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Abstract
We propose a general framework for causal Imitation Learning (IL) with hidden confounders, which

subsumes several existing settings. Our framework accounts for two types of hidden confounders: (a)
variables observed by the expert but not by the imitator, and (b) confounding noise hidden from both.
By leveraging trajectory histories as instruments, we reformulate causal IL in our framework into a
Conditional Moment Restriction (CMR) problem. We propose DML-IL, an algorithm that solves this CMR
problem via instrumental variable regression, and upper bound its imitation gap. Empirical evaluation on
continuous state-action environments, including Mujoco tasks, demonstrates that DML-IL outperforms
existing causal IL baselines.

1 Introduction
Imitation Learning (IL) has emerged as a prominent paradigm in machine learning, where the objective
is to learn a policy that mimics the behaviour of an expert by learning from their demonstrations. While
classical IL theory suggests that, with infinite data, the IL error should vanish (Ross et al., 2011), practical
implementations often yield suboptimal and unsafe behaviours (Lecun et al., 2005, Kuefler et al., 2017, Bansal
et al., 2018). Prior work attributes these failures to various factors, including spurious correlations (de Haan
et al., 2019, Codevilla et al., 2019, Pfrommer et al., 2023), temporal noise (Swamy et al., 2022a), expert-
exclusive knowledge (Choudhury et al., 2017, Chen et al., 2019, Swamy et al., 2022b, Vuorio et al., 2022) and
causal delusions (Ortega and Braun, 2008, Ortega et al., 2021), which act as confounding variables unobserved
by the imitator. Previous work typically addresses these factors in isolation. In practice, however, these
challenges can coexist, making partial solutions insufficient. This calls for a holistic approach that accounts
for multiple confounding factors simultaneously.

We propose a general framework for causal imitation learning that models hidden confounders, i.e.,
variables present in the environment but not recorded in demonstrations. Importantly, we distinguish between
expert-observable confounders, which influence expert decisions but are not accessible to the imitator, and
expert-unobservable confounders, which introduce spurious correlations and remain hidden from both the
imitator and the expert. As a result, our framework generalises prior settings and enables a broader, more
realistic problem formulation. In previous work, it has been shown that the application of an interactive IL
algorithm such as DAgger (Ross et al., 2011), which allows us to directly query the expert, can be effective in
dealing with hidden confounders. However, an interactive expert is not a realistic assumption in many domains
and applications. Therefore, we aim to develop approaches that solely rely on a fixed set of demonstrations.

Specifically, we propose an IL method that leverages trajectory histories as Instrumental Variables (IVs)
to mitigate spurious correlations caused by expert-unobservable confounders. Additionally, by learning a
history-dependent policy, we can infer information about expert-observable confounders, which enables us to
better imitate the expert despite lacking access to said variables. We show that IL in our framework can be
reformulated as a Conditional Moment Restriction (CMR) problem—a well-studied problem in econometrics
and causal inference, which allows us to design practical algorithms with theoretical guarantees on the
imitation gap.

In summary, our main contributions are as follows:
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• We introduce a framework for causal IL (Section 3) that incorporates both expert-observable and expert-
unobservable confounding variables to unify and generalise many of the settings in previous work (e.g.,
Swamy et al. (2022a;b), Ortega et al. (2021), Vuorio et al. (2022)).

• We reformulate the problem of confounded IL in our framework as solving a CMR problem, where we
aim to learn a history-dependent policy by leveraging trajectory histories as instruments to break the
confounding (Section 4).

• We propose DML-IL, a novel IL algorithm in our framework, for which we prove an upper bound on the
imitation gap that recovers prior works’ results as special cases (Theorem 4.5).

• We empirically validate our algorithm in both custom and MuJoCo environments with both expert-
observable and expert-unobservable confounders and demonstrate that DML-IL outperforms existing causal
IL baselines (Section 5). This highlights the need to explicitly account for both types of hidden confounders.

1.1 Related Works
Causal Imitation Learning. Imitation learning considers the problem of learning from demonstra-
tions (Pomerleau, 1988, Lecun et al., 2005). Standard IL methods include Behaviour Cloning (Pomerleau,
1988), inverse RL (Russell, 1998), and adversarial methods (Ho and Ermon, 2016). Interactive IL (Ross et al.,
2011) extends standard IL by allowing the imitator to query an interactive expert, facilitating recovery from
mistakes. However, in this paper, we do not assume query access to an interactive expert. Recently, it has
been shown that IL from offline trajectories can suffer from the existence of latent variables (Ortega et al.,
2021, Bica et al., 2021), which cause causal delusion. This can be resolved by learning an interventional policy.
Following this discovery, various methods (Vuorio et al., 2022, Swamy et al., 2022b) consider IL when the
expert has access to the full hidden context that is fixed throughout each episode, whereas the imitator does
not observe the hidden context. They aim to learn an interventional policy through on-policy IL algorithms
that require an interactive demonstrator and/or an interactive simulator (e.g., DAgger (Ross et al., 2011)).

Orthogonal to these works, Swamy et al. (2022a) consider latent variables unobserved by the expert, which
act as confounding noise that affects the recorded expert demonstrations, but not the transition dynamics.
To address this challenge, the problem is then cast into an IV regression problem. Our work combines and
generalises the above works (Vuorio et al., 2022, Swamy et al., 2022b;a) to allow the latent variables to be (a)
only partly known to the expert, (b) evolving through time in each episode, and (c) directly affecting both
the expert policy and the transition dynamics. Solving this generalisation implies solving the above problems
simultaneously.

Causal confusion (de Haan et al., 2019, Pfrommer et al., 2023) considers the situation where the expert’s ac-
tions are spuriously correlated with non-causal features of the previous observable states. While it is implicitly
assumed that there are no latent variables present in the environment, we can still model this spurious correla-
tion as the existence of hidden confounders that affect both previous states and current expert actions. Slight
variations of this setting have been studied in Wen et al. (2020), Spencer et al. (2021), Codevilla et al. (2019).
In Section A, we explain and discuss how these works can be reduced to special cases of our general framework.
From the perspective of causal inference (Kumor et al., 2021, Zhang et al., 2020), previous work has studied the
theoretical conditions on the causal graph under which the imitator can exactly match the expert performance
through backdoor adjustments (imitability). Hereto related, Ruan et al. (2023) extended such conditions and
backdoor adjustments to inverse RL. We instead consider a setting where exact imitation is impossible and aim
to minimise the imitation gap. Beyond backdoor adjustments, imitability has also been studied theoretically
using context-specific independence relations (Jamshidi et al., 2023). Finally, Ruan et al. (2024) analyse IL un-
der unobserved confounding and show that exact imitation is impossible without additional assumptions. They
develop robust IL algorithms tailored to such partially identifiable regimes. In contrast, we adopt structural as-
sumptions (finite-horizon and additive confounding noise) which induce a valid instrumental-variables relation
in the trajectory history. These stronger assumptions avoid their impossibility result and yield point identifi-
cation of the history-dependent policy, although the expert’s latent variables themselves remain unidentifiable.

2



IV Regression and Conditional Moment Restrictions (CMRs). In this paper, we transform the
causal IL problem into solving a CMR problem through IVs, to which end we provide a brief overview over
IV regression and approaches for solving CMRs. The classic IV regression algorithms mainly consider linear
functions (Angrist et al., 1996) and non-linear basis functions (Newey and Powell, 2003, Chen and Christensen,
2018, Singh et al., 2019). More recently, deep neural networks have been used for function approximation
and methods such as DeepIV (Hartford et al., 2017), DeepGMM (Bennett et al., 2019a), AGMM (Dikkala
et al., 2020), DFIV (Xu et al., 2020) and DML-IV (Shao et al., 2024) have been proposed. More generally, IV
regression algorithms can be generalised to solve CMRs (Liao et al., 2020, Dikkala et al., 2020, Shao et al.,
2024), specifically linear CMRs, where the restrictions are linear functionals of the function of interest. In our
paper, we derive linear CMRs for causal IL so that the above methods can be adopted.

2 Preliminaries: IVs and CMRs
We first introduce the concept of Instrumental Variables (IVs) and its connection to Conditional Moment
Restrictions (CMRs). Consider a structural model for outcome Y and treatment X:

Y = f(X) + ε(U) with E[ε(U)] = 0, (1)

where U is a hidden confounder that affects both X and Y so that E[ε(U) | X] ̸= 0. Due to the presence of
this hidden confounder, standard regressions (e.g., ordinary least squares) generally fail to produce consistent
estimates of the causal relationship between X on Y , i.e., f(X). If we only have observational data, a classic
technique for learning f is IV regression (Newey and Powell, 2003). An IV Z is an observable variable that
satisfies the following conditions:
• Unconfounded Instrument : Z ⊥⊥ U ;

• Relevance: P(X|Z) is not constant in Z;

• Exclusion: Z does not directly affect Y : Z ⊥⊥ Y | (X,U).
Using IVs, we are able to formulate the problem of learning f into a CMR problem (Dikkala et al., 2020),

where we aim to solve for f satisfying E[Y − f(X) | Z] = 0. In our work, we show that we can use trajectory
histories as instruments to learn the causal relationship between states and expert actions by transforming
the problem of causal IL into a CMR problem (Section 4).

3 A General Causal Imitation Learning Framework
MDPs with Hidden Confounders. We now introduce a general framework for causal IL in the presence
of hidden confounders. We begin by introducing a Markov Decision Process (MDP) formulation with hidden
confounders, (S,A,U ,P, r, µ0, T ), where S is the state space, A is the action space and U is the confounder
space. Importantly, parts of the hidden confounder ut at time t may be available to the expert but not
to the imitator due to imperfect data logging or expert knowledge. We model this by segmenting the
hidden confounder at time t into two parts ut = (uo

t , u
ε
t ), where uo

t is observable to the expert and uε
t is

not. Intuitively, uo
t corresponds to the additional information that only the expert observes and uε

t acts as
confounding noise in the environment that affects both the state and action.1 As a result, the transition
function P(· | st, at, (uo

t , u
ε
t )) at time t depends on both hidden confounders, but the reward function

r(st, at, u
o
t ) only depends on the state, action, and the observable confounder uo

t since the confounding noise
only directly affects the state and actions. Finally, µ0 is the initial state distribution and T is the time
horizon. A causal graph illustrating these relationships is provided in Figure 1. This nuanced distinction
between uo

t and uε
t is crucial for determining the appropriate method for IL, and we begin with an example

to motivate our setting and illustrate the importance of considering ut = (uo
t , u

ε
t ).

1In our framework, we allow the actual actions taken in the environment to be affected by the noise. Noise that only perturbs
data records can be considered as a special case of our framework.
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Figure 1: A causal graph of MDPs with hidden confounders ut = (uo
t , u

ε
t ). The black dashed lines represent

the causal effect of the expert-observable confounder uo
t , which directly affects the expert action at. It also

directly affects st+1 and rt. The red dashed lines represent the causal effect of the expert-unobservable uε
t ,

which acts as confounding noise and directly affects the states and actions. uε
t does not directly affect rt

(following Swamy et al. (2022a)) because the expert policy does not take uε
t into account, and letting uε

t

directly affect rt would only add noise to the expected return.

Example 3.1. Consider an airline ticket pricing scenario (Wright, 1928), where the goal is to learn a pricing
policy by imitating actual airline pricing based on expert-set profit margins. Suppose that seasonal patterns
and external events are known only to experts, but missing from the dataset. Hence, these latent variables
serve as expert-observable confounders uo

t . Meanwhile, actual airline prices are confounded (additively) by
fluctuating operating costs, which are unknown to the experts when they set the profit margin and are not
contained in the dataset. Consequently, such fluctuating operating costs act as confounding noise uε

t . We
conduct experiments on a toy environment inspired by this example in Section 5, and show that IL algorithms
that do not distinguish between uo

t and uε
t fail to correctly imitate the expert.

Causal Imitation Learning. We assume that an expert is demonstrating a task following some expert
policy πE (which we will specify in more detail later) and we observe a set of N ≥ 1 expert demonstrations
{d1, d2, ..., dN}. Each demonstration is a state-action trajectory (s1, a1, ..., sT , aT ), where, at each time step
t, we observe the state st and the action at taken in the environment. The next state is sampled from the
transition function P( · | st, at, (uo

t , u
ε
t )).

Let ht = (s1, a1, ..., st−1, at−1, st) ∈ H denote the trajectory history at time t, whereH ⊆
⋃T−1

i=0 (S×A)i×S
is the set of all possible trajectory histories. Importantly, we observe neither the reward nor the confounders
(uo

t , u
ε
t ) at time t. Given the observed trajectories, our goal is to learn a history-dependent policy πh : H →

∆(A), where ∆(A) denotes the set of probability measures over A and the policy class πh ∈ Π is convex and
compact. The Q-function of a policy πh is Qπ(st, at, u

o
t ) = Eτ∼πh

[
∑T

t′=t r(st′ , at′ , u
o
t′)] and the value of a

policy is J(π) = Eτ∼πh
[
∑T

t′=1 r(st′ , at′ , u
o
t′)], where τ is the trajectory following πh.

In order to learn a policy πh that matches the performance of πE , we need to break the spurious correlation
between states and expert actions by inferring what the expert would do if we intervened and placed them in
state st when observing uo

t . Unfortunately, the causal inference literature (Shpitser and Pearl, 2008) tells
us that, without further assumptions, it is generally impossible to identify πE . To determine the minimal
assumptions that allow πE to be identifiable, we first observe that uε

t can be correlated for all time steps t,
making it impossible to distinguish between the intended actions of the expert and the confounding noise.
However, in practice, the confounding noise at far-apart time steps is often independent. For example, the
effect of the confounding noise uε

t at time t on future states and actions often diminishes over time, which is
typically the case for random environment noise such as wind. In addition, when the confounding noise uε

t at
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time t becomes observable at a future time t′, e.g., previous operating costs are observed eventually as in
Example 3.1, the unobservable confounding noise at times t and t′ becomes independent. We formalise this
intuition as the notion of a confounding noise horizon k.

Assumption 3.2 (Confounding Noise Horizon). For every t, the confounding noise uε
t has a horizon of k

where 1 ≤ k < T . More formally, uε
t ⊥⊥ uε

t−k ∀t > k.

This assumption is essential for decoupling the spurious correlation between the state and action pairs. We
also assume that the confounding noise is additive to the action, which is standard in causal inference (Pearl,
2000, Shao et al., 2024). Without this assumption, the causal effect becomes unidentifiable (see, e.g., Balke
and Pearl (1994)) and the best we can do is to upper/lower bound it.

Assumption 3.3 (Additive Noise). The structural equation that generates the actions in the observed
trajectories is

at = πE(st, u
o
t ) + uε

t , (2)

where w.l.o.g. E[uε
t ] = 0 as any non-zero expectation of uε

t can be included as a constant in πE .

Next, we show that, with the above two assumptions, it becomes possible to identify the true causal
relationship between states and expert actions, and to imitate πE .

4 Causal IL as a CMR problem
In this section, we demonstrate that performing causal IL in our framework is possible using trajectory
histories as instruments. We show that the problem can be reformulated as a CMR problem and propose an
efficient algorithm to solve it.

The typical target for IL would be the expert policy πE itself. However, since the expert has access to
privileged information, namely uo

t , which the imitator does not, the best thing an imitator can do is to learn
a history-dependent policy πh that is the closest to the expert. A natural choice for a learning objective is
the conditional expectation of πE(st, u

o
t ) on the history ht:

πh(ht) := EP(uo
t |ht)[πE(st, u

o
t )] = E[πE(st, u

o
t ) | ht],

because the conditional expectation minimises the least squares criterion (Hastie et al., 2001) and πh is the
best predictor of πE given ht. In πh, the distribution P(uo

t | ht) captures the information about uo
t that can

be inferred from trajectory histories.

Remark 4.1. Learning πh is not trivial. Policies learnt naively using behaviour cloning, i.e., E[at | ht], fail
to match πE. To see this, note that, in view of Equation (2), we have

E[at | ht] = E[πE(st, u
o
t ) | ht] + E[u

ε
t | ht]

= πh(ht) + E[u
ε
t | ht], (3)

where E[uε
t | ht] ̸= 0 due to the spurious correlation between uε

t and the trajectory history ht. As a result,
E[at | ht] becomes biased, which can lead to arbitrarily worse performance compared to πE.

Derivation of the CMR Problem. Leveraging the confounding horizon from Assumption 3.2, we are
able to break the spurious correlation using the independence of uε

t and uε
t−k. We propose to use the k-step

history ht−k = (s1, a1, ..., st−k) as an instrument for the current state st.2 Taking the expectation conditional
2Note that this requires prior knowledge (or an upper bound) of the confounding horizon k. We discuss this assumption and

practical ways to choose k, e.g., conditional independence tests, in Appendix F.
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Algorithm 1 Double Machine Learning for Causal Imitation Learning (DML-IL)

1: input Dataset DE of expert demonstrations, confounding noise horizon k
2: Initialize the roll-out model M̂ as a Gaussian mixture model
3: repeat
4: Sample (ht, at) from data DE

5: Fit the roll-out model (ht, at) ∼ M̂(ht−k) to maximize the log likelihood
6: until convergence
7: Initialize the expert model π̂h as a neural network
8: repeat
9: Sample ht−k from DE

10: Generate ĥt and ât using the roll-out model M̂
11: Update π̂h to minimise the loss ℓ := ∥ât − π̂h(ĥt)∥2
12: until convergence
13: return A history-dependent imitator policy π̂h

on ht−k on both sides of Equation (3) yields

E[at | ht−k] = E [E[at | ht] | ht−k] = E[πh(ht) | ht−k] + E[E[u
ε
t | ht] | ht−k]

= E[πh(ht) | ht−k] + E[u
ε
t | ht−k]

= E[πh(ht) | ht−k] + E[u
ε
t ] = E[πh(ht) | ht−k],

where we use the fact that ht−k is σ(ht)-measurable because ht−k ⊆ ht, uε
t ⊥⊥ uε

t−k and E[uε
t ] = 0 by

Assumption 3.2. As a result, the problem of learning πh reduces to solving for πh that satisfies the following
identity

E[at − πh(ht) | ht−k] = 0, (4)

which is a CMR problem as defined in Section 2. In this case, both at and ht are observed in the confounded
expert demonstrations, and ht−k acts as the instrument.

To ensure that the instrument ht−k is valid, we formally verify that the three IV conditions from Section 2:
uε
t ⊥⊥ ht−k, P(ht | ht−k) is not constant in ht−k, and ht−k doesn’t directly affect at, are satisfied by ht−k

in Section B.1. However, the strength of the instrument ht−k, representing its correlation with ht, influences
how well πh(ht) can be identified by solving the CMR problem in Equation (4). As the confounding horizon
k increases, this correlation weakens, making ht−k a less effective instrument. We formally analyse this
relationship in Proposition 4.3 and further validate it experimentally in Section 5.

4.1 Practical Algorithms for Causal IL
There are various techniques (Bennett et al., 2019b, Xu et al., 2020, Shao et al., 2024) for solving the

CMR problem E[at|ht−k] = E[πh(ht)|ht−k] in (4). Here, the CMR error that we aim to minimise is given by√
E
[
E[at − π̂h(ht)|ht−k]2

]
= ∥E[at − π̂h(ht)|ht−k]∥2.

In Algorithm 1, we introduce DML-IL, an algorithm adapted from the IV regression algorithm DML-IV (Shao
et al., 2024), which solves our CMR problem by minimising the above CMR error.3 The first part of the
algorithm (lines 3-7) learns a roll-out model M̂ that generates a trajectory k steps ahead given ht−k. Then,
π̂h takes the generated trajectory ĥt from M̂(ht−k) as input and minimises the mean square error to the next
action (lines 8-13).

3DML stands for double machine learning (Chernozhukov et al., 2018), which is a statistical technique to ensure a fast
convergence rate for two-step regression, as is the case in Algorithm 1.
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Using generated trajectories is crucial for breaking the spurious correlation caused by uε
t , and the trajectory

history before ht−k allows the imitator to infer information about uo
t . In particular, the expert’s future

trajectory after ht−k is confounded with the current state and action through the unobserved noise uε
t , so

it does not represent draws from the conditional distribution of future histories given ht−k. Rolling out from
ht−k with M̂ removes this dependence and yields the correct conditional distribution needed for the CMR
moment. We refer to Section F for a discussion of the theoretical convergence rate guarantees of DML-IL
and the choice of the confounding noise horizon k as input.

Moreover, once we set the learning objective as the conditional πh(ht) := E[πE(st, u
o
t )|ht], we can learn

πh(ht) for both continuous and discrete action spaces as the derivation of the CMR problem in (4) remains
valid for both. However, in the algorithm and the subsequent theoretical analysis of the imitation gap, we
implicitly assume that at is continuous such that πh(ht) is a valid action by the imitator. In practice, if the
action space is discrete, we require a mapping that maps πh(ht) to the action space, e.g., treating πh(ht)
as the logits output to the action space.

4.2 Theoretical Analysis
In this section, we derive theoretical guarantees for our algorithm, focusing on the imitation gap and its
relationship to existing work. All proofs in this section are deferred to Section B.

On a high level, in order to bound the imitation gap of the learnt policy π̂h, i.e., J(πE)− J(π̂h), we need
to control:

(i) the amount of information about the hidden confounders that can be inferred from trajectory histories
ht;

(ii) the ill-posedness (or identifiability) of our CMR problem, which intuitively measures the strength of the
instrument ht−k;

(iii) the disturbance of the confounding noise to the states and actions at test time.

These factors are all determined by the environment and the expert policy. To control (i), we measure how
much information about uo

t is captured by the trajectory history ht by analysing the Total Variation (TV)
distance between the distribution of uo

t and E[uo
t |ht] along the trajectories of πE . To control (ii) and (iii),

we need to introduce the following two key concepts.

Definition 4.2 (Ill-Posedness of CMRs (Dikkala et al., 2020)). Given the derived CMR problem in Equa-
tion (4), the ill-posedness ν(Π, k) of the policy space Π with confounding noise horizon k is

ν(Π, k) = sup
π∈Π

∥πE − π∥2
∥E[at − π(ht)|ht−k]∥2

.

The ill-posedness ν(Π, k) measures the strength of the instrument, where a higher ν(Π, k) indicates a
weaker instrument. It bounds the ratio between the L2 error of the imitator to the expert policy, and the
learning error of the imitator following our CMR objective.

As discussed previously, intuitively, the strength of the instrument would decrease as the confounding
horizon k increases. This is confirmed by the following proposition.

Proposition 4.3. ν(Π, k) is monotonically increasing as the confounded horizon k increases.

Next, we introduce the notion of c-TV stability.

Definition 4.4 (c-Total Variation Stability (Bassily et al., 2021, Swamy et al., 2022a)). Let P (X) be the
distribution of a random variable X : Ω→ X . P (X) is c-TV stable if for all a1, a2 ∈ X and ∆ > 0,

∥a1 − a2∥ ≤ ∆ =⇒ δTV (a1 +X, a2 +X) ≤ c∆,

where ∥·∥ is some norm defined on X and δTV is the TV distance.

7



A wide range of distributions are c-TV stable. For example, standard normal distributions are 1
2 -TV

stable. We apply this notion to the distribution over uε
t to bound the disturbance it induces in the trajectory

and the expected return.
With the notion of ill-posedness and c-TV stability, we can now analyse and upper bound the imitation

gap J(πE)− J(π̂h) by controlling the three previously discussed components (i) – (iii).

Theorem 4.5 (Imitation Gap Bound). Let π̂h be the learnt policy with CMR error ε and let ν(Π, k) be the
ill-posedness of the problem. Assume that δTV (u

o
t ,EπE

[uo
t |ht]) ≤ δ for δ ∈ R+, P (uε

t ) is c-TV stable and πE

is deterministic. Then, the imitation gap is upper bounded by

J(πE)− J(π̂h) ≤ T 2
(
cεν(Π, k) + 2δ

)
= O

(
T 2(δ + ε)

)
.

This upper bound scales at the rate of T 2, which aligns with the expected behaviour of imitation learning
without an interactive expert (Ross and Bagnell, 2010). Next, we show that the upper bounds on the imitation
gap from prior work (Swamy et al., 2022a;b) are special cases of Theorem 4.5. The proofs are deferred
to Section B.4.

Corollary 4.6. In the special case that uo
t = 0, i.e., there are no expert-observable confounders, or

uo
t = EπE

[uo
t |ht], i.e., uo

t is σ(ht)-measurable (all information about uo
t is contained in the history), the

imitation gap is upper bounded by

J(πE)− J(π̂h) ≤ T 2
(
cεν(Π, k)

)
= O

(
T 2ε

)
,

which coincides with Theorem 5.1 of Swamy et al. (2022a).

In the other extreme case, when there are no hidden confounders, i.e., uε
t = 0, our framework is reduced to

that of Swamy et al. (2022b). However, Swamy et al. (2022b) provided an abstract bound that directly uses
the supremum of key components in the imitation gap over all possible Q-functions to bound the imitation
gap. We further extend and concretise the bound using the learning error ε and the TV distance bound δ
instead of relying on the supremum.

Corollary 4.7. In the special case that uε
t = 0, if the learnt policy has optimisation error ε, the imitation

gap is upper bounded by

J(πE)− J(π̂h) ≤ T 2

(
2√

dim(A)
ε+ 2δ

)
,

where dim(A) denotes the dimension of A. This is a concrete bound that extends the abstract bound in
Theorem 5.4 of Swamy et al. (2022b).

Remark 4.8. If both uε
t and uo

t are zero, we then recover the classic setting of IL without confounders (Ross
and Bagnell, 2010), and the imitation gap bound is T 2ε, where ε is the optimisation error of the algorithm.

5 Experiments
We empirically evaluate the performance of Algorithm 1 (DML-IL) on the toy environment modelling the
ticket pricing scenario with continuous state and action spaces introduced from Example 3.1 and the Mujoco
environments (Todorov et al., 2012): Ant, Half Cheetah and Hopper. We compare with the following
existing methods: Behavioural Cloning (BC), which naively minimises E[− log π(at|st)]; BC-SEQ (Swamy
et al., 2022b), which learns a history-dependent policy to handle expert-observable hidden confounders;
ResiduIL (Swamy et al., 2022a), which we here adapt to our setting by providing ht−k as instruments to
learn a history-independent policy; and the noised expert, which is the performance of the expert in the
confounded environment, and corresponds to the maximally achievable performance. In Section C.1, we
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(a) MSE in log scale, lower is better. (b) Average reward, higher is better.

Figure 2: Plane Ticket Environment (Example 3.1): On the left, the MSE in log scale between the learnt
policy and the expert. On the right, the average reward of our approach and baselines.

include additional evaluations when using other IV regression algorithms, including DFIV (Xu et al., 2020) and
DeepGMM (Bennett et al., 2019a), as the core CMR solver, but found inconsistent and subpar performance.
In Section C.2, we also provide further discussion and empirical evaluations of DML-IL under misspecification
of the confounding noise horizon k.

We train imitators with 20000 samples (40 trajectories of 500 steps each) of the expert trajectory using
each algorithm and report the average reward when tested online in their respective environments. The
reward is scaled such that 1 is the performance of the un-noised expert, and 0 is that of a random policy.
We also report the Mean Squared Error (MSE) between the imitator’s and expert’s actions. The purpose of
evaluating the MSE is to assess how well the imitator learnt from the expert, and importantly whether the
confounding noise problem is mitigated. When the confounding noise uε

t is explicitly handled, we should
expect to observe a much higher MSE. All results are plotted with one standard deviation as a shaded area.
In addition, we vary the confounding noise horizon k from 1 to 20 in order to increase the difficulty of the
problem with weaker instruments ht−k.

5.1 Plane Ticket Pricing Environment
Experimental Setup. We first consider the plane ticket pricing environment described in Example 3.1.
Here, the expert-unobservable confounding noise uε corresponds to operating costs and the expert-observable
confounder uo

t models seasonal demand patterns and events. We set uo
t to continuously vary with a rate of

change of approximately every 30 steps. A detailed description of this environment is provided in Section D.1.

Results. The results are presented in Figure 2. DML-IL performed best with the lowest MSE and the
highest average reward that is closest to the expert, especially when the uε

t horizon is 1. This implies that
DML-IL is successful in handling both uε

t and uo
t . ResiduIL is able to reduce the confounding effect of uε

t ,
evident by the lower MSE compared to the two other methods that do not deal with uε

t . However, since it
does not explicitly consider uo

t , the imitator has no information on uo
t and the best it can do is to assume some

average value (or expectation) of uo
t . Therefore, while ResiduIL still achieves some reward, its considerable

performance gap to DML-IL can be explained by its ignorance of uo
t . Both BC and BC-SEQ fail entirely in

the presence of confounding noise uε
t , with orders of magnitude higher MSE and average reward close to a

random policy. From the similar performance of BC-SEQ and BC, we see that using trajectory histories to
infer uo

t is not helpful when the confounding noise is not handled explicitly. This demonstrates that only
partially accounting for the effect of uε

t or uo
t is insufficient to learn a good imitator.

9



(a) MSE in log scale in Ant. (b) Average reward in Ant.

(c) MSE in Half Cheetah. (d) Average reward in Half Cheetah.

(e) MSE in Hopper. (f) Average reward in Hopper.

Figure 3: MuJoCo: On the left, the MSE in log scale between the learnt policy and the expert (lower MSE
is better). On the right, the average reward in the MuJoCo environments Ant, Half Cheetah and Hopper
(higher values are better). The confounding horizon increases along the x-axis.

Moreover, as the confounding noise horizon k increases (x-axis), the performance of DML-IL decreases.
This supports our intuition and theoretical results that the instrument becomes weaker, and less information
about uo

t can be inferred from ht−k, as k increases. When k = 20, we find that the performance of DML-IL is
close to that of ResiduIL, which does not consider the effect of uo

t , because very limited information about
the current expert-observable confounder uo

t can be inferred based on the history from 20 steps ago.
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5.2 Mujoco Environments
Experimental Setup. In Figure 3, we consider the Mujoco tasks. While the original environment
implementations (Todorov et al., 2012) do not have hidden confounding variables, we modify the environment
to introduce uε

t and uo
t . Specifically, instead of travelling as fast as possible, the goal is to control the agent to

travel at a target speed that is varying throughout an episode. This target speed is uo
t , which is observed by

the expert but not recorded in the dataset. In addition, we add confounding noise uε
t to st and at to mimic

confounding noise such as wind. Additional details about the modification made to the environments are
provided in Section D.2.

Results. DML-IL outperforms other methods in all three Mujoco environments as shown in Figure 3.
Similarly to the plane ticket environment, ResiduIL is effective in removing the confounding noise but fails
to match the average reward of DML-IL as it does not account for expert-observable confounders uo

t . BC
and BC-SEQ have much higher MSE and fail to learn meaningful policies. As the confounding horizon
of uε

t increases, the performance of DML-IL drops, which is expected as the instruments weaken and less
information about uo

t can be inferred from the histories. This is most visible in the Ant and Half Cheetah
environments.

6 Discussion
We proposed a framework for causal imitation learning with hidden confounders that unifies several previous
causal IL settings. Specifically, we considered IL from a fixed set of confounded expert demonstrations without
further interactions with the confounded MDP, where the hidden confounders are partially observable to the
expert. We demonstrated that causal IL under this framework can be reduced to a CMR problem when using
the histories as instruments. We proposed a novel algorithm, DML-IL, to solve the CMR problem and imitate
the expert, and provided upper bounds on the imitation gap of DML-IL that subsume previous results. Finally,
we empirically evaluated DML-IL on multiple tasks, including Mujoco environments, and demonstrated
improved imitation performance against other causal IL algorithms in the presence of expert-observable and
expert-unobservable confounding.

Limitations. One limitation is the explicit assumptions made in Section 3, which are essential for the
expert policy to be identifiable. Therefore, it is important for practitioners to validate that their specific
environment and task satisfy these assumptions. We provided in the paper some examples where these
assumptions are known to hold (e.g., drone and ticket sales), while we acknowledge that our method is
not applicable to all scenarios, especially in the healthcare domain where non-linear confounding is typical.
However, causal identification comes at a cost — it requires non-trivial assumptions that don’t hold in all
real-world applications.

In addition, we assume knowledge of the confounding noise horizon k or an upper bound on it for Algo-
rithm 1. Unfortunately, the value of k generally cannot be verified empirically. However, there exist tests
that can indirectly check whether a candidate IV is valid, such as conditional independence tests (Gretton
et al., 2005), which we discuss in Section F.

Future Works. There are many active research fronts that consider causal identification with non-additive
noise, partially observable covariates and invalid instruments. They are beyond the scope of this paper and
are orthogonal to our work. It would be an interesting research direction to consider our confounded MDP
framework in these problem settings.
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A Reducing Our Unifying Framework to Related Literature
In this section, we discuss how the various previous works can be obtained as special cases of our unifying
framework.

A.1 Temporally Correlated Noise (Swamy et al., 2022a)
The Temporally Correlated Noise (TCN) proposed in Swamy et al. (2022a) is a special case of our setting
where uo = 0 and only the confounding noise uε is present. Following Equation 14-17 of Swamy et al. (2022a),
their setting can be summarised as

st = T (st−1, at−1)

= T (st−1, πE(st−1) + ut−1 + ut−2)

at = πE(st) + ut + ut−1,

where T is the transition function and ut are the TCN. It can be seen that TCN is the confounding noise uε

since the expert policy doesn’t take it into account, and it affects (or confounds) both the state and action.
It can be seen that this is a special case of our framework when uo

t = 0, where at = πE(st) + ε(uε
t )

from Equation (2), and more specifically when the confounding noise horizon in Theorem 3.2 is 2. In addition,
the theoretical results in Swamy et al. (2022a) can be deduced from our main results as shown in Corollary 4.7.

A.2 Unobserved Contexts (Swamy et al., 2022b)
The setting considered by Swamy et al. (2022b) is a special case of our setting when uε = 0 and only uo are
present. Following Section 3 of Swamy et al. (2022b), their setting can be summarised as

T : S ×A× C → D(S)

∇ : S ×A× C → [−1, 1]
at = πE(st, c)

where c ∈ C is the context, which is assumed to be fixed throughout an episode. There are no hidden
confounders in this setting and the context c is included in uo under our framework. Note that in our setting
we also allow uo to vary throughout an episode. In addition, the theoretical results in Swamy et al. (2022b)
can be deduced from our main results, as shown in Corollary 4.6.

A.3 Imitation Learning with Latent Confounders (Vuorio et al., 2022)
The setting considered by Vuorio et al. (2022) is also a special case of our setting when uε = 0 and only
uo are present, which is very similar to Swamy et al. (2022b). In Section 2.2 of Vuorio et al. (2022), they
introduced a latent variable θ ∈ Θ that is fixed throughout an episode and at = πE(st, θ). There are no
hidden confounders in this setting and the latent variable θ is included in uo in our framework. No theoretical
imitation gap bounds are provided in Vuorio et al. (2022). However, Corollary 4.6 can be directly applied to
their setting and bound the imitation gap.

A.4 Causal Delusion and Confusion (Ortega et al., 2021, de Haan et al., 2019,
Pfrommer et al., 2023, Spencer et al., 2021, Wen et al., 2020)

The concept of causal delusion (Ortega et al., 2021) and confusion is widely studied in the literature (de Haan
et al., 2019, Pfrommer et al., 2023, Spencer et al., 2021, Wen et al., 2020) from different perspectives. A
classic example of causal confusion is learning to brake in an autonomous driving scenario. The states are
images with a full view of the dashboard and the road conditions. The brake indicator in this scenario is
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the confounding variable that correlates with the action of braking in subsequent steps, which causes the
imitator to learn to brake if the brake indicator light is already on. Therefore, another name for this problem
is the latching problem, where the imitator latches to spurious correlations between current action and the
trajectory history. In the setting of Ortega et al. (2021), this is explicitly modelled as latent variables that
affect both the action and state, causing spurious correlation between them and confusing the imitator. In
other settings (de Haan et al., 2019, Pfrommer et al., 2023, Spencer et al., 2021, Wen et al., 2020), there are
no explicit unobserved confounders, but the nuisance correlation between the previous states and actions
can be modelled as the existence of hidden confounders uε in our framework. Specifically, in de Haan et al.
(2019), xt−1 and at−1 are considered confounders that affect the state variable xt, which causes a spurious
correlation between previous state action pairs and at. The spurious correlation between variables is typically
modelled as the existence of a hidden confounder uε that affects both variables in causal modelling. For
example, the actual hazard or event that causes the expert to brake will be the hidden confounder uε that
affects both the brake and the brake indicator.

However, despite the fact that this setting can be considered a special case of our general framework, we
stress that the concrete and practical problems considered in de Haan et al. (2019), Pfrommer et al. (2023),
Spencer et al. (2021), Wen et al. (2020) are different from ours, where they assumed implicitly that the
hidden confounders uε are embedded in the observations or outright observed.

B Proofs of Main Results
In this section, we provide the proofs for the main results and corollaries in this paper.

B.1 IV conditions for ht−k

In this section, we verify that ht−k is a valid instrument. Firstly, we derive uε
t ⊥⊥ ht−k. This follows from

standard d-separation rules for causal graphs (Pearl, 2000). To establish this, we must verify that all paths
from ht−k = (s1, a1, ..., st−k) to uε

t are blocked in the graph, meaning that ht−k is d-separated from uε
t ,

which implies ht−k ⊥⊥ uε
t . From our causal graph in Figure 1, we see that any paths from ht−k to uε

t must
pass through a collider structure, specially through either st → at ← uε

t or at → st+1 ← uε
t . Furthermore,

potential paths through hidden confounders are ruled out because there are no direct causal paths between
uε
t−k and uε

t , as required by Assumption 3.2. Thus, all paths from ht−k to uε
t are blocked by d-separation,

and we can conclude that ht−k ⊥⊥ uε
t . Secondly, P(ht | ht−k) is not constant in ht−k because we can assume

that the environment is non trivial and the past state have an impact on future states. Finally, ht−k doesn’t
directly affect at, specifically ht−k ⊥⊥ at | (st, uε

t , u
o
t ), by the Markov property — the next action at and the

trajectory history are conditionally independent given the current state st.

B.2 Proof of Propositions
Proposition 4.3: The ill-posedness ν(Π, k) is monotonically increasing as the confounded horizon k increases.

Proof. From definition, we have that

ν(Π, k) = sup
π∈Π

∥πE − π∥2
∥E[at − π(ht)|ht−k]∥2

.

We would like to show for each π ∈ Π, ∥πE−π∥2

∥E[at−π(ht)|ht−k]∥2
is increasing as k increases, which would imply that

ν(Π, k) is increasing. For each π ∈ Π, we see that the numerator is constant w.r.t the horizon k. Therefore, it
is enough to check that for each π ∈ Π, the denominator ∥E[at − π(ht)|ht−k]∥2 decreases as k increases. For
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any two integer horizon k1 > k2,

E[at − π(ht)|ht−k1
]2 = E[E[at − π(ht)|ht−k2

]|ht−k1
]2 (5)

≤ E[E[at − π(ht)|ht−k2
]2|ht−k1

] (6)

= E[at − π(ht)|ht−k2 ]
2 (7)

by the tower property of conditional expectation as σ(ht−k1
) ⊆ σ(ht−k2

), Jensen’s inequality for conditional
expectations, and the fact that E[at−π(ht)|ht−k2

]2 is ht−k1
measurable, respectively for each line. Therefore,

we have that E[at − π(ht)|ht−k] is decreasing, which implies ∥E[at − π(ht)|ht−k]∥2 is decreasing and ν(Π, k)
is increasing as k increases, which completes the proof.

B.3 Main results for guarantees on the imitation gap
Theorem 4.5: Let π̂h be the learnt policy with CMR error ε and let ν(Π, k) be the ill-posedness of the
problem. Assume that δTV (u

o
t ,EπE

[uo
t |ht]) ≤ δ for δ ∈ R+, P (uε

t ) is c-TV stable and πE is deterministic.
Then, the imitation gap is upper bounded by

J(πE)− J(π̂h) ≤ T 2(cεν(Π, k) + 2δ) = O(T 2(δ + ε)).

Proof of Theorem 4.5. Recall that J(π) is the expected reward following π, and we would like to bound the
performance gap J(πE)− J(π̂h) between the expert policy πE and the learned history-dependent policy π̂h.
Let Qπ̂h

(st, at, u
o
t ) be the Q-function of π̂h. Using the Performance Difference Lemma (Kakade and Langford,

2002), we have that for any Q-function Q̃(ht, at) that takes in the trajectory history ht and action at,

J(πE)− J(π̂h) = Eτ∼πE
[

T∑
t=1

Qπ̂h
(st, at, u

o
t )− Ea∼π̂h

[Qπ̂h
(st, a, u

o
t )]]

=

T∑
t=1

Eτ∼πE
[Qπ̂h

(st, at, u
o
t )− Q̃(ht, at) + Q̃(ht, at)− Ea∼π̂h

[Qπ̂h
− Q̃+ Q̃]]

=

T∑
t=1

Eτ∼πE
[Q̃− Ea∼π̂h

[Q̃]] +

T∑
t=1

Eτ∼πE
[Qπ̂h

− Q̃− Ea∼π̂h
[Qπ̂h

− Q̃]] (8)

We first bound the second part of Equation (8). Denote by δTV the total variation distance. For two
distributions P,Q, recall the property of total variation distance for bounding the difference in expectations:

|EP [f(x)]− EQ[f(x)]| ≤ ∥f∥∞δTV (P,Q).

In order to bound the second part of Equation (8), for any Q function, consider inferred Q̃ using the
conditional expectation of uo on the history h,

Q̃(ht, at) := Q(st, at,Eτ∼πE
[uo

t |ht]),

where note that st ∈ ht. We have that, when the transition trajectory (st, u
o
t , u

ε
t , rt) ∼ πE follows the expert

policy, for any action ȧ ∼ π following some policy π (in our case, it can be πE or π̂h),

|Eτ∼πE ,ȧ∼π[Q(st, ȧ, ut)− Q̃(ht, ȧ)]| = |Eτ∼πE ,ȧ∼π[Q(st, ȧ, u
o
t )−Q(st, ȧ,Eτ∼πE

[uo
t |ht]])]|

=
∣∣Euo

t∼πE
[EπE ,π[Q(st, ȧ, u

o
t )|uo

t ]− Euo
t |ht∼πE

[EπE ,π[Q(st, ȧ, u
o
t )|uo

t ]
∣∣
(9)

≤ ∥EπE ,π[Q(st, ȧ, u
o
t )|uo

t ]∥∞δTV (u
o
t ,EπE

[uo
t |ht]) (10)

≤ T · δTV (u
o
t ,EπE

[uo
t |ht]) (11)

≤ Tδ (12)
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where Equation (9) uses the tower property of expectations, Equation (10) uses the total variation distance
bound for bounded functions, Equation (11) uses the fact that the Q function is bounded by T and Equation (12)
uses the condition that δTV (u

o
t ,EπE

[uo
t |ht]) ≤ δ in the theorem statement. Since Equation (8) holds for any

choice of Q̃, we choose Q̃π̂h
(ht, at) := Qπ̂h

(st, at,Eτ∼πE
[uo

t |ht]) such that we can apply Equation (12) twice
to bound the second part of Equation (8):

Eτ∼πE
[Qπ̂h

− Q̃π̂h
− Ea∼π̂h

[Qπ̂h
− Q̃π̂h

]] ≤ Eτ∼πE
[Qπ̂h

− Q̃π̂h
+ |Ea∼π̂h

[Qπ̂h
− Q̃π̂h

]|]
= Eτ∼πE

[Qπ̂h
− Q̃π̂h

] + |Est,ut∼πE ,a∼π̂h
[Qπ̂h

− Q̃π̂h
]|

≤ |Eτ∼πE
[Qπ̂h

− Q̃π̂h
]|+ Tδ (13)

≤ 2Tδ

where Equation (13) holds by applying Equation (12) because the expectation of the trajectories (and
their transitions) are over πE , and the actions which are used only as arguments into the Q function are
sampled from π̂h.

Next, we bound the first part of Equation (8). Recall that the ill-posedness of the problem for a policy
class Π is

ν(Π, k) = sup
π∈Π

∥πE − π∥2
∥E[at − π(ht)|ht−k]∥2

where ∥πE − π∥2 is the RMSE and ∥E[at − π(st)|st−k]∥2 is the CMR error from our algorithm. Since the
learned policy π̂h has a CMR error of ε, we have that

∥πE − π̂h∥2 ≤ ν(Π, k)∥E[at − π̂h(ht)|ht−k]∥2 ≤ ν(Π, k)ε

Next, recall that c-total variation stability of a distribution P (uε) where uε ∈ A for some space A implies for
two elements a1, a2 ∈ A,

∥a1 − a2∥2 ≤ ∆ =⇒ δTV (a1 + uε, a2 + uε) ≤ c∆.

Since P (uε
t ) is c-TV stable w.r.t the action space A, we have that for all history trajectories ht ∈ H (note

that st ∈ ht)

δTV (πE(st) + uε
t , π̂h(ht) + uε

t ) ≤ c∥πE(st)− π̂h(ht)∥2.

Then, we have that by Jensen’s inequality,

Eht∼πE
[δTV (πE(st) + uε

t , π̂h(ht) + uε
t )]

2 ≤ Eht∼πE
[δTV (πE(st) + uε

t , π̂h(ht) + uε
t )

2]

=⇒ Eht∼πE
[δTV (πE(st) + uε

t , π̂h(ht) + uε
t )] ≤

√
Eht∼πE

[δTV (πE(st) + uε
t , π̂h(ht) + uε

t )
2]

≤
√

c2Eht∼πE
[∥πE(st)− π̂h(ht)∥22]

= c∥πE − π̂h∥2 ≤ cεν(Π, k)

Therefore, by applying the total variation distance bound for expectations of Q̃π̂h
over different distributions

of action at, we have that

Eτ∼πE
[Q̃π̂h

− Ea∼π̂h
[Q̃π̂h

]] = Eτ∼πE
[Q̃π̂h

(ht, at)− E[Q̃π̂h
(ht, π̂h(ht))]] (14)

= Eht∼πE
[E[Q̃π̂h

(ht, πE(st) + uε
t )]− E[Q̃π̂h

(ht, π̂h(ht) + uε
t )]] (15)

≤ ∥Q̃π̂h
∥∞Eht∼πE

[δTV (F (πE(st) + uε
t ), F (π̂h(ht) + uε

t ))] (16)
≤ Tcεν(Π, k) (17)
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Combining all of above, we see that from Equation (8), by selecting Q̃π̂h
(ht, at) := Qπ̂h

(st, at,Eτ∼πE
[uo

t |ht]),
the imitation gap can be bounded by

J(πE)− J(π̂h) =

T∑
t=1

Eτ∼πE
[Q̃π̂h

− Ea∼π̂h
[Q̃π̂h

]] +

T∑
t=1

Eτ∼πE
[Qπ̂h

− Q̃π̂h
− Ea∼π̂h

[Qπ̂h
− Q̃π̂h

]] (18)

≤
T∑

t=1

Tcεν(Π, k) +

T∑
t=1

2Tδ (19)

≤ T · (Tcεν(Π, k) + 2Tδ) (20)

= T 2(cεν(Π, k) + 2δ) = O(T 2(ε+ δ)), (21)

which concludes the proof.

B.4 Proofs of Corollaries
Corollary 4.6: In the special case that uo

t = 0, meaning that there is no confounder observable to the
expert, or uo

t = EπE
[uo

t |ht], meaning that uo
t is σ(ht) measurable (all information regarding uo

t is represented
in the history), the imitation gap bound is T 2(cεν(Π, k)), which coincides with Theorem 5.1 of Swamy et al.
(2022a).

Proof. If uo
t = 0, then we have uo

t = EπE
[uo

t |ht] since uo
t is a constant. If uo

t = EπE
[uo

t |ht], we have that

δTV (u
o
t ,EπE

[uo
t |ht]) = δTV (u

o
t , u

o
t ) ≤ 0

By plugging δ = 0 into Theorem 4.5, we have that J(πE)− J(π̂h) ≤ T 2(cεν(Π, k)), which is the same as the
imitation gap derived in Swamy et al. (2022a) and completes the proof.

Corollary 4.7: In the special case that uε
t = 0, if the learned policy via supervised BC has error ε, then

the imitation gap bound is T 2( 2√
dim(A)

ε+ 2δ), which is a concrete bound that extends the abstract bound in

Theorem 5.4 of Swamy et al. (2022b).

Proof. In Theorem 5.4 of Swamy et al. (2022b), for the offline case, which is the setting we are considering
(as opposed to the online settings), they defined the following quantities for bounding the imitation gap in a
very general fashion,

εoff := sup
Q̃

Eτ∼πE
[Q̃− Ea∼π̂h

[Q̃]]

δoff := sup
Q×Q̃

Eτ∼πE
[Qπ̂h

− Q̃− Ea∼π̂h
[Qπ̂h

− Q̃]].

The imitation gap by Theorem 5.4 in Swamy et al. (2022b) under the assumption that uε
t = 0 is

T 2(εoff + δoff), which can also be deduced from Equation (8) by naively applying the above supremum. To
obtain a concrete bound, we can provide a tighter bound for Eτ∼πE

[Q̃π̂h
− Ea∼π̂h

[Q̃π̂h
]], which is the first

part of Equation (8), given that uε
t = 0.

For two elements a1, a2 ∈ A, we have that by Cauchy–Schwarz,

δTV (a1 + 0, a2 + 0) =
1

2
∥a1− a2∥1 ≤

√
dim(A)

2
∥a1− a2∥2.

Then, we have that

∥a1 − a2∥2 ≤ ∆ =⇒ δTV (a1, a2) ≤
2√

dim(A)
∆
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so that by Theorem 4.5,

Eτ∼πE
[Q̃π̂h

− Ea∼π̂h
[Q̃π̂h

]] = Eτ∼πE
[Q̃π̂h

(ht, at)− E[Q̃π̂h
(ht, π̂h(ht))]] (22)

= Eht∼πE
[E[Q̃π̂h

(ht, πE(st))]− E[Q̃π̂h
(ht, π̂h(ht))]] (23)

≤ ∥Q̃π̂h
∥∞

2√
dim(A)

∥πE − π∥2 (24)

≤ T
2√

dim(A)
ε, (25)

since when uε
t = 0 the learning error via supervised learning is ε := ∥πE − π∥2. Therefore, the final imitation

bound following Theorem 4.5 is

J(πE)− J(π̂h) =

T∑
t=1

Eτ∼πE
[Q̃π̂h

− Ea∼π̂h
[Q̃π̂h

]] +

T∑
t=1

Eτ∼πE
[Qπ̂h

− Q̃π̂h
− Ea∼π̂h

[Qπ̂h
− Q̃π̂h

]] (26)

≤
T∑

t=1

T
2√

dim(A)
ε+

T∑
t=1

2Tδ (27)

= T 2(
2√

dim(A)
ε+ 2δ). (28)

This bound is a concrete bound, obtained through detailed analysis of the problem at hand, that coincides
with the abstract bound T 2(εoff + δoff) provided in Theorem 5.4 of Swamy et al. (2022a). Note that this
bound is independent of the ill-posedness ν(Π, k) and the c-TV stability of uε

t , which are present in the bound
of Theorem 4.5, because of the lack of hidden confounders uε

t .

C Additional Experiments

C.1 Adopting other IV regression algorithms
In this paper, we have transformed causal IL with hidden confounders into a CMR problem as defined
in Equation (4). Therefore, in principle, many IV regression algorithms can be adopted to solve our CMR
problem. We also experimented with other IV regression algorithms that have been previously shown to be
practical (Shao et al., 2024) for different tasks and high-dimensional input. Specifically, we experimented
with DFIV (Xu et al., 2020), which is an iterative algorithm that integrates the training of two models that
depend on each other, and DeepGMM (Bennett et al., 2019a), which solves a minimax game by optimising
two models adversarially. Note that DeepIV (Hartford et al., 2017) can be considered a special case of
DML-IV (Shao et al., 2024), so we did not evaluate it.

The additional results for using DFIV and DeepGMM as the CMR solver are provided in Figure 4
and Figure 5. It can be seen from Figure 4 that only DFIV achieves good performance in the airline ticket
pricing environment, surpassing the performance of ResiduIL. For the Ant Mujoco task in Figure 5, both
DFIV and DeepGMM fail to learn good policies, with only slightly lower MSE than BC and BC-SEQ. We
think this is mainly due to the high-dimensional state and action spaces and the inherent instability in
the DFIV and DeepGMM algorithms. For DFIV, the interleaving of training of two models causes highly
non-stationary training targets for both models, and, for DeepGMM, the adversarial training procedure of
two models is similar to that of generative adversarial networks (GANs), which are known to be unstable
and difficult to train. In addition, when the CMR problem is weakly identifiable, as in the case of a weak
instrument, the algorithms may converge to local minima that are far away from the true solution in the face
of instabilities in the algorithm.
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Figure 4: Additional results for the MSE between learnt policy and expert, and the average reward, in the
plane ticket environment (Example 3.1), with DFIV and DeepGMM as the CMR solver.

Figure 5: Additional results for the MSE between learnt policy and expert, and the average reward, Ant
Mujoco environment, with DFIV and DeepGMM as the CMR solver.

We conclude that solving our CMR problem can be sensitive to the choice of solver as well as to the choice
of hyperparameters. In addition, some IV regression algorithms do not work well with high-dimension inputs.
Our IV algorithm of choice, DML-IV, provides a robust base for the DML-IL algorithm that demonstrated
good performance across all tasks and environments. This demonstrates the benefit of using double machine
learning, which can debias two-stage estimators and provide good empirical and theoretical convergence.

C.2 Performance under misspecification of k
When past unobservable confounders uε

t−k are weakly correlated with the current uε
t , the unconfounded

instrument condition for a valid IV is mildly violated. Empirically, when the violation is mild, it typically
induces small bias. This is especially true if the correlation between the IV and hidden confounder is weak
relative to IV strength (Hahn and Hausman, 2005), i.e., the correlation between ht−k and the current state
st. It is also often observed that there is a threshold effect (Kuang et al., 2020), where once the violation
rises above a certain threshold, IV regression begins to induce large bias.

However, to the best of our knowledge, there is no theoretical framework that can analyse IV regression
bias with respect to IV violation with guarantees. In fact, in a theoretical worst-case, a weak correlation
between the IV and the hidden confounder could potentially cause the causal effect to be unidentifiable,
rendering causal inference tools ineffective.

That being said, there also exist methods that can combine weak or mildly invalid IVs to synthesise valid
IVs (Kuang et al., 2020, Hartford et al., 2020, Yuan et al., 2022) and it would be possible to combine the
trajectory history ht−k, which may contain invalid IVs, into a valid IV.

To empirically evaluate this, we conduct additional experiments where the true confounding horizon is
10, but DML-IL is given the misspecified k = 1 to 9. With k = 10 as the baseline without misspecification,
performance (avg reward) in Half Cheetah stays within 5% of the baseline down to k = 6, and remains
acceptable down to k = 8 in the plane ticket task, after which DML-IL starts to induce larger bias. We report
the average reward together with its standard deviation (in parentheses).
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Misspecified k Half Cheetah Plane Ticket
k=10 (no misspecification) 0.7183 (0.1789) 0.6181 (0.0356)

k=9 0.7108 (0.1193) 0.5973 (0.0242)
k=8 0.7209 (0.1717) 0.5546 (0.0325)
k=7 0.6675 (0.1595) 0.4801 (0.0614)
k=6 0.6903 (0.1393) 0.3944 (0.0682)
k=5 0.3471 (0.1989) 0.3241 (0.0773)
k=4 0.3243 (0.2329) 0.1561 (0.0961)
k=3 0.2749 (0.1643) 0.1076 (0.1310)
k=2 0.1082 (0.2155) 0.0801 (0.1469)
k=1 0.0896 (0.3080) 0.0656 (0.1227)

Table 1: Performance across misspecified k values for Half Cheetah and Plane Ticket.

D Environments and Tasks

D.1 Dynamic Aeroplane Ticket Pricing
Here, we provide details regarding the dynamic aeroplane ticket pricing environment introduced in Example 3.1.
The environment and the expert policy are defined as follows:

S := R (29)
A := [−1, 1] (30)
st = sign(s) · uo

t − uε
t (31)

πE = clip(−s/uo
t ,−1, 1) (32)

at = πE + 10 · uε
t (33)

uo
t = mean(pt ∼ Unif[−1, 1], pt−1, ....pt−M ) (34)

uε
t = mean(qt ∼ Normal(0, 0.1 ·

√
k), qt−1, ..., qt−k+1) (35)

where M is the influence horizon of the expert-observable uo, which we set to 30. The states st are the profits
at each time step, and the actions at are the final ticket price. uo

t represent the seasonal patterns, where the
expert πE will try to adjust the price accordingly. uε

t represent the operating costs, which are additive both
to the profit and price. Both uo

t and uε
t are the mean over a set of i.i.d samples, qt and pt, and vary across

the time steps by updating the elements in the set at each time step. This construction allows uε
t and uε

t−k

to be independent since all set elements qt will be re-sampled from time step t − k to t. We multiply the
standard deviation of qt by

√
k to make sure uε

t , which is the average over k i.i.d. variables, has the same
standard deviation for all choices of k.

D.2 Mujoco Environments
We evaluate DML-IL on three Mujoco environments: Ant, Half Cheetah, and Hopper. The original tasks
do not contain hidden variables, so we modify the environment to introduce uε and uo. We use the default
transition, state, and action space defined in the Mujoco environment. However, we changed the task objectives
by altering the reward function and added confounding noise to both the state and action. Specifically,
instead of controlling the ant, half cheetah, and hopper, respectively, to travel as fast as possible, the goal is
to control the agent to travel at a target speed that is varying throughout an episode. This target speed is uo,
which is observed by the expert but not recorded in the dataset. In addition, we add confounding noise uε

t to
st and at to mimic the environmental noise such as wind noise. In all cases, the target speed uo

t , confounding
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noise uε
t , and the action at are generated as follows:

at = πE + 20 · uε
t (36)

uo
t = mean(pt ∼ Unif[−2, 4], pt−1, ....pt−M ) (37)

uε
t = mean(qt ∼ Normal(0, 0.01 ·

√
k), qt−1, ..., qt−k+1) (38)

where M = 30, the state transitions follow the default Mujoco environment and the expert policy πE is learned
online in the environment. uo

t and uε
t follow the aeroplane ticket pricing environment to be the average over a

queue of i.i.d. random variables. The reward is defined to be the 1healthy−(current velocity−uo
t )

2−control loss,
where 1healthy gives reward 1 as long as the agent is in a healthy state as defined in the Mujoco documentation.
The second penalty term penalises deviation between the current agent’s velocity and the target velocity uo

t .
The control loss term is also as defined in default Mujoco, which is 0.1 ∗

∑
(a2t ) at each step to regularize the

size of actions.

D.2.1 Ant

In the Ant environment, we follow the gym implementation 4 with an 8-dimensional action space and a
28-dimensional observable state space, where the agent’s position is also included in the state space. Since
the target speed uo

t is not recorded in the trajectory dataset, we scale the current position of the agent with
respect to the target speed, pos′t = post−1 +

post−post−1

uo
t

, and use the new agent position pos′t in the observed
states. This allows the imitator to infer information regarding uo

t from trajectory history, namely from the
rate of change in the past positions.

D.2.2 Half Cheetah

In the Half Cheetah environment, we follow the gym implementation 5 with a 6-dimensional action space
and an 18-dimensional observable state space, where the agent’s position is also included in the state space.
Similarly to the Ant environment, we scale the current position of the agent to pos′t = post−1 +

post−post−1

uo
t

such that the imitator can infer information regarding uo
t from trajectory history.

D.2.3 Hopper

In the Hopper environment, we follow the gym implementation 6 with a 3-dimensional action space and a
12-dimensional observable state space, where the agent’s position is also included in the state space. Similarly
to the Ant environment, we scale the current position of the agent to pos′t = post−1 +

post−post−1

uo
t

such that
the imitator can infer information regarding uo

t from trajectory history.

E Implementation Details
Experiments are carried out on a Linux server (Ubuntu 18.04.2) with two Intel Xeon Gold 6252 CPUs, and
each experiment run uses a single NVIDIA GeForce RTX 2080 Ti GPU for neural network training.

E.1 Expert Training
The expert in the aeroplane ticket pricing environment is explicitly hand-crafted. For the Mujoco environments,
we used the Stable-Baselines3 (Raffin et al., 2021) implementation of soft actor-critic (SAC) and the default
hyperparameters for each task outlined by Stable-Baseline3. The expert policy is an MLP with two hidden
layers of size 256 and ReLU activations, and we train the expert for 107 steps.

4Ant environment: https://www.gymlibrary.dev/environments/mujoco/ant/
5Half Cheetah environment: https://www.gymlibrary.dev/environments/mujoco/half_cheetah/
6Hopper environment: https://www.gymlibrary.dev/environments/mujoco/hopper/
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Table 2: Network architecture for DML-IL. For mixture of Gaussians output, we report the number of
components. No dropout is used.

(a) Roll-out model M̂

Layer Type Configuration

Input state dim × 3
FC + ReLU Out: 256
FC + ReLU Out: 256

MixtureGaussian 5 components; Out: state dim × k

(b) Policy model π̂h

Layer Type Configuration

Input state dim× (k+3)
FC + ReLU Out: 256
FC + ReLU Out: 256

FC Out: action dim

E.2 Imitator Training
With the expert policy πE , we generate 40 expert trajectories, each of 500 steps, following our previously
defined environments. Specifically, the confounding noise is added to the state and actions and crucially uo

t is
not recorded in the trajectories. The naive BC directly learns E[at | st] via supervised learning. ResiduIL
mainly follows the implementation of Swamy et al. (2022a), where we adapt it to allow a longer confounding
horizon k > 1. For DML-IL and BC-SEQ, a history-dependent policy is used, where we fixed the look-back
length to be k + 3, where k is the confounding horizon. BC-SEQ then just learns E[at | ht] via supervised
learning, and DML-IL is implemented with K-fold following Algorithm 2. The policy network architecture for
BC, BC-SEQ, and ResiduIL are 2 layer MLPs with 256 hidden size. The policy network π̂h and the mixture
of Gaussians roll-out model M̂ for DML-IL have a similar architecture, with details provided in Table 2. We
use the AdamW optimizer with a weight decay of 10−4 and a learning rate of 10−4. The batch size is 64 and
each model is trained for 150 epochs, which is sufficient for their convergence.

E.3 Imitator Evaluation
The trained imitator is then evaluated for 50 episodes, each 500 steps in the respective confounded environments.
The average reward and the mean squared error between the imitator’s action and the expert’s action are
recorded.

F Practical Considerations for DML-IL
DML-IL can also be implemented with K-fold cross-fitting, where the dataset is partitioned into K folds,
with each fold alternately used to train π̂h and the remaining folds to train M̂ . This ensures unbiased
estimation and improves the stability of training. The base IV algorithm DML-IV with K-fold cross-fitting
is theoretically shown to converge at the rate of O(N−1/2) (Shao et al., 2024), where N is the sample size,
under regularity conditions. DML-IL with K-fold cross-fitting (see Section G for details) will thus inherit
this convergence rate guarantee.

Discussion on the Confounding Noise Horizon. Note that Algorithm 1 requires the confounding noise
horizon k as input. Although the exact value of k can be difficult to obtain in practice, any upper bound k̄ of
k is sufficient to guarantee the correctness of Algorithm 1, since ht−k̄ is also a valid instrument. Ideally, we
would like a data-driven approach to determine k. Unfortunately, the confounding horizon k, or equivalently
the validity of ht−k as an IV, generally cannot be definitively verified using empirical data, especially the
unconfounded instrument condition (i.e., ht−k ⊥⊥ uε

t ).
Therefore, we rely on the user to provide a sensible choice of k̄ based on the environment that does not

substantially overestimate k, informed by domain knowledge about the task. However, there exist tests
that can indirectly check whether a candidate IV is valid, such as the overidentification tests (Hansen, 1982,
Sargan, 1958), conditional independence tests between the instrument and the residual (Gretton et al., 2005,
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Fukumizu et al., 2008), and sensitivity analysis (Conley et al., 2012). It would be interesting future work to
incorporate these methods to help identify k. In Section C.2, we additionally evaluate the performance and
sensitivity of DML-IL under misspecification of k.

Discussion on the Additive Noise Assumption. The additive noise assumption in Theorem 3.3 is a key
identification assumption and is standard in IV regression (Pearl, 2000). If the additive noise is misspecified,
e.g., multiplicative or complex non-linearity, then the derivation of the CMR in Equation (4) breaks down.
However, this limitation of DML-IL arises from the fact that, with non-additive confounding noise and without
further assumptions, the causal effect is generally unidentifiable (Imbens and Newey, 2009). Therefore, while
the additive noise assumption may be simplistic in complex settings such as healthcare, it is the best we can
do without further assumptions.

The validity of additive noise can often be justified through domain knowledge. For example, in physical
systems such as drones or aircraft, directional environmental noises such as wind and vibrations affect the
position of a drone or plane additively. In econometrics applications, confounding noises, when quantified in
monetary terms, naturally aggregate additively into total cost or revenue. Finally, it is worth noting that this
assumption only requires the expert action (i.e., the outcome) to have additive noise, whereas the relationship
between the confounding noise and the state (i.e., the treatment) is unrestricted.

G Background on DML and DML-IL with K-fold cross-fitting
Double Machine Learning (DML) (Chernozhukov et al., 2018) is a statistical technique that debiases two-stage
regressions. In the DML framework, a function of interest f is estimated in two stages. In the first stage, some
parameters (which can be infinite-dimensional functionals) that are necessary for the second stage estimation
are estimated. In the second stage, first stage estimators are plugged in to estimate the function of interest
f . Shao et al. (2024) utilised the DML framework to propose DML-IV, which is a two-stage IV regression
algorithm. DML-IV is also a general CMR solver (see DML-CMR, a generalisation of DML-IV proposed
by Shao et al. (2025)) that can be used to solve general CMR problems. In Shao et al. (2025), a score
(criterion) function that describes general CMR problems was proposed; the score function guarantees Neyman
orthogonality for estimating solutions to CMR problems. Our CMR objective E[at − πh(ht) | ht−k] = 0 fits
directly into the CMR framework of DML-CMR. In our adaptation in Algorithm 1, the rollout model M̂
serves as the nuisance component, and the second stage estimates πh using this orthogonal score.

In Shao et al. (2025), the authors show that DML-CMR can achieve a O(N−1/2) convergence rate, where
N is the sample size, if implemented with K-fold cross-fitting under some standard DML conditions. Next,
we introduce Algorithm 2, which is a version of DML-IL with K-fold cross-fitting, and discuss the specific
conditions required for DML-IL to achieve O(N−1/2) convergence rate.

G.1 DML-IL with K-fold cross-fitting
Here, we outline DML-IL with K-fold cross-fitting. The algorithm is shown in Algorithm 2. The dataset

is partitioned into K folds based on the trajectory index. For each fold, we use the leave-out data, that is,
indices Ick := [N ] \ Ik, to train separate roll-out models M̂i for i ∈ [1..K]. Then, to train a single expert model
π̂h, we sample the trajectory history ht−k from each fold and use the roll-out model trained with the leave-out
data to complete the trajectory and train π̂h. This technique is very important in Double Machine Learning
(DML) literature (Shao et al., 2025, Chernozhukov et al., 2018) for it provides both empirical stability and
O(N−1/2) convergence rate guarantees.

The conditions required for this root-N consistency are standard DML-CMR conditions ((Shao et al.,
2025), Condition 4), which includes identifiability conditions, orthogonality and a nuisance convergence rate
of o(N−1/4). The identifiability conditions are satisfied if we have a valid instrument, and the orthogonality
is guaranteed by the score function in Shao et al. (2025). The nuisance rate requires that our nuisance
parameter converges at ||M̂ −M ||2 = o(N−1/4), which is usually achieved by density estimation models such
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Algorithm 2 DML-IL with K-fold cross-fitting
Input: Dataset DE of expert demonstrations, Confounding noise horizon k, number of folds K for
cross-fitting
Output: A history-dependent imitator policy π̂h

Get a partition (Ik)
K
k=1 of dataset indices [N ] of trajectories

for k = 1 to K do
Ick := [N ] \ Ik
Initialize the roll-out model M̂i as a mixture of Gaussians model
repeat

Sample (ht, at) from data {(DE,i) : i ∈ Ick}
Fit the roll-out model (ht, at) ∼ M̂i(ht−k) to maximize log likelihood

until convergence
end for
Initialize the expert model π̂h as a neural network
repeat

for k = 1 to K do
Sample ht−k from {(DE,i) : i ∈ Ik}
Generate ĥt and ât using the roll-out model M̂i

Update π̂h to minimise the loss ℓ := ∥ât − π̂h(ĥt)∥2
end for

until convergence

as mixture Gaussian (see discussion before Theorem 6 in Shao et al. (2025)). Therefore, DML-IL with K-fold
cross-fitting will thus inherit this convergence rate guarantee if all the above conditions are satisfied.
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