estimators that use deep
neural network (DNN) estimators for both stages, where regularisation and overfitting bias
is present. We propose DML-CMR, a two-stage CMR estimator that provides an unbiased
estimate with fast convergence rate guarantees. We derive a novel learning objective to
reduce bias and develop the DML-CMR algorithm following the double/debiased machine
learning (DML) framework. We show that our DML-CMR estimator can achieve the
minimax optimal convergence rate of O(N−1/2) under parameterisation and mild regularity
conditions, where N is the sample size. We apply DML-CMR to a range of problems
using DNN estimators, including IV regression and proximal causal learning on real-world
datasets, demonstrating state-of-the-art performance against existing CMR estimators and
algorithms tailored to those problems.
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1 Introduction

In this work, we study the problem of conditional moment restrictions (CMRs). LetX ∈ X ⊆
Rd, C ∈ C ⊆ Rp, and Y ∈ Y ⊆ R be random variables with their corresponding distributions.
The CMR problem consists of estimating a function of interest f0 ∈ F ⊆ (X → R) in some
hypothesis function space F , such that

E[Y − f0(X)|C] = 0. (P)

This problem appears in many fields of research, such as statistical learning (Vapnik, 1998),
causal inference (Liao et al., 2020), integral equations (Honerkamp and Weese, 1990),
deconvolution (Carrasco et al., 2007), and econometrics (Carrasco et al., 2007), and includes
causal inference problems such as instrumental variable (IV) regression (Wright, 1928) and
proximal causal learning (Miao et al., 2018).

Solving CMRs analytically is ill-posed (Nashed and Wahba, 1974; Kress, 1999) because
it is an inverse problem that requires the derivation of the function f0 inside the conditional
expectation. Hence, various techniques have been proposed to estimate the solutions to
CMR problems. The classic econometric approaches begin with the framework of generalised
method of moments (GMM) (Hansen, 1982), which gives rise to the classic two-stage least
squares (2SLS) (Angrist et al., 1996) algorithm and sieve methods (Newey and Powell, 2003;
Ai and Chen, 2003). These techniques have strong theoretical foundations for convergence
analysis, but they are restricted to the class of basis functions used in their theoretical
analysis, and their empirical performance may suffer when estimating complex function
classes and with high-dimensional input. More recent works (Hartford et al., 2017; Shao
et al., 2024; Bennett et al., 2019; Singh et al., 2019), inspired by the development of deep
learning, proposed to use deep neural networks (DNNs) to parameterise and estimate the
solutions to CMR problems. These methods allow for greater flexibility since they do not
impose strong assumptions on the functional form such as linear functions or polynomials,
and can learn directly from data with strong approximation power.

Most of the existing CMR methods, including those that adopt DNNs, take a two-stage
approach (Angrist et al., 1996; Newey and Powell, 2003; Chen and Christensen, 2018; Singh
et al., 2019; Muandet et al., 2020). In the first stage, they estimate some nuisance parameters,
which are parameters or infinite-dimensional functions of no direct interest, but are necessary
for the second stage estimation. However, in these settings, regularisation is often employed
to trade off overfitting with the induced regularisation bias, especially for high-dimensional
inputs. This is problematic because both regularisation and overfitting can cause heavy
bias (Chernozhukov et al., 2018) in two-stage estimations when the first stage estimator is
naively plugged in for the second stage estimation, which results in slow convergence rate of
the estimator.

In order to mitigate this problem, we take inspiration from double/debiased machine
learning (Chernozhukov et al., 2018) (DML), which is a technique that provides an unbiased
estimator with strong convergence rate guarantees for general two-stage regressions. DML
relies on having a Neyman orthogonal (Neyman and Scott, 1965) score function to deal
with regularisation bias, and uses cross-fitting, that is, an efficient form of (randomised)
data splitting, to address overfitting bias. However, the use of DML for CMR estimation
involving neural networks has not been explored to the best of our knowledge.
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In this work, we propose a novel CMR estimator, referred to as DML-CMR, with fast
convergence rate guarantees based on the DML framework. We derive a novel Neyman
orthogonal score for CMR problems and design a cross-fitting regime such that, under mild
regularity conditions, it is guaranteed to converge at the rate of N−1/2 with high probability,
where N is the sample size. For empirical evaluation, we apply DML-CMR with DNNs to
solve two common CMR problems, IV regression and proximal causal learning. We evaluate
its performance on multiple benchmarks, where superior results are demonstrated compared
to state-of-the-art (SOTA) methods. Our main contributions are summarised below.

• We propose DML-CMR, a novel CMR estimator that leverages the DML framework
to provide unbiased estimates of the solution to CMR problems. To the best of our
knowledge, this is the first work that uses DML for CMR estimation with neural
networks.

• We derive a novel, Neyman orthogonal, score function for CMR problems in Section 4.1,
which does not rely on influence functions or the classical techniques in Chernozhukov
et al. (2018), and design a cross-fitting regime for the DML-CMR estimator to mitigate
the bias in Section 4.2.

• In Section 4.3, we show an asymptotic convergence rate for the DML-CMR estimator
at the rate of O(N−1/2), which is minimax optimal under parameterisation and mild
regularity conditions.

• On a range of IV regression and proximal causal learning problems, including two
real-world datasets, we experimentally demonstrate that DML-CMR outperforms
existing SOTA methods in Section 5.

This paper extends our earlier approach of Shao et al. (2024), which developed an
IV regression algorithm, called DML-IV, that uses the DML framework to provide fast
convergence rate guarantees. Compared to Shao et al. (2024), we consider the more general
class of CMR estimators leveraging the DML (Chernozhukov et al., 2018) framework, derive
new theoretical results and analysis, and conduct new experiments for the causal proximal
learning problem.

2 Related Works

2.1 Conditional Moment Restriction

The classic framework of the generalised method of moments (GMM) (Hansen, 1982) was first
proposed to translate conditional moment restrictions into unconditional moments, which
can thus be estimated under the GMM framework. However, finding the set of unconditional
moments that fully capture the conditional moments is challenging. Sometimes, for nonlinear
CMRs and functions of interest f , an infinite set of unconditional moments may be required
to represent the conditional moments, and a misspecification of the unconditional moments
can bias the results (Domı́nguez and Lobato, 2004). To mitigate some of these issues, Angrist
et al. (1996) considered linear functions of interest and proposed the classic two-stage least
squares (2SLS) algorithm as a special case of GMMs. Following this, many efforts aim to
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extend 2SLS to solve CMRs, where the function of interest is nonlinear or nonparametric.
One common approach is the sieve method, which uses nonlinear basis functions. Sieve
minimum distance (SMD) estimator (Newey and Powell, 2003; Ai and Chen, 2003) performs
regression in two stages using an increasing set of nonlinear basis functions as the number of
samples increases. Later, a penalised version of SMD (Chen and Pouzo, 2012) was proposed
to generalise SMD by allowing non-smooth residuals and high-dimensional function spaces.
These sieve-GMM methods and later works (Blundell et al., 2007; Chen and Christensen,
2018; Singh et al., 2019; Muandet et al., 2020) that consider different dictionaries of basis
functions enjoy strong consistency and efficiency guarantees, but their flexibility is limited
by the set of basis functions, and they can be sensitive to the choice of such functions and
regularisation hyperparameters. Note that these works also perform the estimation in two
stages.

More recently, various CMR estimation methods based on DNNs have been proposed,
since machine learning methods can model highly nonlinear and high-dimensional relation-
ships with greater flexibility. DeepIV (Hartford et al., 2017) extended the classic 2SLS
algorithm to the nonlinear setting by adopting DNNs for both stages with conditional
density estimation (Darolles et al., 2011) in the first stage. GMM methods are also extended
to use DNNs (Bennett et al., 2019; Liao et al., 2020; Dikkala et al., 2020; Bennett and
Kallus, 2020), where a minimax criterion is optimised adversarially. Minimax approaches
aim to solve a two-player zero-sum game where the players play adversarially. Specifically,
player one chooses a hypothesis function to minimise moment violation, and player two
chooses a test function that maximises moment violation. These DNN-based GMM methods
require minimax optimisation, which is similar to the training of Generative Adversarial
Networks (Goodfellow et al., 2014) and could be experimentally unstable.

In this work, we propose a doubly robust CMR estimator for nonlinear functions of
interest f that leverages the DML (Chernozhukov et al., 2018) framework and DNNs to
provide fast convergence rate guarantees for the estimator, extending our previous IV
regression algorithm, DML-IV, that also uses the DML framework (Shao et al., 2024).

2.1.1 IV regression

Instrumental variable (IV) regression is a typical example of a CMR problem in causal
inference, which aims to estimate the causal effect in the presence of hidden confounders
(see Appendix D.3 for details). While most of the previously introduced CMR estimators can
be directly applied to solve IV regression, here we review algorithms specifically designed for
IV regression. Following the sieve-based approach, DFIV (Xu et al., 2020) proposed to use
basis functions parameterised by DNNs, which remove restrictions on the functional form.
In addition, Kernel IV (Singh et al., 2019) and Dual IV (Muandet et al., 2020) used different
dictionaries of basis functions in reproducing kernel Hilbert spaces (RKHS) to solve the IV
regression problem. DeepGMM (Bennett et al., 2019) is a DNN-based method that was
inspired by GMM to solve IV regression using a minimax approach. Kremer and Schölkopf
(2024) improved GMM-based IV regression methods in settings where the data manifold
is not uniform through data-derivative information. With the exception of DML-IV (Shao
et al., 2024), the precursor of this work, none of these approaches utilise the DML framework.
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2.1.2 Proximal Causal Learning

Another example of a CMR problem in causal inference is proximal causal learning (PCL,
see Appendix D.4 for details). PCL was first proposed by Miao et al. (2018) to leverage
two proxy variables for causal identification in estimating the causal function. This was
extended by Shi et al. (2020) to a general semiparametric framework, where Tchetgen et al.
(2024) introduced a two-stage procedure for linear causal models based on ordinary least
squares regression. Mastouri et al. (2021) resolved how to handle nonlinear causal models
by replacing linear regression with kernel ridge regression. To extend the kernel-based PCL
methods, Xu et al. (2021) used DNNs as feature maps instead of fixed kernels. This improves
the flexibility of the method, especially for highly nonlinear models. Kompa et al. (2022)
proposed a single-stage PCL method based on maximum moment restrictions, where they
train neural networks to minimise a loss function derived to satisfy the maximum moment
restrictions. Cui et al. (2023) introduced a treatment bridge function and incorporated it
into the Proximal Inverse Probability Weighting (PIPW) estimator. They considered only
binary treatments and derived the Proximal Doubly Robust (PDR) estimator via influence
functions. A similar approach by Wu et al. (2024) derived a doubly robust estimator for PCL
with continuous treatment through influence functions, but none of these works adopted the
DML framework, to the best of our knowledge.

The algorithms proposed specifically for IV regression and PCL often require additional
problem-specific assumptions about variables and the functional form. We instead provide a
general method for CMRs that can be directly applied to a range of problems, including IV
regression and PCL.

2.2 Double Machine Learning (DML)

DML was originally proposed for semiparametric regression (Robinson, 1988). It relies on
the derivation of a Neyman orthogonal (Neyman and Scott, 1965) score function that serves
as the learning objective. DML was then extended by adopting DNNs for generalised linear
regressions (Chernozhukov et al., 2021). Its strength is that it provides unbiased estimates
for two-stage estimations (Jung et al., 2021; Chernozhukov et al., 2022b) under certain
identifiability conditions and offers N−1/2 convergence rate guarantees.

There are previous works on combining DML with CMR estimation, specifically for the
IV regression problem, but they are mainly focused on linear and partially linear functions
of interest. Belloni et al. (2012) proposed a method to use Lasso and Post-Lasso methods for
the first-stage estimation of linear IV to estimate the optimal instruments. To avoid selection
biases, Belloni et al. (2012) leveraged techniques from weak identification robust inference. In
addition, Chernozhukov et al. (2015) proposed a Neyman-orthogonalised score for the linear
IV problem with control and instrument selection to potentially be robust to regularisation
and selection biases of Lasso as a model selection method. Neyman orthogonality for partially
linear models with IVs was mainly discussed in the work of Chernozhukov et al. (2018). For
an additional discussion, we refer to the book (Chernozhukov et al., 2024).

DML for semiparametric models (Chernozhukov et al., 2022a; Ichimura and Newey, 2022)
has been previously applied to solve the nonparametric IV (NPIV) problem. However, their
methods require additional assumptions on the IVs and residual functions such that the
average moment of the Neyman orthogonal score is linear in the nuisance parameters. Such
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assumptions are not required in our work since we are considering a different problem setting
and we formulate a novel Neyman orthogonal score. To the best of our knowledge, there
is no work that adopts the DML framework for nonlinear IV regression and general CMR
problems with DNNs.

3 Preliminaries

Notations

We use uppercase letters such as X to denote random variables and use the corresponding
calligraphic letter such as X to denote the set from which the random variable takes its
value. For example, X ∈ X ⊆ Rd is a d-dimensional real-valued random variable in (X ,BX ),
where BX is the Borel algebra on X . An observed realisation of X is denoted by a lowercase
letter x. We abbreviate E[Y |X = x], a realisation of the conditional expectation E[Y |X],
as E[Y |x]. [N ] denotes the set {1, ..., N} for N ∈ N. We use ∥·∥p to denote the functional
norm, defined as ∥f∥p := E[|f(X)|p]1/p, where the measure is implicit from the context. For

a function f , we use f0 to denote the true function and f̂ an estimator of the true function.
We use O and o to denote big-O and little-o notations, respectively (Weisstein, 2023).

3.1 Conditional Moment Restrictions

Recall that the CMR problem as in Equation (P) consists of providing an estimate for a
function f0 such that E[Y − f0(X)|C = c] = 0 for all c ∈ C, where X ∈ X ⊆ Rd, C ∈ C ⊆ Rp

and Y ∈ Y ⊆ R are random variables with their corresponding distributions. As discussed
in Section 2.1, many CMR estimators (e.g., Angrist et al. 1996; Newey and Powell 2003;
Hartford et al. 2017; Singh et al. 2019) estimate f̂ in some space of functions F by solving
the following objective function with a two-stage approach:

f̂ ∈ argmin
f∈F

E[(Y − E[f(X)|C])2]. (1)

Specifically, Newey and Powell (2003) take a minimax approach that indirectly optimises this
objective by solving a minimax unconditional moment problem in two stages, as elaborated
on in Section 2.1. Angrist et al. (1996); Singh et al. (2019); Hartford et al. (2017), on the
other hand, directly optimise the above objective in two stages. The first stage involves
learning the conditional expectation E[f(X)|c] using either density estimation or kernel
methods from observations. In the second stage, the objective in Equation (1) is minimised
using the estimations in the first stage. For both stages, linear regression, sieve methods,
and DNNs are used for estimation, respectively, for each work.

3.2 Double Machine Learning

DML considers the problem of estimating a function of interest f as a solution to an equation
of the form

E[ψ(D; f0, η)] = 0, (2)

where ψ is referred to as a score function and f0 is the true function. Here, η is a nuisance
parameter, which can be of parametric form or an infinite-dimensional function. It is of
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no direct interest, but must be estimated to obtain an estimate of f0. For example, in a
two-stage CMR estimator, nuisance parameters such as conditional density are estimated in
the first stage, and in the second stage, they are used to estimate f0. DML provides a set of
tools to derive an unbiased estimator of f0 with convergence rate guarantees, even when
the nuisance parameter η suffers from regularisation, overfitting and other types of biases
present in the training of ML models, which typically cause slow convergence when learning
f0.

In order to estimate f0, DML reduces biases by using score functions ψ that are Neyman
orthogonal (Neyman and Scott, 1965) in η. This requires the Gateaux derivative, which
defines the directional derivative for functionals, of the score function ψ w.r.t. the nuisance
parameters at f0, η0 to be zero:

∂

∂r

∣∣∣
r=0
E[ψ(D; f0, η0 + rη)] = 0, (3)

for all η. Here, f0 and η0 are the true parameters that minimise the expected score, that is,
E[ψ(D; f0, η0)] = 0. Intuitively, the condition in Equation (3) is met if small changes in the
nuisance parameter do not significantly affect the score function around the true function f0.
Neyman orthogonality is key in DML, as it allows fast convergence for estimating f0, even if
the estimator for the nuisance parameter η is biased. For score functions that are Neyman
orthogonal, we define DML with K-fold cross-fitting as follows.

Definition 1 (DML, Definition 3.2 (Chernozhukov et al., 2018)) Given a dataset
D of N observations, consider a score function ψ as in Equation (2), and suppose that ψ
is Neyman orthogonal that satisfies Equation (3). Take a K-fold random partition {Ik}Kk=1

of observation indices [N ], each with size n = N/K, and let DIk be the set of observations
{Di : i ∈ Ik}. Furthermore, define Ick := [N ] \ Ik for each fold k, and construct estimators

η̂k of the nuisance parameter using DIck
. Then, construct an estimator f̂ as a solution to the

equation

1

K

K∑
k=1

Êk[ψ(DIk ; f̂ , η̂k)] = 0, (4)

where Êk is the empirical expectation over DIk .

In the above definition, f̂ is defined as an exact solution to the empirical expectation equation
in Equation (4). In practice, we can also define the estimator f̂ as an approximate solution
to Equation (4)1.

4 Solving CMRs with DML

We now present the main contributions of this paper — an estimator for solving CMRs
under the DML framework. We propose a novel Neyman orthogonal score for our estimator

1. This approximation error is different to the estimation error. The estimation error measures the difference
between f̂ and f0, whereas the approximation error concerns the error of minimising the empirical risk.
In fact, the approximation error contributes to the estimation error, which is analysed in Section 4.3.
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and a novel two-stage algorithm for solving CMRs that can use DNN estimators in both
stages and provides guarantees on the convergence rate by leveraging the DML framework.

To solve the CMR problem defined in Equation (P) using the DML framework, we
first need a Neyman orthogonal score. As introduced in Section 3.1, the optimisation
objective for many two-stage CMR estimators (Angrist et al., 1996; Hartford et al., 2017;
Singh et al., 2019) is Equation (1). Let g0(f, c) := E[f(X)|c] and G be some function space
that includes g0 and its potential estimators ĝ. Then, these two-stage CMR estimators
estimate g0 with ĝ in the first stage, and then use ĝ to optimise the following loss function,
ℓ = (Y − ĝ(f, c))2, in the second stage. Unfortunately, as we show in Proposition 2 with proof
deferred to Appendix B, this objective, or the score function, is not Neyman orthogonal.

Proposition 2 The score (or objective) function for standard two-stage CMR estimators,
ℓ = (Y − ĝ(f, c))2, is not Neyman orthogonal at (f0, g0).

This means that small misspecifications or estimation biases of ĝ can lead to significant
changes to the score function, and there are no guarantees on the convergence rate if the
first stage estimator ĝ is naively plugged into the second stage to estimate f0. To address
this, we first derive a novel Neyman orthogonal score function for the CMR problem and
then design a CMR algorithm with K-fold cross-fitting that uses the DML framework.

4.1 Neyman Orthogonal Score

Typically, to construct a Neyman orthogonal score from a non-orthogonal score, additional
nuisance parameters need to be estimated (Chernozhukov et al., 2018). These additional
nuisance terms adjust the score in a way that makes it orthogonal, where the error in
estimating f0 due to errors in the nuisance parameters becomes second order in the Taylor
expansion (Foster and Syrgkanis, 2019). In our case, to construct a Neyman orthogonal
score for CMR problems from the standard objective in Equation (1), we first select relevant
functions that should be estimated as nuisance parameters. Following two-stage IV regression
approaches (Hartford et al., 2017), estimating g0 is essential for identifying f0, so we will
estimate it as a nuisance parameter. We find that, by additionally estimating s0(c) := E[Y |c]
inside some function space S, we can construct the score function:

ψ(D; f, (s, g)) = (s(c)− g(f, c))2. (5)

Here, the nuisance parameters are η = (s, g). For this to be a valid Neyman orthogonal
score function, we check that E[ψ(D; f0, (s0, g0))] = 0 with the true functions (s0, g0), and
its Gateaux derivative vanishes at (f0, (s0, g0)) with the following theorem, where the proof
is deferred to Appendix C.1.

Theorem 3 (Neyman orthogonality) The score function ψ(D; f, (s, g)) = (s(c)−g(f, c))2
obeys the Neyman orthogonality conditions at (f0, (s0, g0)).

This Neyman orthogonal score function is abstract in the sense that it allows for general
estimation methods for g0 and s0, as long as they satisfy certain convergence conditions,
which are introduced in the next section. In addition, having a Neyman orthogonal score is
useful in general to debias two-stage estimators (Foster and Syrgkanis, 2019), beyond the
specific DML regimes we are considering in this paper.
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Algorithm 1 DML-CMR with K-fold cross-fitting

1: Input: Dataset D of size N , number of folds K for cross-fitting, mini-batch size nb
2: Get a partition (Ik)

K
k=1 of dataset indices [N ]

3: for k = 1 to K do
4: Ick := [N ] \ Ik
5: Learn ŝk and ĝk using {(Di) : i ∈ Ick}
6: end for
7: Initialise f

θ̂
8: repeat
9: for k = 1 to K do

10: Sample nb data c
k
i from {(Di) : i ∈ Ik}

11: L = Êcki

[
(ŝk(c)− ĝk(fθ̂, c))

2
]

12: Update θ̂ to minimise loss L
13: end for
14: until convergence
15: Output: The DML-CMR estimator f

θ̂

4.2 A DML Estimator for Solving CMRs

With the Neyman orthogonal score, we now propose a novel DML estimator, DML-CMR,
that solves Equation (P). Note that, in general, f0 is allowed to be infinite-dimensional, as
commonly seen in the nonparametric IV literature (Newey and Powell, 2003). We also allow
f0 to be infinite-dimensional for the Neyman orthogonal score introduced in Section 4.1.
For the theoretical analysis of DML-CMR, while it is possible to provide a general analysis
following Foster and Syrgkanis (2019) for nonparametric f0 with the Neyman orthogonal
score, the analysis would require more assumptions and the convergence rate will depend on
the complexity of the function classes involved in the estimation. For our analysis, since
we propose a concrete estimator, we would like to provide a concrete analysis following
the DML framework (Chernozhukov et al., 2018), which is designed for semiparametric
estimation, to show an optimal parametric rate for DML-CMR. Therefore, we assume that
f0 is finite-dimensional and parameterised for the theoretical analysis of DML-CMR.

Assumption 1 (Parameterisation) Let f0 = fθ0 and Θ ⊆ Rdθ be a compact space of
parameters of f , where the true parameter θ0 ∈ Θ is in the interior of Θ.

From this assumption, we can define F := {fθ : θ ∈ Θ} as the function space of f .

The DML-CMR Estimator. The procedure of our DML-CMR estimator with k-fold
cross-fitting is outlined in Algorithm 1. Given a dataset D = (yi, xi, ci)i∈[N ] of size N , we

first split the dataset using a random partition {Ik}Kk=1 of dataset indices [N ] such that the
size of each fold Ik is N/K, and let DIk denote the set of observations {Di : i ∈ Ik}.

As introduced in Section 3.2, our DML estimator will be a two-stage procedure. In the
first stage (lines 4-7 in Algorithm 1), for each fold k ∈ [K], we learn ŝk and ĝk using data DIck
with indices Ick := [N ] \ Ik. Then ŝk ≈ E[Y |C] can be learnt through standard supervised
learning using a neural network with inputs C and labels Y . For ĝk, we follow Hartford
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et al. (2017) to estimate F0(X|C), the conditional distribution of X given C, with F̂ , and
then estimate ĝ via

ĝ(fθ, c) =
∑

Ẋ∼F̂ (X|C)

fθ(Ẋ) ≈
∫
fθ(X)F̂ (X|C = c)dX ≈ E[fθ(X)|c].

For example, if the action space is discrete, F̂ can be a categorical model, e.g., a DNN
with softmax output. For a continuous action space, a mixture of Gaussian models can be
adopted to estimate the distribution F0(X|C), where a DNN is used to predict the mean
and standard deviation of the Gaussian distributions.

In the second stage (lines 8-15 in Algorithm 1), we estimate θ̂ using our Neyman
orthogonal score function ψ in Equation (5). The key is to optimise θ̂ with data from the
k-th fold DIk using nuisance parameters ŝk, ĝk that are trained with DIck

, the complement

of DIk . This is important to fully debias the estimator θ̂. The DML estimator f
θ̂
is then

defined as

f
θ̂
:= min

fθ∈F

1

K

K∑
k=1

Êk[(ŝk(c)− ĝk(fθ̂, c)
2], (6)

where Êk is the empirical expectation over DIk . In practice, we can alternate between the K

folds while sampling a mini-batch cki of size nb from each fold DIk to update θ̂ by minimising
the empirical loss on the mini-batch following our Neyman orthogonal score ψ,

L = Êcki

[
(ŝk(c)− ĝk(fθ̂, c))

2
]
=
∑
cki

1

nb

(
(ŝk(c)− ĝk(fθ̂, c))

2
)
.

When the second stage converges, we return the DML-CMR estimator f
θ̂
.

4.3 Theoretical Analysis

In this section, we provide a theoretical analysis of the convergence of DML-CMR. The key
benefit of DML is its debiasing effect for two-stage regressions, and crucially, it is possible
to leverage the DML framework (Chernozhukov et al., 2018) to show a fast asymptotic
convergence rate of O(N−1/2), i.e., the DML estimator θ̂ converges to the true parameters
θ0 at the rate of O(N−1/2) with high probability. To provide a road map of this section, we
first list all the technical conditions required for a general DML estimator to converge at
the fast rate of O(N−1/2) following Theorem 3.3 from (Chernozhukov et al., 2018). Later,
in Theorem 6, we will prove that all these conditions hold for our DML-CMR estimator.

Condition 4 (Technical conditions of DML N−1/2 rate proved later in Theorem 6)
For sample size N ≥ 3:

(a) The map (θ, (s, g)) 7→ E[ψ(D; fθ, (s, g))] is twice continuously Gateaux-differentiable.

(b) The score ψ obeys the Neyman orthogonality conditions in Equation (3).

(c) The true parameter θ0 obeys E[ψ(D; fθ0 , (s0, g0))] = 0 and Θ contains a ball of radius
c1N

−1/2 logN centered at θ0.

10
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(d) For all θ ∈ Θ, the identification relationship

2∥E[ψ(D; fθ, (s0, g0))]∥ ≳ ∥J0(θ − θ0)∥

is satisfied, where J0 := ∂θ′{E[ψ(D; fθ′ , (s0, g0))]}|θ′=θ0 is the Jacobian matrix, with
singular values bounded between c0 > 0 and c1 > 0.

(e) All eigenvalues of the matrix E[ψ(D; fθ0 , (s0, g0))ψ(D; fθ0 , (s0, g0))
T ] are strictly positive

(bounded away from zero).

(f) Let K be a fixed integer. Given a random partition {Ik}Kk=1 of indices [N ], each of size
n = N/K, the nuisance parameter estimator ŝk and ĝk learnt using data with indices
Ick belongs to shrinking realisation sets SN and GN , respectively, and the nuisance
parameters should be estimated at the o(N−1/4) rate, e.g., ∥ŝ− s0∥2 = o(N−1/4).

Among these conditions, (a), (b), and (c) are conditions regarding the Neyman orthogonal
score ψ. The Neyman orthogonality in (b) is shown in Theorem 3 and the other conditions (b)
and (c) are mild regularity conditions, standard for moment problems. (d) is an identification
condition that ensures sufficient identifiability of θ0. This condition also implies bounded ill-
posedness, which we will discuss in detail in Section 4.4. (e) is a non-degeneracy assumption
for the covariance of the score function. Finally, (f) is a key condition that states the
nuisance parameters should converge to their true values at the crude rate of o(N−1/4),
where a shrinking realisation set SN is a decreasing set of possible estimators ŝ as the sample
size N increases.

In Lemma 5, following recent works (Chernozhukov et al., 2018, 2021, 2022b), we show
that the convergence condition for the nuisance parameters in Condition 4 (f) can be
transformed to a condition on the critical radius (Bartlett et al., 2005) of the realisation sets,
which is a property widely studied for various function classes. For this analysis, we start by
assuming the realisability of the true functions g0, s0 and f0 in their corresponding function
classes, and further assuming that they are bounded. We formalise these assumptions in
Assumption 2.

Assumption 2 (Realisable and bounded) We assume that g0, s0, f0 are realisable in
the function classes G,S,F , that is, g0, s0, f0 ∈ G,S,F , respectively, and furthermore,
∥f∥∞, ∥s∥∞ ≤ B for all f, s ∈ F ,S, where B is a positive constant. Moreover, we assume
that the random variable |Y | ≤ B almost surely.

As discussed in Section 4.1, DML-CMR has two nuisance parameters that are required
to be estimated: ŝ ∈ S and ĝ ∈ G. As we saw in Section 4.2, the estimation of ŝ is made
through standard supervised learning algorithms that we can directly analyse. However,
the estimation of ĝ has two steps: (i) we estimate the conditional distribution F̂ (X|C) ∈ P ,
where the density sieve P is defined as

P ⊂
{
F :

∫
F (x|C = c)dx = 1 ∀c ∈ C

}
;

and (ii) we plug in the functional fθ into the conditional expectation estimator,

ĝ
F̂
(fθ, c) :=

∫
fθ(x)F̂ (x|C = c)dx,

11
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for all candidate test functions fθ ∈ F = {fθ : θ ∈ Θ}. From the realisability assumption
of g0 ∈ G in Assumption 2, it follows that F0(X|C) ∈ P, and the hypothesis space for the
estimand ĝ and the true parameter g0 is defined as G := {gF : F ∈ P}.

Lemma 5 (Convergence of nuisance parameters) Under Assumption 2, let S∗
N be the

star-hull of the realisation set SN of function class S,

S∗
N = {C 7→ γ(s(C)− s0(C)) : s ∈ SN , γ ∈ [0, 1]},

P∗
N be the star-hull of the realisation set PN of the function class P,

P∗
N = {C 7→ γ(F (·|C)− F0(·|C)) : F ∈ PN , γ ∈ [0, 1]},

and G∗
N be the star-hull of the realisation set GN of the function class G,

G∗
N = {C, f 7→ γ(g(C, f)− g0(C, f)) : g ∈ GN , γ ∈ [0, 1]},

where SN , PN and GN are properly shrinking neighbourhoods of the true functions s0, F0 and
g0. Then, there exist universal constants c1 and c2, for which we have that, with probability
at least 1− ξ, the estimation errors are bounded as

∥ŝ− s0∥22 ≤ c1

(
δN (S∗

N )2 +

√
log(1/ζ)

N

)
;

∥ĝ − g0∥22 ≤ c2

(
δN (P∗

N )2 +

√
log(1/ζ)

N

)
.

This lemma shows that, if we can upper bound the critical radii of δN (S∗) and δN (P∗)
by o(N−1/4), then ∥ŝ− s0∥2 = o(N−1/4), and ∥ĝ − g0∥2 = o(N−1/4), meaning that nuisance
parameters converge to their true values at the rate of o(N−1/4) as required by Condition 4
(f). Next, we provide an analysis and concrete examples of estimators that satisfy this
requirement.

The critical radius is a quantity that describes the complexity of estimation, and it is typi-

cally shown that δN = O(d
1/2
N N−1/2) (Chernozhukov et al., 2022b, 2021) (see Appendix C.3),

where dN is the effective dimension of the hypothesis space (for a formal definition of the
critical radius and the effective dimension, the relationship of these metrics to Dudley’s
entropy integral, and bounds on the excess risk of estimators, refer to Appendix C.3.). This,
together with Lemma 5, implies that ∥ŝ− s0∥2 = O(dN (S∗)1/2N−1/2). Therefore, we can
also see that, if the effective dimension satisfies dN (S∗) = o(N1/4), then ∥ŝ−s0∥2 = o(N−1/4)
as required by Condition 4 (f) (and similarly for ĝ and dN (P∗)).

Therefore, we can refer to results in the literature that analyse the effective dimension
and critical radius of various estimators to provide examples of estimators that satisfy
Condition 4 (f). For the estimation of ŝ, we have a regression problem and Condition 4 (f)
is satisfied by many supervised learning estimators such as parametric generalised linear
models (Van Der Vaart et al., 1996), Lasso (Bickel et al., 2009), random forests (Syrgkanis
and Zampetakis, 2020), boosting (Luo et al., 2016), Sobolev kernel regression with α-smooth
RKHS (α > d/2, where d is the dimension of X) (Caponnetto and De Vito, 2007; Christmann
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and Steinwart, 2008) and neural networks (Chen and White, 1999; Yarotsky, 2018; Schmidt-
Hieber, 2020; Farrell et al., 2021). For the conditional density estimator ĝ, the above
estimators also satisfy Condition 4 (f) if the conditional distribution can be parameterised
accordingly; otherwise, the condition is also satisfied by Gaussian mixtures (mixture density
networks) (Ho et al., 2022), polynomial sieve with Hölder smoothness α > d+1

2 (Ai and
Chen, 2003), and categorical-logistic models (Zhao et al., 2022), among others.

Lemma 5 allows us to obtain the following theorem regarding the convergence of the
DML-CMR estimator by applying Theorem 3.3 of Chernozhukov et al. (2018). We prove
satisfaction of all technical conditions for DML convergence rate guarantee mentioned in
Condition 4 in Appendix C.1.

Theorem 6 (Convergence of the DML estimator for CMRs) Let fθ0 ∈ F be a so-
lution that satisfies the CMRs in Equation (P), let ψ be the Neyman orthogonal score defined
in Equation (5) and let J0 := ∂θ′{E[ψ(D; fθ′ , (s0, g0))]}|θ′=θ0 be the Jacobian matrix of E[ψ]
w.r.t. θ. Suppose that the upper bound of the critical radius δN = o(N−1/4), for ŝ and ĝ, and
J0 have bounded singular values. Then, if Assumption 1 and 2 hold, our DML-CMR estima-
tor f

θ̂
satisfies that θ̂ is concentrated in a N−1/2 neighbourhood of θ0, and is approximately

linear and centered Gaussian:

√
N(θ̂ − θ0) → N (0, σ2) in distribution,

where the estimator variance is given by

σ2 := J−1
0 E[ψ(D, θ0, (s0, g0))ψ(D, θ0, (s0, g0))T ](J−1

0 )T ,

which is constant w.r.t. N .

Theorem 6 states that, with adequately trained nuisance parameter estimators in terms
of their critical radius and identifiability conditions in terms of the non-singularity of the
Jacobian matrix J0, the estimator error θ̂ − θ0 is normally distributed, where its variance
shrinks at the rate of N−1/2. This implies that θ̂ converges to θ0 at the rate O(N−1/2) with
high probability, which allows us to bound the estimation error ∥f

θ̂
−fθ0∥2 of the DML-CMR

estimator with high probability, under a Lipschitz condition of fθ.

Corollary 7 Let f
θ̂
be our DML-CMR estimator. If all assumptions for Theorem 6 hold

and there exists a constant L > 0 such that ∥fθ(x) − fθ0(x)∥2 ≤ L∥θ − θ0∥2 for all x ∈ X
and θ ∈ Θ, then for all ζ ∈ (0, 1], we have that

∥f
θ̂
− fθ0∥2 = O

(
L

√
ln(1/ζ)

N

)
,

with probability 1− ζ.

Here, we assume a local Lipschitz condition of fθ w.r.t. θ around θ0: ∥fθ(x)− fθ0(x)∥2 ≤
L∥θ − θ0∥2 for all x ∈ X and θ ∈ Θ for some L > 0. Since Θ is compact, we see that it is
enough for this Lipschitz condition to hold locally in a neighbourhood of θ0.

13
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4.4 DML Identifiability Condition and Ill-posedness

In this section, we provide a discussion regarding the relationship between our identifiability
condition, Condition 4 (d), and a more common notion of identifiability for CMR problems,
the ill-posedness (Chen and Pouzo, 2012). To begin with, we define the ill-posedness of
CMR problems.

Definition 8 (Ill-posedness (Chen and Pouzo, 2012; Dikkala et al., 2020)) Given
a CMR problem as in Equation (P), the ill-posedness ν of the function space F is given by

ν = sup
f∈F

∥f0 − f∥2
∥E[f0(X)− f(X)|C]∥2

.

Intuitively, ill-posedness describes how well a small CMR error (the projected error
under conditional expectation) implies a small L2 error (root mean squared error) to f0. For
identifiability, it is usually assumed that the ill-posedness ν is bounded. Otherwise, even
solving the CMRs with very small error does not guarantee a solution f̂ that is close to f0.
In our case, we demonstrate that the identification condition of a DML estimator actually
implies bounded ill-posedness. Specifically, Condition 4 (d) implies that the ill-posedness is
bounded, as shown by the following proposition.

Proposition 9 For all θ ∈ Θ, if there exists a constant L > 0 such that ∥fθ(x)−fθ0(x)∥2 ≤
L∥θ − θ0∥2 for all x ∈ X and θ ∈ Θ, then Condition 4 (d), which states

2∥E[ψ(D; fθ, (s0, g0))]∥ ≥ ∥J0(θ − θ0)∥

and the Jacobian matrix J0 have singular values bounded between c0 > 0 and c1 > 0, implies
the ill-posedness is bounded by ν ≤ L/

√
c0.

The proof of Proposition 9 is deferred to Appendix C.2. This interesting finding explains
why, in Theorem 6, there are no explicit assumptions about the ill-posedness of the problem.
The only identifiability assumption for Theorem 6 is the non-singularity of the Jacobian
matrix J0, which for DML-CMR is sufficient to ensure Condition 4 (d) holds. Therefore, by
Proposition 9, this ensures a bounded ill-posedness of the problem, which in turn allows us
to identify the solution f0 with small error.

5 Experimental Results

In this section, we empirically evaluate our DML-CMR estimator. We apply DML-CMR
to two applications, IV regression and proximal causal learning, where details regarding
these two problems are provided in Appendix D. In addition, we evaluate a computationally
efficient version of DML-CMR, referred to as CE-DML-CMR, which does not apply K-fold
cross-fitting. It trains ŝ and ĝ only once (instead of K times) using the entire dataset,
and can also be considered as an ablation study on K-fold cross-fitting. Without K-fold
cross-fitting, it lacks the theoretical convergence rate guarantees but it still enjoys the partial
debiasing effect (Mackey et al., 2018) from the Neyman orthogonal score and trades off
computational complexity with bias. We found that CE-DML-CMR empirically performs as
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Figure 1: The mean squared error of f̂ on the ticket demand dataset with low-dimensional
context for the IV regression task.

well as standard DML-CMR on low-dimensional datasets. We provide details and discussion
regarding CE-DML-CMR in Appendix A.

Our evaluation considers both low- and high-dimensional datasets, as well as semi-
synthetic real-world datasets. We ran each method 20 times and report the mean squared
errors (MSE) between the estimators f̂ and f0, where the median, 25th, and 75th percentiles
are shown. The method employed by DML-CMR is identical to DML-IV (Shao et al., 2024)
when solving the IV regression problem, and we include the results for IV regression from
Shao et al. (2024) in this section. For PCL, the experimental results are new, and we
implemented all algorithms using PyTorch (Paszke et al., 2019). The full code is available
on GitHub2.

5.1 IV regression

For the IV regression task (details in Appendix D.3), we compare our methods with leading
modern IV regression methods Deep IV (Hartford et al., 2017), DeepGMM (Bennett et al.,
2019), KIV (Singh et al., 2019) and DFIV (Xu et al., 2020).

We use DNN estimators for both stages with network architecture and hyperparameters
provided in Appendix F. Results of DML-CMR using tree-based estimators such as Random
Forests and Gradient Boosting are provided in Appendix G.2, where comparable performance
to DNN-based DML-CMR is demonstrated. In addition, we provide a sensitivity analysis
against hyperparameter changes in Appendix G.3 and an evaluation of algorithms when the
IV is weakly correlated with the treatment, representing higher ill-posedness of the CMRs,
in Appendix G.1.

5.1.1 Ticket Demand Dataset

We first conduct experiments for IV regression on the ticket demand dataset, which is a
synthetic dataset introduced by Hartford et al. (2017) that is now a standard benchmark

2. https://github.com/shaodaqian/DML-CMR
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Figure 2: The mean squared error of f̂ on the ticket demand dataset with high-dimensional
context for the IV regression task.

for nonlinear IV methods. In this dataset, we aim to understand how ticket prices p affect
ticket sales r. We observe two context variables, which are the time of year t ∈ [0, 10] and
customer type s ∈ [7] variables, the latter categorised by the level of price sensitivity. Price
and context affect sales through f0((t, s), p) = 100 + (10 + p) · s · ψ(t)− 2p, where ψ(t) is a
complex nonlinear function. However, the noise of r and p is correlated, which indicates
the existence of unobserved confounders. The fuel price z is introduced as an instrumental
variable. Details of this dataset are included in Appendix E.1.1.

The results for learning f0 with this dataset of various sizes are provided in Figure 1.
It can be seen that DML-CMR performs better than other IV regression methods for all
dataset sizes. CE-DML-CMR, which requires significantly less computation, matches the
performance of DML-CMR in this case.

5.1.2 High-Dimensional Dataset

In real applications, we typically do not observe variables such as the customer type as
explicit categories. Therefore, we follow Hartford et al. (2017) and consider the case where
the customer type s ∈ [7] is replaced by images of the corresponding handwritten digits from
the MNIST dataset (LeCun and Cortes, 2010) to evaluate our methods with high-dimensional
(282=784 dimensions) inputs. The task remains to learn f0, but the algorithms are no longer
explicitly given the 7 customer types, and instead have to infer the relationship between
the image data and the outcome. Results for IV regression are plotted in Figure 2, where
DML-CMR and CE-DML-CMR outperform all other methods. In these high-dimensional
settings, regularisation is heavily used to avoid overfitting. DML-CMR demonstrates the
benefits of using DML to reduce both the regularisation and overfitting bias caused by
learning the nuisance parameters.

5.1.3 Real-World Datsets

Lastly, we test the performance of DML-CMR on real-world datasets. The true counterfactual
prediction function is rarely available for real-world data. Therefore, in line with previous
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Figure 3: The mean squared error of f̂ on the real-world datasets IHDP and PM-CMR for
the IV regression task.

approaches (Shalit et al., 2017; Wu et al., 2023; Schwab et al., 2019; Bica et al., 2020),
we instead consider two semi-synthetic real-world datasets IHDP3 (Hill, 2011) and PM-
CMR4 (Wyatt et al., 2020). We directly use the continuous variables from IHDP and
PM-CMR as context variables, and generate the outcome variable with a nonlinear synthetic
function following Wu et al. (2023). There are 470 and 1350 training samples in IHDP and
PM-CMR, respectively (for details see Appendix E.1.3). As shown in Figure 3, DML-CMR
and CE-DML-CMR demonstrate comparable, if not lower, MSE of fitting f̂ than the other
methods. This shows that our algorithm is reliable when dealing with real-world data.

5.2 Proximal Causal Learning

For the PCL task (details in Appendix D.4), we compare our methods with PCL methods
CEVAE (Im et al., 2021), PMMR (Mastouri et al., 2021), KPV (Mastouri et al., 2021),
DFPV (Xu et al., 2021), NMMR U (Kompa et al., 2022), NMMR V (Kompa et al., 2022)
and PKDR (Wu et al., 2024). We also use DNN estimators for both stages, with network
architecture and hyperparameters provided in Appendix F.

5.2.1 Ticket Demand Dataset

Similarly to IV regression, we start with the ticket demand dataset (Hartford et al., 2017),
which has been adapted to the PCL setting (Xu et al., 2021). We aim to understand how
ticket prices affect ticket sales and learn the causal function f0. The hidden confounder in
this case is the varying demand U , while the cost of fuel V is the treatment proxy, which
directly impacts the ticket price, and the number of views on the airline’s reservation website
W is the outcome proxy. Details of this dataset are included in Appendix E.2.1.

3. IHDP: https://www.fredjo.com/.
4. PM-CMR: https://doi.org/10.23719/1506014.
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Figure 4: The mean squared error of f̂ on the ticket demand dataset for the PCL task.

Figure 5: The mean squared error of f̂ on the dSprites dataset with high dimensional
treatment for the PCL task.

The results for learning f0 with this dataset of various sizes are provided in Figure 4. It
can be seen that DML-CMR and CE-DML-CMR achieved state-of-the-art performance with
very similar performance to each other. NMMR U can match DML-CMR at smaller dataset
sizes, but DML-CMR achieves lower MSE at 5000 and 7500 sample sizes. The performance
gap between CE-DML-CMR and DML-CMR is small in this case, as expected, because the
variables are low-dimensional.

5.2.2 High-dimensional dSprites Dataset

For a high-dimensional dataset, we adopt the dSprites dataset (Matthey et al., 2017) for
PCL, first introduced by Xu et al. (2021). dSprites is an image (64 × 64) dataset where
each image is described by five parameters: shape, scale, rotation, posX and poxY. The
treatments are these high-dimensional dSprites images, the hidden confounder is posY, the
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proxies are noisy observations of scale, rotation, and posX, and the outcome is defined by a
nonlinear causal function. Details of this dataset are provided in Appendix E.2.2.

The results are presented in Figure 5. DML-CMR achieved similar performance to the
state-of-the-art methods while outperforming CE-DML-CMR. In addition, a lower variance
can be observed when using DML-CMR compared to other methods, especially for smaller
data sizes. The NMMR methods in some cases outperform CE-DML-CMR. This is in line
with our previous observations that, without k-fold validation, performance can be worse for
high-dimensional datasets and the full debiasing effect of the DML framework is required to
achieve the best results.

6 Conclusion

We have proposed a novel estimator for solving CMRs, DML-CMR. Using the DML framework
and our novel Neyman orthogonal score, DML-CMR can effectively estimate solutions to
CMR problems with fast convergence rate guarantees by mitigating the regularisation
and overfitting biases in two-stage estimations. We theoretically analysed DML-CMR and
proved a convergence rate of O(N−1/2) with high probability under mild regularity and
parametric assumptions. We also demonstrated interesting connections between the notion
of ill-posedness for CMRs and DML’s identifiability condition. We applied DML-CMR
to problems in causal inference such as IV regression and proximal causal learning, and
evaluated it on corresponding benchmarks, including semi-synthetic real-world data. Our
experiments demonstrated that DML-CMR achieves state-of-the-art performance against
similar algorithms that are developed specifically for the IV regression and PCL problems,
as well as general CMR solvers, with lower estimation error and better stability.

Future work includes considering other estimation methods for the nuisance parameters
following our Neyman orthogonal score, and theoretically analysing our Neyman orthogonal
score for estimating nonparametric functions of interest following (Foster and Syrgkanis,
2019).
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Appendix A. Computationally Efficient CE-DML-CMR

Algorithm 2 Computationally Efficient CE-DML-CMR

Input: Dataset D with size N , mini-batch size nb
Learn ŝ and ĝ using D
Initialise f

θ̂
repeat

Sample nb data ci from D
L = Êci

[
(ŝ(c)− ĝ(fθ, c))

2
]

Update θ̂ to minimise loss L
until convergence
Output: The CE-DML-CMR estimator f

θ̂

The standard DML-CMR with K-fold cross-fitting trains ŝ and ĝ K times on different
subsets of the dataset to tackle overfitting bias, but is computationally expensive. Therefore,
as mentioned in Section 5, we also evaluate CE-DML-CMR, a computationally efficient
version of DML-CMR that does not apply K-fold cross-fitting and trains ŝ and ĝ only
once using the entire dataset. It uses the same Neyman orthogonal score as the standard
DML-CMR, so it still enjoys the partial debiasing effect (Mackey et al., 2018) from the
Neyman orthogonal score. However, without K-fold cross-fitting, it lacks the theoretical
convergence rate guarantees provided by Theorem 6. CE-DML-CMR can be viewed as a
trade-off between computational complexity and theoretical guarantees, and we found that
CE-DML-CMR empirically performs as well as standard DML-CMR on low-dimensional
datasets, where overfitting bias is not prevalent.

Appendix B. The Score Function for Standard Two-Stage CMR
Estimators

In this section, we show that the learning objective, or score function, for standard two-stage
CMR estimators (Angrist et al., 1996; Hartford et al., 2017; Singh et al., 2019) is not Neyman
orthogonal and thus cannot be used to create a DML estimator for the CMR problem.

Proposition 2 The score (or objective) function for standard two-stage CMR estimators
ℓ = (Y − ĝ(f, c))2 is not Neyman orthogonal at (f0, g0).

Proof The score ℓ = (Y − ĝ(f, c))2 is not Neyman orthogonal because, first of all,
E[(Y − g0(f0, c))2] = E[(Y −E[Y |C])2] ̸= 0 since E[f0(X)|C] = E[Y |C] and Y −E[Y |C] ̸= 0
due to the noise on Y . This violates the basic condition for a Neyman orthogonal score that
the score function equals zero with the true functions f0 and g0.
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Secondly, the Gateaux derivative against small changes in g for score E[(Y − g0(f0, c))
2]

at (f0, g0) is

∂

∂r
E
[
(Y − g0(f0, C)− r · g(f0, C))2

]
=
∂

∂r
E
[
(Y − g0(f0, C))

2 − 2r · (Y − g0(f0, C))g(f0, C) + r2 · g(f0, C)2
]

=E
[
2(Y − g0(f0, C))g(f0, C) + 2r · g(f0, C)2

]
,

and, when r = 0, this derivative evaluates to

E[2(Y − g0(f0, c))g(f0, c)] = E[2(Y − E[Y |C])g(f0, c)]

which does not equal to 0 for general g ∈ G since generally g(f0, c) and the residual
(Y − E[Y |C]) are correlated. Therefore, this standard score function for two-stage CMR
estimation is not Neyman orthogonal at (f0, g0).

Appendix C. Proofs

In this section, we restate all the conditions required to prove the N−1/2 convergence rate
guarantees for the DML-CMR estimator, and provide the omitted proofs in the main paper
for Theorem 3, Lemma 5, Theorem 6 and Corollary 7.

C.1 DML-CMR N−1/2 Convergence Rate Guarantees

To obtain N−1/2 convergence rate guarantees of the DML-CMR estimator, the following
conditions must be satisfied.
Condition 4 [Conditions for N−1/2 convergence of DML, Assumption 3.3 and 3.4
in Chernozhukov et al. (2018)]

For sample size N ≥ 3:

(a) The map (θ, (s, g)) 7→ E[ψ(D; fθ, (s, g))] is twice continuously Gateaux-differentiable.

(b) The score ψ obeys the Neyman orthogonality conditions.

(c) The true parameter θ0 obeys E[ψ(D; fθ0 , (s0, g0))] = 0 and Θ contains a ball of radius
c1N

−1/2 logN centered at θ0.

(d) For all θ ∈ Θ, the identification relationship

2∥E[ψ(D; fθ, (s0, g0))]∥ ≳ ∥J0(θ − θ0)∥

is satisfied, where J0 := ∂θ′{E[ψ(D; fθ′ , (s0, g0))]}|θ′=θ0 is the Jacobian matrix, with
singular values bounded between c0 > 0 and c1 > 0.

(e) All eigenvalues of the matrix E[ψ(D; fθ0 , (s0, g0))ψ(D; fθ0 , (s0, g0))
T ] are strictly posi-

tive (bounded away from zero).
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(f) Let K be a fixed integer. Given a random partition {Ik}Kk=1 of indices [N ], each of size
n = N/K, the nuisance parameter estimator ŝk and ĝk learnt using data with indices
Ick belongs to shrinking realisation sets SN and GN , respectively, and the nuisance
parameters should be estimated at the o(N−1/4) rate, e.g., ∥ŝ− s0∥2 = o(N−1/4).

To formalise the convergence rate guarantees in relationship to the technical conditions,
we have the following proposition as a direct result of Theorem 3.3 of Chernozhukov et al.
(2018).

Proposition 10 (Theorem 3.3 of Chernozhukov et al. (2018) ) If all conditions in The-
orem 4 hold, then the DML estimator θ̂ as defined in Theorem 1 is concentrated in a 1/

√
N

neighbourhood of θ0, and is approximately linear and centered Gaussian:
√
N

σ
(θ̂ − θ0) =

1√
N

∑
ψ̄(Di) +O(ρN ) → N (0, 1) in distribution,

where ψ̄(·) := −σ−1J−1
0 ψ(·, θ0, η0) is the influence function, J0 is the Jacobian of ψ, the

approximate variance is σ2 := J−1
0 E[ψ(D, θ0, η0)ψ(D, θ0, η0)T ](J−1

0 )T , and the size of the
remainder ρN converges to 0.

Proof This is a direct consequence of Theorem 3.3 from Chernozhukov et al. (2018),
which states the convergence properties of the DML estimator for nonlinear score functions.
Assumptions 3.3 and 3.4 in Chernozhukov et al. (2018) required for Theorem 3.3 to hold are
contained in Theorem 4.

We will show that all of these conditions are satisfied in the proof of Theorem 6. To begin
with, we prove Theorem 3, which shows that our score function ψ is Neyman orthogonal.

Theorem 3 (Neyman orthogonality) The score function ψ(D; f, (s, g)) = (s(c)−g(f, c))2
obeys the Neyman orthogonality conditions at (f0, (s0, g0)).

Proof Firstly, by Equation (26), we have s0(C) = g0(f0, C), thus

ψ(D; f0, (s0, g0)) = E
[
(s0(C)− g0(f0, C))

2
]
= 0

Then we compute the derivative w.r.t. small changes in the nuisance parameters. For all
s, g ∈ S,G,

∂

∂r
E
[
(s0(C) + r · s(C)− g0(f0, C)− r · g(f0, C))2

]
=
∂

∂r
E
[
2r(s0(C)− g0(f0, C))(s(C)− g(f0, C)) + r2(s(C)− g(f0, C))

2
]

=E
[
2(s0(C)− g0(f0, C))(s(C)− g(f0, C)) + 2r(s(C)− g(f0, C))

2
]
,

and, when at r = 0, the derivative evaluates to

E
[
2(s0(C)− g0(f0, C))(s(C)− g(f0, C))

]
= E

[
0× (s(C)− g(f0, C))

]
= 0 ∀s, g ∈ S,G,
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since s0(C) = E[Y |C] = E[f0(X)|C] = g0(f0, C). Therefore, our moment function ψ is
Neyman orthogonal at (f0, (s0, g0)).

In turn, we state and prove the convergence of the nuisance parameters ŝ and ĝ with the
machinery developed for the analysis of the excess risk in constrained ERM in Appendix C.3.

Lemma 5 (Convergence of nuisance parameters) Under Assumption 2, let S∗
N be the

star-hull of the realisation set SN of function class S,

S∗
N = {C 7→ γ(s(C)− s0(C)) : s ∈ SN , γ ∈ [0, 1]},

P∗
N be the star-hull of the realisation set PN of the function class P,

P∗
N = {C 7→ γ(F (·|C)− F0(·|C)) : F ∈ PN , γ ∈ [0, 1]},

and G∗
N be the star-hull of the realisation set GN of the function class G,

G∗
N = {C, f 7→ γ(g(C, f)− g0(C, f)) : g ∈ GN , γ ∈ [0, 1]},

where SN , PN and GN are properly shrinking neighbourhoods of the true functions s0, F0 and
g0. Then, there exist universal constants c1 and c2, for which we have that with probability
at least 1− ξ, the estimation errors are bounded as

∥ŝ− s0∥22 ≤ c1

(
δN (S∗

N )2 +

√
log(1/ζ)

N

)
;

∥ĝ − g0∥22 ≤ c2

(
δN (P∗

N )2 +

√
log(1/ζ)

N

)
.

Proof The bound on estimation error for ŝ is straightforward and follows directly by
Theorem 14. In order to prove that, we only need to show that the choice of loss function
for the ERM estimator ŝ is Lipschitz in its first argument. To this end, we formulate the
ERM as

ŝ = argmin
s∈S

LN (s), where LN (s) =
1

N

N∑
i=1

ℓ(s; yi, ci) and ℓ(s; y, c) = (y − s(c))2.

Thus, we have,

|ℓ(s2; y, c2)− ℓ(s1; y, c1)| =
∣∣∣(y − s2(c2))

2 − (y − s1(c1))
2
∣∣∣

= |(2y + s2(c2) + s1(c1))(s2(c2)− s1(c1))|
≤ 4B|s2(c2)− s1(c1)|, (7)

where we used the fact that y, ∥s∥∞ ≤ B by Assumption 2. Thus, ℓ(s; y, c) is 4B-Lipschitz
in its argument and therefore, by Theorem 14, for a universal constant c1,

∥ŝ− s0∥22 ≤ c1

(
δN (S∗

N )2 +

√
log(1/ζ)

N

)
.
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For the estimation error of ĝ, we recall that for any F (·|C) ∈ P,

gF (fθ, c) :=

∫
fθ(x)F (x|C = c)dx.

Thus, we can connect the estimation error of ĝ
F̂
to the estimation error of the conditional

density estimator F by showing

∥ĝ − g0∥2 = ∥ĝ
F̂
− gF0∥2

≤ B∥F̂ − F0∥2 (8)

To prove (8), we observe that for any C and any test function f ∈ F , we have that,

|gF1(C, f)− gF2(C, f)| =
∣∣∣∣∫ f(x)[F1 − F2](dx|C)

∣∣∣∣
≤
∫
|f(x)||F1 − F2|(dx|C)

≤ B

∫
|F1 − F2|(dx|C), (9)

since ∥f∥∞ ≤ B by Assumption 2. Thus, by integrating w.r.t. joint law of (C, f), and (9),
we can show that (8) holds since

∥gF1 − gF2∥22 = EC

[
(gF1(C, f)− gF2(C, f))

2
]

≤ B2EC

[(∫
|F1 − F2|(dx|C)

)2
]

≤ B2EC

[∫
[F1 − F2]

2(dx|C)
]

(10)

= B2∥F1 − F2∥22,

for any F1, F2 ∈ P, where in (10), we used Cauchy–Schwarz in dx, i.e.,(∫
|h|
)2

≤
∫
h2.

Having (8) at hand, it suffices to prove the upper bound on the estimation error of F̂ . To
this end, we observe that Squared CDF error,

ℓ(F ;x, c) = [1{X≤x | C=c} − F (x|c)]2,

is Lipschitz by a similar argument to that for (7), where F (x|c) is the conditional CDF
induced by the conditional density F . It is not hard to observe that clipped versions of other
losses for density estimation such as integrated squared error (ISE), negative log-likelihood,
and Hellinger-squared also satisfy the Lipschitz condition in the first argument. Thus, by
Theorem 14, for a universal constant c3,

∥F̂ − F0∥22 ≤ c3

(
δN (PN∗)2 +

√
log(1/ζ)

N

)
.
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Choosing c2 = B2c3 and (8) completes the proof.

Now, we are ready to prove Theorem 6, which is the main theorem that states the N−1/2

convergence rate guarantees for our DML estimator.

Theorem 6 (Convergence of the DML estimator for CMRs) Let fθ0 ∈ F be a so-
lution that satisfies the CMRs in Equation (P), let ψ be the Neyman orthogonal score defined
in Equation (5) and let J0 := ∂θ′{E[ψ(D; fθ′ , (s0, g0))]}|θ′=θ0 be the Jacobian matrix of E[ψ]
w.r.t. θ. Suppose that the upper bound of the critical radius δN = o(N−1/4), for ŝ, ĝ, and
J0 has bounded singular values. Then, if Assumption 1 and 2 hold, our DML estimator f

θ̂

satisfies that θ̂ is concentrated in a N−1/2 neighbourhood of θ0, and is approximately linear
and centred Gaussian:

√
N(θ̂ − θ0) → N (0, σ2) in distribution,

where the estimator variance is given by

σ2 := J−1
0 E[ψ(D, θ0, (s0, g0))ψ(D, θ0, (s0, g0))T ](J−1

0 )T ,

which is constant w.r.t. N .

Proof Following Proposition 10, we need to check whether, under Assumption 2, all of
Condition 4 for DML N−1/2 convergence rate is satisfied. Condition (a) is satisfied since
(s− g)2 is twice continuously differentiable with respect to s and g. Condition (b) is satisfied
by Theorem 3. Condition (c) is satisfied since fθ0 satisfies the CMRs and, from Theorem 3,
we have that E[ψ(D; fθ0 , (s0, g0))] = 0. In addition, from Assumption 1, since the true
parameter θ0 ∈ Θ is in the interior of Θ, Θ contains some neighbourhood centered at the
true parameter θ0.

Condition (d) is a sufficient identifiability condition, which states that the closeness of the
score function at point θ to zero implies the closeness of θ to θ0. This assumption is standard
in conditional moment problems and implies that the ill-posedness (see Definition 8) of the
CMR problem is bounded, as shown in Section 4.4. To check condition (d), we first point
out that, under analytical assumptions for s, g, and h, we can write down first order Taylor
series for the score function E[ψ(D; fθ, (s0, g0))] around the point θ0,

E[ψ(D; fθ, (s0, g0))] = E[ψ(D; fθ0 , (s0, g0))] + J0(θ − θ0) +O(∥θ − θ0∥2).

Plugging in validity of the score function ψ(D; fθ, (s0, g0)), i.e., E[ψ(D; fθ0 , (s0, g0))] = 0, we
infer that

∥E[ψ(D; fθ, (s0, g0))]∥ ≳ ∥J0(θ − θ0)∥.

Now for identifiability, we only need to check that J0J
T
0 is non-singular, which is guaranteed

by bounded singular value of J0 as stated in the Theorem.
Condition (e) is the non-degeneracy assumption for covariance of the score function

ψ(D; fθ, (s0, g0)). By definition,

E[ψ(D; fθ, (s0, g0))ψ(D; fθ, (s0, g0))
T ] =

∫
ψ(D; fθ, (s0, g0))ψ(D; fθ, (s0, g0))

TdP(D).
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By trace trick, for each data pointD, the only eigenvalue of ψ(D; fθ, (s0, g0))ψ(D; fθ, (s0, g0))
T

is ∥ψ(D; fθ, (s0, g0))∥2 ≥ 0, with ψ(D; fθ, (s0, g0)) as the corresponding eigenvector. There-
fore, E[ψ(D; fθ, (s0, g0))ψ(D; fθ, (s0, g0))

T ] is positive-definite if for each member d of the
support of P, which is the distribution of D, there are at least as many eigenvectors of d as
the number of dimension of ψ(D; fθ, (s0, g0)), which is true in our setting as the co-domain
of ψ(D; fθ, (s0, g0)) is R.

Condition (f) is satisfied since we have the critical radius δN = o(N−1/4), and together
with Lemma 5, the nuisance parameters converge sufficiently quickly to ensure ∥ŝ− s0∥2 ≤
O(δN + N−1/2) = O(o(N−1/4) + N−1/2) = o(N−1/4) and similarly ∥ĝ − g0∥2 ≤ O(δN +
N−1/2) = o(N−1/4).

Therefore, all the conditions in Condition 4 are satisfied, which concludes the proof by
Proposition 10.

Corollary 7 Let f
θ̂
be the DML estimator for CMRs. If all assumptions for Theorem 6

hold and there exists a constant L > 0 such that ∥fθ(x) − fθ0(x)∥2 ≤ L∥θ − θ0∥2 for all
x ∈ X and θ ∈ Θ, then for all ζ ∈ (0, 1], we have that

∥f
θ̂
− fθ0∥2 = O

(
L

√
ln(1/ζ)

N

)
,

with probability 1− ζ.

Proof From theorem 6, we have that the parameters θ̂ for our DML estimator f
θ̂
learnt

from a dataset of size N satisfy (θ̂ − θ0)
d−→ N (0, σ2/N), where σ2 is the DML estimator’s

variance. This means that, for all ϵ > 0 and ζ ∈ (0, 1], there exists an integer K > 0 such
that for all N ≥ K,

P
(
∥θ̂ − θ0∥ > ϵ

)
≤ 1− Φ

(
ϵ ·

√
N/σ

)
+ ζ/2,

where Φ is the CDF of a standard Gaussian distribution. If we assume L to be a constant
such that ∥fθ(x)− fθ0(x)∥ ≤ L∥θ − θ0∥ for all x ∈ X and θ ∈ Θ, we have that for all ϵ > 0
and ζ ∈ (0, 1], there exists an integer K > 0 such that for all N ≥ K,

P
(
∥f

θ̂
(x)− fθ0(x)∥ > L · ϵ

)
≤ 1− Φ(ϵ ·

√
N/σ) + ζ/2 ∀x ∈ X ,

=⇒ P
(
∥f

θ̂
(x)− fθ0(x)∥ ≤ L · ϵ

)
≥ Φ(ϵ ·

√
N/σ)− ζ/2 ∀x ∈ X ,

Now, for any ζ ∈ (0, 1], we can choose ϵ > 0 such that Φ(ϵ ·
√
N/σ) = 1 − ζ/2 since

0.5 ≤ 1− ζ/2 < 1, and by substituting ϵ out of the above equation, we have that

P
(
∥f

θ̂
− fθ0∥2 ≤ L · Φ−1(1− ζ/2)σ/

√
N
)
≥ 1− ζ.

From Blair et al.’s approximation for the inverse of the error function (erf) (Blair et al.,
1976), we have that, for all y ∈ (0, 1], Φ−1(1 − y) ≤

√
−2 ln(y). Thus, we conclude that

there exists K > 0 such that for all N > K,
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∥f
θ̂
− fθ0∥2 ≤ L · Φ−1(1− ζ/2)σ/

√
N ≤ Lσ

√
−2 ln(ζ/2)/

√
N

= Lσ
√
2 ln(2/ζ)/

√
N

=
√
2Lσ

√
ln(2/ζ)

N
with probability 1− ζ,

which completes the proof.

C.2 Ill-posedness and DML Identification

Proposition 9 For all θ ∈ Θ, if there exists a constant L > 0 such that ∥fθ(x)−fθ0(x)∥2 ≤
L∥θ − θ0∥2 for all x ∈ X and θ ∈ Θ, then Condition 4 (d), which states

2∥E[ψ(D; fθ, (s0, g0))]∥ ≥ ∥J0(θ − θ0)∥

and the Jacobian matrix J0 have singular values bounded between c0 > 0 and c1 > 0, implies
the ill-posedness is bounded by ν ≤ L/

√
c0.

Proof Recall that our score function is ψ(D; fθ, (s, g)) = (s(c)−g(f, c))2 where ψ(D; fθ, (s0, g0)) =
(s0(c)− g0(f, c))

2 = (E[Y − f(X)|C])2. Under a finite-dimensional parameterised setting,
we have that from 2∥E[ψ(D; fθ, (s0, g0))]∥ ≳ ∥J0(θ − θ0)∥,

∥E[fθ0(X)− fθ(X)|C]∥22 =∥E[(E[fθ0(X)− fθ(X)|C])2]∥
=∥E[(E[Y − fθ(X)|C])2]∥
=∥E[ψ(D; fθ, (s0, g0))]∥

≥1

2
∥J0(θ − θ0)∥

=
√

(θ − θ0)T (JT
0 J0)(θ − θ0)

≥1

2

√
c20∥(θ − θ0)∥22 ≥

1

2
c0∥(θ − θ0)∥2 ≥

1

2
c0∥(θ − θ0)∥22 (11)

for ∥(θ − θ0)∥ ≤ 1 and the singular value lower bound c0 > 0 of J0. With a local Lipschitz
condition of fθ around θ0: ∥fθ(x)− fθ0(x)∥2 ≤ L∥θ− θ0∥2 for all x ∈ X and θ ∈ Θ, we have
that

∥fθ0 − fθ∥22 = E[(fθ0(x)− fθ(x))
2]

≤ E[(L∥θ0 − θ∥)2]
≤ L2∥θ0 − θ∥2

=⇒ ∥θ0 − θ∥2 ≥ ∥fθ0 − fθ∥22
L2

(12)
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Therefore, from Equation (11) and Equation (12), we have that

∥E[fθ0(X)− fθ(X)|C]∥22 ≥ c0∥(θ − θ0)∥22 ≥
c0∥fθ0 − fθ∥22

L2

=⇒ ∥E[fθ0(X)− fθ(X)|C]∥2 ≥
√
c0∥(θ − θ0)∥2 ≥

√
c0∥fθ0 − fθ∥2

L

which bounds the ill-posedness by

ν = sup
f∈F

∥fθ0 − fθ∥2
∥E[fθ0(X)− fθ(X)|C]∥2

≤ L
√
c0
. (13)

C.3 Constrained Empirical Risk Minimisation Bounds

In this section, we introduce basic concepts from empirical process theory and further
discuss bounds on the excess risk of general Empirical Risk Minimizer (ERM) in the style of
Wainwright (2019); Foster and Syrgkanis (2019).

Definition 11 The critical radius denoted by δN (H∗) is defined as the minimum δ that
satisfies the following upper bound on the local Gaussian complexity of a star-shaped function
class H∗5, G(H∗, δ) ≤ δ2/2, where local Gaussian complexity is defined as

G(H∗, δ) = Eϵ

[
sup

h∈H∗:∥h∥N≤δ
⟨ϵ, h⟩

]
, (14)

with ϵ being a random i.i.d. zero-mean Gaussian vector.

The critical radius is a standard notion to bound the estimation error in the regression
problem. Since local Gaussian complexity can be viewed as an expected value of a supremum
of a stochastic process indexed by g, we can apply empirical process theory tools, namely
the Dudley’s entropy integral (Wainwright, 2019; Van Handel, 2014), to provide a bound on
the critical radius,

G(H∗, δ) ≤ inf
α≥0

{
α+

1√
N

∫ δ

α/4

√
logN (H∗, L2(PN ), ϵ) dϵ

}
,

where N (H∗, L2(PN ), ϵ) is the ϵ-covering number of the function class H∗ in L2(PN ) norm.
Now, by placing α = 0, when the integral is a single scale value of

√
logN (H∗, L2(Pn), ϵ),

we infer that

G(H∗, δ) ≤ δ√
N

√
logN (F∗, L2(PN ), ϵ).

5. A function class H is star-shaped if, for every h ∈ H and α ∈ [0, 1], we have αh ∈ H.
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Thus, the critical radius of H∗ will be upper bounded by

δN (H∗) ≲

√
logN (H∗, L2(PN ), ϵ)√

N
= O(dN (H∗)1/2N−1/2),

where Chernozhukov et al. (2022b, 2021) referred to

dN (H∗) := inf

{
d > 0 : logN (H∗, L2(PN ), ϵ) ≤ d log

(
C

ϵ

)
∀ϵ ∈ (0, 1) and C is a constant.

}
,

as the effective dimension of the hypothesis space. Note that this rate matches the minimax
lower bound of fixed design estimation for this setting (Yang and Barron, 1999).

Given the dataset D = {zi ∈ Z}Ni=1 consisting of i.i.d. data points zi drawn from
distribution P, and a function class H, we define the realisation of a function space by
subscript N , e.g., HN is the realisation of H in the N observed data points. Since the
definition of critical radius is for star-shaped function classes, we equip ourselves with the
star-hull notation, where H∗

N is the star-hull of the function class HN centred at the true
function h0, defined as

H∗
N := {Z 7→ γ(h(X)− h0(Z)) : f ∈ HN , γ ∈ [0, 1]},

and denote its critical radius by δN (H∗
N ), or simply δN (H). In statistical learning, we are

given a loss function ℓ : H × Z → R, and we have the risk and empirical risk defined
accordingly as:

L(h) = Ez[ℓ(h; z)] and LN (h) =
1

N

N∑
i=1

ℓ(h; zi).

Let us denote the ground truth function by h0, i.e., the minimizer of the risk,

h0 = argmin
h∈H

L(h).

The ERM algorithm proposes the estimator ĥ that minimises the empirical risk of the
observed N data points,

ĥ = argmin
h∈H

LN (h).

Theorem 12 (Foster and Syrgkanis (2019, Lemma 7)) Consider a function class H
and its star-hull H∗, with suph∈H∗ ∥h∥∞ ≤ 1, critical radius δN (H∗), and any choice of δ
such that,

δ2 ≥ max

{
δN (H∗)2,

4 log(41 log(2c1N))

c1N

}
,

for a constant c1. Moreover, assume that the loss function ℓ is L-Lipschitz in its first
argument with respect to ℓ2 norm. Then there exist universal constants c2 and c3 such that
with probability at least 1− c2 exp{c3Nδ2},

|(LN (h)− LN (h0))− (L(h)− L(h0))| ≤ 18Lδ{∥h− h0∥2 + δ}, ∀h ∈ H.
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We mention an immediate corollary of Theorem 12 for functions h that are bounded by
B, which follows by rescaling arguments.

Corollary 13 Consider a function class H and its star-hull H∗, with suph∈H∗ ∥h∥∞ ≤ B,
critical radius δN (H∗), and any choice of δ such that,

δ2 ≥ max

{
δN (H∗)2,

4 log(41 log(2c1N))

c1N

}
,

for a constant c1. Moreover, assume that the loss function ℓ is L-Lipschitz in its first
argument with respect to ℓ2 norm. Then there exist universal constants c2 and c3 such that
with probability at least 1− c2 exp{c3Nδ2/max{1, B}2},

|(LN (h)− LN (h0))− (L(h)− L(h0))| ≤
18Lδ

max{1, B}
{∥h− h0∥2 + δ}, ∀h ∈ H.

Proof If B ≤ 1, the proof follows trivially from Theorem 12, thus let us assume otherwise.
Define the B-scaled function class H̃,

H̃ :=
{
h̃ : Bh̃ ∈ H

}
.

Then, the loss function,

ℓ(h, z) = ℓ(Bh̃, z),

is LB-Lipschitz in h̃ and by homogeneity of the local Gaussian averages, i.e.,

G(H̃∗, r) =
1

B
G(H∗, Br),

wee see that δ̃ := δ/B satisfies the fixed point condition (14). Putting these pieces together
and invoking Theorem 12 for Ĥ completes the proof.

We can equivalently write Corollary 13 in the failure probability format. That is, for a
target failure probability 0 < ξ < 1, define

δ(ξ) := δN (H∗) + max{1, B}
√

1

c3N
log(1/ξ),

then with probability at least 1− ξ,

|(LN (h)− LN (h0))− (L(h)− L(h0))| ≤
18Lδ(ξ)

max{1, B}
{∥h− h0∥2 + δ(ξ)}, ∀h ∈ H. (15)

Now, we are ready to state and prove the following master theorem for the excess risk
of the constrained ERM. For the analysis, in line with Chernozhukov et al. (2021), we
require that the population risk has positive curvature for identifiability purposes. Then,
the generalisation bound in terms of excess risk can be converted into estimation error.
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Theorem 14 (Estimation Error of Constrained ERM) Assume that the population
risk L has a positive curvature, i.e., for a positive number λ,

L(h)− L(h0) ≥
λ

2
∥h− h0∥22 ∀h ∈ H, (16)

and the loss function is bounded,

|ℓ(h; z)| ≤M,

and L-Lipschitz in its first argument w.r.t. ℓ2 norm. Then, the solution to the ERM
algorithm:

ĥ := argmin
h∈H

LN (h), (17)

has the following estimation error with probability at least 1− ξ,

∥ĥ− h0∥22 ≤ C

[
(L(h∗)− L(h0)) + δN (H∗)2 +

√
log(1/ξ)

N

]
.

for a universal constant C, where

h∗ = arg inf
h∈H

L(h).

In addition, if h0 is realisable, i.e., h0 ∈ H, then,

∥ĥ− h0∥22 ≤ C

[
δN (H∗)2 +

√
log(1/ξ)

N

]
.

Proof First, we want to upper bound the population excess risk,

L(ĥ)− L(h0),

and then, by the curvature of L, we can convert this bound into an upper bound on the
estimation error ∥ĥ− h0∥2.

To begin with, we have,

L(ĥ)− L(h0) =
(
L(ĥ)− LN (ĥ)

)
︸ ︷︷ ︸

(I)

+
(
LN (ĥ)− LN (h∗)

)
︸ ︷︷ ︸

(II)

+
(
LN (h∗)− L(h0)

)
︸ ︷︷ ︸

(III)

.

By ERM algorithm (17), we know that,

LN (ĥ) ≤ LN (h∗),

Hence, (II) ≤ 0. For the term (I),

(I) = L(ĥ)− LN (ĥ)

= (L − LN )(ĥ− h0) + (L − LN )(h0),
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and for the term (III), we know that,

(III) = LN (h∗)− L(h0)
= (L(h∗)− L(h0)) + (LN − L)(h∗)
= (L(h∗)− L(h0)) + (LN − L)(h∗ − h0) + (LN − L)(h0).

Summing these terms from (I), (II) and (III) yields,

L(ĥ)− L(h0) ≤ (L(h∗)− L(h0)) + (L − LN )(ĥ− h0)︸ ︷︷ ︸
ϵ1(ĥ)

+(LN − L)(h∗ − h0)︸ ︷︷ ︸
ϵ2

.

From Corollary 13, especially the formulation in (15), we know that with probability at least
1− ξ/2,

sup
h∈H

|(LN − L)(h− h0)| ≤
18Lδ(ξ/2)

max{1, B}
(∥h− h0∥2 + δ(ξ/2)),

where,

δ(ξ/2) = δN (H∗) + max{1, B}
√

1

c3N
log(2/ξ). (18)

Thus, we can upper bound ϵ1(ĥ) as,

ϵ1(ĥ) = (L − LN )(ĥ− h0) ≤
18Lδ(ξ/2)

max{1, B}

(
∥ĥ− h0∥2 + δ(ξ/2)

)
.

To bound the term ϵ2, define the random variable,

Xi = ℓ(h∗; zi)− ℓ(h0; zi),

where Xi is bounded as |Xi| ≤ 2M . Then, by Hoeffding’s inequality, with probability at
least 1− ξ/2, we infer that

ϵ2 = (LN − L)(h∗ − h0) ≤ 2
√
2M

√
log(4/ξ)

N
.

Thus, by union bound and (16), we conclude that with probability at least 1− ξ

λ

2
∥ĥ− h0∥22 ≤ (L(h∗)− L(h0)) +

18Lδ(ξ/2)

max{1, B}

(
∥ĥ− h0∥2 + δ(ξ/2)

)
+ 2

√
2M

√
log(4/ξ)

N

= (L(h∗)− L(h0)) +
18Lδ(ξ/2)

max{1, B}
∥ĥ− h0∥2 +

18Lδ(ξ/2)2

max{1, B}
+ 2

√
2M

√
log(4/ξ)

N

≤ (L(h∗)− L(h0)) +
λ

4
∥ĥ− h0∥22 +

1

λ

(
18Lδ(ξ/2)

max{1, B}

)2

+
18Lδ(ξ/2)2

max{1, B}
+ 2

√
2M

√
log(4/ξ)

N
(19)
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where (19) follows by Young’s inequality, i.e., for any positive number λ > 0,

ax ≤ λ

4
x2 +

a2

λ
.

Therefore, by cancelling out λ
4∥ĥ− h0∥22 from both sides,

∥ĥ− h0∥22 ≤ C1

[
1

λ
(L(h∗)− L(h0)) +

(
L2

λmax{1, B}2
+

L

max{1, B}

)
δ(ξ/2)2 +M

√
log(1/ξ)

N

]
,

for a constant C1. In turn, by (18) and Young’s inequality, we know that,

δ(ξ/2)2 ≤ C2

[
δN (H∗)2 +

max{1, B}2

N
log(1/ξ)

]
,

for a constant C2. Hence,

∥ĥ− h0∥22 ≤ C3

[
1

λ
(L(h∗)− L(h0))

+

(
L2

λmax{1, B}2
+

L

max{1, B}

)[
δN (H∗)2 +max{1, B}2 log(1/ξ)

N

]
+M

√
log(1/ξ)

N

]

≤ C4

[
1

λ
(L(h∗)− L(h0)) +

max{L2, L}
min{λ, 1}max{1, B}

δN (H∗)2

+
max{L2, L}max{1, B}

min{λ, 1}
log(1/ξ)

N
+M

√
log(1/ξ)

N

]
, (20)

for constants C3 and C4.
Therefore, by hiding dependence on the constants λ,B,L and M in a universal constant

C, we can summarise the result (20) and conclude the proof,

∥ĥ− h0∥22 ≤ C

[
(L(h∗)− L(h0)) + δN (H∗)2 +

√
log(1/ξ)

N

]
.

Appendix D. Examples of CMR Problems

There are many concrete problems in statistical estimation, causal inference, and econometrics
that are, in fact, CMR problems (see Carrasco et al. (2007), Section 1.3, for nine concrete
CMR problems). In this section, we introduce in detail two CMR problems in causal
inference, IV regression and proximal causal learning, which we evaluated experimentally
in Section 5. To begin with, we provide a brief introduction of hidden confounders and
structural causal models.
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D.1 Hidden Confounders

Hidden confounders (Pearl, 2000) are unobserved variables that influence both the actions
(or interventions) and the outcome. To properly account for these hidden confounders and
understand the true causal effect of actions, we need to model the causal (or structural)
relationship between the action and the outcome, which is expressed through a causal
function. However, learning the causal function in the presence of hidden confounders is
known to be challenging and sometimes infeasible (Shpitser and Pearl, 2008). To formalise
the concept of hidden confounders and provide a framework for specifying the underlying
causal mechanisms in a data-generating process, we introduce structural causal models
(SCMs).

D.2 Structural Causal Model

Definition 15 (Structural Causal Model) An SCM M is a tuple (U, V, F, P (U)), where
U is a set of exogenous (i.e. outside the model) random variables, which are typically
unobserved; V is a set of endogenous (i.e. inside the model) variables; F = fi is a set of
deterministic functions where, for each Vi ∈ V , fi(pai, ui) = vi (pai denotes the parent of
Vi and Ui are exogenous variables linked to Vi). P (U) is the joint distribution of exogenous
variables.

In this definition, endogenous variables are variables on which we would like to study
the causal relationships (e.g., between price and revenue). Exogenous variables are external
sources of noise (e.g., seasonality) that can confound the causal relationships between
endogenous variables. Next, we introduce the concept of causal interventions, which are tools
that allow us to study causal effects between variables. Interventions are defined through a
mathematical operator called do(x) (Pearl, 2000). An intervention, denoted by do(X = x),
simulates a physical intervention by removing the natural dependencies of X on its parent
variables in the SCM and forcing it to take a specific value x, while keeping the rest of the
model unchanged. The resulting causal model after the intervention is denoted Mx. The
post-intervention distribution resulting from the intervention do(X = x) is given by the
equation

PM (y|do(x)) = PMx(y), (21)

where the post-intervention distribution of some variable Y is defined as the distribution of
Y in the intervened model Mx.

For example, in a causal model where A (treatment) affects Y (outcome), an observational
study may show correlation, but an intervention do(A = a) would simulate a randomised
experiment, ensuring that changes in Y are due to A and not other confounders.

In the SCM formulation, an exogenous random variable is considered a hidden confounder
if it affects two or more endogenous variables, e.g., Vi and Vj , and is unobserved. Consider a
SCM that specifies two endogenous variables, the outcome Y ∈ Y and the treatment A ∈ A:

Y = f(A,U), (22)

where U ∈ U is a hidden confounder that affects both A and Y , as illustrated in the
causal graph depicted in Figure 6. Due to the presence of this hidden confounder, with
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Figure 6: The causal graph of outcome Y , treatment A and hidden confounder U .

Figure 7: The causal graph of outcome Y , treatment A, hidden confounder U and an
instrumental variables Z.

only observational data, standard regressions (e.g., ordinary least squares) generally fail to
produce consistent estimates of the causal relationship (also known as the average treatment
effect) between A and Y (Pearl, 2000), i.e., E[Y | do(A)], where do(·) is the interventional
operator. Therefore, the ability to identify the causal relationship between A and Y requires
additional assumptions. Two classic techniques are IV regression (Newey and Powell, 2003)
and proximal causal learning, each with the explicit assumption to observe additional
variables in the model that help the identification of E[Y | do(A)], which we will introduce
next.

D.3 Instrumental Variables

We first introduce the concept of Instrumental Variables (IVs). Under the SCM of outcome
Y ∈ Y, treatment A ∈ A and hidden confounder U ∈ U defined in Equation (22), an IV
Z ∈ Z is an observable variable that satisfies the following conditions (Newey and Powell,
2003):

• Unconfounded Instrument : Z ⊥⊥ U ;

• Relevance: P(A|Z) is not constant in Z;

• Exclusion: Z does not directly affect Y : Z ⊥⊥ Y | (A,U),

where a causal graph with an instrumental variable Z is depicted in Figure 7.
Furthermore, in order to identify the causal effect E[Y | do(A)], an additional assumption

of additive noise is required, where we assume that

Y = f(A) + ϵ(U) with E[ϵ(U)] = 0. (23)

Specifically, since the hidden confounder U affects both A and Y , it is generally the case that
E[ε(U) | A] ̸= 0, which makes standard regression methods such as ordinary least squares
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Figure 8: The causal graph of outcome Y , treatment A, hidden confounder U and proxies
V and W

fail to estimate the correct causal effect. The additive noise assumption in conjunction with
the IV conditions is standard for the IV settings (Newey and Powell, 2003; Xu et al., 2020;
Shao et al., 2024) and allows the minimal condition to identify the causal effect. Another
observation we can make here is that, following Equation (23),

E[Y | do(A)] = E[f(A) | do(A)] + E[ϵ(U) | do(A)] (24)

= f(A) + E[ϵ(U)] = f(A), (25)

so the task of identifying the causal effect E[Y | do(A)] is the same as learning the causal
function f(A).

In order to identify f(A), a key observation (Newey and Powell, 2003) is that, by taking
the expectation on both sides of Equation (23) conditional on Z, we have

E[Y |Z] = E[f(A) + ϵ(U)|Z
]

= E[f(A)|Z] + E[ϵ(U)]

= E[f(A)|Z] =
∫
f(A)P(A|Z)dA, (26)

where the expectation E[Y |Z] and the distribution P(A|Z) are both observable. Therefore,
the problem of estimating the causal effect E[Y | do(A)] in the IV setting can be reduced to
the CMR:

E[Y − f(A)|Z] = 0. (27)

D.4 Proximal Causal Learning

Next, we introduce proximal causal learning (PCL). Under the SCM of outcome Y ∈ Y,
treatment A ∈ A and hidden confounder U ∈ U defined in Equation (22), PCL uses two
proxy variables to identify the causal effect of the treatment A on the outcome Y , i.e.,
E[Y | do(A)]. The first proxy V ∈ V is a treatment-inducing proxy, and the second proxy
W ∈ W is an outcome-inducing proxy. For V and W to be valid proxies, they need to satisfy
the following conditional independence conditions:

• Y ⊥⊥ V | (A,U);

• W ⊥⊥ (A, V ) | U ,
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where a causal graph with proxies V and W is depicted in Figure 8.

In addition, for identifiability of the causal effect, proxies should satisfy completeness
assumptions. Let l : U → R be any square integrable function, that is, ∥l∥2 ≤ ∞. The
following conditions hold for any a ∈ A:

E[l(U)|A = a,W = w] = 0 ∀w ∈ W ⇐⇒ l(u) = 0 a.e. on P(U) (28)

E[l(U)|A = a, V = v] = 0 ∀v ∈ V ⇐⇒ l(u) = 0 a.e. on P(U) (29)

It has been shown that when the conditional independence conditions and the complete-
ness assumptions are satisfied, it is possible to identify E[Y |do(A)] by solving CMRs.

Proposition 16 (Miao et al. (2018)) Let the conditional independence and completeness
assumptions hold, then there exists at least one solution to the following CMR

E[Y |A, V ] = E[h(A,W )|A, V ] (30)

=

∫
h(A,W )P(A,W |A, V )dW, (31)

for all (A, V ) ∈ A × V. Let h∗ be a solution of Equation (30), then the causal effect
E[Y | do(A)] can be estimated by EW [h(A,W )].

From this proposition, we can see that the problem of estimating the causal effect
E[Y | do(A)] can be reduced to estimating h∗, which we denote as the bridge function
following Miao et al. (2018). Therefore, estimating the causal effect in the PCL setting can
be reduced to the CMR:

E[Y − h(A,W )|A, V ] = 0 (32)

Remark 17 For both IV and PCL, it is possible to include additional observed confounders
X that affect both the treatment and the outcome as additional information or context. X
can also be confounded by U , and the resulting CMRs would be E[Y − f(A,X)|Z,X] = 0 for
IV regression and E[Y − h(A,W,X)|A, V,X] = 0 for PCL.

Appendix E. Datasets Details

In this section, we provide details of the datasets considered in this paper for IV regression
and proximal causal learning tasks.

E.1 IV Regression

We first provide the details for IV regression benchmarking datasets. Recall that we denote
A as the action, Y as the outcome, Z as the instrument, and X as additional observed
context and the CMR we are trying to solve is E[Y − f(A,X)|Z,X] = 0.
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E.1.1 Ticket Demand Dataset

Here, we describe the aeroplane ticket demand dataset for IV regression, first introduced
by Hartford et al. (2017). The observable variables are generated by the following model:

r = f0((t, s), p) + ϵ, E[ϵ|t, s, p] = 0;

p = 25 + (z + 3)ψ(t) + ω,

where r is the ticket sales (as the outcome variable Y ) and p is the ticket price (as the action
variable A). (t, s) are observed context variables, where t is the time of year and s is the
customer type. The fuel price z is introduced as an instrumental variable, which only affects
the ticket price p. The noises ϵ and ω are correlated with correlation ρ ∈ [0, 1], where in our
experiments we set ρ = 0.9. f0 is the true causal effect function, defined as

f0((t, s), p) = 100 + (10 + p) · s · ψ(t)− 2p,

ψ(t) = 2

(
(t− 5)4

600
+ exp(−4(t− 5)2) +

t

10
− 2

)
,

where ψ(t) is a complex non-linear function of t plotted in Figure 9. The offline dataset is
sampled with the following distributions:

s ∼ Unif{1, ..., 7}
t ∼ Unif(0, 10)

z ∼ N (0, 1)

ω ∼ N (0, 1)

ϵ ∼ N (ρω, 1− ρ2).

From the observations (r, p, t, s, z), we estimate ĥ using IV regression methods, and the
mean squared error between ĥ and the true causal function f0 is computed on 10000
random samples from the above model. For the out-of-distribution test samples, we sample
t ∼ Unif(1, 11) instead.

We standardise the action and outcome variables p and r to centre the data around
a mean of zero and a standard deviation of one following Hartford et al. (2017). This is
standard practice for DNN training, which improves training stability and optimization
efficiency.

E.1.2 Ticket Demand High-Dimensional Setting

For the high-dimensional setting, we again follow Hartford et al. (2017) to replace the
customer type s ∈ [7] in the low-dimensional setting with images of the corresponding
handwritten digits from the MNIST dataset (LeCun and Cortes, 2010). For each digit
d ∈ [7], we select a random MNIST image from the digit class d as the new customer type
variable s. The images are 28× 28 = 784 dimensional.

E.1.3 Real-World Datasets

Following previously studied causal inference methods (Shalit et al., 2017; Wu et al., 2023;
Schwab et al., 2019; Bica et al., 2020), we consider two semi-synthetic real-world datasets
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Figure 9: A graph of the nonlinear function ψ(t) in the ticket demand dataset for IV
regression.

IHDP6 (Hill, 2011) and PM-CMR7 (Wyatt et al., 2020) for experiments, since the true
counterfactual prediction function is rarely available for real-world datasets.

IHDP, the Infant Health and Development Program (IHDP), comprises 747 units with 6
pre-treatment continuous variables, one action variable and 19 discrete variables related to
the children and their mothers, aiming at evaluating the effect of specialist home visits on
the future cognitive test scores of premature infants. From the original data, we select all 6
continuous covariance variables as our context variable X.

PM-CMR studies the impact of PM2.5 particle level on the cardiovascular mortality rate
(CMR) in 2132 counties in the United States using data provided by the National Studies on
Air Pollution and Health (Wyatt et al., 2020). We use 6 continuous variables about CMR in
each city as our context variable X.

Following Wu et al. (2023), from the context variables X obtained from real-world
datasets, we generate the instrument Z, the action A and the outcome Y using the following
model:

Z ∼ P(Z = z) = 1/K, z ∈ [1..K];

A =

K∑
z=1

1Z=z

dX∑
i=1

wiz(Xi + 0.2ϵ+ fz(z)) + δA, wiz ∼ Unif(−1, 1);

Y = 9A2 − 1.5A+

dX∑
i=1

Xi

dX
+ |X1X2| − sin (10 +X2X3) + 2ϵ+ δY ,

where Xi denotes the i-th variable in X, fz is a function that returns different constants
depending on the input z, δY , δA ∼ N (0, 1) and ϵ ∼ N (0, 0.1) are the unobserved confounders.
The fully generated semi-synthetic datasets IHDP and PM-CMR have 747 and 2132 samples,
respectively, and we randomly split them into training (63%), validation (27%), and testing
(10%) following Wu et al. (2023).

6. IHDP: https://www.fredjo.com/.
7. PM-CMR:https://doi.org/10.23719/1506014.
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E.2 Proximal Causal Learning

Next, we provide details for benchmarking datasets of proximal causal learning. Recall that
we denote A as the treatment, Y as the outcome, W as the outcome proxy, and V as the
treatment proxy. The CMR problem we are solving for PCL is E[Y − f(A,W )|A, V ].

E.2.1 Ticket Demand Dataset

The ticket demand dataset (Hartford et al., 2017) is also extended to the PCL setting, which
is first introduced by Xu et al. (2021). The data generating process is described by the
following model:

U ∼ Unif(0, 10) (33)

[V1, V2] = [2 sin(2πU/10) + ϵ1, 2 cos(2πU/10) + ϵ2] (34)

W = 7g(U) + 45 + ϵ3 (35)

A = 35 + (V1 + 3)g(U) + V2 + ϵ4 (36)

Y = A ·min(exp(
W −A

10
, 5)− 5g(U) + ϵ5 (37)

with g(u) = 2(
(u− 5)4

600
+ exp(−4(u− 5)2) + u/10− 2) (38)

and ϵi ∼ N (0, 1), (39)

where U is the demand, which acts as the hidden confounder, V1, V2 are fuel prices which
act as treatment proxy, W is the web page views which act as outcome proxy, A is the price
and Y is the sale. Here, we can see that the outcome proxy W and the treatment proxy
V are both affected by U , where W directly affects the outcome and V directly affects the
treatment A.

E.2.2 dSprites high-dimensional Dataset

The dSprites dataset (Matthey et al., 2017) is a high-dimensional (64× 64) image dataset
described by five latent parameters: shape, scale, rotation, posX and poxY. It is proposed
by Xu et al. (2021) to adopt it as a benchmark for PCL where the treatment is each figure
and the hidden confounder is posY. For the experiments, we fix the shape to be heart.

The data-generating process can be described by the following steps:

1. Randomly generate values for scale, rotation, posX and posY : scale ∼ Unif{0.5, 0.6, ..., 1.0},
rotation ∼ Unif(0, 2π), posX, posY ∼ Unif{0, ..., 31}.

2. Set U=posY

3. Set V=(scale,rotation,posX)

4. Set A as the dSprites image with features (scale, rotation, posX, posY) and add
Gaussian noise N (0, 0.1) to each pixel.

5. Set W as posY with Gaussian noise N (0, 1).
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Figure 10: An example of dSprites image, which is used as the treatment A in PCL
experiments. Its scale, rotation, x position and y position are randomly generated.

6. Y =
0.1∥vec(A)TB∥22−5000

1000 × (31×U−15.5)2

85.25 + ϵ, ϵ ∼ N (0, 0.5), where the matrix B ∈ R64×64

is given by Bi,j = |32− j|/32.

For the test dataset, a fixed grid of image parameters is chosen:

posX ∈ [0, 5, 10, 15, 20, 25, 30] (40)

posY ∈ [0, 5, 10, 15, 20, 25, 30] (41)

scale ∈ [0.5, 0.8, 1.0] (42)

rotation ∈ [0, 0.5π, π, 1.5π], (43)

which consists of 588 images to reliably evaluate different PCL algorithms.

Appendix F. Network Architecture and Hyperparameters

Here, we describe the network architecture and hyperparameters of all experiments. Unless
otherwise specified, all neural network algorithms are optimised using AdamW (Loshchilov
and Hutter, 2017) with learning rate = 0.001, β = (0.9, 0.999), and ϵ = 10−8. In addition,
we set K = 10 for K-fold cross-fitting in DML-CMR. In addition, all hyperparameter choices
for methods and datasets used in this work are available in our code.

F.1 IV Regression

We first introduce details for the IV regression experiments.
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Layer Type Configuration

Input C

FC + ReLU in:3 out:128

Dropout -

FC + ReLU in:128 out:64

Dropout -

FC + ReLU in:64 out:32

Dropout -

MixtureGaussian 10

(a) Action Network for ĝ

Layer Type Configuration

Input C

FC + ReLU in:3 out:128

Dropout -

FC + ReLU in:128 out:64

Dropout -

FC + ReLU in:64 out:32

Dropout -

FC in:32 out:1

(b) Outcome Network for ŝ

Layer Type Configuration

Input C,A

FC + ReLU in:3 out:128

Dropout -

FC + ReLU in:128 out:64

Dropout -

FC + ReLU in:64 out:32

Dropout -

FC in:32 out:1

(c) Stage 2 Network for ĥ

Table 1: Network architecture for DML-CMR and CE-DML-CMR for the ticket demand
low-dimensional dataset for IV regression. For the input layer, we provide the input variables.
For mixture of Gaussians output, we report the number of components. The dropout rate is
given in the main text.

F.1.1 Ticket Demand Dataset

For DML-CMR and CE-DML-CMR, we use the network architecture described in Table 1.
We use a learning rate of 0.0002 with a weight decay of 0.001 (L2 regularisation) and a
dropout rate of 1000

5000+N that depends on the data size N . For DeepGMM, we use the same
structure as the outcome network of DML-CMR with dropout = 0.1 and the same learning
rate as DML-CMR. For DFIV, we follow the original structure proposed in Xu et al. (2020)
with regularisers λ1, λ2 both set to 0.1 and weight decay of 0.001. For DeepIV, we use
the same network architecture as action network and stage 2 network for DML-CMR, with
the dropout rate in Hartford et al. (2017) and weight decay of 0.001. For KIV, we use
the Gaussian kernel, where the bandwidth is determined by the median trick as originally
described by Singh et al. (2019), and we use the random Fourier feature trick with 100
dimensions.
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Layer Type Configuration

Input 28× 28

Conv + ReLU 3× 3× 32, s:1, p:0

Max Pooling 2× 2, s:2

Dropout -

Conv + ReLU 3× 3× 64, s:1, p:0

Max Pooling 2× 2, s:2

Dropout -

Conv + ReLU 3× 3× 64, s:1, p:0

Dropout -

FC + ReLU in: 576, out:64

Table 2: Network architecture of the feature extractor used for the ticket demand dataset
with MNIST for IV regression. For each convolution layer, we list the kernel size, input
dimension and output dimension, where s stands for stride and p stands for padding. For
max-pooling, we provide the size of the kernel. The dropout rate here is set to 0.3. We
denote this feature extractor as ImageFeature.

F.1.2 Ticket Demand with MNIST

For DML-CMR and CE-DML-CMR, we use a convolutional neural network (CNN) feature
extractor, which we denote as ImageFeature, described in Table 2, for all networks. The full
network architecture is described in Table 3; we use weight decay of 0.05. For DeepGMM,
we use the same structure as the outcome network of DML-CMR, with a dropout rate of 0.1
and weight decay of 0.05. For DFIV, we follow the original structure proposed in Xu et al.
(2020) with regularisers λ1, λ2 both set to 0.1 and weight decay of 0.05. For DeepIV, we use
the same network architecture as the action network and stage 2 network for DML-CMR,
with the dropout rate in Hartford et al. (2017) and weight decay of 0.05. For KIV, we use
the Gaussian kernel, where the bandwidth is determined by the median trick as originally
described by Singh et al. (2019), and we use the random Fourier feature trick with 100
dimensions.

F.1.3 IHDP and PM-CMR

For the two real-world datasets, we use the same network architecture described in Table 1
as in the low-dimensional ticket demand setting, where the input dimension is increased to 7
for all networks. We use a dropout rate of 0.1 and weight decay of 0.001. For DeepGMM,
we use the same structure as the outcome network of DML-CMR with dropout = 0.1. For
DFIV, we also use the same network architecture as in the low-dimensional ticket demand
setting, with regularisers λ1, λ2 both set to 0.1 and weight decay of 0.001. For DeepIV, we
use the same network architecture as the action network and stage 2 network of DML-CMR,
with a dropout rate of 0.1 and weight decay of 0.001. For KIV, we use the Gaussian kernel
where the bandwidth is determined by the median trick as originally described by Singh
et al. (2019), and we use the random Fourier feature trick with 100 dimensions.
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Layer Type Configuration

Input ImageFeature(C), Z

FC + ReLU in:66 out:32

Dropout -

MixtureGaussian 10

(a) Action Network for ĝ

Layer Type Configuration

Input ImageFeature(C), Z

FC + ReLU in:66 out:32

Dropout -

FC in:32 out:1

(b) Outcome Network for ŝ

Layer Type Configuration

Input ImageFeature(C), A

FC + ReLU in:66 out:32

Dropout -

FC in:32 out:1

(c) Stage 2 Network for ĥ

Table 3: Network architecture for DML-CMR and CE-DML-CMR for the ticket demand
dataset with MNIST for IV regression. For the input layer, we provide the input variables.
For a mixture of Gaussians output, we report the number of components. The dropout rate
is given in the main text.

F.2 Proximal Causal Learning

Next, we introduce details for the proximal causal learning experiments.

F.2.1 Ticket Demand Dataset

For DML-CMR and CE-DML-CMR, we use the network architecture described in Table 4.
We use a learning rate of 0.0001 with a weight decay of 0.001 (L2 regularisation) for the f
network and 0.0001 for the s and g network. The dropout rate is 400

4000+N , which depends on
the data size N . For the comparison methods, we use the default parameter values proposed
in their original papers. For CEVAE, we use 1000 epochs, 0.0001 weight decay, 10 learning
samples, 20 hidden dimensions, and 5 early stopping. For DFPV, λ1, λ2 both set to 0.1,
weight decay is 0.01 for all networks, stage 1 iteration is 20, and stage 2 iteration is 1. For
KPV, we set λ1 and λ2 to be 0.001 with data split ratio 0.5. For NMMR, learning rate
is 0.003, L2 penalty is 0.000003 with network depth 4 and width 80 for the U statistics
estimator. For the V statistics estimator, network depth is 3 and width is 80 while other
hyperparameters remain the same. For PKDR, the number of components is 50, gamma is
50, alpha is 35, and cross validation is 5. For PMMR, λ1 and λ2 are 0.01, with scale 0.5.

F.2.2 dSprites dataset

For the dSprites dataset, we adopt a CNN feature extractor to handle the image inputs for
DML-CMR. The architecture of this feature extractor is provided in Table 5. We use 10
components for the mixture of Gaussian model, dropout is 0.2, batch size is 100, weight decay
is 0.05, learning rate is 0.001 with Adam, and the number of epochs int(1000000./N) + 100
depends on the sample size N . For CEVAE, DFPV, KPV, NMMR and PMMR, we follow
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Layer Type Configuration

Input C

FC + ReLU in:3 out:128

Dropout -

FC + ReLU in:128 out:64

Dropout -

FC + ReLU in:64 out:32

Dropout -

MixtureGaussian 10

(a) Action Network for ĝ

Layer Type Configuration

Input C

FC + ReLU in:3 out:128

Dropout -

FC + ReLU in:128 out:64

Dropout -

FC + ReLU in:64 out:32

Dropout -

FC in:32 out:1

(b) Outcome Network for ŝ

Layer Type Configuration

Input C,A

FC + ReLU in:3 out:128

Dropout -

FC + ReLU in:128 out:64

Dropout -

FC + ReLU in:64 out:32

Dropout -

FC in:32 out:1

(c) Stage 2 Network for ĥ

Table 4: Network architecture for DML-CMR and CE-DML-CMR for the ticket demand
dataset for PCL. For the input layer, we provide the input variables. For mixture of
Gaussians output, we report the number of components. The dropout rate is given in the
main text.

the hyperparameters and network architecture used in Kompa et al. (2022) to generate the
experimental results. For PKDR, we follow the high-dimensional dataset hyperparameters
used in the original paper (Wu et al., 2024) with weight decay 0.0001, 4 layers, learning rate
0.0001, and 500 epochs.

F.3 Validation and Hyper-Parameter Tuning

Validation procedures are crucial for tuning DNN hyperparameters and optimizer parameters.
All the DML-CMR and CE-DML-CMR training stages can be validated by simply evaluating
the respective losses on held-out data, as discussed in Hartford et al. (2017). This allows
independent validation and hyperparameter tuning of the two first-stage networks (the action
and the outcome networks), and performs second-stage validation using the best network
selected in the first stage. This validation procedure guards against the ‘weak instruments’
bias (Bound et al., 1995) that can occur when the instruments are only weakly correlated
with the actions variable (see detailed discussion in Hartford et al. (2017)).
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Layer Type Configuration

Input 64× 64

Conv + ReLU 5× 5× 64, s:1, p:0

Max Pooling 2× 2, s:2

Dropout -

Conv + ReLU 5× 5× 128, s:1, p:0

Max Pooling 2× 2, s:2

Dropout -

Conv + ReLU 5× 5× 128, s:1, p:0

Dropout -

Max Pooling 2× 2, s:2

FC + ReLU in: 2048, out:128

Table 5: Network architecture of the feature extractor used for the dSprites image dataset
for PCL. For each convolution layer, we list the kernel size, input dimension and output
dimension, where s stands for stride and p stands for padding. For max-pooling, we provide
the size of the kernel. The dropout rate here is set to 0.2. We denote this feature extractor
as ImageFeature.

Appendix G. Additional Experimental Results

In this section, we provide additional experimental results including the effects of high
ill-posedness (e.g., weak IVs), performance with tree-based estimators, and a hyperparameter
sensitivity analysis.

G.1 Effects of Weak Instruments

When the correlation between instruments and the endogenous variable (the action in our
case) is weak, IV regression methods generally become unreliable (Andrews et al., 2019)
because the weak correlation induces variance and bias in the first stage estimator, thus
inducing bias in the second stage estimator, especially for non-linear IV regressions. In theory,
DML-CMR should be more resistant to biases in the first stage thanks to the DML framework,
as long as the causal effect is identifiable under the weak instrument. This identifiability
condition is captured in Condition 4 for DML, and is connected to the ill-posedness for
CMR problems in general as discussed in Section 4.4. With identifiability, Theorem 6 and
Corollary 7 all hold, and the convergence rate guarantees still apply. Intuitively, as the
ill-posedness increases, worse empirical performance will be observed.

Experimentally, for the ticket demand dataset, we alter the instrument strength by
changing how much the instrument z affects the price p. Recall from Appendix E.1.1 that
p = 25 + (z + 3)ψ(t) + ω, where ψ is a nonlinear function and ω is the noise. We add an
IV strength parameter ϱ such that p = 25 + (ϱ · z + 3)ψ(t) + ω. In Table 6, we present the
mean and standard deviation of the MSE of ĥ for various IV strengths ϱ from 0.01 to 1
and sample size N = 5000. It is very interesting to see that DML-CMR indeed performs
significantly better than SOTA nonlinear IV regression methods under weak instruments.
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IV Strength 1.0 0.8 0.6 0.4 0.2 0.01

DML-CMR 0.0676(0.0116) 0.0984(0.0161) 0.1295(0.0168) 0.1859(0.0376) 0.2899(0.0494) 0.4872(0.1295)

CE-DML-CMR 0.0765(0.0119) 0.1064(0.0120) 0.1514(0.0203) 0.2070(0.0329) 0.3194(0.0572) 0.5302(0.1625)

DeepIV 0.1213(0.0209) 0.2039(0.0269) 0.3051(0.0415) 0.4476(0.0656) 0.6891(0.1210) 0.9293(0.2382)

DFIV 0.1124(0.0481) 0.1586(0.0320) 0.3080(0.1907) 0.8117(0.2779) 0.9622(0.3892) 1.6503(0.6845)

DeepGMM 0.2699(0.0522) 0.3330(0.1171) 0.4762(0.1056) 0.8666(0.2248) 1.0056(0.4334) 2.0218(0.6555)

KIV 0.2312(0.0272) 0.3149(0.0218) 0.4275(0.0368) 0.6646(0.0538) 0.8099(0.0657) 1.226(0.1014)

Table 6: Results for the low-dimensional ticket demand dataset when the IV is weakly
correlated with the action, plotted against IV strength. The results from this paper are
shown in boldface.

G.2 Performance of DML-CMR with tree-based estimators

The DML-CMR framework allows for general estimators following the Neyman orthogonal
score function. While deep learning is flexible and widely used in SOTA non-linear IV
regression methods, Gradient Boosting and Random Forests regression are all good candidate
estimators for DML-CMR. In addition, as discussed in Lemma 3.3, the convergence rate and
suboptimality guarantees in Theorem 3.4 and 3.5 both hold for these tree-based regressions.

Empirically, we replace the DNN estimators in DML-CMR, CE-DML-CMR, and DeepIV
with Random Forests and Gradient Boosting regressors (using scikit-learn implementation).
DeepIV is a good baseline for comparison, since it optimizes directly using a non-Neyman-
orthogonal score and allows for direct replacement of all DNN estimators with tree-based
estimators. We use 500 trees for both regressors, with minimum samples required at each
leaf node of 100 for the nuisance parameters and 10 for ĥ.

In Table 7, we present the mean and standard deviation of the MSE of ĥ with Random
Forests and Gradient Boosting estimators on the ticket demand dataset with various dataset
sample sizes. The results demonstrate the benefits of our Neyman orthogonal score function,
and interestingly, the performance of Gradient Boosting is comparable to DNN estimators.

IV Strength Dataset Size DNNs Random Forests Gradient Boosting

DML-CMR 2000 0.1308(0.0206) 0.1689(0.0172) 0.1301(0.0112)

CE-DML-CMR 2000 0.1410(0.0246) 0.1733(0.0198) 0.1329(0.0125)

DeepIV 2000 0.2388(0.0438) 0.2642(0.0261) 0.2052(0.0232)

DML-CMR 5000 0.0676(0.0129) 0.1067(0.0131) 0.0632(0.0107)

CE-DML-CMR 5000 0.0765(0.0119) 0.1154(0.0138) 0.0699(0.0069)

DeepIV 5000 0.1213(0.0209) 0.1626(0.0128) 0.1020(0.0091)

DML-CMR 10000 0.0378(0.0094) 0.0657(0.0062) 0.0482(0.0079)

CE-DML-CMR 10000 0.0442(0.0070) 0.0721(0.0039) 0.0523(0.0059)

DeepIV 10000 0.0714(0.0140) 0.1106(0.0080) 0.1017(0.0075)

Table 7: Results for the low-dimensional ticket demand dataset comparing the use of tree-
based estimators with DNN estimators. The results from this paper are shown in boldface.
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Learning Rate Weight Decay Dropout DNN Width DML-CMR CE-DML-CMR

0.0002 0.001 0.1 128 0.0676(0.0129) 0.0765(0.0119)

0.0005 0.0752(0.0122) 0.0897(0.0196)

0.0001 0.0703(0.0195) 0.0794(0.0201)

0.0005 0.0794(0.0185) 0.0823(0.0149)

0.005 0.0765(0.0135) 0.0809(0.0159)

0.01 0.0820(0.0162) 0.0865(0.0174)

0.05 0.0715(0.0074) 0.0813(0.0089)

0.2 0.0836(0.0100) 0.0919(0.0157)

64 0.0830(0.0162) 0.0924(0.0121)

256 0.0943(0.0179) 0.0981(0.0126)

0.0005 0.2 0.0805(0.0133) 0.0910(0.0106)

0.005 0.05 0.0672(0.0116) 0.0742(0.0102)

0.01 0.05 0.0825(0.0152) 0.0914(0.0125)

0.2 256 0.0810(0.0129) 0.0852(0.0121)

0.05 64 0.0907(0.0149) 0.0963(0.0161)

0.005 256 0.0939(0.0146) 0.0991(0.0093)

Table 8: Results for the low-dimensional ticket demand dataset for a range of hyperparam-
eter values. The default hyperparameters in this case are: learning rate=0.0002, weight
decay=0.001, dropout=0.1 and DNN width 128. The bold results are the best performing
hyperparameters.

G.3 Sensitivity analysis for different Hyperparameters

The tunable hyperparameters in DML-CMR are the learning rate, network width, weight
decay, and dropout rate (see Appendix F). As a sensitivity analysis, we provide results for
the mean and standard deviation of the MSE of the DML-CMR estimator ĥ with different
hyperparameter values for both the low-dimensional and high-dimensional datasets with
sample size N=5000 in Table 8 and Table 9. Overall, we see that DML-CMR is not very
sensitive to small changes in the hyperparameters.
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Learning Rate Weight Decay Dropout CNN Channels DML-CMR CE-DML-CMR

0.001 0.05 0.2 64 0.3513(0.0125) 0.3808(0.0150)

0.0005 0.4063(0.0129) 0.5008(0.0369)

0.002 0.3659(0.0219) 0.4133(0.0267)

0.005 0.3377(0.0218) 0.3555(0.0202)

0.01 0.3935(0.0176) 0.4461(0.0478)

0.02 0.3595(0.03013) 0.3851(0.0293)

0.1 0.4066(0.0172) 0.5160(0.0329)

0.1 0.4136(0.0211) 0.5386(0.0398)

0.3 0.3857(0.0171) 0.4002(0.0249)

128 0.4176(0.01941) 0.5129(0.0630)

256 0.4942(0.0226) 0.6180(0.0396)

0.1 0.1 0.4163(0.0214) 0.5952(0.0343)

0.01 0.3 0.3636(0.0186) 0.3995(0.0250)

0.3 128 0.4006(0.0187) 0.4764(0.0216)

0.3 256 0.3429(0.0215) 0.3971(0.0264)

0.1 256 0.4170(0.0283) 0.5335(0.0371)

Table 9: Results for the high-dimensional ticket demand dataset for a range of hyperpa-
rameter values. The default hyperparameters in this case are: learning rate 0.001, weight
decay=0.05, dropout=0.2 and 64 CNN channels. The bold results are the best performing
hyperparameters.
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