
Robust Markov Decision Processes:
A Place Where AI and Formal Methods Meet

Marnix Suilen1, Thom Badings1, Eline M. Bovy1,
David Parker2, and Nils Jansen1,3

1 Radboud University, Nijmegen, The Netherlands
2 University of Oxford, United Kingdom

3 Ruhr-University Bochum, Germany

Abstract. Markov decision processes (MDPs) are a standard model for
sequential decision-making problems and are widely used across many
scientific areas, including formal methods and artificial intelligence (AI).
MDPs do, however, come with the restrictive assumption that the tran-
sition probabilities need to be precisely known. Robust MDPs (RMDPs)
overcome this assumption by instead defining the transition probabili-
ties to belong to some uncertainty set. We present a gentle survey on
RMDPs, providing a tutorial covering their fundamentals. In particular,
we discuss RMDP semantics and how to solve them by extending stan-
dard MDP methods such as value iteration and policy iteration. We also
discuss how RMDPs relate to other models and how they are used in
several contexts, including reinforcement learning and abstraction tech-
niques. We conclude with some challenges for future work on RMDPs.

Keywords: Robust Markov decision processes · Dynamic programming
· Formal verification · Reinforcement learning.

1 Introduction

Markov decision processes (MDPs) are a fundamental model for tackling decision
making under uncertainty across various areas, such as formal methods [72], op-
erations research [99], and artificial intelligence [113]. At the core of MDPs is the
assumption that the transition probabilities are precisely known, a requirement
that is often prohibitive in practice [11]. For example, in data-driven applica-
tions in AI such as reinforcement learning (RL) [113], transition probabilities
are unknown and can only be estimated from data. Furthermore, in formal ver-
ification problems, the state-explosion problem often prevents the model from
being fully built [13, 14, 27]. As a remedy, sampling-based approaches that only
estimate the transition probabilities, such as statistical model checking [6, 86],
are used. Any sampling-based approach naturally carries the risk of statistical
errors and hence, incorrect estimates of the probabilities.

Robust MDPs (RMDPs) overcome this assumption of precise knowledge of
the probabilities. An RMDP contains an uncertainty set that captures all pos-
sible transition functions from which an adversary, typically called nature, may

2 M. Suilen et al.

choose. Tracing back to at least interval Markov chains in the formal meth-
ods community [68] and bounded-parameter MDPs in AI [46], RMDPs pro-
vide a general and flexible framework for modelling MDPs with uncertainty on
the transition probabilities [64, 93, 118]. RMDPs provide a rigorous approach to
quantifying the impact of data-driven methods for MDPs and, as such, represent
an important topic in the intersection of AI and formal methods.

RMDPs in AI and formal methods. As RMDPs are studied across sev-
eral research fields, results inevitably become scattered across the communities.
While several recent algorithmic developments and applications of RMDPs stem
from AI and operations research, see e.g., [10, 47, 59] and many of the other works
cited in this survey, tool support is arguably more mature in the formal methods
community. While several of the major contributions to dynamic programming
for RMDPs can be traced back more to the AI than the formal methods com-
munity, these algorithms have been implemented in probabilistic model checkers
such as Prism [80] and Storm [57], which are well-known within formal meth-
ods but less so in AI. Because work on RMDPs in formal methods and AI faces
many of the same problems, we believe that research in both communities can
benefit greatly from each other. In particular, theoretical contributions in one
field may improve tool support in the other. Vice versa, improved tool support
may lead to more advanced applications of RMDPs across both research areas.

Goal of this survey. The goal of this survey is to unify the views on RMDPs
from the AI and formal methods communities. While the theory of RMDPs has
made significant advances over the years, surveys summarizing these results are
as of yet sparse. To the best of our knowledge, [95] is the only other survey on
RMDPs available, with a primary focus on summarizing recent technical results.
In contrast, this paper aims to provide an introduction to the theory of robust
MDPs and a short review of its connections with other well-known models and
applications in the areas of formal methods and AI.

Outline. This survey consists of two main parts. In the first part, we review
the basics of MDPs in Section 2 and then lay out the theoretical foundations
underpinning RMDPs in Section 3. These sections are meant to be accessible
to readers with basic familiarity with MDPs. In the second part, we provide
a gentle survey of the existing literature, in particular focusing on connections
with other models (Section 4) and applications and tool support (Section 5). We
conclude in Section 6 with some interesting directions for future work, both in
theory and applications, for RMDPs.

2 Markov Decision Processes and How to Solve Them

For a set X, we write |X| for its cardinality. Partial functions are denoted by
f : X ⇀ Y , and we write ⊥ for undefined. A discrete probability distribution over

Robust MDPs: A Place Where AI and Formal Methods Meet 3

a finite set X is a function µ : X → [0, 1] such that
∑

x∈X µ(x) = 1. The set of
all probability distributions over X is denoted by D(X). A distribution is called
Dirac if it assigns probability one to precisely one element and zero to all others.

2.1 Markov Decision Processes

We define Markov decision processes (MDPs) and their semantics.

Definition 1 (MDP). A Markov decision process (MDP) is a tuple of the form
(S, sι, A, P,R), where S is a finite set of states with sι ∈ S the initial state, A is
a finite set of actions, P : S ×A ⇀ D(S) is the probabilistic transition function,
and R : S ×A ⇀ R≥0 is the (non-negative) reward function.

We focus on expected reward objectives and hence omit a labelling function
from our MDPs. We use partial functions for the transition and reward functions
to allow for enabled actions. An action is enabled if P (s, a) is defined. We write
A(s) ⊆ A for the set of enabled actions at state s. We require that the transition
and reward function are consistent with each other, that is, P (s, a) = ⊥ ⇐⇒
R(s, a) = ⊥. For convenience, we write P (s, a, s′) for the probability P (s, a)(s′).

A path in an MDP is an (in)finite sequence of successive states and actions:
τ = (s0, a0, s1, . . .) ∈ (S×A)∗×S where s0 = sι and ∀i ∈ N, P (si, ai, si+1) > 0.
A path is finite if the sequence is finite, τ = (s0, a0, . . . , sk), for which we write
last(τ) = sk for the last state. The set of all paths is denoted as Paths. The
sequence of states in a path τ = (s0, a0, s1, . . .) is states(τ) = (s0, s1, . . .).

A discrete-time Markov chain (DTMC) is an MDP with only one enabled
action in each state: ∀s ∈ S, |A(s)| = 1. For DTMCs, we omit the actions
altogether from the tuple and write (S, sι, P,R).

A policy (also called scheduler or strategy) is a function that maps paths to
distributions over actions π : Paths → D(A). Such policies are called history-based
and randomized. A policy is deterministic if it only maps to Dirac distributions
over actions and stationary (also called memoryless) if it only considers finite
paths of length one. Stationary deterministic (also called positional) policies are
written as π : S → A.

Given a policy π for an MDP M , the action choices in M are resolved,
resulting in a DTMC.

Definition 2 (Induced DTMC). Let M = (S, sι, A, P,R) be an MDP and
π : Paths → D(A) a policy. The induced DTMC is a tuple Mπ = (S∗, sι, Pπ, Rπ),
where S∗ is the (infinite) set of states, sι is the initial state, and the transition
and reward functions are defined as

Pπ(states(τ), states(τ) : s
′) =

∑
a∈A

π(τ)(a) · P (last(τ), a, s′),

Rπ(states(τ)) =
∑
a∈A

π(τ)(a) ·R(last(τ), a),

where τ ∈ Paths and states(τ) : s′ denotes concatenation of states(τ) with s′.

4 M. Suilen et al.

The induced DTMC Mπ has a unique probability measure PMπ
that follows from

the standard cylinder set construction, see, e.g., [14, 40]. For stationary policies,
the set of states of the induced DTMC coincides with that of the MDP and is
thus finite.

Objectives. The primary objective we consider in this paper is cumulative
reward maximization until reaching a state in some target set T ⊆ S [79]. We
shall simply call this objective reach-reward. The goal is to compute the expected
reward and an associated optimal policy for this objective in a given MDP M ,
which we formalize in the following subsection. Other common objectives include
reachability, discounted expected reward, reach-avoid, and general temporal logic
objectives expressed in (probabilistic) LTL [96] or CTL [52].

2.2 Classical Dynamic Programming

We review dynamic programming for MDPs with an infinite horizon undis-
counted reward objective in preparation for our discussion of robust dynamic
programming in Section 3. We define state and state-action value functions
V : S → R and Q : S × A → R, respectively. Dynamic programming updates
these value functions iteratively until the least fixed point is reached.

We preprocess the set of states S based on graph properties via the following
standard procedure [14] and Prism-semantics for reward objectives [41, 79]. Let
T ⊆ S be the target set of our objective, let S∞ ⊆ S be the set of states for
which there exists a policy that does not reach T almost-surely, and denote the
remaining states by S? = S \ (T ∪S∞). For all a ∈ A and target states s ∈ T , let
Q(s, a) = 0. Similarly, for all a ∈ A and s ∈ S∞, let Q(s, a) = ∞. For all other
states s ∈ S? and a ∈ A, we initialize the state-action values as Q(s, a) = 0. We
iteratively update the state and state-action values for all (s, a) ∈ S? ×A by:

V (n)(s) = max
a∈A

Q(n)(s, a), Q(n+1)(s, a) = R(s, a) +
∑
s′∈S

P (s, a, s′)V (n)(s′).

This process is also known as value iteration. When performing value iteration,
we do not need to keep track of the state-action values Q explicitly but instead
can directly compute the state-values V by setting V (s) = 0 for all s ∈ T , for
all s ∈ S∞, V (s) = ∞, and for all s ∈ S? we iteratively compute:

V (n+1)(s) = max
a∈A

{
R(s, a) +

∑
s′∈S

P (s, a, s′)V (n)(s′)

}
, (1)

The optimal value function V ∗ is the unique least fixed point of the Bellman
equation in Equation (1).

For many objectives in MDPs, such as reach-reward maximization, optimal
policies are stationary and deterministic, i.e., of type π : S → A [99]. An optimal

Robust MDPs: A Place Where AI and Formal Methods Meet 5

stationary deterministic policy π∗ that achieves value V ∗ can be extracted by
performing the following one-step dynamic programming procedure:

π∗(s) = argmax
a∈A

{
R(s, a) +

∑
s′∈S

P (s, a, s′)V ∗(s′)

}
.

Policy evaluation and improvement. As an alternative to value iteration,
MDPs can also be solved through policy iteration. Policy iteration consists of two
alternating steps: policy evaluation and policy improvement. Policy evaluation
is the process of computing the value of an MDP for a given policy, which
is also known as verifying or model checking the induced Markov chain from
Definition 2 [14]. The value of a stationary policy π : S → D(A) is computed by
the following Bellman equation:

V (n+1)
π (s) =

∑
a∈A

π(s, a) ·

(
R(s, a) +

∑
s′∈S

P (s, a, s′)V (n)
π (s′)

)
.

Alternatively, we may explicitly construct the induced DTMC (S, sι, Pπ, Rπ)
from Definition 2, whose set of states coincides with that of the MDP (and is
thus finite) as the policy π is stationary.

After evaluating the current policy π and determining its value function V ∗
π ,

the policy improvement step looks for a new policy π′ that outperforms the
current policy as follows. First, compute the state-action values under π as

Qπ(s, a) = R(s, a) +
∑
s′

P (s, a, s′)V ∗
π (s

′), ∀s ∈ S, a ∈ A(s).

The new policy π′ is extracted as π′(s) = argmaxa∈A Qπ(s, a) for all s ∈ S and
has a value at least as good as the previous policy, i.e., V ∗

π′ ≥ V ∗
π . This process

terminates as soon as the policy does not change anymore: π′ = π, after which
π is guaranteed to be optimal.

Modifications towards other objectives. Many other objectives, such as
reachability and discounted reward, can be solved by straightforward modifi-
cations to the Bellman equation. For maximizing the reachability probability
of a target set T ⊆ S, the reward function is removed, and the preprocessing
step is changed to set Q(s, a) = 1 for all (s, a) ∈ T × A, and Q(s, a) = 0 for all
(s, a) ∈ S∞×A. For discounted reward, the preprocessing is removed altogether,
and all state-action pairs are initialized with Q(s, a) = 0. The Bellman equation
from Equation (1) is modified for both cases, respectively:

Q(n+1)(s, a) =
∑
s′∈S

P (s, a, s′)V (n)(s′), (reachability)

Q(n+1)(s, a) = R(s, a) + γ
∑
s′∈S

P (s, a, s′)V (n)(s′). (discounted)

These modifications can also be directly applied to the state-value function V
from Equation (1).

6 M. Suilen et al.

Variations and other methods. Several variations to value iteration have
been introduced to resolve issues with accuracy and convergence, such as bounded
value iteration [18, 51], interval iteration [15] optimistic value iteration [54] and
sound value iteration [101]. As an alternative to dynamic programming, MDPs
can also be naturally encoded as a linear optimization problem which can be
solved in polynomial time for many objectives (among which: reach-reward, dis-
counted reward, reachability) [14]. An extensive experimental evaluation com-
paring several methods for solving MDPs can be found in [53].

3 Theory of Robust Markov Decision Processes

Having briefly recapped the basics of MDPs and dynamic programming, we now
move to robust MDPs. In the following, let X be a set of variables. An uncertainty
set U is a non-empty set of variable assignments subject to some constraints and
is defined as U = {f : X → R | constraints on f}.

Definition 3 (RMDP). A robust Markov decision process (RMDP) is a tuple
(S, sι, A,P, R), where the states S, initial state sι, actions A and reward function
R are defined as in standard MDPs, and P : U → (S × A ⇀ D(S)) is the
uncertain transition function.

Essentially, the uncertain transition function P is a set of standard transition
functions P : S ×A ⇀ D(S), and we may thus also write P ∈ P for a transition
function P that lies inside the uncertain transition function.

While strictly speaking not required, it is convenient to define the set of
variables X to have a unique variable for each possible transition of the RMDP,
such that X = {xsas′ | (s, a, s′) ∈ S × A × S}. The uncertainty set U is then
a set of variable assignments, i.e., functions that map each variable to a real
number, subject to constraints. These constraints may, for example, define each
variable’s allowed range and encode dependencies between different variables.
Note that we do not explicitly add a constraint that each state-action pair is
assigned a valid probability distribution but leave this implicit in the definition
of the uncertain transition function P. Alternatively, one can define RMDPs
by having the uncertain transition function assign a function over the variables
to each transition, effectively encoding the dependencies there, and having the
uncertainty set only define the range of each variable. This construction would,
however, require additional adjustments to move most of the discussion that
follows (most notably around rectangularity) from the uncertainty set to the
uncertain transition function.

Example 1. Figure 1 depicts an MDP and an RMDP. Below are three possible
uncertainty sets for this RMDP:

U1 = {x0a1 ∈ [0.1, 0.9] ∧ x0b1 ∈ [0.1, 0.9] ∧ x2a0 ∈ [0.1, 0.9]} ,
U2 = {x0a1 ∈ [0.1, 0.4] ∧ x0b1 = 2x0a1 ∧ x2a0 ∈ [0.1, 0.9]} , (2)
U3 = {x0a1 ∈ [0.1, 0.4] ∧ x0b1 = 2x0a1 ∧ x2a0 = x0a1} .

Robust MDPs: A Place Where AI and Formal Methods Meet 7

s0

s1

s2

a

b

0.60.4

0.9

0.1

1

0.3

0.7

(a) An MDP.

s0

s1

s2

a

b

x0a1x0a0

x0b1

x0b2

1

x2a2

x2a0

(b) An RMDP.

Fig. 1: An MDP and RMDP for Example 1.

The agent can choose between action a and b in state s0 and has singleton
choices in the other states. An adversary, nature, chooses variable assignments
for x0a0, x0a1, x0b1, x0b2, x2a0, and x2a2. As mentioned above, the restriction that
each state-action pair is assigned a valid probability distribution is implied by
the definition of the uncertain transition function P. We can therefore focus
purely on the choices of x0a0, x0b1, and x2a0.

The uncertainty sets give restrictions on the possible variable assignments.
In uncertainty set U1, variables x0a0, x0b1, and x2a0 can each be given any value
in the interval [0.1, 0.9]. A possible variable assignment in U1 is f1 = {x0a0 7→
0.3, x0b1 7→ 0.1, x2a0 7→ 0.8}. This variable assignment is not possible in uncer-
tainty sets U2 and U3 because of the dependencies between the variables. For
example, in uncertainty set U2, variable x0b1 must be assigned twice the value
of x0a0, whose value must now be in the interval [0.1, 0.4]. A possible variable
assignment in U2 is f2 = {x0a0 7→ 0.3, x0b1 7→ 0.6, x2a0 7→ 0.8}. We further
discuss the effect of dependencies in the uncertainty set in Section 3.1.

Objectives. For ease of presentation, we again focus on reach-reward maxi-
mization as an objective. However, as there is no single transition function, the
goal is now to compute an optimal robust policy, meaning optimal against the
worst-case probabilities in the model. What this worst-case exactly is, depends
on the semantics of the RMDP.

3.1 RMDP Semantics and Structural Assumptions

RMDPs can be seen as a game between the agent, who aims to maximize their
reward by selecting actions, and an adversarial nature, who aims to minimize
the agent’s reward by selecting variable assignments from the uncertainty set.
Nature hence simulates the worst-case transition function that the agent should
be robust against. This game interpretation can be fully formalized into a zero-
sum stochastic game (SG), as we shall discuss further in Section 4.2.

8 M. Suilen et al.

Intuitively, the game is constructed by adding a new set of states S × A for
nature that consists of tuples of the state-action pairs the agent was in. At each
such state-action pair, nature selects a variable assignment from the uncertainty
set that determines the transition function P ∈ P.

The precise rules of the game, and with that the semantics of RMDPs, that
determine which variable assignments nature is allowed to choose are controlled
by two factors: (1) possible dependencies between nature’s choice of the variable
assignments between different states or actions, known as (non)-rectangularity;
and (2) whether previous choices by nature restrict its future choices, known as
the static and dynamic uncertainty semantics. These two factors determine the
available policies, i.e., transition functions, for nature, and thus the worst-case
transition function that the agent must be robust against. We now discuss both
concerns in more detail.

Dependencies between the variables, or lack thereof, immediately follow from
the constraints used to define the uncertainty set U . Independence between states
or state-action pairs is commonly referred to as rectangularity. Informally, an
uncertainty set U is state-action or (s, a)-rectangular if there are no dependencies
between the constraints on the variables at different state-action pairs, and state
or s-rectangular if there are no dependencies between constraints on the variables
at different states. More formally, following standard notation [118]:

Definition 4 (Rectangularity). The uncertainty set U is (s, a)-rectangular if
it can be split into lower dimensional uncertainty sets U(s,a) that only relate to the
variables at the respective state-action pair (s, a), such that their product forms
the whole uncertainty set: U =×(s,a)∈S×A

U(s,a). Similarly, an uncertainty set
U is s-rectangular if U can be split into lower dimensional uncertainty sets U(s)

that only relate to variables at state s, such that U =×s∈S
U(s).

Example 2. We revisit the RMDP in Figure 1b and the three possible uncer-
tainty sets in Equation (2). The set U1 is an (s, a)-rectangular uncertainty set, as
each variable influences the transition probabilities in only one state-action pair.
In other words, there are no dependencies between constraints on the variables
at different state-action pairs. In U2 the transition probabilities for state-action
pairs ⟨s0, a⟩ and ⟨s0, b⟩ both depend on variable x0a1. Therefore, U2 no longer
has independence between actions but is still s-rectangular. The final uncertainty
set, U3, has dependencies between all variables and is, therefore, non-rectangular.

The type of rectangularity has, together with whether the uncertainty set is
convex or not, direct consequences for the computational complexity of policy
evaluation, i.e., computing the value for a given policy, and the type of policy
that is sufficient to be optimal for discounted reward objectives under static
uncertainty semantics. These results are due to Wiesemann et al. [118] and
presented in Table 1.

Under s-rectangularity, an additional assumption is made that nature can
no longer observe the last action of the agent. This assumption is mentioned ex-
plicitly in [58, 59, 118] but often left implicit. Note that this assumption on the

Robust MDPs: A Place Where AI and Formal Methods Meet 9

s0

s1

s2

s3

s4

a

b

x0a1

x0a2

x0b1

x0b2

R = 50

R = 100

1

1

Fig. 2: An RMDP for Example 3.

last-action observability does influence the optimal policy and value, as demon-
strated by Example 3. The question of last-action observability corresponds to
the difference between agent first and nature first semantics in [17].

Example 3 (Last-action observability). Figure 2 depicts an RMDP. Below is an
s-rectangular uncertainty set:

U = {x0a1 ∈ [0.1, 0.9] ∧ x0a1 = x0b2} .

Whether or not nature observed the agent’s last action determines whether or
not nature has to take the dependency between x0a1 and x0b2 into account. If
nature observes the agent’s last action, it can achieve an expected reward of 55
by choosing the maximal x0a1 = x0b2 = 0.9 when observing action a, and by
choosing the minimal x0a1 = x0b2 = 0.1 when observing action b. If nature does
not have this information, it has to account for both possible agent actions. The
best course of action for nature is then to choose x0a1 = x0b2 = 0.5, leading to
an expected reward of 75 regardless of the agent’s choice.

Static and dynamic uncertainty semantics. The second point about
RMDP semantics is whether nature’s previous choice at a certain state-action
pair should restrict its possible future choices. To that end, Iyengar [64] intro-
duced the notions of static and dynamic uncertainty semantics. Static uncer-
tainty semantics require nature to play a ‘once-for-all’ policy: if the state-action
pair is revisited, nature is required to use the same variable assignment from
the uncertainty set as before. In contrast, under dynamic uncertainty semantics
nature plays ‘memoryless’ and is free to choose any variable assignment at every
step. Simultaneous but independently, Nilim and El Ghaoui introduced these
semantics as time-stationary and time-varying uncertainty models [93]. Note
that these notions have only been introduced for (s, a)-rectangular RMDPs and
are only of concern in cyclic, infinite horizon models. Interestingly, Iyengar [64]
also shows that the distinction between static and dynamic uncertainty does not
matter for reward maximization in (s, a)-rectangular RMDPs. A similar result
was established for reachability in interval Markov chains in [26]. We state the
result in general in the following lemma.

10 M. Suilen et al.

Uncertainty set & rectangularity Optimal policy class Complexity

(s, a)-rectangular Stationary, deterministic Polynomial
Convex s-rectangular Stationary, randomized Polynomial

non-rectangular History, randomized NP-hard

(s, a)-rectangular Stationary, deterministic NP-hard
Nonconvex s-rectangular History, randomized NP-hard

non-rectangular History, randomized NP-hard

Table 1: Policy classes that are sufficient and computational complexity of policy
evaluation for discounted reward RMDPs with various types of uncertainty sets,
as identified by Wiesemann et al. [118] assuming static uncertainty semantics.

Lemma 1 (Static and dynamic uncertainty coincide [64]). Consider an
(s, a)-rectangular RMDP where both agent and nature are restricted to stationary
policies, i.e., policies of type π : S → D(A). Let πst be the optimal policy under
static uncertainty, and πdy be the optimal policy under dynamic uncertainty se-
mantics. The robust values of these policies coincide, i.e., Vπst = Vπdy .

3.2 Robust Dynamic Programming

In this section, we discuss how value iteration and policy iteration can be adapted
rather straightforwardly for (s, a)-rectangular RMDPs.

Remark 1 (Graph preservation). For computational tractability of robust dy-
namic programming, especially of objectives that rely on preprocessing the un-
derlying graph, such as the reach-reward objective we consider, it is often as-
sumed that the uncertainty set should be graph preserving. That is, all variable
assignments in the uncertainty set U imply the same topology for the under-
lying graphs. Hence, if there exists some P ∈ P with P (s, a, s′) = 0 for some
transition, then all other P ′ ∈ P should also have P ′(s, a, s′) = 0.

Recall Equation (1), describing value iteration in a standard MDP. In an
RMDP, we do not have access to a precisely defined transition function P : S ×
A ⇀ D(S). Instead, we have the uncertain transition function P that defines a
set of such transition functions P ∈ P.

Robust value iteration adapts value iteration by accounting for the worst-
case P ∈ P at each iteration. This is achieved by replacing the inner sum∑

s′∈S P (s, a, s′)V n(s′) by an inner minimization problem:

V (n+1)(s) = max
a∈A

{
R(s, a) + inf

P∈P

{∑
s′∈S

P (s, a, s′)V (n)(s′)

}}
. (3)

Robust MDPs: A Place Where AI and Formal Methods Meet 11

We write V instead of V , which is now the worst-case or pessimistic value of the
RMDP. That is, V is a lower bound on the value the agent can possibly achieve.
Best-case or optimistic interpretations also exist, which we discuss later.

Under our assumption that the uncertainty set U is (s, a)-rectangular, we
may replace the global minimization problem infP∈P by a local one:

V (n+1)(s) = max
a∈A

{
R(s, a) + inf

P (s,a)∈P(s,a)

{∑
s′∈S

P (s, a, s′)V (n)(s′)

}}
. (4)

If, additionally, the uncertainty set U is convex, for instance, because all con-
straints are linear, the inner minimization problem can be solved efficiently via,
e.g., convex optimization methods. Hence, robust value iteration extends regu-
lar value iteration by solving an additional inner problem at every iteration. In
general, the computational tractability of RMDPs primarily relies on whether
or not this inner problem is efficiently solvable.

As discussed in Section 3.1 and shown in Table 1, stationary deterministic
policies are sufficient for optimality in (s, a)-rectangular RMDPs with convex
uncertainty sets. Thus, an optimal robust policy π∗ can again be extracted via

π∗(s) = argmax
a∈A

{
R(s, a) + inf

P (s,a)∈P(s,a)

{∑
s′∈S

P (s, a, s′)V ∗(s′)

}}
. (5)

We underline the policy π∗ to denote that it is an optimal robust policy, as we
later also touch upon optimal optimistic policies, which we shall denote by π∗.

Robust policy iteration [64, 76] extends standard policy iteration in a similar
way. Policy evaluation, i.e., model checking the induced robust Markov chain, is
done by performing robust dynamic programming for some stationary policy π:

V (n+1)
π =

∑
a∈A

π(s, a) ·

(
R(s, a) + inf

P (s,a)∈P(s,a)

{∑
s′∈S

P (s, a, s′)V (n)
π (s′)

})
.

Here, we again use that our uncertainty set is (s, a)-rectangular and convex to
ensure an efficiently solvable inner minimization problem. After convergence, we
use the robust state values under the current policy V ∗

π to compute the robust
state-action values Q

π
:

Q
π
(s, a) = R(s, a) + inf

P (s,a)∈P(s,a)

{∑
s′∈S

P (s, a, s′)V ∗
π(s

′)

}
.

The policy improvement step is performed on these robust state-action values:

π′(s) = argmax
a∈A

Q
π
(s, a).

The process repeats until the policy stabilizes, i.e., π′ = π, after which an optimal
robust policy π∗ = π′ has been found.

12 M. Suilen et al.

Optimistic dynamic programming. Instead of assuming the worst-case from
the uncertainty set, we may also assume the agent and nature play cooperatively.
That is, both players attempt to maximize the agent’s reward, and we instead
obtain optimistic values V that are computed in the same way as the pessimistic
values were, except that the inner minimization problem from Equation (3) is
now replaced by an inner maximization problem:

V
(n+1)

(s) = max
a∈A

{
R(s, a) + sup

P∈P

{∑
s′∈S

P (s, a, s′)V
(n)

(s′)

}}
.

The optimal optimistic policy π∗ is again extracted by one final step of dynamic
programming, as in Equation (5):

π∗(s) = argmax
a∈A

{
R(s, a) + sup

P∈P

{∑
s′∈S

P (s, a, s′)V
∗
(s′)

}}
.

Convex optimization. Since dynamic programming approaches for MDPs ex-
tend with relative ease to RMDPs, especially in the case of (s, a)-rectangular
uncertainty sets, a natural question to ask is whether the same goes for convex
optimization approaches, and in particular the linear programming (LP) formu-
lation for MDPs. As Iyengar [64] already notes, however, that is not the case, and
the natural analogue of the LP of MDPs for RMDPs yields, in fact, a noncon-
vex optimization problem. In contrast, the optimistic setting does yield tractable
LPs via standard dualization techniques, which have been applied to solve PCTL
objectives in (s, a)-rectangular RMDPs with convex uncertainty sets [98].

Methods for s-rectangular RMDPs. For s-rectangular RMDPs, dynamic
programming does not extend so straightforwardly, and a lot of research has fo-
cused on finding efficient Bellman operators for various types of uncertainty sets.
Most notably, s-rectangular L1-MDPs [58], but also s-rectangular uncertainty
sets defined by an L∞-norm [16] or ϕ-divergences [60]. In [59], a policy iteration
algorithm was introduced, while [42, 77, 115] employ policy gradient techniques.

Other objectives. The RMDP literature primarily focuses on either finite hori-
zon or discounted infinite horizon reward maximization. Adaptation to reacha-
bility objectives, such as the reach-reward maximization we consider, is usually
straightforward, provided the graph preservation property of Remark 1 is met.
Temporal logic objectives can be reduced to such reach-reward objectives via
a product construction [119]. Finally, recent works study average reward (also
known as mean payoff) and Blackwell optimality in RMDPs [25, 48, 49]. Aver-
age reward objectives consider the problem of maximizing the average reward
collected in t time steps when limt→∞, and Blackwell optimality balances the
standard discounted reward objective by also accounting for long-term reward.
A policy is Blackwell optimal if it is optimal for all discount factors sufficiently
close to one, i.e., all γ ∈ [γ∗, 1) [99].

Robust MDPs: A Place Where AI and Formal Methods Meet 13

s0

s1

s2

a

b

[0.1, 0.9][0.1, 0.9]

[0.1, 0.9]

[0.1, 0.9]

1

[0.1, 0.9]

[0.1, 0.9]

Fig. 3: An example IMDP.

3.3 Well-Known RMDP Instances

We review common types of RMDPs often used in formal verification and AI,
namely interval MDPs, L1-MDPs, and multi-environment MDPs. We provide a
more commonly used tuple definition for each and explain how it fits the general
RMDP framework.

Interval MDPs

Interval MDPs (IMDPs) [93], also referred to as bounded-parameter MDPs [46]
or uncertain MDPs [111, 119], are a special instance of (s, a)-rectangular RMDPs.

Definition 5 (IMDP). An interval MDP (IMDP) is a tuple (S, sι, A, P̌ , P̂ , R),
where P̌ : S × A × S ⇀ [0, 1] and P̂ : S × A × S ⇀ [0, 1] are two transition
functions that assign lower and upper bounds to each transition, respectively,
such that P̌ ≤ P̂ and for all transitions P̌ (s, a, s′) = 0 ⇐⇒ P̂ (s, a, s′) = 0.

Our definition of an IMDP requires that a transition either does not exist (where
both P̌ and P̂ are zero) or is assigned an interval with a non-zero lower bound,
thus ensuring graph preservation for tractable (standard) robust dynamic pro-
gramming (Remark 1). For IMDPs, however, the statistical model checking lit-
erature offers solutions to circumvent the need for this requirement [6, 35].

IMDPs have a constraint that each state-action pair is required to have a
valid probability distribution. An IMDP is an RMDP (S, sι, A,P, R) where the
uncertainty set is of the form U = {f : X → R | ∀(s, a, s′) ∈ S×A×S, f(xsas′) ∈
[i, j]sas′ ⊆ [0, 1] ∧ ∀(s, a) ∈ S × A,

∑
s′∈S f(xsas′) = 1}. An example IMDP is

depicted in Figure 3. Note that this IMDP is precisely the RMDP from Figure 1
with uncertainty set U1, see Example 1.

IMDPs have the nice property that their inner problem can be solved effi-
ciently via a bisection algorithm [93], more explicitly given for interval DTMCs
in [74] and presented in Algorithm 1. This algorithm sorts the successor states

14 M. Suilen et al.

Algorithm 1 Algorithm to solve the IMDP inner problem infP∈P(s,a)

1: Sort S′ = {s′1, . . . , s′m} according to V (n) ascending such that V (n)(s′i) ≤ V (n)(s′i+1)
2: ∀s′i ∈ S′: P (s, a, s′i)← 0
3: budget = 1−

∑
s′∈S′ P̌ (s, a, s′)

4: i← 1
5: while budget − P̌ (s, a, s′i) + P̂ (s, a, s′i) < 0 do
6: P (s, a, s′i)← P̂ (s, a, s′i)
7: budget ← budget − P̌ (s, a, s′i) + P̂ (s, a, s′i)
8: i← i+ 1
9: end while

10: P (s, a, s′i)← budget + P̌ (s, a, s′i)
11: ∀j ∈ {i+ 1, . . . , n}: P (s, a, s′j)← P̌ (s, a, s′j)
12: return P (s, a, ·)

S′ = {s′1, . . . , s′m} of state-action pair (s, a) by the current value V (n) in ascend-
ing order. A variable budget indicates how much probability mass is still free to
assign when we start with assigning the lower bounds to each successor state.
Successor states occurring at low indices, i.e., with low values V (n), will be as-
signed the upper bound of the transition leading to them until the budget runs
out. One state will get a remaining budget added to its lower bound, which is
the first state for which it is no longer possible to replace the lower bound by the
upper bound, ensuring the transition probability lies within its interval. The re-
maining successor states, with high values, will be assigned the lower bounds, as
the budget for replacement is now zero. As a result, transition function P (s, a, ·)
forms a valid probability distribution.

For optimistic dynamic programming, i.e., the case where the inner problem
is given by the supremum over the uncertainty set instead of the infimum, we only
need to reverse the order in which the states are sorted in line 1 of Algorithm 1.

L1-MDPs

L1-MDPs [109] are another instance of (s, a)-rectangular RMDPs. Where IMDPs
put an error margin around each individual transition probability, L1-MDPs put
an error margin around each probability distribution at a state-action pair.

Definition 6 (L1-MDP). An L1-MDP is a tuple (S, sι, A, P̃ , R, d), where S,
sι ∈ S, A and R are as for standard MDPs, P̃ : S × A ⇀ D(S) is the centre
transition function and d : S×A → R≥0 is a distance function assigning an error
bound to each state-action pair.

An L1-MDP is an RMDP (S, sι, A,P, R) where the uncertainty set is given by
U = {f : X → R | ∀(s, a) ∈ S × A,

∑
s′∈S |f(xsas′) − P̃ (s, a, s′)| ≤ d(s, a)},

where d(s, a) bounds the L1-error between the reference distribution P̃ (s, a) and
all other distributions P (s, a) ∈ P(s, a).

Similar to IMDPs, the inner optimization problem for L1-MDPs can be solved
efficiently, again by ordering the successor states along their current value and

Robust MDPs: A Place Where AI and Formal Methods Meet 15

Algorithm 2 Algorithm to solve the L1-MDP inner problem infP∈P(s,a)

1: Sort S′ = {s′1, . . . , s′m} according to V (n) ascending such that V (n)(s′i) ≤ V (n)(s′i+1)
2: P (s, a, s′m)← max{0, P̃ (s, a, s′m)− d(s,a)/2}
3: ∀s′i ̸= s′m ∈ S′: P (s, a, s′i)← P̃ (s, a, s′i)
4: i← 1
5: while

∑m
j=1 P (s, a, s′j) < 1 do

6: P (s, a, s′i)← min{1, 1 +
∑

j∈{1,...,m}\{i} P (s, a, s′j)}
7: i← i+ 1
8: end while
9: return P (s, a, ·)

assigning low-ranking states the most possible probability mass and high-ranking
states the least probability mass. Specifically, the state with the highest value
s′m gets probability mass d(s,a)/2 subtracted from its estimate P̃ (s, a, s′m), and
the remaining states from low to high get added probability mass until a total of
d(s,a)/2 has been added to these states, ensuring a valid probability distribution.
This algorithm is the dual of the algorithm for computing the optimistic inner
problem supP∈P(s,a) of [109] and explicitly given in Algorithm 2.

Multi-Environment MDPs

Multi-environment MDPs (MEMDPs) [102] model discrete uncertainty. Specif-
ically, a MEMDP is a finite set of MDPs that share the same states, actions,
and reward function and only differ in their transition functions. Each MDP in
a MEMDP is called an environment.

Definition 7 (MEMDP). A multi-environment MDP (MEMDP) is a tuple
(S, sι, A, {Pi}i∈I , R) where S, sι, A,R are as for MDPs, and {Pi : S × A ⇀
D(S)}i∈I is a set of I = {1, . . . , n} transition functions that are consistent with
each other in terms of enabled actions: ∀(s, a) ∈ S × A,∀i, j ∈ I, Pi(s, a) =
⊥ ⇐⇒ Pj(s, a) = ⊥.

A MEMDP is an RMDP (S, sι, A,P, R) where the uncertainty set U is discrete:
|U| ̸= ∞, and P = {Pi}i∈I . In general, MEMDPs are non-rectangular and follow
static uncertainty semantics, as nature’s choices at each state-action pair must
be consistent with, and equivalent to, choosing a single Pi ∈ P at the start. As
the uncertainty set is discrete, it is also nonconvex. Hence, optimal policies in
MEMDPs need to be history-based and randomized; see Table 1.

MEMDPs have been studied in both formal methods and AI. In AI, MEMDPs
have caught interest because of their applications in robotics, naturally mod-
elling several possible worlds a robot may act in [104]. Besides being RMDPs,
MEMDPs are also a subclass of partially observable MDPs (POMDPs), where
the agent does not directly observe the states [71]. In particular, a MEMDP can
be transformed into a POMDP by taking the disjoint union of all environments
and using the partial observability to hide in which environment the agent is

16 M. Suilen et al.

playing [23]. As a result, quantitative objectives such as reward maximization
may be solved by casting the MEMDP to a POMDP and using off-the-shelf
POMDP methods.

In formal methods, emphasis has been given to complexity results, espe-
cially for almost-sure objectives, i.e., objectives that need to be satisfied with
probability one. In [102], it is shown that almost-sure parity objectives are
in P for MEMDPs of two environments, while [114] shows that already for
almost-sure reachability, an arbitrary number of environments leads to PSPACE-
completeness. Recent work completes the complexity landscape for qualitative
objectives in MEMDPs by establishing PSPACE-completeness for almost-sure
parity and Rabin objectives [112]. In contrast, almost-sure reachability is al-
ready EXPTIME-complete for POMDPs [24], and almost-sure parity or Rabin
objectives are undecidable [12], showing that MEMDPs are an interesting class
worth investigating.

4 Connections to Other Models

In the following, we summarize the connections between RMDPs and some other
commonly used models in formal methods and AI. In particular, we highlight the
connections with parametric MDPs (Section 4.1), stochastic games (Section 4.2),
robust POMDPs (Section 4.3), and a range of models that assume additional
distributional information over the parameters (Section 4.4).

4.1 Parametric MDPs

Our general definition of RMDPs as given in Definition 3 closely resembles that
of parametric MDPs (pMDPs) [67]. Indeed, both models assign variables (pa-
rameters) to the transitions instead of concrete probabilities, effectively defining
a set of possible MDP models. Typically, pMDPs are defined more generally and
allow for a rational function over two polynomials on the transitions, encoding
dependencies between transitions directly by having two of these rationals share
some of the parameters.

The parameter synthesis problem [37] typically considered in pMDPs is, how-
ever, different from the problem of computing robust policies and values in
RMDPs. Parameter synthesis asks whether there exists a variable assignment
such that for all policies, a certain (reachability) specification is met. That is,
the quantifiers are reversed compared to RMDPs.

Common techniques for parameter synthesis in pMDPs or pMCs include con-
vex optimization approaches [30, 31, 33], parameter lifting [100], or exact com-
putation of the solution function [69]. Tool support for pMDPs can be found
in, e.g., Storm [57] or PROPhESY [36]. Parameter synthesis in pMDPs with
memoryless deterministic policies is known to be NP-complete for a fixed number
of parameters and ETR-complete for arbitrary numbers of parameters [70].

Robust MDPs: A Place Where AI and Formal Methods Meet 17

4.2 Stochastic Games

The connection between stochastic games (SG) and RMDPs has been noted
many times in the RMDP literature. See, e.g., [47, 49, 64, 93, 118, 121]. The most
explicit game interpretations are given by [64, 93], which both link reward maxi-
mization in (s, a)-rectangular RMDPs to turn-based zero-sum stochastic games.
This equivalent game is constructed by adding, in addition to the states S, states
that correspond with tuples ⟨s, a⟩ of states s ∈ S and actions a ∈ A. Then, the
agent controls the original states, and nature controls the tuple states. In a state
s, the agent chooses an action a, upon which the game transitions determinis-
tically to the nature state ⟨s, a⟩. In this state ⟨s, a⟩, nature chooses a variable
assignment. Given a nature state ⟨s, a⟩ and variable assignment f ∈ U , the game
transitions stochastically to an agent state s′ according to P(f)(s, a, s′). The
reward function assigns the same value as the reward function of the RMDP in
the agent states and zero in nature states.

Changes in the assumptions on nature or the objective require some changes
in the translation to stochastic games. Paper [118] mentions that a similar con-
struction follows for s-rectangular RMDPs, but does not describe the actual
game. As s-rectangular RMDPs assume that nature chooses variable assign-
ments without information of the agent’s latest action, such games would have
to either be partially observable or concurrent. An average reward objective in
RMDPs can be linked to zero-sum mean pay-off games [49].

A key difference between RMDPs and SGs is that in RMDPs, it is typically
assumed that nature plays memoryless, whereas in SGs, both players are allowed
to use history. [49] shows that the assumption of playing against a memoryless
nature is nonrestrictive for discounted reward maximization against a convex
and compact s-rectangular uncertainty set.

4.3 Robust POMDPs

Partially observable MDPs (POMDPs) are an extension of MDPs where it is
assumed that the agent cannot directly observe the state. Instead, the agent
receives observations about the state and, optionally, the last action [71]. The
same extension to the partially observable setting can be made for robust MDPs,
resulting in robust POMDPs (RPOMDPs).

Computing optimal policies for POMDPs with infinite horizon objectives is
undecidable [87]. Since standard POMDPs are trivially included in RPOMDPs,
all decision problems for RPOMDPs are at least as hard as for POMDPs. Ex-
isting approaches for policy computation in RPOMDPs use convex optimization
techniques [34, 110], robust versions of value iteration [94], or recurrent neural
networks to learn policies [43]. Other approaches exist but either consider a differ-
ent notion of optimal policy, such as optimal for one instance in the uncertainty
set [63] or optimal given a pessimism level [106], or have additional assumptions
on the uncertainty set, such as uncertainty in the observation function only [22]
or existence of a distribution over the uncertainty set [92]. It is shown by [17] that
an RPOMDP with an uncertain state-action-based observation function can be

18 M. Suilen et al.

transformed to an RPOMDP with a deterministic state-based observation func-
tion using a state space expansion. This transformation allows research to focus
on RPOMDPs with uncertainty only in the transition function (and not in the
observation function).

Paper [17] defines formal game semantics for RPOMDPs, linking RPOMDPs
to turn-based zero-sum partially observable stochastic games (POSGs) [38].
They note that the existing literature on RPOMDPs makes implicit assump-
tions about uncertainty, which leads to semantically different POSGs and, hence,
RPOMDPs with different optimal values. In particular, [17] shows that static
and dynamic uncertainty semantics in RPOMDPs no longer coincide, even for
(s, a)-rectangular uncertainty sets. For infinite horizon discounted reward max-
imization, [94] shows that static and dynamic uncertainty in RPOMDPs do
still coincide under (s, a)-rectangularity and when nature plays stationary, i.e.,
without memory. Finally, [17] shows that nature’s ability to observe the agent’s
last-played action influences the optimal value in both RPOMDPs and RMDPs,
see also Section 3.1.

4.4 Modelling Likelihoods of Transition Functions

Thus far, we have discussed models that capture sets of possible transition func-
tions and the associated game behaviour of these models. However, what if cer-
tain transition functions are more likely than others? These likelihoods may
result from different experts which value they would assume for, e.g., transition
probabilities in a given MDP [3]. The natural question is how we can incorpo-
rate this prior knowledge about the likelihood of different transition functions.
One option is to neglect the likelihood completely and model the problem as
an RMDP. However, the standard robust analysis of this RMDP (as discussed
in section 3) may lead to overly conservative results. In this section, we explore
approaches that aim to mitigate this conservatism and rigorously incorporate
likelihoods over transition functions.

We can formalize the setting above by modelling the prior knowledge as a
probability distribution over the transition function P of an RMDP. Although
equivalent, it is often more convenient to model this setting as a pMDP to-
gether with a distribution over the parameter values. As such, these models
have been named uncertain parametric MDPs (upMDPs) in the literature [7]. A
common verification question is then to obtain a solution “that is robust against
(for example) at least a 99% probability mass of the distribution.” As a concrete
application, consider flying a drone in an environment with uncertain weather
conditions. We model this environment as a parametric MDP, where the pa-
rameter values are determined by the actual weather conditions. From historical
weather data, we can derive a probability distribution for the weather conditions
(and thus the transition probabilities) on a random day. A natural verification
question is then: “What is the probability that we can safely fly the drone without
crashing on a random day?”

One important question for upMDPs is whether policies can depend on the
realization of the (uncertain) parameters. For the example above, one possible

Robust MDPs: A Place Where AI and Formal Methods Meet 19

assumption is that we can first observe the actual weather conditions, and then
can compute an optimal policy based on this weather. This setting has first been
investigated by [32] and in more detail by [7]. The other possible assumption is
that we cannot observe the actual weather first and instead need to compute a
single policy that is robust against all weather conditions. This setting has been
considered by [103] for upMDPs, and also relates to so-called Bayes-adaptive
MDPs which are commonly used in reinforcement learning [50, 29, 105]. A vari-
ant where parameter values cannot be observed and thus must be learned has
been studied by [5]. The latter setting is arguably more difficult to solve due
to dependencies between the policies for different weather conditions. However,
which of the two assumptions is more appropriate depends on the context.

In practice, it may be unrealistic to have access to an explicit representation
of the distributions over transition functions. For example, we may have prior
knowledge in the form of a finite set of expert demonstrations [97], each of which
leads to an MDP with different transition probabilities. These demonstrations
can be interpreted as samples from an underlying distribution over the parame-
ters. This setting has motivated sampling-based verification approaches for up-
MDPs, such as [32, 103]. A similar setting for continuous-time Markov chains is
studied by [8, 103]. Generally, these approaches assume access to a finite set of
parameter samples and aim to compute a solution with statistical (PAC-style)
guarantees on its performance on yet another sample from the underlying dis-
tribution. For example, [7] obtains PAC guarantees by techniques from scenario
optimization, which is a methodology to deal with stochastic convex optimization
in a data-driven fashion [19, 20].

5 Robust MDPs in Practice: Applications and Tools

In this section, we review two key applications of RMDPs, namely in learning
and abstraction methods, and discuss the current state of tool support.

5.1 Learning

A natural application of RMDPs in both formal methods and AI comes in learn-
ing MDPs from data. Naive estimation of the transition probabilities from a
finite amount of observations introduces estimation errors. When following a
path through a learned MDP, these errors may accumulate, leading to poten-
tially significant differences in values (and possibly optimal policies) between the
learned model and the true underlying MDP [47, 88]. To account for these errors,
confidence intervals around the probabilities or distributions may be computed
via, e.g., Hoeffding’s inequality [61] or the Weissman bound [116], and included
in the learned model, yielding an RMDP. Resulting policies and values can then
be given a probably approximately correct (PAC) guarantee.

Learning MDPs with PAC guarantees has been studied extensively in both
formal methods and AI, namely in the form of statistical model checking (SMC)
and reinforcement learning (RL). PAC-SMC is often applied when the original

20 M. Suilen et al.

MDP is too large to fit into memory and can mitigate the state-explosion problem
(at the cost of precision) when verifying infinite or indefinite horizon objectives.
These methods either build IMDPs by deriving confidence intervals through
Hoeffding’s inequality or construct lower and upper Bellman equations that are
updated directly, implicitly performing robust dynamic programming [6, 35].

In contrast, RL is primarily concerned with finding an optimal policy that
maximizes discounted or finite horizon reward objectives through efficient ex-
ploration [113]. RMDPs, and specifically L1-MDPs based on the aforementioned
Weissman bound, are used to achieve PAC guarantees on the learned model [108,
109] or efficient exploration through optimistic policies [66].

It should be noted that the PAC-MDP framework of [108] explicitly requires
the sample efficiency of a learning algorithm to be polynomial in the input to
be considered (efficiently) PAC. As a consequence, any non-finitary objective is
not PAC-learnable following the PAC-MDP framework, and PAC-SMC methods
are said to give anytime or best-effort guarantees [122]. Recent work investigates
techniques to reduce the amount of data required to achieve PAC guarantees in
both SMC and RL [90, 117].

Two subfields of RL that also commonly use RMDPs are the offline RL prob-
lem of safe policy improvement (SPI) and robust RL. In SPI, only a previously
collected data set and the behaviour policy that collected it are given, and no
further data collection is allowed. The SPI problem is to compute a new policy
that outperforms the behaviour policy with a PAC-style guarantee. Solutions to
this problem often construct (implicit) L1-MDPs [44, 82, 107]. Robust RL is a
broad field that considers RL under various kinds of uncertainty, disturbances,
or structural changes perturbations, such as non-stationary environments [111].
We refer to the following recent survey for more on robust RL [91].

Aleatoric and epistemic uncertainty. Uncertainty that may be reduced by
collecting more data, as encountered in these learning settings, is commonly
referred to as epistemic uncertainty [11, 62]. Uncertainty that cannot be reduced
but is known to be inherent to the system, such as the probability distributions in
a standard MDP, is called aleatoric uncertainty. We emphasize that an RMDP’s
uncertainty set is not necessarily epistemic and that whether the uncertainty
may be reduced by collecting more data is an additional assumption about the
specific scenario in which the RMDP is used.

5.2 Abstraction

RMDPs are commonly used to model abstractions of more complex systems. The
general idea is that states of a (non-robust) MDP can be aggregated by overap-
proximating the transition probabilities in the uncertainty set of an RMDP [65].
This idea at least dates back to [83] and has already been identified as an in-
teresting application of RMDPs in [46]. Since then, such abstraction techniques
have been used across areas, including formal methods, control theory, and AI.

First of all, game-based abstraction of MDPs in the form of IMDPs has
been studied by [75, 78]. So-called 3-valued abstractions of Markov chains are

Robust MDPs: A Place Where AI and Formal Methods Meet 21

developed by [39], who abstract the system into an interval Markov chain whose
labelling function has three possible values (true, false, or don’t know). A similar
approach for 3-valued abstraction of CTMCs is presented by [73]. Probabilistic
bisimulation of IMDPs to reduce the number of states is considered by [56].

In control theory, models typically have continuous state and action spaces. A
popular approach to synthesizing provably correct control policies is to generate
a finite-state abstraction of the continuous model [1, 2, 81]. Under an appropriate
simulation relation, satisfaction guarantees of temporal logic formulae carry over
from the abstract to the continuous model [45]. Various papers generate IMDP
abstractions of stochastic systems [9, 10, 28, 85], and tool support has been de-
veloped by, e.g., [21, 120]. Similar to game-based abstraction, the general idea is
to use the probability intervals to capture uncertainties and abstraction errors.
For further details on abstractions in control, we refer to the survey [84].

5.3 Tool Support

General-purpose tool support for RMDPs is still relatively limited compared
to other models. The probabilistic model checkers Prism [80] and Storm [57]
both support basic IMDP model checking, with Prism’s provision slightly more
advanced, e.g., in terms of user support for modelling. Storm, on the other
hand, has more advanced support for pMDPs, and has been used as a back-end
in several of the previously discussed works, e.g., [7, 8, 33, 110]. Other IMDP tools
have also begun to be developed, such as the Julia-based IntervalMDP.jl [89].

6 Robust MDPs in the Future

We conclude this survey with some currently active directions for the develop-
ment and application of RMDPs.

Tools, Benchmarks, and Evaluation

As mentioned in Section 5.3, tool support for RMDPs is still young, with a
particular focus on IMDPs. Extending support to L1-MDPs, a larger range of
objectives including discounted reward and temporal logic objectives, and pos-
sibly s-rectangular RMDPs, would give further impulse to the development of
new techniques exploiting the theory of RMDPs in, e.g., learning or abstraction.

Alongside tools, we also see a clear need for a rich benchmark set to evaluate
and compare RMDP algorithms and tools. Initiatives such as a rich comparison
of algorithms [53] or extensive (tool) benchmarking on a standardized set of
models [4, 55] could shed light on the differences between various methods in
theory and practice.

Notably, and contrary to what has been experimentally verified for MDPs [53],
robust policy iteration seems to be the preferred way to solve RMDPs [59, 76].
The argument is that it performs fewer inner minimization problems compared
to robust value iteration, which, depending on the shape of the uncertainty set,

22 M. Suilen et al.

may become computationally expensive. An extensive experimental evaluation
confirming this hypothesis is, to the best of our knowledge, missing as of yet.

Algorithmic and Theoretical Advances in Multi-Environment MDPs

In Section 3.3, we already identified MEMDPs as an interesting class of RMDPs
as they naturally model a finite set of possible MDPs and may also be viewed
as POMDPs with additional structure. Complexity results on almost-sure objec-
tives show how this additional structure can be exploited to build computation-
ally more efficient algorithms than their (general) POMDP counterpart [114]. We
believe this direction of research should be continued and further investigated
for quantitative objectives such as expected reward.

Uncertainty Assumptions in RMDPs

While the type of rectangularity assumptions about the uncertainty set are often
made explicit, other assumptions, such as static and dynamic uncertainty and
the type of nature policies considered, are mostly left implicit. In various cases,
it is known that these assumptions do not influence the optimal policies and val-
ues and can, therefore, be ignored [49, 64], as also discussed in section Sections 3
and 4. However, many combinations of assumptions are yet to be investigated.
[17] shows cases where assumptions on the uncertainty set influence the opti-
mal policy and value for reward maximization in RPOMDPs. Therefore, richer
(temporal logic) objectives for RMDPs may likely be subject to a similar influ-
ence. We believe expanding the knowledge of whether and when assumptions on
the RMDP influence the optimality of policies and values is an interesting and
necessary direction for future research.

7 Conclusion

We presented a short survey on robust MDPs, from the basic foundations, includ-
ing semantics and solution methods, to common applications in formal methods
and AI. We discussed RMDP semantics and how dynamic programming can be
extended to robust dynamic programming in the (s, a)-rectangular case. Finally,
we summarized the current and (possibly) future position RMDPs take within
the formal methods and AI communities in terms of connections with other
models and applications.

Acknowledgements

This work was supported by the ERC Starting Grant 101077178 (DEUCE)
and the European Union’s Horizon 2020 research and innovation programme
(FUN2MODEL, grant agreement No. 834115), as well as the NWO grants
OCENW.KLEIN.187 and NWA.1160.18.238 (PrimaVera).

Robust MDPs: A Place Where AI and Formal Methods Meet 23

References

1. Abate, A., Prandini, M., Lygeros, J., Sastry, S.: Probabilistic reachability and
safety for controlled discrete time stochastic hybrid systems. Automatica 44(11),
2724 – 2734 (2008)

2. Alur, R., Henzinger, T.A., Lafferriere, G., Pappas, G.J.: Discrete abstractions of
hybrid systems. Proceedings of the IEEE 88(7), 971–984 (2000)

3. Andrés, I., de Barros, L.N., Mauá, D.D., Simão, T.D.: When a robot reaches out
for human help. In: IBERAMIA. Lecture Notes in Computer Science, vol. 11238,
pp. 277–289. Springer (2018)

4. Andriushchenko, R., Bork, A., Budde, C.E., Ceska, M., Grover, K., Hahn, E.M.,
Hartmanns, A., Israelsen, B., Jansen, N., Jeppson, J., Junges, S., Köhl, M.A.,
Könighofer, B., Kretínský, J., Meggendorfer, T., Parker, D., Pranger, S., Quat-
mann, T., Ruijters, E., Taylor, L., Volk, M., Weininger, M., Zhang, Z.: Tools at
the frontiers of quantitative verification. CoRR abs/2405.13583 (2024)

5. Arming, S., Bartocci, E., Chatterjee, K., Katoen, J., Sokolova, A.: Parameter-
independent strategies for pmdps via pomdps. In: QEST. Lecture Notes in Com-
puter Science, vol. 11024, pp. 53–70. Springer (2018)

6. Ashok, P., Kretínský, J., Weininger, M.: PAC statistical model checking for
markov decision processes and stochastic games. In: CAV (1). Lecture Notes in
Computer Science, vol. 11561, pp. 497–519. Springer (2019)

7. Badings, T.S., Cubuktepe, M., Jansen, N., Junges, S., Katoen, J., Topcu, U.:
Scenario-based verification of uncertain parametric mdps. Int. J. Softw. Tools
Technol. Transf. 24(5), 803–819 (2022)

8. Badings, T.S., Jansen, N., Junges, S., Stoelinga, M., Volk, M.: Sampling-based
verification of ctmcs with uncertain rates. In: CAV (2). Lecture Notes in Computer
Science, vol. 13372, pp. 26–47. Springer (2022)

9. Badings, T.S., Romao, L., Abate, A., Jansen, N.: Probabilities are not enough:
Formal controller synthesis for stochastic dynamical models with epistemic un-
certainty. In: AAAI. pp. 14701–14710. AAAI Press (2023)

10. Badings, T.S., Romao, L., Abate, A., Parker, D., Poonawala, H.A., Stoelinga,
M., Jansen, N.: Robust control for dynamical systems with non-gaussian noise
via formal abstractions. J. Artif. Intell. Res. 76, 341–391 (2023)

11. Badings, T.S., Simão, T.D., Suilen, M., Jansen, N.: Decision-making under uncer-
tainty: beyond probabilities. Int. J. Softw. Tools Technol. Transf. 25(3), 375–391
(2023)

12. Baier, C., Bertrand, N., Größer, M.: On decision problems for probabilistic büchi
automata. In: FoSSaCS. Lecture Notes in Computer Science, vol. 4962, pp. 287–
301. Springer (2008)

13. Baier, C., Hermanns, H., Katoen, J.: The 10, 000 facets of MDP model checking.
In: Computing and Software Science, Lecture Notes in Computer Science, vol.
10000, pp. 420–451. Springer (2019)

14. Baier, C., Katoen, J.: Principles of model checking. MIT Press (2008)
15. Baier, C., Klein, J., Leuschner, L., Parker, D., Wunderlich, S.: Ensuring the reli-

ability of your model checker: Interval iteration for markov decision processes. In:
CAV (1). Lecture Notes in Computer Science, vol. 10426, pp. 160–180. Springer
(2017)

16. Behzadian, B., Petrik, M., Ho, C.P.: Fast algorithms for l∞-constrained s-
rectangular robust mdps. In: NeurIPS. pp. 25982–25992 (2021)

24 M. Suilen et al.

17. Bovy, E.M., Suilen, M., Junges, S., Jansen, N.: Imprecise probabilities meet par-
tial observability: Game semantics for robust pomdps. CoRR abs/2405.04941
(2024)

18. Brázdil, T., Chatterjee, K., Chmelik, M., Forejt, V., Kretínský, J., Kwiatkowska,
M.Z., Parker, D., Ujma, M.: Verification of markov decision processes using learn-
ing algorithms. In: ATVA. Lecture Notes in Computer Science, vol. 8837, pp.
98–114. Springer (2014)

19. Campi, M.C., Carè, A., Garatti, S.: The scenario approach: A tool at the service
of data-driven decision making. Annu. Rev. Control. 52, 1–17 (2021)

20. Campi, M.C., Garatti, S.: The exact feasibility of randomized solutions of uncer-
tain convex programs. SIAM J. Optim. 19(3), 1211–1230 (2008)

21. Cauchi, N., Abate, A.: Stochy: Automated verification and synthesis of stochastic
processes. In: TACAS (2). Lecture Notes in Computer Science, vol. 11428, pp.
247–264. Springer (2019)

22. Chamie, M.E., Mostafa, H.: Robust action selection in partially observable markov
decision processes with model uncertainty. In: CDC. pp. 5586–5591. IEEE (2018)

23. Chatterjee, K., Chmelík, M., Karkhanis, D., Novotný, P., Royer, A.: Multiple-
environment markov decision processes: Efficient analysis and applications. In:
ICAPS. pp. 48–56. AAAI Press (2020)

24. Chatterjee, K., Doyen, L., Henzinger, T.A.: Qualitative analysis of partially-
observable markov decision processes. In: MFCS. Lecture Notes in Computer
Science, vol. 6281, pp. 258–269. Springer (2010)

25. Chatterjee, K., Goharshady, E.K., Karrabi, M., Novotný, P., Zikelic, D.:
Solving long-run average reward robust mdps via stochastic games. CoRR
abs/2312.13912 (2023)

26. Chen, T., Han, T., Kwiatkowska, M.Z.: On the complexity of model checking
interval-valued discrete time markov chains. Inf. Process. Lett. 113(7), 210–216
(2013)

27. Clarke, E.M., Klieber, W., Novácek, M., Zuliani, P.: Model checking and the
state explosion problem. In: LASER Summer School. Lecture Notes in Computer
Science, vol. 7682, pp. 1–30. Springer (2011)

28. Coppola, R., Peruffo, A., Romao, L., Abate, A., Jr., M.M.: Data-driven interval
MDP for robust control synthesis. CoRR abs/2404.08344 (2024)

29. Costen, C., Rigter, M., Lacerda, B., Hawes, N.: Planning with hidden parameter
polynomial mdps. In: AAAI. pp. 11963–11971. AAAI Press (2023)

30. Cubuktepe, M., Jansen, N., Junges, S., Katoen, J., Papusha, I., Poonawala, H.A.,
Topcu, U.: Sequential convex programming for the efficient verification of para-
metric mdps. In: TACAS (2). Lecture Notes in Computer Science, vol. 10206, pp.
133–150 (2017)

31. Cubuktepe, M., Jansen, N., Junges, S., Katoen, J., Topcu, U.: Synthesis in pmdps:
A tale of 1001 parameters. In: ATVA. Lecture Notes in Computer Science, vol.
11138, pp. 160–176. Springer (2018)

32. Cubuktepe, M., Jansen, N., Junges, S., Katoen, J., Topcu, U.: Scenario-based ver-
ification of uncertain mdps. In: TACAS (1). Lecture Notes in Computer Science,
vol. 12078, pp. 287–305. Springer (2020)

33. Cubuktepe, M., Jansen, N., Junges, S., Katoen, J., Topcu, U.: Convex optimiza-
tion for parameter synthesis in mdps. IEEE Trans. Autom. Control. 67(12), 6333–
6348 (2022)

34. Cubuktepe, M., Jansen, N., Junges, S., Marandi, A., Suilen, M., Topcu, U.: Ro-
bust finite-state controllers for uncertain pomdps. In: AAAI. pp. 11792–11800.
AAAI Press (2021)

Robust MDPs: A Place Where AI and Formal Methods Meet 25

35. Daca, P., Henzinger, T.A., Kretínský, J., Petrov, T.: Faster statistical model
checking for unbounded temporal properties. In: TACAS. Lecture Notes in Com-
puter Science, vol. 9636, pp. 112–129. Springer (2016)

36. Dehnert, C., Junges, S., Jansen, N., Corzilius, F., Volk, M., Bruintjes, H., Katoen,
J., Ábrahám, E.: Prophesy: A probabilistic parameter synthesis tool. In: CAV (1).
Lecture Notes in Computer Science, vol. 9206, pp. 214–231. Springer (2015)

37. Dehnert, C., Junges, S., Jansen, N., Corzilius, F., Volk, M., Katoen, J., Ábrahám,
E., Bruintjes, H.: Parameter synthesis for probabilistic systems. In: MBMV. pp.
72–74. Albert-Ludwigs-Universität Freiburg (2016)

38. Delage, A., Buffet, O., Dibangoye, J.S., Saffidine, A.: HSVI can solve zero-sum
partially observable stochastic games. Dynamic Games and Applications (2023)

39. Fecher, H., Leucker, M., Wolf, V.: Don’t Know in probabilistic systems. In: SPIN.
Lecture Notes in Computer Science, vol. 3925, pp. 71–88. Springer (2006)

40. Fijalkow, N., Bertrand, N., Bouyer-Decitre, P., Brenguier, R., Carayol, A., Fearn-
ley, J., Gimbert, H., Horn, F., Ibsen-Jensen, R., Markey, N., Monmege, B.,
Novotný, P., Randour, M., Sankur, O., Schmitz, S., Serre, O., Skomra, M.: Games
on graphs. CoRR abs/2305.10546 (2023)

41. Forejt, V., Kwiatkowska, M., Norman, G., Parker, D.: Automated verification
techniques for probabilistic systems. In: Bernardo, M., Issarny, V. (eds.) Formal
Methods for Eternal Networked Software Systems (SFM’11). LNCS, vol. 6659,
pp. 53–113. Springer (2011)

42. Gadot, U., Derman, E., Kumar, N., Elfatihi, M.M., Levy, K., Mannor, S.: Solving
non-rectangular reward-robust mdps via frequency regularization. In: AAAI. pp.
21090–21098. AAAI Press (2024)

43. Galesloot, M.F.L., Suilen, M., Simão, T.D., Carr, S., Spaan, M.T.J., Topcu, U.,
Jansen, N.: Pessimistic iterative planning for robust pomdps (2024)

44. Ghavamzadeh, M., Petrik, M., Chow, Y.: Safe policy improvement by minimizing
robust baseline regret. In: NIPS. pp. 2298–2306 (2016)

45. Girard, A., Pappas, G.J.: Approximation metrics for discrete and continuous sys-
tems. IEEE Trans. Autom. Control. 52(5), 782–798 (2007)

46. Givan, R., Leach, S.M., Dean, T.L.: Bounded-parameter markov decision pro-
cesses. Artif. Intell. 122(1-2), 71–109 (2000)

47. Goyal, V., Grand-Clément, J.: Robust markov decision processes: Beyond rectan-
gularity. Math. Oper. Res. 48(1), 203–226 (2023)

48. Grand-Clément, J., Petrik, M.: Reducing blackwell and average optimality to
discounted mdps via the blackwell discount factor. In: NeurIPS (2023)

49. Grand-Clément, J., Petrik, M., Vieille, N.: Beyond discounted returns: Ro-
bust markov decision processes with average and blackwell optimality. CoRR
abs/2312.03618 (2023)

50. Guez, A., Silver, D., Dayan, P.: Efficient bayes-adaptive reinforcement learning
using sample-based search. In: NIPS. pp. 1034–1042 (2012)

51. Haddad, S., Monmege, B.: Reachability in mdps: Refining convergence of value
iteration. In: RP. Lecture Notes in Computer Science, vol. 8762, pp. 125–137.
Springer (2014)

52. Hansson, H., Jonsson, B.: A logic for reasoning about time and reliability. Formal
Aspects Comput. 6(5), 512–535 (1994)

53. Hartmanns, A., Junges, S., Quatmann, T., Weininger, M.: A practitioner’s guide
to MDP model checking algorithms. In: TACAS (1). Lecture Notes in Computer
Science, vol. 13993, pp. 469–488. Springer (2023)

54. Hartmanns, A., Kaminski, B.L.: Optimistic value iteration. In: CAV (2). Lecture
Notes in Computer Science, vol. 12225, pp. 488–511. Springer (2020)

26 M. Suilen et al.

55. Hartmanns, A., Klauck, M., Parker, D., Quatmann, T., Ruijters, E.: The quan-
titative verification benchmark set. In: Vojnar, T., Zhang, L. (eds.) Tools and
Algorithms for the Construction and Analysis of Systems - 25th International
Conference, TACAS 2019, Held as Part of the European Joint Conferences on
Theory and Practice of Software, ETAPS 2019, Prague, Czech Republic, April 6-
11, 2019, Proceedings, Part I. Lecture Notes in Computer Science, vol. 11427,
pp. 344–350. Springer (2019). https://doi.org/10.1007/978-3-030-17462-0_20,
https://doi.org/10.1007/978-3-030-17462-0_20

56. Hashemi, V., Hermanns, H., Song, L., Subramani, K., Turrini, A., Wojciechowski,
P.: Compositional bisimulation minimization for interval markov decision pro-
cesses. In: LATA. Lecture Notes in Computer Science, vol. 9618, pp. 114–126.
Springer (2016)

57. Hensel, C., Junges, S., Katoen, J., Quatmann, T., Volk, M.: The probabilistic
model checker storm. Int. J. Softw. Tools Technol. Transf. 24(4), 589–610 (2022)

58. Ho, C.P., Petrik, M., Wiesemann, W.: Fast bellman updates for robust mdps. In:
ICML. Proceedings of Machine Learning Research, vol. 80, pp. 1984–1993. PMLR
(2018)

59. Ho, C.P., Petrik, M., Wiesemann, W.: Partial policy iteration for l1-robust markov
decision processes. J. Mach. Learn. Res. 22, 275:1–275:46 (2021)

60. Ho, C.P., Petrik, M., Wiesemann, W.: Robust ϕ-divergence mdps. In: NeurIPS
(2022)

61. Hoeffding, W.: Probability inequalities for sums of bounded random variables.
Journal of the American Statistical Association pp. 13–30 (1963)

62. Hüllermeier, E., Waegeman, W.: Aleatoric and epistemic uncertainty in machine
learning: an introduction to concepts and methods. Mach. Learn. 110(3), 457–506
(2021)

63. Itoh, H., Nakamura, K.: Partially observable markov decision processes with im-
precise parameters. Artif. Intell. 171(8-9), 453–490 (2007)

64. Iyengar, G.N.: Robust dynamic programming. Math. Oper. Res. 30(2), 257–280
(2005)

65. Jaeger, M., Bacci, G., Bacci, G., Larsen, K.G., Jensen, P.G.: Approximating eu-
clidean by imprecise markov decision processes. In: ISoLA (1). Lecture Notes in
Computer Science, vol. 12476, pp. 275–289. Springer (2020)

66. Jaksch, T., Ortner, R., Auer, P.: Near-optimal regret bounds for reinforcement
learning. J. Mach. Learn. Res. 11, 1563–1600 (2010)

67. Jansen, N., Junges, S., Katoen, J.: Parameter synthesis in markov models: A gen-
tle survey. In: Principles of Systems Design. Lecture Notes in Computer Science,
vol. 13660, pp. 407–437. Springer (2022)

68. Jonsson, B., Larsen, K.G.: Specification and refinement of probabilistic pro-
cesses. In: Proceedings of the Sixth Annual Symposium on Logic in Computer
Science (LICS ’91), Amsterdam, The Netherlands, July 15-18, 1991. pp. 266–
277. IEEE Computer Society (1991). https://doi.org/10.1109/LICS.1991.151651,
https://doi.org/10.1109/LICS.1991.151651

69. Junges, S., Ábrahám, E., Hensel, C., Jansen, N., Katoen, J., Quatmann, T., Volk,
M.: Parameter synthesis for markov models: covering the parameter space. Formal
Methods Syst. Des. 62(1), 181–259 (2024)

70. Junges, S., Katoen, J., Pérez, G.A., Winkler, T.: The complexity of reachability in
parametric markov decision processes. J. Comput. Syst. Sci. 119, 183–210 (2021)

71. Kaelbling, L.P., Littman, M.L., Cassandra, A.R.: Planning and acting in partially
observable stochastic domains. Artif. Intell. 101(1-2), 99–134 (1998)

Robust MDPs: A Place Where AI and Formal Methods Meet 27

72. Katoen, J.: The probabilistic model checking landscape. In: LICS. pp. 31–45.
ACM (2016)

73. Katoen, J., Klink, D., Leucker, M., Wolf, V.: Three-valued abstraction for
continuous-time markov chains. In: CAV. Lecture Notes in Computer Science,
vol. 4590, pp. 311–324. Springer (2007)

74. Katoen, J., Klink, D., Leucker, M., Wolf, V.: Three-valued abstraction for prob-
abilistic systems. J. Log. Algebraic Methods Program. 81(4), 356–389 (2012)

75. Kattenbelt, M., Kwiatkowska, M.Z., Norman, G., Parker, D.: A game-based
abstraction-refinement framework for markov decision processes. Formal Meth-
ods Syst. Des. 36(3), 246–280 (2010)

76. Kaufman, D.L., Schaefer, A.J.: Robust modified policy iteration. INFORMS J.
Comput. 25(3), 396–410 (2013)

77. Kumar, N., Derman, E., Geist, M., Levy, K.Y., Mannor, S.: Policy gradient for
rectangular robust markov decision processes. In: NeurIPS (2023)

78. Kwiatkowska, M.Z., Norman, G., Parker, D.: Game-based abstraction for markov
decision processes. In: QEST. pp. 157–166. IEEE Computer Society (2006)

79. Kwiatkowska, M.Z., Norman, G., Parker, D.: Stochastic model checking. In: SFM.
Lecture Notes in Computer Science, vol. 4486, pp. 220–270. Springer (2007)

80. Kwiatkowska, M.Z., Norman, G., Parker, D.: PRISM 4.0: Verification of proba-
bilistic real-time systems. In: CAV. Lecture Notes in Computer Science, vol. 6806,
pp. 585–591. Springer (2011)

81. Lahijanian, M., Andersson, S.B., Belta, C.: Formal verification and synthesis for
discrete-time stochastic systems. IEEE Trans. Autom. Control. 60(8), 2031–2045
(2015)

82. Laroche, R., Trichelair, P., des Combes, R.T.: Safe policy improvement with base-
line bootstrapping. In: ICML. Proceedings of Machine Learning Research, vol. 97,
pp. 3652–3661. PMLR (2019)

83. Larsen, K.G., Skou, A.: Bisimulation through probabilistic testing. Inf. Comput.
94(1), 1–28 (1991)

84. Lavaei, A., Soudjani, S., Abate, A., Zamani, M.: Automated verification and syn-
thesis of stochastic hybrid systems: A survey. Autom. 146, 110617 (2022)

85. Lavaei, A., Soudjani, S., Frazzoli, E., Zamani, M.: Constructing MDP abstractions
using data with formal guarantees. IEEE Control. Syst. Lett. 7, 460–465 (2023)

86. Legay, A., Delahaye, B., Bensalem, S.: Statistical model checking: An overview.
In: Barringer, H., Falcone, Y., Finkbeiner, B., Havelund, K., Lee, I., Pace, G.J.,
Rosu, G., Sokolsky, O., Tillmann, N. (eds.) Runtime Verification - First Inter-
national Conference, RV 2010, St. Julians, Malta, November 1-4, 2010. Proceed-
ings. Lecture Notes in Computer Science, vol. 6418, pp. 122–135. Springer (2010).
https://doi.org/10.1007/978-3-642-16612-9_11, https://doi.org/10.1007/978-3-
642-16612-9_11

87. Madani, O., Hanks, S., Condon, A.: On the undecidability of probabilistic plan-
ning and related stochastic optimization problems. Artif. Intell. 147(1-2), 5–34
(2003)

88. Mannor, S., Simester, D., Sun, P., Tsitsiklis, J.N.: Bias and variance approxima-
tion in value function estimates. Manag. Sci. 53(2), 308–322 (2007)

89. Mathiesen, F.B., Lahijanian, M., Laurenti, L.: Intervalmdp.jl: Accelerated value
iteration for interval markov decision processes. Tech. Rep. arXiv:2401.04068,
arXiv (2024)

90. Meggendorfer, T., Weininger, M., Wienhöft, P.: What are the odds? improving
the foundations of statistical model checking. CoRR abs/2404.05424 (2024)

28 M. Suilen et al.

91. Moos, J., Hansel, K., Abdulsamad, H., Stark, S., Clever, D., Peters, J.: Robust re-
inforcement learning: A review of foundations and recent advances. Mach. Learn.
Knowl. Extr. 4(1), 276–315 (2022)

92. Nakao, H., Jiang, R., Shen, S.: Distributionally robust partially observable markov
decision process with moment-based ambiguity. SIAM J. Optim. 31(1), 461–488
(2021)

93. Nilim, A., Ghaoui, L.E.: Robust control of markov decision processes with uncer-
tain transition matrices. Oper. Res. 53(5), 780–798 (2005)

94. Osogami, T.: Robust partially observable markov decision process. In: ICML.
JMLR Workshop and Conference Proceedings, vol. 37, pp. 106–115. JMLR.org
(2015)

95. Ou, W., Bi, S.: Sequential decision-making under uncertainty: A robust mdps
review. CoRR abs/2305.10546 (2024)

96. Pnueli, A.: The temporal logic of programs. In: FOCS. pp. 46–57. IEEE Computer
Society (1977)

97. Ponnambalam, C.T., Oliehoek, F.A., Spaan, M.T.J.: Abstraction-guided policy
recovery from expert demonstrations. In: ICAPS. pp. 560–568. AAAI Press (2021)

98. Puggelli, A., Li, W., Sangiovanni-Vincentelli, A.L., Seshia, S.A.: Polynomial-time
verification of PCTL properties of mdps with convex uncertainties. In: CAV.
Lecture Notes in Computer Science, vol. 8044, pp. 527–542. Springer (2013)

99. Puterman, M.L.: Markov Decision Processes: Discrete Stochastic Dynamic Pro-
gramming. Wiley Series in Probability and Statistics, Wiley (1994)

100. Quatmann, T., Dehnert, C., Jansen, N., Junges, S., Katoen, J.: Parameter syn-
thesis for markov models: Faster than ever. In: ATVA. Lecture Notes in Computer
Science, vol. 9938, pp. 50–67 (2016)

101. Quatmann, T., Katoen, J.: Sound value iteration. In: CAV (1). Lecture Notes in
Computer Science, vol. 10981, pp. 643–661. Springer (2018)

102. Raskin, J., Sankur, O.: Multiple-environment markov decision processes. In:
FSTTCS. LIPIcs, vol. 29, pp. 531–543. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik (2014)

103. Rickard, L., Abate, A., Margellos, K.: Learning robust policies for uncertain para-
metric markov decision processes. CoRR abs/2312.06344 (2023)

104. Rigter, M., Lacerda, B., Hawes, N.: Minimax regret optimisation for robust plan-
ning in uncertain markov decision processes. In: AAAI. pp. 11930–11938. AAAI
Press (2021)

105. Rigter, M., Lacerda, B., Hawes, N.: Risk-averse bayes-adaptive reinforcement
learning. In: NeurIPS. pp. 1142–1154 (2021)

106. Saghafian, S.: Ambiguous partially observable markov decision processes: Struc-
tural results and applications. J. Econ. Theory 178, 1–35 (2018)

107. Simão, T.D., Suilen, M., Jansen, N.: Safe policy improvement for pomdps via
finite-state controllers. In: AAAI. pp. 15109–15117. AAAI Press (2023)

108. Strehl, A.L., Li, L., Littman, M.L.: Reinforcement learning in finite mdps: PAC
analysis. J. Mach. Learn. Res. 10, 2413–2444 (2009)

109. Strehl, A.L., Littman, M.L.: An analysis of model-based interval estimation for
markov decision processes. J. Comput. Syst. Sci. 74(8), 1309–1331 (2008)

110. Suilen, M., Jansen, N., Cubuktepe, M., Topcu, U.: Robust policy synthesis for
uncertain pomdps via convex optimization. In: IJCAI. pp. 4113–4120. ijcai.org
(2020)

111. Suilen, M., Simão, T.D., Parker, D., Jansen, N.: Robust anytime learning of
markov decision processes. In: NeurIPS (2022)

Robust MDPs: A Place Where AI and Formal Methods Meet 29

112. Suilen, M., van der Vegt, M., Junges, S.: A pspace algorithm for almost-sure rabin
objectives in multi-environment mdps. CoRR abs/2407.07006 (2024)

113. Sutton, R.S., Barto, A.G.: Reinforcement learning - an introduction. Adaptive
computation and machine learning, MIT Press (1998)

114. van der Vegt, M., Jansen, N., Junges, S.: Robust almost-sure reachability in
multi-environment mdps. In: TACAS (1). Lecture Notes in Computer Science,
vol. 13993, pp. 508–526. Springer (2023)

115. Wang, Q., Ho, C.P., Petrik, M.: Policy gradient in robust mdps with global conver-
gence guarantee. In: ICML. Proceedings of Machine Learning Research, vol. 202,
pp. 35763–35797. PMLR (2023)

116. Weissman, T., Ordentlich, E., Seroussi, G., Verdu, S., Weinberger, M.J.: Inequali-
ties for the l1 deviation of the empirical distribution. Hewlett-Packard Labs, Tech.
Rep (2003)

117. Wienhöft, P., Suilen, M., Simão, T.D., Dubslaff, C., Baier, C., Jansen, N.: More for
less: Safe policy improvement with stronger performance guarantees. In: IJCAI.
pp. 4406–4415. ijcai.org (2023)

118. Wiesemann, W., Kuhn, D., Rustem, B.: Robust markov decision processes. Math.
Oper. Res. 38(1), 153–183 (2013)

119. Wolff, E.M., Topcu, U., Murray, R.M.: Robust control of uncertain markov deci-
sion processes with temporal logic specifications. In: CDC. pp. 3372–3379. IEEE
(2012)

120. Wooding, B., Lavaei, A.: Impact: Interval MDP parallel construction for controller
synthesis of large-scale stochastic systems. CoRR abs/2401.03555 (2024)

121. Xu, H., Mannor, S.: Distributionally robust markov decision processes. Math.
Oper. Res. 37(2), 288–300 (2012)

122. Yang, C., Littman, M.L., Carbin, M.: On the (in)tractability of reinforcement
learning for LTL objectives. In: IJCAI. pp. 3650–3658. ijcai.org (2022)

