
STR-Cert: Robustness Certification for

Deep Text Recognition on Deep Learning Pipelines

and Vision Transformers

Daqian Shao daqian.shao@cs.ox.ac.uk

University of Oxford

Lukas Fesser lukas fesser@fas.harvard.edu

Harvard University

Marta Kwiatkowska marta.kwiatkowska@cs.ox.ac.uk

University of Oxford

Abstract

Robustness certification, which aims to formally certify the predic-
tions of neural networks against adversarial inputs, has become an
important tool for safety-critical applications. Despite considerable
progress, existing certification methods are limited to elementary ar-
chitectures, such as convolutional networks, recurrent networks and
recently Transformers, on benchmark datasets such as MNIST. In this
paper, we focus on the robustness certification of scene text recogni-
tion (STR), which is a complex and extensively deployed image-based
sequence prediction problem. We tackle three types of STR model
architectures, including the standard STR pipelines and the Vision
Transformer. We propose STR-Cert, the first certification method for
STR models, by significantly extending the DeepPoly polyhedral verifi-
cation framework via deriving novel polyhedral bounds and algorithms
for key STR model components. Finally, we certify and compare STR
models on six datasets, demonstrating the efficiency and scalability of
robustness certification, particularly for the Vision Transformer.

1 Introduction

While deep learning has achieved remarkable performance in a broad range

of tasks, such as image classification and natural language processing, deep

neural networks (DNNs) are known to be vulnerable to adversarial at-

tacks [11, 60, 55]. These are inputs that, whilst originally predicted correctly,

are misclassified after adding slight and often imperceptible perturbations,

illustrated in 1. The discovery of these vulnerabilities has motivated a mul-

titude of studies on the robustness of neural networks [7, 58]. One popular

1

Figure 1: An adversarial example from the IC15 dataset, where the predicted

text changes under small L∞ perturbations. The original image is also shown

to be not robust by STR-Cert.

direction is neural network certification (also called verification in the litera-

ture), which aims to automatically prove that a network satisfies properties

of interest, such as robustness to perturbations [45, 58], safety guarantees [1]

and other pre- and post-conditions. Although recent advances have made

certification an important tool for analyzing and reasoning about neural

networks, its scalability, precision and support for complex deep learning

models and tasks still remain key challenges [22] in the field. Most of the

existing certification methods focus on simple architectures, such as fully-

connected networks (FCNNs) and convolutional networks (CNNs). Some

progress has recently been achieved for recurrent networks (RNNs) [36, 21],

CNN-RNN models [54] and Transformers [42, 5, 24], but typically only for

simple tasks and datasets such as MNIST classification (see the taxonomy

of Li et al. [22]). Thus, there is a lack of efficient methodologies and exper-

imental evaluation for robustness certification of complex decision pipelines

used in real-world applications on large benchmark datasets, often due to

the poor scalability of the underlying techniques.

In this work, we focus on scene text recognition (STR), which is the

task of recognizing text from natural images. STR systems are extensively

deployed in businesses, banks, and law enforcement for applications such

as document information extraction and number plate recognition, but are

prone to adversarial attacks [23, 57]. Unlike general object recognition, STR

is an image-based sequence recognition problem that requires the model

to predict a sequence of object labels given an image. To achieve good

performance, STR systems are built as sophisticated pipelines, dramati-

cally increasing the complexity and difficulty of the task, precluding di-

rect application of existing methodologies. In this work, we certify three

types of STR model architectures including the standard STR architecture

pipeline [39, 52] (see 2.2) and the Vision Transformer [2]. Building on and

2

significantly extending the DeepPoly polyhedral verification [43, 36] frame-

work, we develop STR-Cert, an efficient robustness certification methodol-

ogy that scales to these complex STR pipelines. Experiments are conducted

on six STR datasets to demonstrate the usability of our methods in practice,

where we compare and provide insight on the robustness of different STR

models.

Novel contributions Our contributions are as follows.

• We propose STR-Cert, an efficient and scalable robustness certification

method, and to the best of our knowledge, the first method to certify

the robustness of text recognition models and the Vision Transformer.

• We derive novel polyhedral bounds and algorithms to certify key com-

ponents of the STR models such as the CTC decoder, the Softmax

function, patch embedding, and the spatial transformation network.

• We significantly extend the polyhedral verification framework to im-

plement STR-Cert, which can certify 3 types of STR architectures

including the Vision Transformer.

• We extensively certify the robustness of the STR models on 6 datasets,

providing insights and comparisons between different architectures.

Related Works Since neural networks can be encoded as sets of constraints,

robustness to adversarial perturbations can be solved exactly and optimally,

using mixed integer programming [45, 5], branch and bound [49], or satisfi-

ability modulo theory [19]. These methods are referred to as complete ver-

ification. However, complete verification is NP-complete even for a simple

ReLU network [44]. Another group of methods considers a relaxation to the

verification problem: incomplete verification, which guarantees to output

“not verified” if the input is not safe, but not vice versa. Many incom-

plete verification methods can be viewed as applying convex relaxations for

non-linear activation functions [37], including those based on duality [53, 9],

polyhedron abstraction [58, 43, 56], zonotope abstraction [5], layer-by-layer

reachability analysis [48, 51], multi-neuron relaxations [30] and semi-definite

relaxations [34]. Robustness verification can also be achieved through an

analysis of local Lipschitz constants [38, 16, 59]. In this work, we focus

on incomplete verification through polyhedral abstraction, which abstracts

the input domain and propagates the abstract domain through the neural

network via abstract transformations. It is faster than semi-definite and

3

multi-neuron relaxations, and more precise than other weakly relational do-

mains like zonotopes and interval bounds [22], offering a good trade-off be-

tween scalability and precision. CROWN [58] and DeepPoly [43] are the first

methods to utilize polyhedral abstraction to certify FCNNs, and were fur-

ther developed into certification methods for CNNs with general activation

functions [6], RNNs [36], and NLP Transformers [42], including the self-

attention mechanism and the Softmax function. In addition to architecture

support, recent improvements in scalability and precision include incorpo-

rating BaB [49, 41], GPU parallelism [29], and optimized polyhedral relax-

ations [56]. However, most robustness verification methods are evaluated

on MNIST and CIFAR-10, recently scaling up to Tiny ImageNet [22], while

only a few consider tasks other than image classification. Speech recog-

nition [36, 31] and sentiment analysis [42, 21] are studied in the context

of RNN and Transformer certification, while existing certification methods

have been applied to object detection/segmentation [10] and reinforcement

learning [3] problems. To the best of our knowledge, STR-Cert is the first

methodology for certifying STR networks — complex deep learning pipelines

with sequence outputs — based on novel algorithms, which we evaluate on

six commonly used STR benchmark datasets.

2 Background

Let N be a neural network for STR tasks with T prediction frames and a

set C of classes that includes all letters and numbers, special symbols, and

special tokens such as blank and end-of-sentence tokens depending on the

architecture. Given an image input I ∈ RH×W×C , where H,W and C are

height, weight, and channels of the image, respectively, denote the output of

the network by N (I), where for each frame t ∈ [1..T] and class c ∈ C, Nt,c(I)

is the logits output for predicting class c in frame t. The network output

N (I) is then fed into different decoders D depending on the architecture to

retrieve the sequence of characters D(N (I)) as the text in the image.

2.1 Robustness Certification for Neural Networks

For an input I and a STR network N with its decoder D, an adversary

can perturb the input to a set SI of possible perturbations, denoted as

adversarial region, before feeding into N . The adversarial robustness prob-

lem [43] checks whether, for all possible perturbations I ′ ∈ SI , the pre-

dicted sequence and that for the original unperturbed input coincide, i.e.,

4

D(N (I ′)) = D(N (I)). If so, it can be certified that the adversary cannot

alter the classification by picking inputs from SI . In this work, we focus

on certifying robustness for adversarial regions that can be represented by

the Cartesian product of interval constraints, i.e., S =×H·W ·C
i=1 [li, ui] with

li, ui ∈ R∪ {−∞,∞}, which allows the certification against the widely used

L∞-norm attacks up to some perturbation budget.

(a) The standard four-stage pipeline for STR.

(b) The attention decoder.

(c) Vision Transformer for scene text recognition (ViTSTR).

Figure 2: Three types of common STR model architectures we consider in

this work.

5

2.2 Standard STR Architectures

We consider three STR architectures, of which two are instances of stan-

dard STR architectures [39, 52], and the third is the popular Vision Trans-

former [2]. In this section, we introduce the standard STR architectures,

which consist of four stages [4] as shown in 2a:

1. Transformation rectifies and normalizes curved and angled text in

the image through a variant of the spatial transformer network (STN [15]);

2. Feature extraction maps the rectified image into a sequence of T

visual features through a CNN network, denoted by V = [v1, v2, ..., vT];

3. Sequence modeling processes the visual features and produces the

contextual features H = [h1, h2, ..., hT] using a long short-term mem-

ory (LSTM) network;

4. Prediction decodes the contextual features to predict the output text.

The decoder can be a connectionist temporal classification (CTC) de-

coder [12], or an attention decoder [52], both introduced below.

The first three stages constitute the STR network N with N (I) = H,

whereas the last stage is the decoder D.

2.2.1 Transformation Stage

In STR models, thin plate spline (TPS) transformation [40, 25], a variant of

STN [15], is typically applied to rectify the input images. Given an image I,

TPS adopts a localization CNN network to produce fiducial points Θ that

generate the transformation grid. Then, let

T =

(
∆−1

Θ′

[
Θ⊤

0

])⊤
, (2.1)

where Θ′ are pre-defined locations on the rectified image Ir, acting as

constants and ∆−1
Θ′ is a constant matrix that depends only on Θ′. Let

P = {pi}i=1,...,N be a grid of pixels on I, then pi = T p̂ri describes the

relationship between pixels on I and Ir, where p̂ri is a uniform grid on Ir

concatenated with some constants. Lastly, the rectified image is computed

from the grid P via a bilinear sampler [15]:

Irci =

H,W∑
n,m

Icnmf(1− |pix −m|)f(1− |piy − n|), (2.2)

6

where, for each channel c, Irci is the i-th pixel on Ir, Icnm is pixel (n,m)

on I, pix and piy are the x and y coordinates of the grid map pi, and f(·)
denotes the ReLU function.

2.2.2 Connectionist Temporal Classification Decoder

The CTC decoder uses an additional blank token in C. Denote the set of all

possible sequences of predicted classes with length T as CT , and let B be a

many-to-one mapping which maps π ∈ CT to the decoded text ℓ by removing

repeated predictions and blank tokens. For instance, B(-ff-l-yy--) =

fly when T = 10, where - denotes the blank token. Given an input I,

the conditional probability for ℓ conditioned on the network output N (I) is

defined as a sum over the preimage of ℓ under B:

Pr(ℓ | N (I)) =
∑

π∈B−1(ℓ)

Pr(π | N (I)), (2.3)

where Pr(π | N (I)) =
∏

T
t=1Nt,πt(I) is the product over probabilities of

predicting label πt at frame t. The optimal decoded text ℓ∗ is the maximum

likelihood solution of 2.3, and we follow Graves et al. [12] to approximate

the maximum likelihood solution by

ℓ∗ ≈ B(arg max
π

(π | N (I))), (2.4)

meaning the most likely label for each frame is selected before applying B to

recover ℓ∗. The CTC decoder D is then defined as 2.4, where D(N (I)) = ℓ∗.

2.2.3 Attention Decoder

The attention decoder relies on an LSTM to output the sequence of T labels,

where the inputs to each LSTM cell t′ ∈ [1..T] are the attention weighted

average over H, the previous predicted label and the previous hidden state

from cell t′−1, as shown in 2b. LetN (I) = H = [h1, ..., hT] be the contextual

features. For each t′ ∈ [1..T], denote st′ as the hidden state output of the

t′-th LSTM cell, and then yt′ = σsoft(W0xt′ + b0) is the class prediction

output for frame t′ given the hidden states, where W0 and b0 are trainable

parameters and σsoft is the Softmax function.

To obtain the attention weights for the inputs to cell t′, first define

et′,t = a⊤ tanh(Wst′−1 +V ht + b), where W,V, a, b are trainable parameters.

Then, define

αt′,t = σsoft(et′,·) =
exp(et′,t)∑T
j=1 exp(et′,j)

(2.5)

7

to be the attention weights. The attention operation then linearly combines

contextual features [h1, ..., hT] using the attention weights to obtain gt′ =∑T
t=1 αt′,t ·ht. The LSTM cell of the decoder is then recurrently updated by

st′ = LSTM([gt′ , h(yt′−1)], st′−1), (2.6)

where yt′−1 is the previous predicted label and h(·) is the one-hot embedding.

This yields a sequence of predicted labels yt′ , in which the end-of-sentence

token [s] indicates the end of the output word.

2.3 Vision Transformers for STR

ViTSTR [2] is an adaptation of the standard Vision Transformer (ViT [8])

to the STR task. ViT adopts the Transformer [46] encoder originally de-

signed for NLP tasks, where ViTSTR further extends ViT by modifying the

prediction head to predict an ordered sequence of labels, instead of a single

label, for classification.

The general architecture of ViTSTR is given in 2c. The input image

I ∈ RH×W×C is cut into a sequence of T patches shaped P×P×C. It is

then flattened and converted via a linear projection to what we refer to as the

sequence patch embedding. An extra learnable class embedding is prepended

to the sequence of patch embeddings, where unique positional encodings are

added to each patch embedding. The resulting patch embeddings are the

input to the Transformer encoder, where T features are extracted from the

encoder instead of just one. A prediction head then projects these features

into T label predictions. This sequence of labels always start with an begin-

of-sentence token [GO], whereas the end-of-sentence token [s] indicates the

end of the output word. Unlike LSTM-based models, Transformers can

predict the sequence of labels in parallel.

3 STR-Cert

We introduce STR-Cert, a polyhedral verification method based on Deep-

Poly [43], and propose novel algorithms and polyhedral bounds that are

necessary to certify STR models.

3.1 Polyhedral Verification

While several robustness certification methods have been proposed, as overviewed

in 1, STR-Cert utilizes polyhedral verification for its balance of scalability

8

and precision, offering a sweet spot for STR certification. Specifically, we

adopt the DeepPoly abstract domain [43], which is a sub-polyhedral ab-

stract domain that maintains lower and upper polyhedral bounds and interval

bounds for each neuron. Formally, let X = {x1, x2, ..., xn} be an ordered set

of neurons inN such that the order complies with the order of the layers they

belong to. For each neuron xj , we define the interval bounds lj ≤ xj ≤ uj
and the polyhedral bounds

∑
i<j a

l
i · xi + bl ≤ xj ≤

∑
i<j a

u
i · xi + bu, where

lj , uj , a
l
i, b

l, aui , b
u ∈ R ∪ {−∞,∞}. To certify robustness, DeepPoly adopts

backsubstitution to bound the difference between neurons in the network

logits output, i.e., whether Nt,c(I
′) − Nt,c′(I

′) > 0 ∀I ′ ∈ SI , to certify no

class change occurs under perturbation. It recursively substitutes target

neurons with the polyhedral bounds of previous layers’ neurons until reach-

ing the input neurons. We note that DeepPoly is algorithmically equivalent

to CROWN [58], and we refer the reader to [43] for details of DeepPoly.

The polyhedral verification framework has been adopted to certifying

FNCCs [43], CNNs [6], LSTMs [36], and the Softmax function [50]. To

certify STR models introduced in 2.2, we first derive novel polyhedral bounds

for the network components not covered in the literature, namely TPS,

patch embedding and positional encoding in 3.2 and 3.3, while other relevant

polyhedral bounds are provided in A. Secondly, we bridge the gap between

neural network predicted sequence of labels and the final predicted text. For

attention decoder and ViTSTR models, the sequence of labels are directly

used as the predicted text, meaning any change of label before the end-of-

sentence token guarantees a change in the predicted text. CTC decoder

models, however, operate differently and we provide an algorithm to certify

them in 3.4. Finally, since Softmax is a key component in attention decoder

and ViTSTR, we propose novel polyhedral bounds for Softmax in 3.5 that

refines existing bounds by considering the constraint that Softmax outputs

sum to 1.

3.2 TPS transformation

Recall from 2.2.1 that the TPS transformation utilizes a localization CNN

to produce the fiducial points Θ, before computing matrix T and generating

the grid of pixels P on I, where pi = T p̂ri . When I is under perturbation SI ,

polyhedral bounds for Θ can be computed by existing DeepPoly methods for

CNNs, which can be directly applied to bound T . Since p̂ri is a uniform grid

on Ir that are unaffected by perturbations to I, P is a linear transformation

from T , which can be adopted as the polyhedral bounds for P.

9

To derive polyhedral bounds for the rectified image Ir, recall the bilinear

map, where f(·) is the ReLU function:

Irci =

H,W∑
n,m

Icnmf(1− |pix −m|)f(1− |piy − n|). (3.1)

Since pix, piy and Icnm are all under perturbation, we first derive polyhedral

bounds for rix := f(1 − |pix − m|) from interval bounds lix < pix < uix.

The function mapping pix to rix consists of four pieces of linear functions as

shown in 3. Assume WLOG that m = 0, then if lix, uix are within the left

two or right two pieces of linear functions, i.e., lix, uix ∈ [−∞, 0] or [0,∞],

the polyhedral bounds follows from ReLU (see A.2). If lix ∈ [−1, 0] and

uix ∈ [0, 1], the polyhedral bounds are illustrated in 3a:

−(uix + lix)

uix − lix
pix +

2uixlix
uix − lix

+ 1 ≤ rix ≤ au1pix + 1, (3.2)

where au1 ∈ [−1, 1]. If lix, uix are across three linear functions, first consider

the case of 3b. The bounds are

−(1 + lix)

1− lix
pix +

2lix
1− lix

+ 1 ≤ rix ≤ au2pix + 1, (3.3)

where au2 ∈ [−1/uix, 1]. The bounds for the other case of lix ∈ [−∞,−1], uix ∈
[0, 1] follow from symmetry. Lastly, if lix, uix are across all four linear func-

tions, the bounds are 0 ≤ rix ≤ au3pix + 1, where au3 ∈ [−1/uix,−1/lix].

Bounds for riy := f(1 − |piy − n|) can be derived similarly. In practice, au1 ,

au2 and au3 are chosen such that the area bounded by the interval and poly-

hedral bounds is minimized. Detailed bounds for all cases are provided in

A.1. With the polyhedral bounds of Icnm, rix and riy, the final polyhedral

bounds for Ir can be computed via addition and multiplication bounds (see

A.3).

3.3 Patch Embedding and Positional Encoding

Patch embedding and positional encoding are two crucial components of

ViTSTR as introduced in 2.3. Recall that patch embedding produces a

sequence of T patches before flattened into vectors of dimension P 2C and

linearly projected into a embedding of size D. The composition of patching

ϕ1 : RH×W×C → RN×P 2C and linear projection ϕ2 : RN×P 2C → RN×D

is equivalent to a convolution operation with kernel size (P × P), stride

10

(a) lix ∈ [−1, 0], uix ∈ [0, 1] (b) lix ∈ [−1, 0], uix ∈ [1,∞]

Figure 3: Polyhedral bounds for f(1− |pix −m|) against pix in the bilinear

map of TPS.

size P , input channels C and output channels D. The kernel weights is

obtained by reshaping the linear projection weights from shape (P 2C ×D)

to (D × C × P × P). The patch embedding can thus be certified as a

convolution layer.

We denote the outputs from the patch embedding as vp ∈ RN×D. A

unique positional encoding of the same dimension D is added to each patch

(for details see [2]). Let ep ∈ RN×D be the positional encoding matrix for

the whole image, then the positional encoding layer corresponds to vp + ep.

Since ep is constant with respect to perturbations, positional encoding can

be certified as a linear layer with the identify matrix as weight and ep as

bias.

3.4 CTC Decoder Certification

Recall that Nt,c(I) is the logits output for frame t and class c. To certify

the output sequence of the CTC decoder D, we need to check that, for

the perturbed input domain SI , all the combinations of possible predictions

from each frame t still produce the ground truth sequence after applying

reduction mapping B. Algorithm 1 outlines the procedure for CTC decoder

certification. At line 6, V (SI ,Nt,lt > Nt,c) returns unsafe if these exist

I ′ ∈ SI such that Nt,lt(I
′) ≤ Nt,c(I

′). Therefore, Mt is the set of all possible

classifications for frame t under perturbation. To justify line 8-9, if there

exists t such that |Mt| > 3, let lt be the true prediction label for frame

t. Then, there must exist ct ∈ Mt such that ct ̸= lt−1, lt and lt+1 by the

pigeon hole principle. This means ct will not be a repeated label and B will

produce a different sequence to the ground truth, failing the certification. If

11

Algorithm 1: CTC Decoder Certification

Input: CTC decoder D, input I, network N , adversarial region SI ,

verifier V

1: ℓ∗ ← D(N (I))

2: for t← T do

3: lt ← argmaxk(Nt,k(I))

4: Mt ← [lt]

5: for c← C do

6: if V (SI ,Nt,lt > Nt,c)=unsafe, lt ̸= c then

7: Mt.append(c)

8: if |Mt| > 3 then

9: return Unsafe

10: for π ← (M1 ×M2 × ...×MT) do

11: if B(π) ̸= ℓ∗ then

12: return Unsafe

13: return Safe

|Mt| ≤ 3 for all t, we check all possible sequences π ∈ (M1×M2× ...×MT)

for text changes after applying B at line 10-12. If all possible sequences are

safe, the CTC decoder model is then certified to be safe under SI . Note

that the worst-case complexity for 1 is O(3|T |), but without line 8-9, it will

increase to O(|CT |), where often |C| > 40. However, we find that, in practice,

|Mt| increases monotonically with t, and usually quite dramatically because

LSTM certification loses precision as the network is unfolded. This means

Algorithm 1 typically terminates at line 9, and if not, the search space of

(M1 ×M2 × ...×MT) is in the order of 4!, which is constant time.

3.5 Refining Softmax Bounds

Softmax is an important function in both ViTSTR and the attention de-

coder. Existing Softmax polyhedral bounds [50, 42] only consider element-

wise bounds between the inputs and outputs of Softmax, and they fail to

consider the crucial constraint that the Softmax output sum up to 1. Let

the Softmax output neurons xi, i ∈ [1..N] have interval bounds li ≤ xi ≤ ui,

respectively. We aim to refine Softmax by introducing a novel polyhedral

transformation of the existing Softmax polyhedral bounds that incorporates

the additional constraint
∑N

i=1 xi = 1. This constraint unfortunately cannot

12

be described by a linear combination of previous neurons. Instead of over-

approximating lower and upper polyhedral bounds, we find the minimum

relaxation to the constraints such that a linear transformation can exactly

describe it. By removing the interval bound constraint for a single neuron

xk, the following constraints

li ≤ xri ≤ ui ∀i ̸= k where
N∑
i=1

xri = 1, (3.4)

can be exactly satisfied by the refined neurons xri :

xri = xi for i ̸= k and xrk = 1−
∑
i ̸=k

xi. (3.5)

In this case, the polyhedral bounds are this linear transformation, making

the polyhedral transformation exact. Next, we discuss how to choose k such

that the constraint of 3.4 is the tightest. From 3.5 and 3.4, we can deduce

implied upper and lower bounds for xrk:

1−
∑
i ̸=k

ui ≤ xrk = 1−
∑
i ̸=k

xi =≤ 1−
∑
i ̸=k

li, (3.6)

where the tightness of these implied bounds for xrk is

(1−
∑
i ̸=k

li)− (1−
∑
i ̸=k

ui) =
∑
i ̸=k

(ui − li). (3.7)

Therefore, by choosing k = argmaxi(ui − li) with the loosest bounds, the

implied bounds for xrk will be the tightest, ensuring it is a minimum relax-

ation from the original constraints. Note that, when 1 −
∑

i ̸=k li ≤ uk and

1−
∑

i ̸=k ui ≥ lk, the inequality lk ≤ xrk ≤ uk can be inferred from 3.6 and

we can impose the
∑N

i=1 xi = 1 constraint without any relaxation.

4 Experiments

We present STR-Cert1 by implementing 3 and extending DeepPoly [43]. We

also adopt Prover [36] for certifying LSTMs and the element-wise Softmax

bounds derived by Wei et al. [50]. We evaluate the performance and precision

of STR-Cert on a range of STR networks and datasets, while providing

insights into the comparisons between STR architectures and connections

between adversarial training, prediction confidence, and robustness.

1Will be made open-source with the final version of this paper.

13

Model CTC decoder Attention decoder ViTSTR

Datasets ϵ = .001 ϵ = .003 ϵ = .005 ϵ = .001 ϵ = .003 ϵ = .005 ϵ = .001 ϵ = .003 ϵ = .005 ϵ = .01

IIIT5K 98.5% 76.5% 48.5% 91.0% 68.0% 39.0% 97.5% 75.0% 57.5% 24.0%
IC13 99.5% 89.5% 59.0% 95.0% 82.0% 52.0% 98.5% 87.0% 74.5% 41.5%
IC15 95.5% 56.5% 18.0% 89.5% 35.0% 11.0% 95.5% 58.5% 41.0% 11.5%
SVT 95.0% 68.0% 34.0% 88.0% 42.5% 19.0% 97.5% 65.5% 58.5% 29.5%
SVTP 94.5% 62.5% 36.5% 88.5% 58.0% 21.5% 96.0% 61.5% 43.0% 21.5%
CUTE 97.5% 83.0% 41.0% 92.0% 73.0% 33.0% 96.5% 79.5% 58.0% 27.0%

Table 1: % certified in the first 200 correctly classified instances for CTC

decoder, attention decoder and ViTSTR model for 6 datasets.

4.1 Datasets, Models and Training

We adopt the training setup of Baek et al. [4] with the PyTorch [32] li-

brary. For all architectures, the models are trained for 100000 iterations on

the synthetic MJSynth [14] and SynthText [13] datasets and validated on

the training datasets of IIIT5K [27], IC13 Born-Digital Images [18], IC15

Focused Scene Text [17], SVT [47], SVTP [33] and CUTE80 [35]. We use

AdamW [20] optimizer with a cosine decay scheduler, while also deploying

PGD adversarial training [26], discussed further in 4.3. The attention de-

coder model utilizes TPS [40] as the transformation module, a 5 layer CNN-

ReLU network as the feature extractor, an LSTM as the sequence model,

and the attention decoder [52]. The CTC decoder model uses the same

transformation, feature extractor, and sequence model architectures. For

the Vision Transformer model, we use the architecture in ViTSTR [2] with

5 layers. The pre-trained ViTSTR models [2] are unfortunately too large

and beyond the scope of this work. The CTC decoder and the attention

decoder models both have around 500K parameters, whereas the ViTSTR

have around 700K parameters. Details on architectures and training can be

found in B.

4.2 Robustness Certification

We now provide results on the certified robustness for the CTC decoder,

attention decoder, and ViTSTR model on the test datasets of IIIT5K [27],

IC13 [18], IC15 [17], SVT [47], SVTP [33] and CUTE80 [35]. For each

model, we examine the percentage of correctly classified samples that can

be certified to remain correctly classified under perturbation, which we re-

fer to as percentage certified. We certify the first 200 correctly classified

samples in each dataset for varying perturbation budget, i.e., the maximum

perturbation distance, of ϵ = 0.001 up to 0.01 under L∞ norm. The av-

14

(a) % certified against per-
turbation distances.

(b) % certified for
samples with predicted
text longer then various
lengths.

(c) % certified and
accuracy against the
strength of PGD adver-
sarial training.

Figure 4: Certification results with analysis against text length and adver-

sarial training strength.

erage percentage certified for all architectures with and without Softmax

refinement (in 3.5) are illustrated against perturbation budgets in 4a, and

detailed results for certification with Softmax refinement are shown in 1.

Note that the CTC decoder model does not have a Softmax layer, and an

ablation study for Softmax refinement is provided in 4.4. We observe that

the percentage certified for the CTC and attention decoder models drops

more steeply for increasing perturbation budget ϵ than for the ViTSTR

model. This is because each LSTM recurrent cell involves multiplication

of two non-linear activated neurons, which is difficult to certify with high

precision. Moreover, existing certifiers for LSTMs unfold the recurrent op-

eration, which significantly increases the depth of the network on which

the loss of precision compounds. In addition, harder datasets such as IC15

are consistently less robust across all model architectures and perturbation

budgets. Fig. 5a includes examples of certified and uncertified samples,

and additional certification results for STR models with different number of

layers are provided in C, where similar trends can be observed.

Scalability with respect to the length of predicted text is particularly in-

teresting. CTC and attention decoder models rely on LSTMs to recurrently

predict the sequence of labels, which means the loss of precision compounds

as the length of text increases. In practice, as shown in 4b, percentage cer-

tified drops significantly for the two LSTM-based models as the predicted

text grow longer then 9, especially for the attention-decoder model, which

contains two layers of LSTM and struggles to certify predicted text with

length 11 or more. ViTSTR, however, shows a smaller drop in percentage

15

(a) Examples from each
dataset that are certified
and not certified against
adversarial attacks.

(b) Tightness of bounds
with and without Soft-
max refinement against
input dimensions.

(c) % certified for
samples with prediction
confidence above vari-
ous thresholds.

Figure 5: Example images and certification results for Softmax bounds and

prediction confidence.

certified because it predicts in parallel, where longer text does not increase

the depth of certification.

The average certification runtime per sample is 49s for CTC decoder

model; 92s for attention decoder model; and 14s for ViTSTR. The discrep-

ancy between runtime is mainly due to the certification of LSTM layers, as

the CTC decoder and attention decoder models include one and two LSTM

layers, respectively. If we take into consideration that large-scale LSTM-

based STR models in practice usually include multiple layers of Bi-LSTM,

it becomes extremely challenging, if not infeasible, to certify them with cur-

rent methods. Vision Transformers, however, seem to be a better choice in

terms of certification scalability.

4.3 Effect of Adversarial Training

To investigate the effect of adversarial training on percentage certified, we

train various models in all three STR architectures with different strengths

of adversarial training, i.e., the maximum perturbation budget in PGD [26],

with 10 steps. For CTC and attention decoder models, standard PGD ad-

versarial training is adopted to train models from scratch. For the ViTSTR

model, we follow the adversarial training setup of ViT [28] and naturally

train the model for 20000 epochs before training adversarially, which im-

proves the training stability and adversarial accuracy.

The average percentage certified and accuracy across the test datasets for

STR architectures are shown in 4c, where the adversarial training strength

16

ranges from 0 (natural training) to 0.1 and the samples are certified against

perturbation budget ϵ = 0.003. We observe that, as expected, there exists

a trade-off between the accuracy of the model and the percentage certified.

However, it is interesting to note that the optimal trade-off points vary for

the different architectures. For CTC and attention decoder models, as the

PGD strength rises above 0.05, the accuracy begins to drop markedly whilst

the percentage certified only increases marginally. For ViTSTR, the optimal

strength is, however, around 0.025 since the percentage certified stagnates

with higher strength while the accuracy plummets. Nevertheless, the ex-

periments confirm that adversarial training significantly boosts percentage

certified.

4.4 Ablation on Softmax Refinement

To demonstrate effectiveness of our Softmax refinement (3.5), we first di-

rectly compare the tightness of the output neuron’s bounds with and without

Softmax refinement on a synthetic neural network. A feed-forward network

with 2 hidden layers and ReLU activations, followed by the Softmax layer

and a fully-connected layer that outputs a single scalar is used. We compare

the gap between the upper and lower bounds of the final output neuron

under ϵ = 0.1 perturbation, with varying input dimensions to the Softmax

function from 2 to 30. For each input dimension, we certify 1000 models with

random parameters for the final layer and random inputs. The mean plus

and minus one standard deviation of the gaps between bounds are shown

in 5b, where the Softmax refinement provides considerably tighter bounds,

even when the input dimensions for Softmax are high, as in the case of

Vision Transformers.

On large-scale STR models, we demonstrate the improvement to percent-

age certified from Softmax refinement in 4a. This improvement is present in

all datasets for the attention decoder model and ViTSTR. In practice, we

never observe an instance that the Softmax refinement harms the percentage

certified.

4.5 Prediction Confidence and Certification

Since polyhedral verification provides bounds on the logits output of the

network, samples with high prediction confidence, i.e., the product of con-

fidence over the sequence of predictions, should be easier to certify. In 5c,

percentage certified for samples with prediction confidence above various

17

thresholds are plotted. When the lower confidence samples are filtered out,

percentage certified dramatically increases, up to near 100% when only high

confidence samples remain. For the CTC decoder model, there are cer-

tain frames t that can predict different labels without changing the decoded

text. Those frames usually have lower prediction confidence, but this does

not necessarily imply a lack of robustness. This is evident in 5c since the

percentage certified for the CTC decoder model actually exceeds that of

other architectures when the confidence threshold ≥ 0.1.

5 Conclusion

We developed STR-Cert, the first robustness certification method for STR

models and Vision Transformers, with novel algorithms and polyhedral bounds.

We certified and compared three STR model architectures, where we demon-

strated scalability issues of LSTM-based models and elucidated the benefits

of Vision Transformers. Future work includes studying the robustness of

pre-trained ViTSTR models in relation to its training dataset, extending

the method to incorporate branch and bound, GPU parallelization, and

certifying perturbations in other Lp norms.

Acknowledgments

This project received funding from the ERC under the European Union’s

Horizon 2020 research and innovation programme (FUN2MODEL, grant

agreement No. 834115) and ELSA: European Lighthouse on Secure and Safe

AI project (grant agreement No. 101070617 under UK guarantee).

References

[1] Michael E Akintunde, Andreea Kevorchian, Alessio Lomuscio,

and Edoardo Pirovano. Verification of RNN-based neural agent-

environment systems. In Proceedings of the AAAI Conference on Arti-

ficial Intelligence, volume 33, pages 6006–6013, 2019. 2

[2] Rowel Atienza. Vision transformer for fast and efficient scene text

recognition. Proceedings of the International Conference on Document

Analysis and Recognition, ICDAR, 12821 LNCS:319–334, 5 2021. 2, 6,

8, 11, 14

18

[3] E Bacci, M Giacobbe, and D Parker. Verifying reinforcement learning

up to infinity. Proceedings of the International Joint Conference on

Artificial Intelligence, 2021. 4

[4] Jeonghun Baek, Geewook Kim, Junyeop Lee, Sungrae Park, Dongy-

oon Han, Sangdoo Yun, Seong Joon Oh, and Hwalsuk Lee. What is

wrong with scene text recognition model comparisons? dataset and

model analysis. Proceedings of the IEEE International Conference on

Computer Vision, 2019-October:4714–4722, 4 2019. 6, 14, 38

[5] Gregory Bonaert ETH Zurich, Dimitar I Dimitrov ETH Zurich, Max-

imilian Baader ETH Zurich, and Martin Vechev ETH Zurich. Fast

and precise certification of transformers. International Conference on

Programming Language Design and Implementation, 2021. 2, 3

[6] Akhilan Boopathy, Tsui-Wei Weng, Pin-Yu Chen, Sijia Liu, and Luca

Daniel. CNN-Cert: An efficient framework for certifying robustness of

convolutional neural networks. Proceedings of the AAAI Conference on

Artificial Intelligence, 33:3240–3247, 2019. 4, 9

[7] Jeremy Cohen, Elan Rosenfeld, and J. Zico Kolter. Certified adversarial

robustness via randomized smoothing. 36th International Conference

on Machine Learning, ICML 2019, 2019-June:2323–2356, 2 2019. 1

[8] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weis-

senborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani,

Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, and

Neil Houlsby. An image is worth 16x16 words: Transformers for im-

age recognition at scale. ICLR 2021 - 9th International Conference on

Learning Representations, 10 2021. 8

[9] Krishnamurthy Dvijotham, Robert Stanforth, Sven Gowal, Timothy A

Mann, and Pushmeet Kohli. A dual approach to scalable verification

of deep networks. In UAI, volume 1, page 3, 2018. 3

[10] Marc Fischer, Maximilian Baader, and Martin Vechev. Scalable cer-

tified segmentation via randomized smoothing. Proceedings of the In-

ternational Conference on Machine Learning, 139:3340–3351, 7 2021.

4

[11] Ian J. Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining

and harnessing adversarial examples. In 3rd International Conference

on Learning Representations, ICLR, 2015. 1

19

[12] Alex Graves, Santiago Fernández, Faustino Gomez, and Jürgen Schmid-

huber. Connectionist temporal classification: Labelling unsegmented

sequence data with recurrent neural networks. In ACM International

Conference Proceeding Series, volume 148, pages 369–376, 2006. 6, 7

[13] Ankush Gupta, Andrea Vedaldi, and Andrew Zisserman. Synthetic

data for text localisation in natural images. Proceedings of the

IEEE Conference on Computer Vision and Pattern Recognition, 2016-

December:2315–2324, 4 2016. 14, 36

[14] Max Jaderberg, Karen Simonyan, Andrea Vedaldi, and Andrew Zisser-

man. Synthetic data and artificial neural networks for natural scene

text recognition. In Workshop on Deep Learning, NIPS, 6 2014. 14, 36

[15] Max Jaderberg, Karen Simonyan, Andrew Zisserman, and Koray

Kavukcuoglu. Spatial transformer networks. Advances in Neural Infor-

mation Processing Systems, 2015-January:2017–2025, 6 2015. 6

[16] Matt Jordan and Alexandros G Dimakis. Exactly computing the local

Lipschitz constant of ReLU networks. Conference on Neural Informa-

tion Processing Systems, 2020. 3

[17] Dimosthenis Karatzas, Lluis Gomez-Bigorda, Anguelos Nicolaou,

Suman Ghosh, Andrew Bagdanov, Masakazu Iwamura, Jiri Matas,

Lukas Neumann, Vijay Ramaseshan Chandrasekhar, Shijian Lu, Faisal

Shafait, Seiichi Uchida, and Ernest Valveny. ICDAR 2015 competition

on robust reading. Proceedings of the International Conference on Doc-

ument Analysis and Recognition, ICDAR, 2015-November:1156–1160,

11 2015. 14, 37

[18] Dimosthenis Karatzas, Faisal Shafait, Seiichi Uchida, Masakazu Iwa-

mura, Lluis Gomez I. Bigorda, Sergi Robles Mestre, Joan Mas,

David Fernandez Mota, Jon Almazan Almazan, and Lluis Pere

De Las Heras. ICDAR 2013 robust reading competition. In Proceedings

of the International Conference on Document Analysis and Recognition,

ICDAR, 2013. 14, 37

[19] Guy Katz, Clark Barrett, David L. Dill, Kyle Julian, and Mykel J.

Kochenderfer. Reluplex: An efficient SMT solver for verifying deep

neural networks. Computer Aided Verification, 10426 LNCS:97–117,

2017. 3

20

[20] Diederik P. Kingma and Jimmy Lei Ba. Adam: A method for stochastic

optimization. In 3rd International Conference on Learning Represen-

tations, ICLR, 2015. 14, 38

[21] Ching Yun Ko, Zhaoyang Lyu, Tsui Wei Weng, Luca Daniel, Ngai

Wong, and Dahua Lin. POPQORN: Quantifying robustness of recur-

rent neural networks. In 36th International Conference on Machine

Learning, ICML, volume 2019-June, pages 6031–6087, 2019. 2, 4

[22] Linyi Li, Tao Xie, and Bo Li. SoK: Certified robustness for deep neural

networks. Proceedings - IEEE Symposium on Security and Privacy,

2023-May:1289–1310, 9 2023. 2, 4

[23] Bin Liang, Hongcheng Li, Miaoqiang Su, Pan Bian, Xirong Li, and

Wenchang Shi. Deep text classification can be fooled. In IJCAI Inter-

national Joint Conference on Artificial Intelligence, 2018. 2

[24] Hsuan-Cheng Liao, Chih-Hong Cheng, Maximilian Kneissl, and Alois

Knoll. Are attention networks more robust? towards exact robustness

verification for attention networks. In Computer Safety, Reliability, and

Security: 41st International Conference, 2 2022. 2

[25] Wei Liu, Chaofeng Chen, Kwan-Yee K Wong, Zhizhong Su, and Junyu

Han. STAR-Net: A spatial attention residue network for scene text

recognition. The British Machine Vision Conference, 2016. 6

[26] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris

Tsipras, and Adrian Vladu. Towards deep learning models resistant

to adversarial attacks. 6th International Conference on Learning Rep-

resentations, 6 2018. 14, 16, 38

[27] Anand Mishra, Karteek Alahari, and C V Jawahar. Scene text recog-

nition using higher order language priors. The British Machine Vision

Association, 2012. 14, 37

[28] Yichuan Mo, Dongxian Wu, Yifei Wang, Yiwen Guo, and Yisen Wang.

When adversarial training meets vision transformers: Recipes from

training to architecture. Advances in Neural Information Processing

Systems, 35, 10 2022. 16

[29] Christoph Müller, François Serre, Gagandeep Singh, Markus Püschel,

and Martin Vechev. Scaling polyhedral neural network verification on

gpus. Proceedings of the 4 th MLSys Conference, 7 2021. 4

21

[30] Mark Niklas Müller, Gleb Makarchuk, Gagandeep Singh, Markus

Püschel, and Martin Vechev. PRIMA: General and precise neural net-

work certification via scalable convex hull approximations. Proceedings

of the ACM on Programming Languages, 6, 3 2021. 3

[31] Raphael Olivier and Bhiksha Raj. Sequential randomized smoothing

for adversarially robust speech recognition. EMNLP 2021 - 2021 Con-

ference on Empirical Methods in Natural Language Processing, Proceed-

ings, pages 6372–6386, 11 2021. 4

[32] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Brad-

bury, Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein,

Luca Antiga, Alban Desmaison, Andreas Köpf, Edward Yang, Zach

DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit

Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. PyTorch: An

imperative style, high-performance deep learning library. Advances in

Neural Information Processing Systems, 32, 12 2019. 14, 38

[33] Trung Quy Phan, Palaiahnakote Shivakumara, Shangxuan Tian, and

Chew Lim Tan. Recognizing text with perspective distortion in natural

scenes. Proceedings of the IEEE International Conference on Computer

Vision, pages 569–576, 2013. 14, 37

[34] Aditi Raghunathan, Jacob Steinhardt, and Percy Liang. Semidefinite

relaxations for certifying robustness to adversarial examples. Advances

in Neural Information Processing Systems, 2018-December:10877–

10887, 11 2018. 3

[35] Anhar Risnumawan, Palaiahankote Shivakumara, Chee Seng Chan, and

Chew Lim Tan. A robust arbitrary text detection system for natural

scene images. Expert Systems with Applications, 41:8027–8048, 12 2014.

14, 38

[36] Wonryong Ryou, Jiayu Chen, Mislav Balunovic, Gagandeep Singh, An-

drei Dan, and Martin Vechev. Scalable polyhedral verification of recur-

rent neural networks. Computer Aided Verification, 12759 LNCS:225–

248, 2020. 2, 3, 4, 9, 13, 29, 31, 32, 33

[37] Hadi Salman, Greg Yang, Huan Zhang, Cho-Jui Hsieh, and Pengchuan

Zhang. A convex relaxation barrier to tight robustness verification of

neural networks. Advances in Neural Information Processing Systems,

32, 2019. 3

22

[38] Kevin Scaman and Aladin Virmaux. Lipschitz regularity of deep neural

networks: Analysis and efficient estimation. In Advances in Neural

Information Processing Systems, volume 2018-Decem, pages 3835–3844.

Neural information processing systems foundation, 2018. 3

[39] Baoguang Shi, Xiang Bai, and Cong Yao. An end-to-end trainable

neural network for image-based sequence recognition and its application

to scene text recognition. IEEE Transactions on Pattern Analysis and

Machine Intelligence, 39(11):2298–2304, 2017. 2, 6

[40] Baoguang Shi, Xinggang Wang, Pengyuan Lyu, Cong Yao, and Xiang

Bai. Robust scene text recognition with automatic rectification. Pro-

ceedings of the IEEE Computer Society Conference on Computer Vision

and Pattern Recognition, 2016-December:4168–4176, 3 2016. 6, 14

[41] Zhouxing Shi, Qirui Jin, Huan Zhang, Zico Kolter, Suman Jana, and

Cho-Jui Hsieh. Formal verification for neural networks with general

nonlinearities via branch-and-bound. The second Workshop on Formal

Verification of Machine Learning, ICML, 2023. 4

[42] Zhouxing Shi, Huan Zhang, Kai-Wei Chang, Minlie Huang, and Cho-

Jui Hsieh. Robustness verification for transformers. Proceedings of the

International Conference on Learning Representations, 2 2020. 2, 4, 12,

28, 32

[43] Gagandeep Singh, Timon Gehr, Markus Püschel, and Martin Vechev.

An abstract domain for certifying neural networks. Proceedings of the

ACM on Programming Languages, 3(POPL):1–30, 2019. 3, 4, 8, 9, 13,

26, 28, 31, 39, 40

[44] Marco Sälzer and Martin Lange. Reachability is np-complete even for

the simplest neural networks. International Conference on Reachability

Problems, 13035 LNCS:149–164, 8 2021. 3

[45] Vincent Tjeng, Kai Xiao, and Russ Tedrake. Evaluating Robustness of

Neural Networks with Mixed Integer Programming. 7th International

Conference on Learning Representations, ICLR 2019, 11 2017. 2, 3

[46] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion

Jones, Aidan N Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention

is all you need. Advances in neural information processing systems, 30,

2017. 8

23

[47] Kai Wang, Boris Babenko, and Serge Belongie. End-to-end scene text

recognition. Proceedings of the IEEE International Conference on Com-

puter Vision, pages 1457–1464, 2011. 14, 37

[48] Shiqi Wang, Kexin Pei, Justin Whitehouse, Junfeng Yang, and Suman

Jana. Efficient formal safety analysis of neural networks. Advances in

neural information processing systems, 31, 2018. 3

[49] Shiqi Wang, Huan Zhang, Kaidi Xu, Xue Lin, Suman Jana, Cho-Jui

Hsieh, and J. Zico Kolter. Beta-CROWN: Efficient bound propaga-

tion with per-neuron split constraints for complete and incomplete neu-

ral network nobustness verification. Conference on Neural Information

Processing Systems, 3 2021. 3, 4

[50] Dennis Wei, Haoze Wu, Min Wu, Pin-Yu Chen, Clark Barrett, and

Eitan Farchi. Convex bounds on the Softmax function with applica-

tions to robustness verification. International Conference on Artificial

Intelligence and Statistics, 2023. 9, 12, 13, 32, 34

[51] Lily Weng, Huan Zhang, Hongge Chen, Zhao Song, Cho-Jui Hsieh, Luca

Daniel, Duane Boning, and Inderjit Dhillon. Towards fast computation

of certified robustness for relu networks. In International Conference

on Machine Learning, pages 5276–5285. PMLR, 2018. 3

[52] Zbigniew Wojna, Alexander N. Gorban, Dar Shyang Lee, Kevin Mur-

phy, Qian Yu, Yeqing Li, and Julian Ibarz. Attention-based extraction

of structured information from street view imagery. In Proceedings of

the International Conference on Document Analysis and Recognition,

ICDAR, 2017. 2, 6, 14

[53] Eric Wong and Zico Kolter. Provable defenses against adversarial ex-

amples via the convex outer adversarial polytope. In International con-

ference on machine learning, pages 5286–5295. PMLR, 2018. 3

[54] Min Wu and Marta Kwiatkowska. Robustness guarantees for deep neu-

ral networks on videos. Proceedings of the IEEE, 2020. 2

[55] Kaidi Xu, Zhouxing Shi, Huan Zhang, Yihan Wang, Kai Wei Chang,

Minlie Huang, Bhavya Kailkhura, Xue Lin, and Cho Jui Hsieh. Auto-

matic perturbation analysis for scalable certified robustness and be-

yond. Advances in Neural Information Processing Systems, 2020-

December, 2 2020. 1

24

[56] Kaidi Xu, Huan Zhang, Shiqi Wang, Yihan Wang, Suman Jana, Xue

Lin, and Cho Jui Hsieh. Fast and complete: Enabling complete neu-

ral network verification with rapid and massively parallel incomplete

verifiers. 9th International Conference on Learning Representations, 11

2021. 3, 4

[57] Xiaoyong Yuan, Pan He, Xiaolin Lit, and Dapeng Wu. Adaptive ad-

versarial attack on scene text recognition. Conference on Computer

Communications Workshops, pages 358–363, 7 2020. 2

[58] H. Zhang, T.-W. Weng, P.-Y. Chen, C.-J. Hsieh, and L. Daniel. Ef-

ficient neural network robustness certification with general activation

functions. In Advances in Neural Information Processing Systems, vol-

ume 2018-, pages 4939–4948. Neural information processing systems

foundation, 2018. 1, 2, 3, 4, 9

[59] Huan Zhang, Pengchuan Zhang, and Cho-Jui Hsieh. Recurjac: An

efficient recursive algorithm for bounding jacobian matrix of neural

networks and its applications. Proceedings of the Thirty-Third AAAI

Conference, 2019. 3

[60] Wei Emma Zhang, Quan Z. Sheng, Ahoud Alhazmi, and Chenliang

Li. Adversarial attacks on deep-learning models in natural language

processing. ACM Transactions on Intelligent Systems and Technology,

11(3):1–41, 2020. 1

25

Part I

Appendix

Contents

A Background on Polyhedral Verification Bounds 26

A.1 STN Bilinear Map . 27

A.2 ReLU . 28

A.3 Multiplication . 28

A.4 LSTM . 29

A.5 Normalization Layer . 31

A.6 Tanh . 31

A.7 Polyhedral Verification for the dot product and Softmax . . . 32

A.7.1 Bounding multiplication, division, and exponential sep-

arately . 32

A.7.2 Polyhedral Verification for Division using Fermat . . . 32

A.7.3 Improved Softmax Bounds 34

B Models and Training 35

B.1 Model Architectures . 35

B.2 Datasets . 36

B.3 Training Configurations and Hyperparameters 38

C Additional Experiments and Discussions 38

C.1 Robustness Certification for Models with Different Depth . . 38

C.2 Robustness Against Rotation 39

A Background on Polyhedral Verification Bounds

In this section, for the sake of completeness we provide polyhedral bounds

for the relevant layers in OCR/STR networks. While the bounds for these

layers, apart from the STN bilinear map, are mostly covered in the literature,

we include them as background for the modifications and extensions we

applied. Note that, since fully-connected (linear) layers can be transformed

exactly, and CNN layers can be transformed into fully-connected layers [43],

we only cover polyhedral bounds for non-linear layers.

26

A.1 STN Bilinear Map

Recall the bilinear map, where f(·) is the ReLU function:

Irci =

H,W∑
n,m

Icnmf(1− |pix −m|)f(1− |piy − n|). (A.1)

Here, we provide detailed polyhedral bounds for rix := f(1− |pix −m|)
from interval bounds lix < pix < uix. Since the function mapping pix to rix
consists of four pieces of linear functions, and lix, uix can be in either of the

four pieces, we enumerate all possible cases here.

• If lix, uix are within the same linear piece, let ∇ be the gradient of the

piece of linear function lix and uix are both inside (∇ = 0, 1or − 1),

then ∇ ≤ rix ≤ ∇.

• If [lix, uix] are across exactly two linear pieces, then:

1. If lix ∈ (−∞,−1) and uix ∈ [−1, 0], then uix(pix + 1− lix)/(uix−
lix) ≤ rix ≤ a1pix + a1 where a1 ∈ [0, 1].

2. If lix ∈ [0, 1) and uix ∈ [1,∞), then uix(1−pix− lix)/(uix− lix) ≤
rix ≤ a2pix − a2 where a2 ∈ [−1, 0].

3. If lix ∈ [−1, 0) and uix ∈ [0, 1], then

−(uix + lix)

uix − lix
pix+

2uixlix
uix − lix

+1 ≤ rix ≤ a3pix+1, where a3 ∈ [−1, 1].

(A.2)

• If [lix, uix] are across exactly three linear pieces, then:

1. If lix ∈ [−1, 0] and uix ∈ [1,∞), then

−(1 + lix)

1− lix
pix+

2lix
1− lix

+1 ≤ rix ≤ a4pix+1, where a4 ∈ [−1/uix, 1].

(A.3)

2. If lix ∈ (−∞,−1] and uix ∈ [0, 1], then

−(uix − 1)

uix + 1
pix+

−2uix
uix + 1

+1 ≤ rix ≤ a5pix+1, where a5 ∈ [−1,−1/lix].

(A.4)

• Finally, if [lix, uix] are across all four linear pieces, then 0 ≤ rix ≤
au3pix + 1, where au3 ∈ [−1/uix,−1/lix].

27

This concludes all possible cases for lix and uix. Bounds for riy :=

f(1− |piy − n|) can be derived similarly, and with the polyhedral bounds of

Icnm, rix and riy, the final polyhedral bounds for Ir can be computed via

addition and multiplication bounds (A.3).

A.2 ReLU

To the best of our knowledge, polyhedral bounds for the ReLU activation

function σ(x) = max{x, 0} were first introduced in [43]. Given an input

x ∈ [lx, ux] and with polyhedral upper and lower bounds a≥(x), a≤(x), they

distinguish the following three cases:

1. If ux ≤ 0, then a≤(σ(x)) = a≥(σ(x)) = 0 and lσ(x) = uσ(x) = 0.

2. If 0 ≤ lx, then a≥(σ(x)) = a≤(σ(x)) = x, lσ(x) = lx and uσ(x) = ux.

3. Otherwise, they set a≥(σ(x)) = ux(x−lx)/(ux−lx) and a≤(σ(x)) = λx

for λ ∈ [0, 1]. In practice, they choose the λ that minimizes the area

between the upper and lower bounds in the (x, σ(x))-plane. Finally,

they let lσ(x) = λlx and uσ(x) = ux.

A.3 Multiplication

To bound the product of two scalar variables x ∈ [lx, ux] and y ∈ [ly, uy] un-

der perturbation, [42] use lower and upper polyhedral planes parameterized

by coefficients Al, Bl, Cl and Au, Bu, Cu, i.e.

Alx + Bly + Cl ≤ xy ≤ Aux + Buy + Cu (A.5)

They show that choosing Al = ly, Au = uy, Bl = Bu = lx, Cl = −lxly,

and Cu = −lxuy is optimal in that this choice of parameters minimizes the

integrals of FL(x, y) and FU (x, y) over [lx, ux]× [ly, uy], where

FL(x, y) = xy − (Alx + Bly + Cl)

FU (x, y) = xy − (Aux + Buy + Cu)
(A.6)

For the proof of this result, see [42].

28

A.4 LSTM

We adopt Prover [36] for certifying LSTM layers, and we briefly introduce

their polyhedral bounds in this section. The idea behind the LSTM archi-

tecture is to handle long-term sequential dependencies, for example in words

or sentences. These dependencies are passed through time with two vectors,

a cell state c(t) and a hidden state h(t) for every timestep t. The state vectors

are updated using the following equations:

f
(t)
0 = [x(t), h(t−1)]Wf + bf

o
(t)
0 = [x(t), h(t−1)]Wo + bo

c(t) = σ(f
(t)
0)⊙ c(t−1) + σ(i

(t)
0)⊙ tanh(c̃

(t)
0)

i
(t)
0 = [x(t), h(t−1)]Wi + bi

c̃
(t)
0 = [x(t), h(t−1)]Wc̃ + bc̃

h(t) = σ(o
(t)
0)⊙ tanh(c(t))

(A.7)

where [·, ·] denotes the horizontal concatenation of two row vectors, W

and b denote the kernel and bias of the cell, and σ denotes the sigmoid

function.

Polyhedral Verification of LSTM: [36] bound the products of the

identity, sigmoid and tanh functions using lower and upper polyhedral planes

parameterized by coefficients Al, Bl, Cl and Au, Bu, Cu. For

h(x, y) =

{
σ(x) tanh(y)

σ(x)y
,

it follows that

Al · x + Bl · y + Cl ≤ h(x, y) ≤ Au · x + Bu · y + Cu (A.8)

The problem of finding the bounding polyhedral planes can be reduced to

an optimization problem. For the lower bound

min
Al,Bl,Cl

∫
(x,y)∈B

(h(x, y)− (Al · x + Bl · y + Cl))

subject to Al · x + Bl · y + Cl ≤ h(x, y), ∀(x, y) ∈ B (A.9)

where B = [lx, ux] × [ly, uy] is the input boundary region of neurons x and

y. To solve this optimization problem, [36] first approximate this in-

tractable optimization problem using Monte Carlo sampling via

29

LP. Let D = (x1, y1), ..., (xn, yn) be the uniformly sampled points at ran-

dom from B, the approximation of the objective in Equation A.9 is

min
Al,Bl,Cl

n∑
i=1

(h(xi, yi)− (Al · xi + Bl · yi + Cl))

subject to
n∧

i=1

Al · xi + Bl · yi + Cl ≤ h(xi, yi). (A.10)

This provides potentially unsound bounds, meaning that there can be points

in region B that violate the bounds. To provide soundness, one can adjust

the offset to guarantee soundness utilizing Fermat’s theorem. Next,

compute ∆l = min(x,y)∈B h(x, y) − (Al · x + Bl · y + Cl) and adjust the

lower bound by updating the offset: Cl ← Cl + ∆l. To compute ∆l, let

Al · x + Bl · y + Cl be the initial lower bound in B obtained from the LP

approximation.

For h(x, y) = σ(x) tanh(y), consider the extreme points of F (x, y) = σ(x) tanh(y)−
(Al · x + Bl · y + Cl) via its partial derivatives:

∂F

∂x
= σ(x) tanh(y)(1− σ(x))−Al (A.11)

∂F

∂y
= σ(x)(1− tanh2(y))−Bl (A.12)

Consider three different cases:

1. If x ∈ {lx, ux} and y ∈ [ly, uy], ∂F
∂y = 0 can be written as

(1− tanh2(y)) = Bl/Sx (A.13)

where Sx = σ(x) is a constant.

2. If x ∈ [lx, ux] and y ∈ {ly, uy}, setting ∂F
∂x = 0 becomes

σ(x)(1− σ(x) = Al/Ty (A.14)

where Ty = tanh(y) is a constant.

3. Otherwise, consider both ∂F
∂x = 0 and ∂F

∂y = 0 to reduce tanh(y) and

obtain

σ(x)4 + (−2−Bl)σ(x)3 + (1 + 2Bl)σ(x)2 + (−Bl)σ(x)−A2
l = 0. (A.15)

30

According to Fermat’s theorem on stationary points, F (x, y) achieves its

extremum at B either in the roots of Equation A.13, A.14 and A.15 or

at the four corners of B. Thus, one can obtain ∆l = min(x,y)∈B F (x, y) by

evaluating F at these points and selecting the minimum among them.

For h(x, y) = σ(x)y, the analysis is similar and can be found in [36].

A.5 Normalization Layer

Normalize each vector vj by subtracting the mean of its entries, i.e.

vij+1 = vij −mean(vj) = vj −
1

Nj

Nj∑
i=1

vij

where Nj is the dimension of vj for some j > 1, and vij is its i-th entry. Note

that the normalization layer is a linear layer, in that the normalized vector

vj+1 can be expressed as

vj+1 = vj −
1

Nj
1vj =

(
I − 1

Nj
1

)
vj

where 1 denotes the Nj×Nj matrix of all ones and I is the Nj×Nj identity

matrix. Hence the associated abstract transformer is exact, i.e. the polyhe-

dral upper and lower bounds agree and are given by the above expression.

A.6 Tanh

Following [43], let lj and uj be the concrete lower (resp. upper) bounds in

the previous layer. Then we set l′i = tanh(lj) and u′i = tanh(uj). If lj = uj ,

then a′≤i (x) = a′≥i (x) = tanh(lj). Otherwise, consider a′≤i (x) and a′≥i (x)

separately. Let

λ =
tanh(uj)− tanh(lj)

uj − lj

and

λ′ = min
{

tanh′(lj), tanh′(uj)
}

If 0 < lj , then a′≤i (x) = tanh(lj) + λ(xj − lj), otherwise a′≤i (x) = tanh(lj) +

λ′(xj − lj). If uj ≤ 0, then a′≥i (x) = tanh(uj) + λ(xj − uj), and a′≥i (x) =

tanh(uj) + λ′(xj − uj) otherwise.

31

A.7 Polyhedral Verification for the dot product and Softmax

We considered three possible ways to bound the softmax function presented

in the literature [42, 36, 50], of which we adopt the third approach as its

bounds are provably tighter than the bounds derived from the other two

methods [50].

A.7.1 Bounding multiplication, division, and exponential sepa-

rately

[42] derive polyhedral bounds for multiplication, division, and for the expo-

nential function. The desired bounds follow using function composition and

linear transformations described below.

• Multiplication: Let x and y be scalars with upper and lower bounds

ux, uy and lx, ly. Then

lyx + lxy − lxly ≤ xy ≤ uyx + lxy − lxuy

• Division: Using the same setting as above, decompose the division

operation as x/y = x · 1/y, so that it suffices to derive bounds for

the reciprocal function. Assume that 0 < ly ≤ y ≤ uy and denote

1/y =: σ(y). Then

σ′
(
uy + ly

2

)[
y −

(
uy + ly

2

)]
+σ

(
uy + ly

2

)
≤ σ(y) ≤ σ(uy)− σ(ly)

uy − ly
(y − ly)+σ(ly)

• Exponential: Proceeding as above,

exp(d) (x− d)+exp(d) ≤ exp(x) ≤ exp(ux)− exp(lx)

ux − lx
(x− lx)+exp(lx)

In the lower bound, let d := min ((lx + ux)/2, l + 1−∆d), where ∆d

is a small positive number, such as 10−2.

A.7.2 Polyhedral Verification for Division using Fermat

We can improve the bounds for division using Fermat’s theorem as in [36].

For the lower bound, we assume that lx ≤ x ≤ ux and 0 < lx ≤ y ≤ uy and

define

FL(x, y) =
x

y
−
(
αLx + βLy + γL

)
32

where α, β and γ are real numbers. The partial derivatives are given by

δFL

δx
=

1

y
− αL,

δFL

δy
= − x

y2
− βL

We distinguish between the following cases:

1. If x ∈ {lx, ux}, then δFL

δy = 0 implies that y2 = − x
βL (recall that y > 0

by assumption as in the previous subsection).

2. If y ∈ {ly, uy}, then δFL

δy is constant, so F is monotonous on the two

boundaries, hence it suffices to consider the corner points.

We also note that there are no (isolated) minima inside the boundaries, i.e.

within (lx, ux)× (ly, uy), because, for that to be the case, FL would have to

be positive definite at some point. However,

δ2FL

δx2
= 0,

δ2FL

δy2
=

2x

y3
,
δ2FL

δxδy
= − 1

y2

Hence for the determinant of the Hessian of FL, we have

δ2FL

δx2
· δ

2FL

δy2
−
(
δ2FL

δxδy

)
= − 1

y4
< 0

so that the eigenvalues of the Hessian cannot have the same sign, hence FL

cannot be positive definite.

In conclusion, to obtain the offset needed for a sound lower bound, it suf-

fices to ensure that FL ≥ 0 at the corners of [lx, ux]× [ly, uy] and at the root

(w.r.t. y and with x = {lx, ux}) of y2 = − x
βL , if it exists and lies within the

region.

Computing the Lower Bound: Proceeding by analogy with [36], we first

find an approximate a lower bound by solving

minαL,βL,γL

n∑
i=1

[
xi
yi
−
(
αLxi + βLyi + γL

)]
where the xi and yi are sampled from B = [lx, ux] × [ly, uy]. We use the

parameters αL, βL, and γL found in this way to define the function FL(x, y)

33

above, and let ∆L = min(x,y)∈B FL(x, y), for which it suffices to consider

the four corners and the points (lx,
√
−lx/βL), (ux,

√
−ux/βL), if they exist

(in B). The resulting sound bound is then

αLx + βLy + γL + ∆L

A.7.3 Improved Softmax Bounds

Finally, the provably tighter bounds for softmax are introduced in [50]. They

define

pj =
1

1 +
∑

j′ ̸=j exp
(
xj′ − xj

)
for x ∈ RK and j = 1, ...,K. For ease of notation, they focus on j = 1. All

other cases follow by symmetry. They derive the following lower and upper

bounds on the softmax output p1:

LLSE(x) =
exp(x1)

SE(x; l, u)
,

ULSE(x) =
p
1

log(p1)− p1 log(p
1
)− (p1 − p

1
)LSE(x̃)

log(p1)− log(p
1
)

,

where

SE(x; l, u) =
K∑
j=1

(
uj − xj
uj − lj

exp lj +
xj − lj
uj − lj

expuj

)
,

LSE(x̃) = log

 K∑
j=1

expxj

 ,

p1 =
1

1 +
∑

j ̸=1 exp(l̃j)
,

p
1

=
1

1 +
∑

j ̸=1 exp(ũj)
.

Here, x̃j = xj − x1, ũj = uj − l1, and l̃j = lj − u1. They linearize LLSE(x)

and ULSE(x) by using tangent planes to these bounds. Recall that, for a

function f : RK → R, a tangent plane at a point c ∈ RK can be described

as

f c(x) =
K∑
j=1

(
δf(c)

δxj
(xj − cj)

)
+ f(c)

34

or in the linearized form we use in our implementation,

f c(x) =
K∑
j=1

δf(c)

δxj
xj −

K∑
j=1

δf(c)

δxj
cj + f(c)

In our case,

δLLSE(x)

δx1
= LLSE(x)− exp(x1)

1

SE(x; l, u)2

(
exp(u1)− exp(l1)

u1 − l1

)
,

δLLSE(x)

δxi
= − exp(x1)

1

SE(x; l, u)2

(
exp(ui)− exp(li)

ui − li

)
, i ̸= 1,

δULSE(x)

δx1
= −

p1 − p
1

log(p1)− log(p1)

(
exp(x1)

SE(x)
− 1

)
,

δULSE(x)

δxi
= −

p1 − p
1

log(p1)− log(p1)

exp(xi)

SE(x)
, i ̸= 1,

where SE(x) =
∑K

j=1 exp(xj).

B Models and Training

In this section, we introduce the detailed model architectures, training pro-

cess, datasets, and hardware specifications.

B.1 Model Architectures

We did not use lexicon for all models, and we convert all images to gray-

scale single-channel images scaled to 20×100. For the standard STR model

pipelines, the image is input into the TPS transformation module described

in 3, where the linear projection and the grid generator creates the grid

for the transformation, and the grid sampler is the bilinear sampler that

produces the rectified image. The rectified image is then put into the feature

extractor, sequence modelling and decoder head depicted in 2, where 2a

shows the detailed architecture of the CTC decoder model and 2b shows

the detailed architecture of the attention decoder model. For the ViTSTR

model, the architecture is given in 4. The input image is directly input into

the model, where the patch embedding cuts the image into 5× 5 pieces and

is linearly projected to 128 hidden dimensions, before adding the positional

encoding. We use 5 layers of the Transformer block for the results in the main

35

Layer Type Configuration

Input 20 × 100 × 1

Conv + ReLU 6 × 6 × 32, s:2, p:0

Conv + ReLU 5 × 5 × 64, s:1, p:2

Max Pooling 1 × 2, s:2

Batch Norm -

Conv + ReLU 3 × 3 × 128, s:2, p:0

Conv + ReLU 3 × 3 × 128, s:1, p:1

Conv + ReLU 3 × 3 × 128, s:1, p:0

Batch Norm -

Reshape #frames×128

LSTM 64 hidden dim

Linear Projection #frames ×#classes

Softmax -

CTC Decoder -

(a) CTC decoder model architec-
ture

Layer Type Configuration

Input 20 × 100 × 1

Conv + ReLU 6 × 6 × 32, s:2, p:0

Conv + ReLU 5 × 5 × 64, s:1, p:2

Max Pooling 1 × 2, s:2

Batch Norm -

Conv + ReLU 3 × 3 × 128, s:1, p:1

Max Pooling 1 × 2, s:2

Conv + ReLU 3 × 3 × 128, s:1, p:1

Conv + ReLU 2 × 2 × 128, s:1, p:0

Batch Norm -

Map to Sequence 7 × 128

LSTM 64 hidden dim

Linear Projections 64 hidden dim

Softmax -

Attention Mul -

LSTM 64 hidden dim

Generator #frames×#classes

(b) Attention decoder model archi-
tecture

Table 2: The model architecture of the feature extractor, sequence modelling

and decoder head for the standard STR models. Here s and p stand for stride

and padding size, respectively.

Layer Type Configuration

Input 20 × 100 × 1

Conv + ReLU 6 × 6 × 32, s:2, p:0

Max Pooling 2 × 2, s:2

Conv + ReLU 5 × 5 × 64, s:1, p:2

Max Pooling 2 × 2, s:2

Conv + ReLU 3 × 3 × 128, s:1, p:1

Average Pooling 1 output dim

Linear Projection 128 hidden dim

Grid Generator -

Grid Sampler -

Table 3: Model architecture for TPS transformation

paper, followed by reshaping and linear projection to output the sequence

of labels. For all models, the number of output frames varies from 11 to

21 depending on the model, whereas and the number of classes is 42, which

includes the alphabet, numbers and some punctuation symbols.

B.2 Datasets

MJSynth (MJ) [14] is a synthetic dataset designed for STR, containing

8.9M word images. The word generation process is as follows: font rendering;

border and shadow rendering; background coloring; composition; applying

projective distortions; blending with real-world images; and finally adding

noise. The SynthText (ST) [13] dataset is another synthetically generated

36

Layer Type Configuration

Input 20× 100× 1

Patch Embedding 5× 5

Linear Projection 128 hidden dim

Positional Encoding -

Transformer Blocks: × 5

Layer Norm -

Multi-Head Attention 128 hidden dim

Residule Connection -

Layer Norm -

Fully Connected + ReLU 128 hidden dim

Fully Connected + ReLU 256 hidden dim

Fully Connected + ReLU 128 hidden dim

Residule Connection -

Reshape #frames×128

Linear Projection #frames×#classes

Table 4: Model architecture for the ViTSTR

dataset and was originally designed for scene text detection. Nevertheless,

it has also been used for STR by cropping word boxes from larger images.

ST has 5.5M training data once the word boxes are cropped and filtered for

non-alphanumeric characters. We use both MJ and ST for training (14.4M

images in total).

For evaluation, we use 6 datasets. IIIT5K-Words [27] is the dataset

crawled from Google image searches, which consists of 2,000 images for train-

ing and 3,000 images for evaluation. ICDAR2013 (IC13) [18] was created

for the ICDAR 2013 Robust Reading competition. We use images from

the born-digital images task, which consists of 3564 images for training and

1439 images for evaluation. ICDAR2015 (IC15) [17] was created for the

ICDAR 2015 Robust Reading competition. We use images from the focused

scene text task that are captured by Google Glasses while under the natural

movement of the wearer. The benchmark contains 4,468 images for training

and 2,077 images for evaluation. Street View Text (SVT) [47] contains

outdoor street images collected from Google Street View, which contains

noisy, blurry, and/or low-resolution images. It consists of 257 images for

training and 647 images for evaluation. SVT Perspective (SVTP) [33] is

37

also collected from Google Street View, in which many images contain per-

spective projections to mimic non-frontal viewpoints. It contains 645 images

for evaluation. CUTE80 (CUTE) [35] is collected from natural scenes, of

which many are curved text images. It contains 288 cropped images for

evaluation. We use the training images from all these datasets as validation

data for training, and we evaluated the models by applying STR-Cert on

the evaluation images from these datasets.

B.3 Training Configurations and Hyperparameters

Experiments are carried out on a Linux server (Ubuntu 18.04.2) with two

Intel Xeon Gold 6252 CPUs and six NVIDIA GeForce RTX 2080 Ti GPUs.

All our algorithms are implemented in Python, where we adopt PyTorch [32]

for implementing the training and certification algorithms.

We mainly follow the training procedure of Baek et al. [4]. We use the

AdamW [20] optimizer for training, with learning rate 0.001, betas=(0.9,

0.999) and weight decay=0.0001. The training batch is 512 and the to-

tal number of training iterations is 100k. PGD adversarial training [26] is

adopted, where we perturb the image up to some perturbation budget with

10 gradient ascent steps to maximize the prediction loss of the preturbed

image. This adversarially attacked image is then fed into the neural network

and trained using the standard training loss. Gradient clipping is used at

magnitude 5. We validate the model every 1000 training iterations on the

union of the training sets of IC13, IC15, IIIT, and SVT, to select the model

with the highest accuracy on this set.

C Additional Experiments and Discussions

In this section, we present additional experimental results for STR-Cert on

STR models and provide a discussion.

C.1 Robustness Certification for Models with Different Depth

We provide additional certification results for the CTC decoder models, at-

tention decoder models, and ViTSTR with different depths compared to

those used in the main paper. For the CTC and attention decoder mod-

els, we provide certification results for models with 6 convolutional layers

in the feature extractor. For ViTSTR, we provide certification results for

two additional models with different numbers of layers (4 and 6) of the

38

Model ViTSTR: 4 Transformer blocks ViTSTR: 6 Transformer blocks

Datasets ϵ = .001 ϵ = .003 ϵ = .005 ϵ = .01 ϵ = .001 ϵ = .003 ϵ = .005 ϵ = .01

IIIT5K 97.5% 75.5% 57.0% 26.0% 92.5% 65.0% 45.0% 18.0%

IC13 98.5% 88.0% 74.5% 43.0% 95.5% 78.0% 59.5% 28.5%

IC15 95.5% 59.5% 41.5% 12.5% 91.5% 49.5% 34.5% 7.5%

SVT 97.5% 67.0% 60.5% 31.0% 92.5% 56.5% 45.5% 21.5%

SVTP 96.5% 62.0% 44.0% 22.0% 91.0% 50.0% 30.5% 13.5%

CUTE 97.0% 81.0% 59.5% 27.0% 92% 67.5% 45.0% 19.5%

Table 5: % certified in the first 200 correctly classified instances for the

ViTSTR model with different layers of Transformer blocks.

Transformer block. In 5, we present the percentage certified under various

perturbation budgets. It can be seen that a higher number of layers reduces

the percentage certified due to the increased depth for certification, where

the error compounds. However, similar scalability trends with respect to

the perturbation budget can be observed for all model depths.

For the standard STR pipelines, we also experiment on models with

different depths. The depth for the decoders is constant, and we found

the depth of TPS transformation only marginally affects the accuracy and

percentage certified. In addition, it is infeasible to certify models with more

then 1 layer of LSTM, so we only study models with different numbers of

convolutional layers in the feature extractor. In 6, the results for CTC and

attention decoder models with 6 layers of CNNs in the feature extractor

are presented. A slight drop in percentage certified is observed, where the

attention decoder model suffers more since the abstraction error from the

feature extractor is compounded by certifying the two LSTMs in the model.

C.2 Robustness Against Rotation

Adversarial robustness against rotations has been considered using Deep-

Poly [43], where they certified inputs against the usual pointwise perturba-

tion plus rotation angle θ within some range. The interval domain for each

pixel under all rotation angles is used to create the adversarial region for

the certification. This produces extremely wide pixel input intervals and

effectively loses most of the information of the original image for large ro-

tation intervals, making the final bounds too imprecise. To address this,

Singh et al. [43] proposed to refine the adversarial region by segmenting the

39

Model CTC decoder: 6 layer CNNs Attention decoder: 6 layer CNNs

Datasets ϵ = .001 ϵ = .003 ϵ = .005 ϵ = .001 ϵ = .003 ϵ = .005

IIIT5K 96.5% 73.5% 43.5% 87.0% 63.0% 33.0%

IC13 97.5% 86.0% 55.5% 91.5% 77.5% 48.5%

IC15 93.5% 53.5% 15.0% 87.5% 31.0% 8.5%

SVT 93.0% 65.0% 30.5% 84.0% 38.0% 16.5%

SVTP 92.5% 59.5% 31.5% 85.5% 53.5% 18.0%

CUTE 96.0% 81.5% 37.0% 90.5% 67.5% 28.5%

Table 6: % certified in the first 200 correctly classified instances for CTC

decoder and attention decoder model with 6 convolutional layers.

rotation range into n partitions and compute the adversarial region induced

by each segment, before further segmenting each adversarial region’s inter-

val domain into m parts and merging the certification results for all these

n ∗m adversarial regions. Although this method in theory allows for certifi-

cation against rotation, it is very computationally intensive and sometimes

impractical. Singh et al. [43] used n,m ≈ 300 to certify a single MNIST

image against rotation between -45 to 65 degrees. For our case, we fail to

certify a single sample against rotation within a reasonable computation

time, and further increasing the granularity of the refinement would mean

that each sample could take weeks to certify.

During experiments, we observed that, as expected, the STN module for

the standard STR models is very robust against rotation, and the patch em-

bedding for ViTSTR should also provide a certain level of robustness against

rotation. Unfortunately, the rotation certification approach of DeepPoly is

insufficient to prove that STR models are robust against rotation?. There-

fore, developing certification tools specifically for rotation, perhaps based on

an abstraction domain other than polyhedra, is a very interesting direction

for future work.

40

	Introduction
	Background
	Robustness Certification for Neural Networks
	Standard STR Architectures
	Transformation Stage
	Connectionist Temporal Classification Decoder
	Attention Decoder

	Vision Transformers for STR

	STR-Cert
	Polyhedral Verification
	TPS transformation
	Patch Embedding and Positional Encoding
	CTC Decoder Certification
	Refining Softmax Bounds

	Experiments
	Datasets, Models and Training
	Robustness Certification
	Effect of Adversarial Training
	Ablation on Softmax Refinement
	Prediction Confidence and Certification

	Conclusion
	I Appendix
	Background on Polyhedral Verification Bounds
	STN Bilinear Map
	ReLU
	Multiplication
	LSTM
	Normalization Layer
	Tanh
	Polyhedral Verification for the dot product and Softmax
	Bounding multiplication, division, and exponential separately
	Polyhedral Verification for Division using Fermat
	Improved Softmax Bounds

	Models and Training
	Model Architectures
	Datasets
	Training Configurations and Hyperparameters

	Additional Experiments and Discussions
	Robustness Certification for Models with Different Depth
	Robustness Against Rotation

