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Abstract

We study the robustness of Bayesian inference with Gaussian processes

(GP) under adversarial attack settings. We begin by noticing how the

distinction between model prediction and decision in Bayesian settings

naturally leads us to give two different notions of adversarial robustness.

The former, probabilistic adversarial robustness, is concerned with the be-

haviour of the posterior distribution, formally characterising its worst-case

attack uncertainty. On the other hand, adversarial robustness is concerned

with local stability of the model decision, and is strictly correlated with

bounds on the predictive posterior distribution of the model.

In the first part of this thesis we show how, by relying on the Borell-TIS

inequality, the computation of probabilistic adversarial robustness can be

translated to the solution of a set of optimisation problems defined over

the GP posterior mean, variance and specific derived quantities. In order

to solve these, we develop a general framework for the lower- and upper-

bounding of GP posterior parameters, which relies on interval bound prop-

agation techniques, the computation of linear and lower upper bounding

functions and the solution of linear and convex-quadratic programming

problems. Employing the central limit theorem for stochastic processes,

we then demonstrate how the derived bounds can also be used for the

adversarial analysis of infinitely-wide deep BNN architectures.

In the second part of this thesis, we show how a suitably defined discreti-

sation of the GP latent space can be used to convert the computation of

adversarial robustness to the solution of a finite number of optimisation

problem over a set of uni-dimensional Gaussian integral functions. We

proceed by extending and adapting the GP optimisation framework de-

veloped in the context of probabilistic robustness to the formal solution of

these integrals. We rely on the theory of branch-and-bound optimisation

algorithms to formally prove that our method is guaranteed to terminate

in finitely-many steps to an ε-exact solution of the problem, for any ε > 0



selected a-priori. Furthermore, the method developed is anytime, in that

it can be stopped at any point during its computation and still provide

formal lower and upper bounds that can be used to certify the GP adver-

sarial robustness. By carefully designing suitable prior functions, we then

show how GPs provide us with competitive and state-of-the-art models for

their application in affective computing. We finally rely on three datasets

for affect recognition from physiological signals as a real-world testbed to

analyse the scalability and the practical feasibility of the methods we have

developed for the verification and interpretation of GP models, which we

argue are crucial for the development of machine learning systems that

have to interact with humans in clinical situations.
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Chapter 1

Introduction

Thanks to recent advances in optimisation, big data processing, computing infrastruc-

ture and half a century long combined research effort [76], Machine Learning (ML) has

become a revolutionising force in how engineering and computational problems are

today tackled. Modelling tasks that appeared too difficult to solve by an automatic

learning systems just a decade ago are now considered standard benchmarks for the

application of ML models. Particularly in supervised learning tasks, and especially

in the form of deep Neural Networks (NNs), ML models now routinely achieve close

to human-level recognition performance on applications that range from computer

vision [88] to speech recognition [79], as well as physics modelling [118], biological

analysis [33], clinical diagnosis [87], computer security [5], user localisation [171], and

many others [144, 166, 201].

Despite these tremendous successes though, Artificial Intelligence (AI) systems

built over ML models still learn, operate and reason in a fundamentally different way

from how humans do, so that their nominal outstanding performance completely falls

apart as soon as specific mathematical, statistical or modelling assumptions break

down. In fact, several vulnerabilities have been recently discovered and investigated

in the literature [189, 15, 17]. Arguably, among the most striking examples is that

of local adversarial attacks : by performing small manipulations on an input point

it is often possible to trick an ML model into predicting any of its output values in

the immediate proximity of that point [189]. In end-to-end settings, in particular,

the attacks produced are astonishing, with adversarial examples often being visually

indistinguishable from the original input point.

Unsurprisingly, the discovery of such vulnerabilities has called for caution in ap-

plying these techniques in safety-critical situations [86]. For instance, it was observed

that all it takes to trick a road-sign recognition NN in confounding a turn right sign

with a turn left one is a single-pixel modification [206], the effect of which in the real

1



world can be disastrous. Similarly, it was demonstrated how medical diagnosis mod-

els [164], security identification systems [106], speech recognition systems [165], and

many others [117, 102, 101], could all be easily fooled by means of simple adversarial

attacks. This is especially the case in health-care applications, where human patients

are directly involved. In the light of these findings, it is difficult to imagine how

ML and AI systems can be widely deployed in the real world, without first having

a thorough understanding of their shortcomings and providing guarantees over their

behaviour in worst-case scenarios.

Adversarial examples were found to be so widespread in state-of-the-art NN mod-

els that it was recently investigated whether they are actually due to model mis-

behaviour or if they are instead an intrinsic property of certain ML models [96] or

datasets [194]. Interestingly, models that are found to be easily fooled by adversarial

attacks are often models that have an almost perfect empirical generalisation gap,

that is, they behave similarly on a training and a test dataset. The simple fact that

robustness against adversarial examples is not captured by standard generalisation

metrics (e.g., root-mean-squared error or accuracy computed on a test set) suggests

that there is something fundamentally different between adversarial examples and

“natural” occurring points. Arguably, we cannot reasonably expect a purely data-

driven ML model to perform correct predictions over adversarial examples, since it

has never seen anything of the sort at training time, similarly to how we cannot ex-

pect a cat vs. dog classifier to be able to recognise the picture of a mouse. At most

we could hope for an ideal ML model to show uncertainty in its predictions around

them.

Bayesian techniques provide us with a principled way of embedding a-priori in-

formation into the training process of an ML model, so as to obtain an a-posteriori

distribution on the test data, which takes into account the uncertainty inherent in the

learning process. At prediction time, this is propagated through and taken into ac-

count by the decision-making pipeline, in an effort to rely only on trustworthy model

decisions [137]. Intuitively, a well calibrated model uncertainty could provide a natu-

ral defence against model vulnerabilities, in fact Bayesian neural networks have been

argued [64] and proven under certain strong conditions [26] to be robust to adversarial

attacks.

However, most of the work on formal guarantees for ML models has been, prior to

the publication of the work discussed in this thesis, focused on non-Bayesian models

[203, 78, 175, 94, 107] and, to the best of our knowledge, there was no work directed at

providing formal guarantees for the absence of adversarial perturbations in Bayesian

2



prediction settings. As such, it is currently difficult to know how Bayesian models

behave in practice when performing predictions under adversarial settings.

Aim of the Thesis. In this thesis, we aim at deriving tools based on formal meth-

ods to analyse the robustness of Bayesian models under adversarial perturbation

settings. Specifically, we focus on Gaussian Process (GP) models, which are a par-

ticular class of stochastic processes for which all the finite-dimensional distributions

are multi-variate Gaussian. Because of their many favourable mathematical proper-

ties, GPs are among the most widely employed Bayesian learning approaches [209],

with applications spanning robotics [178], control systems [119], biological processes

[21], affective computing [190], physics modelling [80], disease diffusion [14], chem-

ical systems [65], computer vision [32], speech recognition [155], and many others

[177, 113, 54, 195, 142]. Furthermore, thanks to the central limit convergence prop-

erty of stochastic processes, a large class of probabilistic models tends to behave as

GPs under specific limiting conditions, so that tools developed in the context of GPs

can be used as approximations for the analysis of several other modelling frameworks.

This will allow us to consider the behaviour of Bayesian Neural Networks (BNNs),

i.e. NNs with distributions put over their weights and biases, under adversarial attack

settings, by relying on the methods developed in the context of GPs.

The resulting methodologies will then be used for the evaluation of the adver-

sarial robustness of GP Bayesian inference models on several benchmark datasets,

and in particular three datasets for affective recognition from physiological data. We

will study how to provide guarantees over the GP behaviour on these health-care

related tasks, and how to obtain physiologically meaningful interpretations of the

GP predictions by relying on suitably derived adversarial bounds. We finally aim

at investigating in practice how the robustness of a GP is affected by training, and

whether accuracy is necessarily at odds with robustness even in the Bayesian settings.

Approach. We first formalise the concept of robustness of Bayesian predictions

in adversarial settings. Because of the distinction that exists in Bayesian modelling

between the concepts of posterior distribution, posterior predictive distribution and

model decision, we explain how various definitions of adversarial robustness can be

given. We discuss their meaning in terms of plausible application scenarios, and de-

fine two notions, one that characterises the probabilistic behaviour of the posterior

distribution (referred to as probabilistic adversarial robustness) and another that cap-

tures the robustness of the model decision (referred to as adversarial robustness). We
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then dedicate the main chapters of this thesis to showing how over-approximations,

i.e., pessimistic estimations, for these quantities can be computed.

In particular, we show how probabilistic adversarial robustness can be over-approximated

by employing the Borell-TIS inequality on the supremum random variable of a GP.

This will allow us to reformulate the over-approximation problem as the solution of

a set of optimisation problems defined over the GP posterior mean, variance and a

specific metric space built over the GP dynamics. We rely on techniques from interval

bound propagation and linear lower- and upper-approximation analysis, in order to

develop a general global-optimisation framework for Gaussian process posterior mod-

els, over a wide class of kernel functions. Finally, we build a set of linear programming

problems and quadratic convex programming problems (for which exact solvers are

readily available [148]) that yield a pessimistic evaluation of probabilistic adversarial

robustness.

We then look at adversarial robustness and see how it can be reformulated as

the solution of a finite number of optimisation problems over uni-dimensional Gaus-

sian integrals. We will observe how the same optimisation framework developed in

the context of probabilistic adversarial robustness can be extended to the settings

required for the computation of adversarial robustness, and formally prove that the

methods that we develop converge to the actual value. In particular, we will in-

troduce an ε-exact (that is, it will provably converge in finitely many steps to an

over-approximation ε-close to the actual value) and anytime (that is, it returns a

valid over-approximation of the actual quantity at any time during its computation)

method.

We then rely on the central limit theorem convergence to analyse probabilistic

adversarial robustness of infinitely-wide Bayesian neural networks. In particular, this

allows us to perform a formal analysis of the behaviour of the posterior variance un-

der adversarial attack settings, which provides insights into understanding of Bayesian

defence mechanisms that rely on uncertainty thresholding. We then discuss the re-

lationship between adversarial robustness and model interpretability, and see how

bounds on the posterior predictive distribution can be used to obtain quantitative

interpretability measures over the predictions around a given test point.

Finally, we consider three affective recognition datasets from physiological sig-

nals. We discuss how, because of the lack of sufficiently rich datasets in the field and

the need to have certified/interpretable models, affective computing serves as perfect

testbed for the application of GPs. We will see how competitive and state-of-the-

art classification models based on GPs can be learned for affective recognition, by
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carefully designing prior functions on top of well-understood preexisting physiologi-

cal mathematical models. We then extend our optimisation framework to incorporate

non-trivial prior functions, and show how to compute physiologically meaningful in-

terpretation of the GP predictions in this setting.

1.1 Contributions

We develop methods for and extensively analyse the robustness of Gaussian processes

under adversarial settings, as a first approach, to the best of our knowledge, for a

formal analysis of adversarial examples in Bayesian ML models. In order to do so, we

first formalise the notion of adversarial robustness for Bayesian learning, which leads

us to the definition of two distinct robustness measures, and then develop algorithms

(with lower and upper bounds) for the evaluation of such robustness metrics. We

showcase the application of such methods in a range of benchmark datasets and three

affective computing tasks, obtaining empirical results which suggest the fundamen-

tally different behaviour of Bayesian models on adversarial examples when compared

to their frequentist counterparts. Specifically, the main contributions of this thesis

are summarised below.

• We formalise and discuss the rationale for and the relationship between two

measures of robustness for Bayesian learning models under adversarial pertur-

bation settings (probabilistic adversarial robustness and adversarial robustness),

and justify their definition in terms of properties to be verified and relevant ap-

plication scenarios. We then build on the probabilistic properties of GPs to find

an analytical over-approximation of the probabilistic adversarial robustness of

posterior GP latent models, and develop an optimisation-based framework for

the explicit calculation of the parameters necessary for its computation. The

developed optimisation framework is general and applicable to a wide range

of kernel functions used in practice for GP learning from data. We rely on the

central limit convergence property of stochastic processes to show how the tech-

niques developed in the context of GPs can be used for verification of infinitely-

wide, deep BNNs. We experimentally analyse the properties of the computed

over-approximation and compare its tightness to that of approximate statistical

methods. Furthermore we employ it to provide formal analysis of the poste-

rior variance of BNNs, in an effort to formally quantify the applicability of

adversarial detection techniques that rely on uncertainty thresholding.
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• We next derive methods for the computation of the adversarial robustness of

GP models under canonical loss functions for both the regression and the classi-

fication case. We show how, in the classification case, bounds on the predictive

posterior distribution can be computed by optimising a set of uni-dimensional

Gaussian integrals over their mean and variance distributional parameters. We

demonstrate how the optimisation framework developed for probabilistic ro-

bustness, can be extended to these settings and implement it in a branch-and-

bound optimisation scheme. By relying on the convergence theory of branch-

and-bound optimisation, we then formally prove that our method terminates in

finitely-many iterations to an ε-exact solution, for any ε > 0 selected a-priori,

and that furthermore it yields both formal over- and under-approximations of

the desired quantity at any iteration.

• Employing the developed methods, we empirically observe how the adversarial

robustness of the model improves with the quality of the posterior approxima-

tion performed at training time. We then demonstrate how bounds on the pre-

dictive posterior distribution can be used to formally quantify an interpretability

metric over the GP predictions. Finally, we showcase the applicability of the

techniques in the context of affective recognition from physiological signals. In

order to do so, we first show how state-of-the-art GP models can be learned

for affective tasks, by relying on prior distributions suitably defined over the

dynamics of physiological mathematical models of the analysed processes. We

then apply our methodology to derive physiologically meaningful interpretations

over the GP predictions, demonstrating how safety can be guaranteed over the

posterior GP behaviour, which we argue is crucial for machine learning systems

that have to interact with humans in clinical situations.

1.2 Thesis Outline

This thesis is organised as follows. In Chapter 2 we review related work in literature,

and introduce the technical background needed for the thesis in Chapter 3. In Chapter

4 we formally define adversarial robustness for Bayesian learning and give two explicit

problem formulations. The main theoretical contributions are provided in Chapters

5-6, where we derive algorithms for computing robustness for GPs under adversarial

settings. In Chapter 7, we benchmark our methods on three datasets for affective

recognition from physiological signals. We conclude with Chapter 8 by summarising

our work and highlighting possible future directions.
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1.3 Publications

Much of the work presented in this thesis has been previously published in jointly au-

thored papers. In particular, the thesis covers References [28, 19] and [70] essentially

completely, and it partially takes from References [37] and [27]. In [28], we study

probabilistic robustness of GPs and infinitely-wide BNNs under adversarial settings,

while in [19] we develop a branch-and-bound method for the computation of adversar-

ial robustness of classification GPs. I collaborated on the conception of these papers,

the formulation of the problems, the derivation of the results, the implementation

of the techniques, and I further contributed to their numerical evaluation. In [70],

we show how affective recognition can be effectively performed with GPs by relying

on suitably defined prior functions built around physiologically-based mathematical

models. I collaborated on the definition of priors and extension of a tool for GP

learning to the physiologically-inspired settings. Reference [37] presents a systematic

literature review of the applications of technology in ecological momentary assess-

ments and intervention for depressive disorders. I collaborated on reviewing and

discussing works that focused on the applications of data-driven techniques for affect

recognition from physiological signals. In [27], we develop a statistical verification

technique for the probabilistic analysis of adversarial robustness of Bayesian neural

networks. I collaborated on the conception of the paper and the formalisation of the

problem.

This thesis also partially builds on [73], which is currently under review. The

latter is a significant extension of the work presented in [70], in which we consider

interpretability of the resulting models from the physiological perspective, obtained by

employing methods for the formal analysis of GPs. I collaborated on the definition of

the problem formulation, the derivation of the methodology and the implementation

of the interpretability techniques.

During my DPhil, I have also co-authored the following published papers, the

results of which have not been included in this thesis. In [152] we introduce a data-

driven stochastic model of the physiology of a human heart, and employ statistical

verification techniques for the analysis of the interaction between the heart and a rate-

adaptive pacemaker. In [51] we develop an optimisation-based method for the problem

of domain-adaptation of body physical and physiological signals across various record-

ing contexts, and employ it for the evaluation of its security against impersonation

attacks. In [157] we rely on Siamese neural networks to design deep architectures that

are able to automatically perform subject-specific feature calibration in the context
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of affective recognition from physiological signals1. In [156], we extend the Siamese

architecture to the setting of sleep-arousal recognition from multi-modal physiolog-

ical signals, and obtain the fifth place in the 2018 Physionet/CinC challenge2. In

[172], and its journal extension [171], we derive a probabilistic model for indoor hu-

man localisation from a wrist-worn watch embedded with an IMU sensor, by relying

on approximate Bayesian inference for neural networks and hidden Markov models.

In [38] the protocol used in the systematic review of [37] is described. In [163] we

build on the methods that we had previously developed in [28] to compute adversarial

guarantees for GPs in iterative prediction settings, and embed the bounds in a safe

PILCO approach, in an effort to design provably safe controllers. In [26] we prove

that overparametrised BNNs are robust against gradient-based adversarial attacks in

the infinite data limit. In [207] we derive an optimisation-based methodology for the

under and over approximation of probabilistic adversarial robustness for BNNs.

1.4 Source Code

For the training of GP models we rely on the GPML [168] and the GPstuff [197]

MATLAB toolboxes. We implemented our techniques for the verification of GPs

in MATLAB along with auxiliary functions for interfacing with those two tool-

boxes. Techniques for the computation of probabilistic adversarial robustness for GPs

and for infinitely-wide BNNs can be found at https://github.com/andreapatane/

checkGP. An implementation of the techniques for the computation of adversarial

robustness and the interpretability of GPs can be found at https://github.com/

andreapatane/check-GPclass. GP training in the context of physiological signals,

along with an extension of our approaches for the interpretability of models with

a non-trivial prior function, can be found at https://github.com/shadishadi72/

GP-prior.

1The paper obtained the best paper award at the 2018 LOD conference https://lod2018.icas.
xyz/best-paper-award/.

2https://archive.physionet.org/challenge/2018/.
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Chapter 2

Related Works

Contents
2.1 Adversarial Examples . . . . . . . . . . . . . . . . . . . . . 10

2.2 Adversarial Uncertainty and Robustness of
Bayesian Models . . . . . . . . . . . . . . . . . . . . . . 11

2.2.1 Uncertainty for Detection of Adversarial Examples . . . . . 12

2.2.2 Adversarial Attacks for Bayesian Methods . . . . . . . . . . 14

2.2.3 Verification for Bayesian Models . . . . . . . . . . . . . . . 16

2.3 Affective Recognition . . . . . . . . . . . . . . . . . . . . . 18

2.3.1 Affective recognition from Physiological Sensors . . . . . . . 18

In this chapter, we review prior work related to adversarial robustness of ML

models. Since the pioneering work of Szegedy et al. [189] many papers on this subject

have appeared in the literature. Rather than covering the full spectrum, we focus our

discussion on the main seminal works on adversarial attacks and on work related

to Bayesian modelling. A more in depth review of adversarial attacks and defence

methods can be found in [219, 212], while verification techniques and guarantees

are discussed in [93, 125]. We conclude the chapter with a review of applications

of Gaussian processes and related techniques in affective recognition tasks, as these

constitute the main benchmark for our methods discussed in Chapter 7.

We remark that this thesis focuses only on adversarial robustness. Robustness

for ML is a broad concept, and many different variants of this notion and evaluation

techniques have been explored in the literature. Examples include robustness against

outliers [110]; poisoning attacks [4]; labelling errors [90]; PAC bounds [149, 9]; robust-

ness with respect to the prior distribution [12]; distributional shifts [112]; likelihood

function [6]; robust approximated inference [61]; and statistical robustness [36].
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2.1 Adversarial Examples

Adversarial examples are loosely defined as inputs to machine learning models inten-

tionally crafted by an attacker with the purpose of tricking the model into performing

wrong predictions. The initial observation of this phenomenon was made by Szegedy

et al. [189] in the context of deep neural networks used for image recognition. While

employing the network gradient to derive an explainability metric, the authors of

[189] noticed that by performing subtle gradient-guided manipulations to a correctly

classified image it was possible to force the network to predict any other label on

that image. Formally, given a neural network f and an input image x∗, they found be

possible to compute a small manipulation ε such that f(x∗) 6= f(x∗+ ε), even though

the images associated to x∗ and x∗ + ε looked identical to the human eye.

Since then, adversarial examples were investigated for a number of applications

and models, including: speech recognition [30], pose estimation and semantic seg-

mentation [34]; malware detection [85]; and healthcare [83, 59]. Several approaches

were developed for attacking neural networks [77, 153, 206], defending against spe-

cific attack instances [154, 83, 180], explaining the reasoning behind the existence of

adversarial examples [77, 96, 78], or training techniques that would optimise both for

accuracy and adversarial robustness of a network [193, 213, 179]. Biggio et al. [16]

discussed the similarity between the current line of research on adversarial examples

for machine learning models and early work on spam detection avoidance using linear

classifiers [40].

What perhaps was most surprising about the discovery of adversarial examples

was the fact that, even state-of-the-art neural networks that were able to achieve an

almost perfect generalisation accuracy on a test set, would very quickly break down

under simple adversarial attacks [77]. In fact, with hindsight, it is easy to see how

commonly used generalisation error metrics provide information which is unrelated

to adversarial robustness. Generalisation error metrics are frequentist in nature and

thus based on statistical assumptions about the data distribution [198], which fall

apart in the context of adversarial examples, as it was empirically observed in [83].

This is not to say that every out-of-distribution sample would necessarily make an

adversarial example; rather it suggests that, being out-of-distribution, the concept of

adversarial examples is simply not captured by test set generalisation performance,

so that an independent evaluation is necessary. A straightforward extension is then

that of using a test set, computing adversarial attacks for all the points included

in the test set, and then computing the ratio between unsuccessful attacks and the
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total number of attacks performed. This provides us with an accuracy measure in

adversarial attack settings [55], for which confidence intervals can be derived [121].

In order to compute such a measure exactly, it is necessary to develop formal

verification techniques, which are able to give provable guarantees for the existence of

adversarial examples. Roughly speaking, we want to make sure that, given a bound

on the norm of the perturbation ε, the network is robust to any possible attack of

magnitude ε performed over a given test point. Formally, we consider a test point

x∗, a neighbourhood T = {x∗ + ε | ||ε|| < γ} built around x∗ for γ > 0, and want to

check whether:

f(x∗) = f(x) ∀x ∈ T

is satisfied or not [107], or alternatively compute the largest γ such that the equation

above is satisfied [94]. Adversarial attacks can be seen as providing an approximate

analysis of the above check. If an adversarial attack is successful, then the check

above will be guaranteed to fail. On the other hand, in the case of the attack being

unsuccessful, then the equation above is undecided and can still be valid or not.

Importantly, due to the existence of adversarial examples the development of ver-

ification techniques for machine learning models is of paramount importance if those

are to be applied in safety-critical real-world situations. Computations of the form of

the equation above can be used to provide guarantees about the behaviour of a trained

model, hence increasing trust in a model predictions [170], or can be thought of as a

building block towards the training of a model with certified behaviour [78]. Interest-

ingly, as highlighted by the way in which adversarial examples were first identified,

there exists also a strong connection between adversarial examples and intrepretabil-

ity/explainability of machine learning models [95, 192]. In particular, in Chapter 6

we will show how our methods for the computation of adversarial guarantees on GP

models will allow us to define formal, quantitative interpretability metrics around

their pointwise predictions.

2.2 Adversarial Uncertainty and Robustness of

Bayesian Models

The overwhelming majority of techniques for analysing machine learning models un-

der adversarial settings have thus far been developed for frequentist learning ap-

proaches, and especially in the context of deterministic neural networks. In this the-

sis, we instead focus on adversarial robustness of Bayesian models, and in particular

Gaussian Processes (GPs).
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Bayesian modelling provides us with a probabilistically principled way of dealing

with uncertainty, which is particularly appealing when dealing with adversarial ex-

amples. Intuitively, adversarial examples are points that fundamentally break our

implicit statistical assumptions about the problem, and one may expect this to be

captured by a well-calibrated uncertainty. Hopefully, measures of uncertainty can

then be used as a means to flag and defend against plausible adversarial attacks. The

first line of work that we review is based exactly on this observation, which we refer

to as uncertainty for detection of adversarial examples (Section 2.2.1). The approach

taken by these works is hybrid, in that model training is generally performed follow-

ing a frequentist approach, and adversarial examples are computed for the models

using standard methods. Uncertainty is mostly evaluated after model training. The

second line of work that we discuss looks at the problem using a principled Bayesian

perspective, i.e. model training is performed in a Bayesian way, and adversarial at-

tacks considered are specifically tailored for Bayesian models. We will refer to this

as adversarial attacks for Bayesian methods (Section 2.2.2). Finally, in Section 2.2.3,

we will review methods developed in the context of Bayesian modelling, which aim

to provide robustness guarantees over the model output.

We stress that our focus is only on Bayesian methods, that is, when the prob-

ability comes from the uncertainty over the candidate solution model itself. Other

approaches in the literature consider the behaviour of a model under an uncertain

input. For example, statistical techniques posit a specific distribution in the input

space in order to derive a quantitative measure of robustness for deterministic net-

works [202, 36]. However, this approach may not be appropriate for safety-critical

applications, because these typically require a worst-case analysis and adversarial

examples often occupy a negligibly small portion of the input space. Alternatively,

Dvijotham et al. [50] consider a similar problem, i.e., that of verifying deterministic

deep learning models over probabilistic inputs (e.g., VAE and GAN architectures).

Even though they provide stronger probability bounds than the above mentioned

statistical approaches, their method is not applicable in Bayesian settings.

2.2.1 Uncertainty for Detection of Adversarial Examples

One of the advantages of Bayesian modelling is that it provides the user with point-

wise uncertainty estimates for model prediction in a given test point, which can be

used, for example, in active learning settings [63], for posterior estimation [108, 141]

or for detecting out-of-distribution samples [171, 172]. Intuitively, a similar approach

could be used for detecting adversarial examples as well. Smith et al. [183] analyse
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the behaviour of uncertainty as estimated by Monte Carlo dropout techniques [62]

on adversarial examples computed for neural network models. As a testbed, they

proceed by taking points in the input space at the interpolating line between two

test points in the dataset and look at how the uncertainty changes with respect to

the distance from the original point. They then compute attacks on the associated

deterministic neural network, and analyse how the uncertainty estimation changes

with respect to adversarial attacks. They empirically find that uncertainty estimate

tends to increase for adversarial points, albeit the results are not consistent across all

the observations made. Bekasov et al. [11] empirically analyse the problem in simple

adversarial sphere settings for a generalised linear model Bayesian classifier, observing

a relationship between approximate model uncertainty estimations and the presence

of adversarial examples. Similarly, Daubener et al. [42] investigate the behaviour of

uncertainty on adversarial attacks computed over networks trained for speech recog-

nition. They find that networks trained in an (approximate) Bayesian way tend to

be more robust with respect to adversarial examples, and that uncertainty can be

used as a threshold against adversarial attacks with some success. In an effort to im-

prove the uncertainty estimation quality, Li et al. [124] derive an approximate scheme

for variational inference when using α-divergences and evaluate its effectiveness in

measuring uncertainty against adversarial attacks on neural networks. Bradshaw et

al. [24], on the other hand, use GP models to better capture the model uncertainty.

In particular, they learn a hybrid neural network GP model, in an effort to combine

the representational capabilities of neural networks and the uncertainty estimation of

GPs. They show that their hybrid model obtains a better calibration of uncertainty

and is potentially able to flag adversarial examples computed by means of standard

gradient optimisation methods. A different path is taken by Feinman et al. [56], where

rather than just relying on uncertainty estimation, they perform explicit modelling of

the input data distribution, and develope a combined rejection procedure for possible

adversarial attacks. Rawat et al. [169] train Bayesian neural networks on the MNIST

dataset and then empirically evaluate the behaviour of a set of uncertainty estima-

tion measures with respect to adversarial attacks and white noise perturbations for a

range of approximate Bayesian inference techniques. Interestingly, they find that the

uncertainty estimation behaves similarly for adversarial attacks and for points that

were perturbed by means of white Gaussian noise, and that this correlation increases

as more refined uncertainty estimation techniques are used.

All the methods mentioned above fundamentally demonstrated in practice that

uncertainty provides information that can be, at least to some degree, used for iden-
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tifying adversarial examples. As such, they justified the importance that Bayesian

techniques can have in terms of robustness. However, all these methods were relying

on Bayesian properties only at test time, while model learning and adversarial at-

tacks were mostly computed for deterministic models. Consequently, the impressive

defence results obtained by these methods were later proved to be too optimistic.

The rationale behind this is intuitive. Fundamentally, rejection threshold and/or

procedures that are learned for an uncertainty measure end up defining a machine

learning problem that aims at discerning between adversarial examples and naturally

occurring points based on uncertainty. It then suffices to attack this procedure as

well so that the whole defence mechanism quickly breaks down, in a typical instance

of an arms race between an attacker and a defender. Grosse et al. [84], for example,

developed an optimisation approach to craft high-confidence low-uncertainty adver-

sarial examples in the context of Gaussian processes. They experimentally show

that it is possible to design adversarial examples that are predicted with as high

confidence as desired, and at the same time minimise a given uncertainty measure

computed over it. Notice that uncertainty estimation for GPs is exact, so that the

fact that these can be computed could not be blamed on degeneration of approximate

inference methods. They furthermore show that thus computed adversarial examples

transfer consistently to deterministic networks and to uncertainty measures computed

for them. This shows that it is difficult in practice to develop guarantees for tech-

niques based on uncertainty thresholding. Furthermore, Carlini et al. [29] developed

a technique to systematically break defences based on uncertainty measures, along

with 9 other popular defence techniques. This provides the necessity of developing

guarantees over model behaviour rather than empirical defence mechanisms, even in

Bayesian learning settings.

2.2.2 Adversarial Attacks for Bayesian Methods

While the above discussion hinted at the robustness property of Bayesian methods, at

least experimentally and appealing to intuitive reasoning, Gal et al. [64] found a set

of sufficient assumptions to guarantee that exact Bayesian learning naturally yields

models that are provably robust against adversarial attacks. Similarly, in [26] we for-

mally show how over-parametrised BNNs (and hence also GPs) are provably robust

against gradient-based adversarial attacks in the infinite data limit, theoretically con-

firming the observations that we previously made experimentally in [19] (which will

be the skeleton of Chapter 6). By extending a set of adversarial examples developed
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for deterministic networks to Bayesian settings, in that work we empirically confirm

the theoretical conclusions in the finite data limit, also in the BNN case.

These theoretical observations, along with the experimental ones reviewed in the

previous subsection, underpinned a research effort in adversarial attacks for Bayesian

methods. Interestingly, because of the distinction that exists in Bayesian modelling

between the likelihood function and the loss function, as well as that between the

latent variable and the output variable, after Bayesian training we are left with a

posterior distribution, a posterior predictive distribution, and a model decision. The

first question that comes to mind when discussing the robustness of a Bayesian model

in adversarial settings is thus which one of these should we attack.

Ye et al. [217] take a soft, distributional approach to the question. Instead of actu-

ally computing adversarial attacks, they proceed by assuming a distribution around

each point in a training set, which can be used to capture likely adversarial attacks,

and then perform full posterior inference on top of that. This exploits the probabilis-

tic properties of Bayesian models as a way to push the model learning towards more

robust solutions. However, as highlighted by the authors, the approach is parametric

in the sense that a prior distribution over the input space must be assumed, and that

the analysis is thus not worst-case, that is, not properly adversarial in general. With

the aim of robust training, Liu et al. [126] modify the objective function of a varia-

tional inference approach, to also take into account the robustness of a BNN against

adversarial perturbations computed by means of gradient-based attacks. While do-

ing so, the authors rightly notice that attack methods used for deterministic neural

networks cannot be straightforwardly used for BNNs, because of the probabilistic

nature of the latter, and hence proposed a stochastic gradient descent based method.

However, Zimmermann [221] later showed that, by instead defining the attack on a

Monte Carlo estimation of the BNN predictive distribution, the adversarial training

procedure proposed by Liu et al. [126] does not actually yield significant robustness

improvements compared with normal Bayesian training, calling for caution in making

conclusions on attack methods that are not specifically designed for Bayesian meth-

ods. In a similar vein, Grosse et al. [85] extend FGSM and other gradient-based

methods to the setting of Bayesian inference with GPs. Founded on the fact that in

two-class classification settings the computation of the mean is sufficient to check for

mis-classification, they attack the model decision by propagating gradient computa-

tions through the a-posteriori latent mean of the GP. Though the derived method

does account for the Bayesian nature of GPs, it is specific to the two-class case and,

even when convergence happens, it would not ensure a worst-case analysis since the
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variance is not taken into account. In [27], a follow up work to that discussed in Chap-

ter 5, we instead take a probabilistic perspective towards model robustness, which

equates to attacking the posterior distribution. Namely, realisations of the BNNs are

iteratively sampled from the posterior distribution and attacked by means of stan-

dard deterministic methods. The ratio between successful and unsuccessful attack is

then computed as a measure of vulnerability of the networks, along with statistical

guarantees computed for these quantities. This is fundamentally different to what

is discussed in the above works, as neither the marginalisation step over the latent

function nor the decision making step are considered by the procedure.

2.2.3 Verification for Bayesian Models

Very few works have considered adversarial robustness of Bayesian machine learning

methods by taking formal guarantees into account. To the best of our knowledge, the

only such work that was developed in parallel to this thesis is by Smith et al. [184],

who derived a technique to compute adversarial robustness bound in two-class GP

classification settings. The method is tailored to the `0 neighbourhood and only

considers the mean of the distribution in the latent space without taking into account

the uncertainty intrinsic in the GP framework (i.e., only consider the model decision).

We will tackle the adversarial robustness of GPs in Chapter 6, which will be based on

the work we have presented in [19]. Differently from the approach of Smith et al., our

approach also considers multi-class classification, takes into account the full posterior

predictive distribution, and allows for exact (up to any arbitrary ε > 0) computation

under any `p norm.

Extensions and generalisations of the works discussed in this thesis can be found

in [207, 163]. Specifically, in [163] we employ the techniques developed in [28] (which

will be discussed in Chapter 5) to obtain probabilistic safety guarantees for GPs in

iterative prediction settings. This is achieved by iteratively propagating the proba-

bilistic adversarial bounds through discrete time steps. By further taking into account

the decisions coming from a deterministic controller interfacing with the GP, we then

show how the method can be used to provide guarantees over polices learned by

PILCO [43]. In [207], we take a similar optimisation approach to that discussed in

Chapter 5, expect that we consider the computation of probabilistic robustness in

Bayesian neural networks.

Because of their mathematical properties, GPs have been widely employed in

Bayesian optimisation settings, in which guarantees that we focus on are of interest.

For example, Bogunovic et al. [20] look at obtaining robust solution to optimisation
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problems. Namely, they assume that the underlying function is bounded in a Repro-

ducing Kernel Hilbert Space (RKHS), and rely on that to compute confidence bounds

on the distance between the GP and the true function. This allows them to develop

upper and lower bounds on the regret, i.e. the distance between the GP prediction

and the value of the actual function, and to take that into account in the solution

of the optimisation problem. Though adversarial, the guarantees provided by that

work are with respect to the original underlying function (which is the reason why

its RKHS boundedness needs to be assumed). On the other hand, in this thesis we

focus on computing guarantees for the GP model itself.

Sadigh et al. [178] employ GPs for modelling cyber-physical systems under un-

certain environments. They tackle the problem of synthesising a safe controller for

the GP model, and identify a convex subset of the probabilistic signal temporal logic,

which allows them to solve the problem formally by using a mixed integer semi-definite

program reformulation for the safety specification. Building on this, Sui et al. [188]

introduce SAFEOPT, a Bayesian optimisation algorithm that additionally guaran-

tees that, for the optimised parameters, with high probability the resulting objective

function (sampled from a GP) is greater than a given threshold. Similarly, Wachi

et al. [199] use Gaussian process guided optimisation for safely controlling Markov

decision processes, and proceed by extending the SAFEOPT computation to these

settings. While formal, these approaches do not give guarantees against perturba-

tions of the synthesised parameters. For instance, they cannot guarantee that the

resulting behaviour will still be safe and close to the optimal value if parameters or

input states get corrupted by noise. Furthermore, property verification is achieved in

a pointwise fashion, which (as discussed in Example 5 in Chapter 4) can lead to a

severe over-estimation of model robustness.

A similar property to that analysed in Chapter 5 is investigated by Laurenti et

al. [120] in the context of continuous-time continuous-space stochastic processes. In

particular, they focus on linear stochastic differential equations that yield a GP as

a solution, and show that probabilistic safety can be computed formally by solving

a set of optimisation problems. Jackson et al. [98] investigate the same problem

in the context of GPs learned from data over the unknown dynamics of a discrete-

time system. They then verify probabilistic properties over the GP predictions by

exploiting upper and lower bounds for the a-posteriori mean and variance that were

developed in [28] (which will be discussed in Chapter 5).
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2.3 Affective Recognition

In Chapter 7 we will apply the methodology developed for the adversarial verification

of GPs in the context of affective computing. Though the origins can be traced back

to earlier work [57], the current trend of research on affective analysis and computing

sprang off seminal work on arousal recognition from Electrodermal Activity (EDA)

[161]. The research has since evolved toward a number of different directions, in-

cluding implementation and validation of processing models of emotions [69, 132];

emotional re-appraisal and Gross’ theory of emotional regulation [22]; modelling and

detection of the big five personality traits [75]; implementation of affective features for

virtual characters [127]; signal processing and machine learning for emotion and/or

mood recognition [111]; preference learning [133] and future emotion/mood predic-

tion [190]; assistance for clinical practitioners and patients in delivering ecological

momentary assessments and interventions [91]; delivering and support for comput-

erised treatments of affective disorders [60]; quantitative analysis of the effects of

life habits and sleep quality on mental well-being [190]; design practices and assisted

affect regulation [58]; and many others [161].

Affect recognition often lies at the core of the methodologies mentioned above.

It is in fact of particular relevance for applications of affective computing to mental

health, as most affective disorders are defined as dysfunctions of the affect regulation

sphere. Because of direct involvement with human-subjects, it has been argued in the

literature that model safety and interpretability are necessary prior conditions for de-

ployment of these models in real-word situations [164]. In this section we review only

the work concerned with affective recognition from physiological signals, in particular

from electrodermal activity and heart rate variability signals. We refer the reader to

[161] for a general introduction to affective computing.

2.3.1 Affective recognition from Physiological Sensors

In particular, affective recognition from physiological sensors, i.e. the problem of in-

ferring a user emotional/affective state from signals recorded from one’s body, is

routinely performed by the processing and extraction of several features from the

physiological signals, e.g. by applying statistical, frequency, time/frequency, and non-

linear analyses methods [181, 45, 160]. Mathematical models have been specifically

developed to explain the generative process behind specific physiological signals, as

a way to uncover and make explicit the relationship that exists between the affec-

tive state of a user and his/her body signals. Examples include the integral pulse
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frequency modulation [134] and the point-process model [196] for the modelling of

heart-rate variability dynamics; causal modelling [7], and cvxEDA [81] for explaining

EDA dynamics; as well as the recursive penalised least squares approach for the solu-

tion of the inverse problem posed by the EEG signal generation [214]. Compared to

generic feature extraction methods, model-based techniques capture and mathemat-

ically encode domain-specific expert knowledge about the physiology of the affective

modelling problem itself. As such, those techniques have been shown to be able to

provide a more detailed explanation of the inherent physiological mechanism underly-

ing the observed physiological signal, and therefore resulting in interpretable metrics

that allow for clinically-relevant evaluation of the features extracted from them [7].

End-to-end learning, especially in the form of deep neural network models, has

been shown to consistently outperform standard ML pipelines for affective computing,

at least in the case in which a sufficient amount of labelled data is available at training

time [174, 182, 53, 156, 157]. Unfortunately, over-fitting problems caused by small size

of datasets and the lack of interpretability that comes with deep neural networks has

thus far limited the use of these methods in practical clinical applications [145, 44].

In an effort to overcome these issues, several works have looked at techniques for

extensive data augmentation [92, 157] and transfer learning or pre-trained networks

[74, 182], as well as learning deep models on top of hand-crafted features [99] or

making ensembles of deep and shallow models [156]. While mitigating these issues,

data augmentation and transfer learning, however, do not fundamentally overcome

them, and the use of hand-crafted features restricts a-priori the learning capabilities

of deep models. On the other hand, the GP model we will train in Chapter 7, by

relying on patterns automatically learned from raw data by the GP, reduces the

risk of over-fitting by centring the model around the explicit solution given by a

physiologically inspired approach, and is thus also able to explain its predictions in

terms of physiological processes.

GP models have been applied in different forms in physiological signal analysis,

e.g., for solving regression tasks [48, 35, 186, 162] or as dynamical models [66]. How-

ever, physiologically-based design of the prior distribution in the Bayesian architecture

of GP models has not been fully investigated, and priors used in the literature tend

to be uninformative. The authors in [211] proposed an approach for designing pri-

ors for GPs specifically tailored to capturing hemodynamics in fMRI analysis. They

proceeded by investigating the use of linear time-invariant systems for the prediction

of the blood oxygenation level as a prior distribution, showing that an informed GP

model significantly outperforms a GP trained on uninformative priors. Similarly, the
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authors in [97] proposed a pseudo-Bayesian method for the estimation of intracranial

pressure, where the model likelihood is informed and adapted by physiological mod-

elling of the problem and the prior distribution is assumed to be uniform. In Chapter

7 we build on this literature to design an approach where the posterior distribution

is informed both by the peculiarities of the dataset at hand and the information

embedded within mathematical physiological models.
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In this chapter we introduce the theoretical background material that is then

used throughout the thesis. We start with a brief summary of the notation we use

for probability spaces, random variables and stochastic processes. In Section 3.1,

we review the main properties of Gaussian processes (GPs), the key probabilistic

model that is then studied in the rest of the thesis. In Section 3.2, we discuss how

Bayesian learning can be performed in the framework of GPs for both regression and

classification problems. We review the main inference equations, the explicit form of

the posterior predictive distribution and discuss decision theory. Finally, in Section

3.3 we introduce three problems for affective recognition from physiological signals,

which will be used as a testbed for the method derived in this thesis.

21



3.1 Gaussian Processes

A Gaussian Process (GP) over a real-vector space is a stochastic process such that

its joint distribution over any finite vector of points is a multivariate Gaussian. In

this section we first introduce Gaussian processes as a particular case of stochastic

processes, and then review the main properties of GPs.

We denote probability spaces with tuples of the form (Ω,F , P ), where Ω is the

sample space, F is a σ-algebra for Ω and P is a probability measure over F . Given a

probability space (Ω,F , P ) and a measurable space (Ω′,F ′), a random variable is a

measurable function ω : Ω → Ω′, i.e., a function such that the counter-image of any

event in F ′ is still an event in F . When it exists, we denote with p the probability

density function of ω associated to the probability measure P . Intuitively, an Rm-

valued stochastic process (or random field) over a real-vector space Rd is a collection

of random variables, one for each point of the space, that take values in Rm. Formally,

this can be defined as a measurable function of the form:

f : Ω× Rd → Rm.

We refer to Rd as the input space of the process, and to Rm as its output space.

For simplicity of notation, given x ∈ Rd we denote with f(x) := f(·, x) : Ω →
Rm the random variable induced by the stochastic process in the input point x.

Similarly, given ω ∈ Ω we denote with f(ω) := f(ω, ·) : Rd → Rm the trajectory of

the stochastic process that corresponds to the sample ω. For simplicity of notation

and when it causes no ambiguity, we will often refer to trajectories of stochastic

processes simply by using their respective non-bold letters, as in f1 := f(ω1), f2 :=

f(ω2), . . . , fM := f(ωM), to indicate M sampled trajectories. In this last form, a

stochastic process can be interpreted as a random variable over a (specific subset) of

the functions f : Rd → Rm.

We can now introduce Gaussian processes as a particular case of stochastic pro-

cesses such that their joint distribution over any finite vector of input points is a

multivariate Gaussian.

Definition 1 (Gaussian process). Consider a stochastic process f : Ω × Rd → Rm.

Consider a generic vector of input points x = [x(1), . . . , x(N)], and consider the random

variable f(x) = [f(x(1)), . . . ,f(x(N))]. Then, we say that f is a Gaussian process if

f(x) has a multivariate Gaussian distribution for every choice of x.
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Crucially, the definition above, even if it defines the behaviour explicitly only over

finite collections of points, can be shown to be providing a definition of a process by

the Kolmogorov consistency theorem [3].1

3.1.1 Properties of Gaussian Processes

In the finite-dimensional case, the behaviour of a Gaussian distribution can be fully

characterised by the first two moments of the distribution. Similarly, a GP, f , is fully

characterised by a mean function µ : Rd → Rm and a covariance (or kernel) function

Σ : Rd × Rd → Rm2
, which are the functional counterparts of the finite-dimensional

case. This can be seen as a direct consequence of the definition of Gaussian processes.

In fact, let x = [x(1), . . . , x(N)] and S = S1×. . .×SN and consider the random variable

induced by the GP on x, f(x). Then, by Definition 1, we have that its distribution

Ff(x) is defined as:

Ff(x)(S) =

∫
S

exp
(
−1

2
(ξ − µ)TΣ−1(ξ − µ)

)√
(2π)mN |Σ|

dξ

where µ = E
[
f(x(1)), . . . ,f(x(N))

]
and Σ is the mN ×mN covariance matrix with

generic element E
[
(f(xi)− E [f(xi)]) (f(xj)− E [f(xj)])

T
]
. As such, the behaviour

of the GP on its finite-dimensional distributions remains fully defined by the definition

of a function µ that assigns a mean value to each point in the input space, and a kernel

function that defines the covariance between each pair of input points.

From this observation, it then follows that a series of properties that hold for

Gaussian distributions generalise straightforwardly to GPs. Below we review key

properties that we leverage in the rest of the thesis.

Property 1 (Linear Operations with GPs). Let A ∈ Rr×m be a matrix and f be a

GP with mean µ and kernel Σ. Consider the stochastic process g = A · f , then g is

still a GP, whose mean and covariance functions are defined as:

µg(x) = Aµ(x) ∀x

Σg(x(1), x(2)) = AΣ(x(1), x(2))AT ∀x(1), x(2).

1There are some additional theoretical caveats that need to be resolved after the application of
the Kolmogorov consistency theorem. For example, we will tacitly assume, throughout the thesis,
the separability of the analysed processes, which ensures that the supremum of the process is well
defined. A full theoretical treatment of GPs’ definition falls outside of the scope of this thesis - we
refer the interested reader to Reference [2] and the first Chapter of Reference [136].
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Of particular relevance in Bayesian learning settings is the GP closure with respect

to the conditioning operation. Intuitively, in fact, this allows us to update our belief

of the distribution over a point, given an observed value on another point in the input

space.

Property 2 (Conditioning with GPs). Let f be a GP with mean function µ and kernel

Σ. Consider the random variable [f(x(1)),f(x(2))], which is normally distributed for

every x(1) and x(2) in Rd. Then the random variable (f(x(1))|f(x(2)) = f̄) is Gaussian

with mean µ̄ and covariance Σ̄ defined as:

µ̄ = µ(x(1)) + Σx(1),x(2)Σ−1
x(2),x(2)

(
f̄ − µ(x(2))

)
Σ̄ = Σx(1),x(1) − Σx(1),x(2)Σ−1

x(2),x(2)Σx(2),x(1) .

Finally, a key quantity for formal verification of probabilistic systems is that of the

superemum of a stochastic process, as this gives insight into the worst-case behaviour

of a system. Given a subset of the input space T ⊂ Rd and a norm || · ||, the random

variable associated to the superemum of a GP f is defined as:

fTsup = sup
x∈T
||f(x)||

One of the key properties that enables probabilistic verification of GP models is that a

Gaussian-shaped upper bound can be computed for the superemum random variable.

Property 3 (Borell-TIS inequality [3]). Let f be a one-dimensional GP such that

E[fTsup] <∞ with T ⊂ Rd. Let u > E[fTsup] then:

P (fTsup > u) ≤ exp

(
−
(
u− E[fTsup]

)2

2 supx∈T Σ(x)

)

3.1.2 Kernel Functions for Gaussian Processes

In applications, a GP is defined by providing an explicit functional form for the mean

and kernel functions. When performing Bayesian learning with GPs, the idea is to

encode our understanding about the problem at hand in the shape of the GP prior

distribution, which then gets adapted according to the data observed experimentally.

Usually the mean function is learned via a parametric approach, e.g., in polynomial

form. In the following, we instead review briefly some of the main kernel functions

used in practice, and which will be explicitly discussed in the rest of the thesis. We

give the definition for GPs over a uni-dimensional output space; these can be ex-

tended to the general case by following the techniques highlighted, e.g., in [208]. We
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remark that kernel designing, especially for difficult problems or for problems where

little data is available, is one of the crucial steps of GP-based modelling, and a thor-

ough discussion of the matter would be beyond the scope of this thesis. We refer the

interested reader to [49, 210].

The Squared Exponential Kernel is a smooth and flexible kernel, which assumes

that the correlation between random variables induced by the GP on the input space

decreases with the square of their Euclidean distance. It is defined as:

Σx1,x2 = σ2 exp

(
−

m∑
j=1

θj(x
(j)
1 − x

(j)
2 )2

)
.

The hyper-parameters of this kernel are σ2, which is the height-scale of the the kernel,

and controls the covariance ranges, and the θjs, which are related to the length-scale,

and control how quickly the GP trajectories evolve over the input space. Because of

its flexibility, the squared-exponential kernel is arguably the most used kernel function

in practice, especially when no additional information about the modelled problem is

available. Its generalisation is given in the form of the:

The Rational Quadratic Kernel, which is defined as:

Σx1,x2 = σ2

(
1 +

1

2

m∑
j=1

θj

(
x

(j)
1 − x

(j)
2

)2
)−α

with hyper-parameters σ, α and θj, for j = 1, . . . ,m. Intuitively, this is equivalent to

summing a number of squared exponential kernels with different length-scales.

The Periodic Kernel is a generalisation of the squared-exponential kernel for the

case in which we know that there exists periodicity in the data that we want to

capture. It is defined as:

Σx1,x2 = σ2 exp

(
−1

2

m∑
j=1

θj sin
(
pj(x

(j)
1 − x

(j)
2 )
)2
)

with hyper-parameters σ, θj and pj for j = 1, . . . ,m.

The Matérn Kernel for half-integer values is defined as:

Σx1,x2 = σ2kp exp

−
√√√√k̂p

m∑
j=1

θj(x
(j)
1 − x

(j)
2 )2

 p∑
l=0

kl,p

√√√√k̂p

m∑
j=1

θj(x
(j)
1 − x

(j)
2 )2

p−l

with hyper-parameters σ, θj, for j = 1, . . . ,m, and (integer valued) p, while kp, k̂p

and kl,p are constants.
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Algebra with kernel can be made so as to generate new kernels. In fact it is easy

to see that a linear combination (with positive coefficients) of kernels is still a kernel,

and that multiplication of two kernels still yields a valid kernel function.

In the next subsection we consider a particular case of kernel functions, coming

from the deep-kernel family, which are related to neural networks.

3.1.3 Infinitely-Wide Bayesian Neural Networks as Gaussian
Processes

One of the most important properties of Gaussian distributions is that of the central

limit convergence; that is, a suitably normalised sum of independent and identically

distributed random variables converges, in the limit, to a Gaussian distribution. This

is a key concept in statistical analysis because it implies that methods developed

for Gaussian distributions are applicable to many problems involving other types

of distributions. A similar property can be shown to hold for stochastic processes.

In fact, it can be proved that, under certain limit conditions, various probabilistic

models behave like GPs, as is the case, for example, for Markov processes [21] and

Bayesian neural networks [147]. In particular, in Chapter 5 we employ the central

limit theorem to analyse the behaviour of wide and deep Bayesian Neural Networks

(BNNs) by means of their limit Gaussian process.

Specifically, a BNN is a stochastic process of the form fw : Ω×Rd → Rm, roughly

defined by putting a distribution over the weights and biases (here all represented by

the random variable vector w) of a neural network architecture. In particular, for a

neural network of depth L and activation function σ, fw(x) is defined as the final

output of the following set of equations:

ζ
(l+1)
i =

nl∑
j=1

W
(l)
ij z

(l)
j + b

(l)
i i = 0, . . . , nl+1

z
(l)
i = σ(ζ

(l)
i ) i = 0, . . . , nl

for l = 1, . . . , L, where z(0) = x, W(l) (which is a random variable in Rnl×nl−1) and

b(l) (which is a random variable in Rnl) are the matrix of weights and vector of biases

that correspond to the lth layer of the network, nl is the number of neurons in the

lth hidden layer, and where we have that w = [W(1),b(1), . . . ,W(L),b(L)].

Assume now that w is a vector of independent and identically distributed Gaussian

random variables with mean zero, and denote with σ2
b the variance associated to the

network biases and σ2
w/nl that associated to the vector weights. Then, for every layer,
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we have that
∑nl

j=1 W
(l)
ij z

(l)
j + b

(l)
i is a sum of independent and identically distributed

random variables whose, by the central limit theorem, contribution to the overall

sum becomes Gaussian (as nl approaches infinity) with mean zero and variance σ2
b +

σ2
wE
[
σ(ζ(l))2

]
. It is straightforward to see that the same line of arguments can be

used for any finite vector of input points x = [x(1), . . . , x(N)], so that in the limit the

BNN behaves as a GP (though actually formally showing that the property can be

propagated through consecutive layers requires a bit of extra work, see [135]).

Property 4 (Central Limit for BNNs). Let {fw
i : Ω× Rd → Rm}i=1,...,n be a family

of BNNs with L layers and activation function σ. Assume a Gaussian prior over the

weights and biases with mean set to zero and variance respectively set to σ2
w/nl and

σ2
b . Assume that the family is indexed and defined in a way such that as i grows to

infinity then nl grows to infinity for every l = 1, . . . , L. Then the limiting stochastic

process converges in distribution to a GP f such that µ(x) = 0 for every x ∈ Rd and

the kernel is defined by the following recursion:

Σl
x(1),x(2) = σ2

b + σ2
wFσ

(
Σl−1
x(1),x(2) ,Σ

l−1
x(1),x(1) ,Σ

l−1
x(2),x(2)

)
l = L, . . . , 1

Σ0
x(1),x(2) = σ2

b + σ2
w

x(1) · x(2)

d
.

where Fσ is univocally determined by the choice of the activation function σ.

Though the form of the recursion is pretty straightforward, in general the function

Fσ cannot be written down analytically for any choice of activation function, and

Monte Carlo approximations need to be used. However, in the specific case of the

ReLU activation function, the formula for the covariance function can be computed

explicitly and we obtain:

Fσ

(
Σl−1
x(1),x(2) ,Σ

l−1
x(1),x(1) ,Σ

l−1
x(2),x(2)

)
=

1

2π

√
Σl−1(x(1), x(1))Σl−1(x(2), x(2))(

sin βl−1
x(1),x(2) + (π − βl−1

x(1),x(2)) cos βl−1
x(1),x(2)

)
(3.1)

βlx(1),x(2) = cos−1

(
Σl(x(1), x(2))√

Σl(x(1), x(2))Σl(x(2), x(2))

)

for l = 1, . . . , L. Similar explicit formulas can be found for other simple (though

commonly used) activation functions [123, 150]. Furthermore, thanks to much recent

work, a wide class of neural networks (not only fully-connected ones) with differ-

ent activation functions and architectures has been proven to converge to GPs with

specific structures [68, 150, 216].
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3.2 Bayesian Learning with Gaussian Processes

We now review how learning from data can be done with Gaussian processes. In

particular, in this thesis, we focused on supervised machine learning task, and fol-

low the presentation of [167]. Hence, we proceed by considering a dataset D =

{(x(i), y(i))|x(i) ∈ Rd, y(i) ∈ Y , i = 1, . . . , N} for some input space Rd and output

space Y . We denote with x = [x(1), . . . , x(N)] the aggregate vector of input points, and

similarly with y = [y(1), . . . , y(N)] the aggregate vector of output points. We assume

that the set Y is equal to (a subset of) Rm in case of regression problems, and to the

discrete set {1, . . . ,m} in the case of an m-class classification problem.

In supervised learning, we are interested in finding a function f(x) that has likely

generated the data contained in the dataset D, so that given an unseen input x∗ we

are able to estimate its associated output value by inspecting the prediction f(x∗).

Bayesian modelling approaches the learning problem with a probabilistic prospective.

Specifically, it is used to keep track and to update our belief with respect to the

problem solution and the likelihood of the observed data. The two ingredients for

learning are then a prior distribution over the candidate solution functions, p(f(x)),

which defines a (prior) stochastic process f over the solution space, and a noise model

(or likelihood), which captures the probabilistic model according to which the inputs

generate the outputs, p(y|f(x)).2 The dataset is hence used to update our belief

about the problem solution, in terms of the posterior computation according to the

Bayes’ rule:3

p(f(x)|D) =
p(y|f(x))p(f(x))

p(D)
, (3.2)

where p(D) =
∫
p(y|f(x))p(f(x))df(x).4 Given a previously unseen point x∗, we then

have that p(f(x∗)|D) is the distribution of the random variable that represents our

posterior belief about the system state in the point x∗. Indicating with y∗ the variable

associated to the output on the test point x∗, the posterior predictive distribution

2As abbreviated notation, for two random variables z1 and z2 we will denote with p(z1|z2) the
probability density function for z1 given the observation z2 = z2.

3Notice that, for simplicity, we are defining the inference only w.r.t. the final dimensional distri-
butions related to the observed dataset D. A formal treatment of the infinite case can be found in
the first Chapter of Reference [136].

4Notice thatD is not a point of the probability space, thus writing it inside the probability density
function represents an abuse of notation. This has to be understood as a short-hand notation for
y(x), that is, the observation of the stochastic process y (which is the observable one) on the points
of the input space included in the vector of point x.
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can thus be obtained by marginalising out the unobservable variable f :

p(y∗|D) =

∫
p(y∗|f(x∗))p(f(x)|D)df(x). (3.3)

In practice, e.g., when one aims at using the model in real-world applications, we

are often interested in extracting from the posterior predictive distribution p(y∗|D)

a point value, ŷ∗, that satisfies specific criteria. In Bayesian decision theory, one

proceeds by assuming a loss function, L(ŷ∗, y∗), and minimising it with respect to

the posterior distribution on the specific test point provided. Notice that in Bayesian

learning the likelihood and the loss function are independent modelling choices and

there is not necessarily a relationship between them. In fact, while the likelihood

describes the observation noise, and it is hence assumed to be a property of the

underlying process that we aim to model, the loss function represents the cost of

making a specific choice given a specific, true, state of the system. In Chapter 4 we will

explicitly distinguish two problem formulations for the evaluation of the adversarial

robustness of Bayesian learning models, depending on whether we are interested in

the robustness of the Bayesian model itself or if we are interested in the robustness

of the decision ŷ∗ given a particular loss function L(ŷ∗, y∗).

In Gaussian process learning, the prior stochastic process f is assumed to be a

Gaussian process. This has many computational advantages, as the posterior dis-

tribution in the case of regression can be found analytically and in terms of matrix

multiplications. For the classification case, though exact inference is not possible, sev-

eral analytical approximations can be found and implemented in a straightforward

way. The two cases are reviewed in the following two subsections.

3.2.1 Regression Problems

In regression settings the output variable is assumed to be varying in a continuous

space, so that Y ⊆ Rm, and we are interested in modelling it as a continuous quantity.

In this case the noise process is generally assumed to be a product of independent

Gaussian distribution so that:

p(y|f(x)) =
m∏
j=1

1√
2πσj

exp

(
−(fj(x)− yj)2

2σ2
j

)
(3.4)

where σ = [σ1, . . . , σm] is the vector of noise levels of each component of the process,

which captures the noise intrinsic in the observation of the quantity y.

Consider now a GP prior f . As the convolution between two Gaussian distri-

butions is still Gaussian, then it follows that the posterior distribution defined by
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Equation (3.2) is Gaussian. In particular, the formulas for the a-posteriori mean and

variance can be computed by relying on the conditioning Property 2, so that the

following holds.

Property 5 (Inference Equations for Regression). Let f be a GP with with mean

function µ and kernel Σ. Let D be a dataset and consider the likelihood function

from Equation (3.4). Then the posterior stochastic process f̄ = f |D is a GP with

finite-dimensional distribution defined by the mean and kernel:

µ̄(x∗) = µ(x∗) + Σx∗,x

(
Σx,x + σ2I

)−1
(y − µ(x))

Σ̄x∗,x∗ = Σx∗,x∗ − Σx∗,x

(
Σx,x + σ2I

)−1
Σx,x∗

for any x∗ = [x∗,(1), . . . , x∗,(M)] finite collection of points in Rd.

Notice how the a-posteriori mean and variance can be expressed in closed form

in terms of analytical operations on matrices. In Chapters 5 and 6 this simple form

will allow us to propagate upper and lower bounds from the input space through

the GP inference equations so as to get bounds on its output. We also remark that,

since the likelihood is Gaussian in this case, then the posterior predictive distribution

as computed from Equation (3.3) is still Gaussian and has the same mean as the

posterior distribution and variance equal to that of the posterior distribution plus a

contribution determined by the likelihood noise σ2.

Decision Theory for Regression Generally, in the regression case, the cost func-

tion is assumed to be proportional to the distance between our guess, ŷ∗, and the

actual, true value y∗, hence assuming a cost that increases as the difference between

our guess and the true value increases. Commonly employed loss function include

the squared loss and the absolute difference loss. The optimal decision can then be

found by computing the value ŷ∗ that minimises the expected risk over our posterior

distribution:

ŷ∗ = arg min
y∈Rm

∫
L(y∗, y)p(y∗|D)dy∗. (3.5)

It can be shown that whenever both L(y∗, y) and p(y∗|D) are symmetric (as is the

case for distance functions and Gaussian processes) then ŷ∗ is the mean of the pos-

terior distribution, that is, ŷ∗ = µ̄(x∗). However, this does not hold in general for

asymmetric loss functions, and other solutions must be found in a case by case sce-

nario [168, 13]. In this thesis, in particular in Chapter 6 when computing robustness

of model decisions, we will focus our investigation on canonical loss functions for

regression, that is, those which are symmetric.

30



Maximum Likelihood Estimation for the Hyper-Parameters One of the

main properties of GP regression models is that, as can be seen from the equations

in Property 5, inference can be done by simple operations with matrices - so that the

posterior is computed exactly. The key to obtain a good posterior model then rests

mainly on the specification of a “good” prior model. This involves the selection of a

suitable prior mean, a kernel function and a set of hyper-parameters for those two.

The first two choices from this pose a discrete optimisation problem for which the

evidence framework was developed for the computation of an approximated solution.

Hyper-parameter selection is instead generally done in the continuous space. This

can be done straightforwardly by maximising the model marginal likelihood with

respect to values selected for the hyper-parameters. Denote with θ the set of hyper-

parameters that we are interested in estimating. Defining the marginal likelihood

(also called evidence) as the integral of the likelihood times the prior marginalised

over the latent function, we obtain the following expression for its logarithm:

log p(y(x)|θ) = −1

2
y(x)T

(
Σx,x + σ2I

)−1
y(x)− 1

2
log
∣∣Σx,x + σ2I

∣∣− N

2
log 2π.

The first term from the above expression is a measure of a well the GP is fitting to the

data, while the second term penalises complex models. Maximisation of the marginal

likelihood is a standard method in statistics used to obtain a set of hyper-parameters

which balances model fit and complexity out. In the case of GP, it can be shown that

the partial derivatives of the marginal likelihood with respect to θ can be computed

analytically. A gradient based optimiser can be used for the maximisation of the

likelihood above which provide a Maximum Likelihood Estimation (MLE) for the

hyper-parameters, θ̂. In the remaining of this thesis, unless otherwise specified, we

will rely on MLE values for all the hyper-parameters involved in the GP models used.

We also remark that more involved and refined methods exist for the computation of

hyper-parameters, and additional details can be found in [167].

Example 1 (GP regression model). We consider a simple two-dimensional regression

problem. Given an input point x = [x1, x2] we define its associated target as the noisy

variable:

y = x1x2 + ε

where for the noise level we use ε ∼ N (0, 0.01). For generating a dataset we proceed

by first randomly sampling 128 points from a two-dimensional Gaussian distribution

with mean zero and the 2D identity matrix as the covariance function, which yields a
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Figure 3.1: Results of GP training on a two-dimensional regression problem. Black
crosses indicate the training point locations.

vector of input points x. We then pass every entry of x through the target equation

from above, couple them together, and standardise the output values to unity variance,

so to define the training dataset, D.

To learn a GP for thus defined dataset, we set the prior mean of the GP to zero

and use the squared-exponential kernel function. We estimate the hyper-parameters

of the kenrel by using the MLE approach. The mean and variance of the a-posteriori

GP distribution obtained after training are plotted in Figure 3.1, along with the 128

samples used for training. When using a canonical loss function we have discussed

that the optimal decision is given by the GP a-posteriori mean, in fact in can be seen

graphically that the a-posteriori mean closely mimic the behaviour of the quadratic

function x1x2. For what it concerns the a-posteriori variance, we can see that this is

very small around the centre of the plot. This comes from the fact that the intrinsic

noise of the problem (the normalised value of ε) is tiny compared to the y-scale, and

that most of the training points are centred around the plot origin. Notice how the

variance slowly increases as we get farther away from the region in which training

samples are, as it indicates that the GP does not have enough information to be

confident in its predictions in there.
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3.2.2 Classification Problems

In the classification case, the output variable varies in a discrete set that we can think

of as embedded in the set Y = {1, . . . ,m}, where m is the number of classes to be

modelled. Similarly to what is done for generalised linear models, one proceeds by

defining a continuous latent space, Rm, and a sigmoid function σ : Rm → [0, 1]m.

Intuitively, the latent variable f ∈ Rm represents our classification confidence over

the m classes, and the sigmoid function performs a normalisation of the latent values

so that π = σ(f) = [σ1(f), . . . , σm(f)] can be used as the mean parameter of a

multinoulli distribution. We refer to π as the vector of class probabilities, and to its

generic entry πi as the probability of class i. In particular, in the common case in

which the softmax is chosen for σ, the likelihood function for a class i ∈ {1, . . . ,m}
is defined as:5

p(y = i|f(x)) = σi(f(x)) =
exp (fi(x))∑m
k=1 exp (fk(x))

(3.6)

For classification with Gaussian processes, one proceeds by putting a GP prior f

over the latent space. This induces a prior function over the classification probabilities

π = σ(f). Inference on a point x∗ can then be done by first computing the latent

posterior distribution using Equation (3.2) with the likelihood function of Equation

(3.6), by means of which we can compute the posterior latent distribution on x∗ as:

p(f(x∗)|D) =

∫
p(f(x∗)|f(x))p(f(x)|D)df(x). (3.7)

The posterior predictive distribution is then retrieved by marginalising out the latent

variable, as:

πi(x) := p(y∗ = i|D) =

∫
σi(f(x∗))p(f(x∗)|D)df(x∗). (3.8)

Unfortunately, due to the non-Gaussian nature of the likelihood function of Equation

(3.6), the posterior distribution computed by means of the Bayesian formula is not

Gaussian in this case (not even that over the latent space), and the posterior predictive

distribution cannot be written down analytically.

Several methods have thus been developed for the approximation of the classifica-

tion posterior distribution. In particular, Monte Carlo methods proceed by approx-

imating the posterior distribution by stochastic sampling, while analytic techniques

5Other squash functions can be used for the choice of σ, depending on the given application and
for mathematical convenience [109]. Notice that p here indicates a discrete probability distribution.
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aim at giving analytical approximations of the posterior distribution. In this the-

sis, we are primarily interested in providing formal guarantees for Gaussian process

models, and as such we focus on analytic approximations of the GP classification pos-

terior6. Specifically, in Chapter 6 we show how to compute formal guarantees over

the Laplace and the Expectation Propagation approximate posterior [168]. Those two

approximate inference techniques are briefly summarised in the following two para-

graphs. For simplicity of notation we discuss only the case of two-class classification,

as that leads to many useful mathematical simplifications. In fact, when there are

two classes, i.e. Y = {1, 2}, it suffices to compute π1 and then simply set π2 = 1−π1.

In this way the latent variable space can be defined to be uni-dimensional, so that

f ∈ R. A discussion of the general case can be found in [209].

Laplace Approximation The overall idea is to perform a Gaussian approximation

of the posterior over the latent function distribution over the training set p(f(x)|D)

from Equation (3.7). This is done by taking a second order Taylor expansion of

p(f(x)|D) around its mode f̂ , so that one obtains:

p(f(x)|D) ≈ q(f(x)|D) = N
(̂
f ,
(
K−1 +W

)−1
)

for some suitably defined matrices K and W .7 q(f(x)|D) can then be used to integrate

out Equation (3.7). Given that the prior is a Gaussian process, then the integral can

be solved at this point by simply using Property 2 and we obtain the following:

Property 6 (Inference Equations for Laplace Approximation). Given a finite col-

lection of test points x∗, the Laplace approximate latent posterior is a GP with the

following mean and kernel functions:

µ̄(x∗) = µ(x∗) + Σx∗,xK
−1̂f

Σ̄x∗,x∗ = Σx∗,x∗ − Σx∗,x(K +W−1)−1Σx,x∗ .

Notice how the (approximate) inference equations for the latent posterior are of

the same shape as that of the regression case (see Property 5). This comes from

combining the (approximate in the case of Laplace) posterior over the training set

with the GP prior over the test prediction, and is hence a general property of Gaussian

approximations used for classification. In fact, we will find the same shape using the

6In fact, since Monte Carlo methods are based on sampling, only statistical guarantees (i.e. true
up to a certain statistical confidence) can be derived in those settings, see e.g. [27].

7Note that the conditioning in q(f(x)|D) is purely symbolic and has no actual probabilistic
meaning.
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expectation propagation method. This will allow us to develop, in Chapter 5, a

framework for the optimisation of GP posterior mean and variances that we can

employ indifferently in the regression case and in the classification case (under the

assumption, here, that analytic Gaussian approximations are used at inference time).

Expectation Propagation The Expectation Propagation (EP) method still works

by performing a GP approximation of the posterior over the latent space; however,

it achieves that by iteratively fitting a Guassian distribution by means of the EP

method (which is a general technique used in statistics [143]). The overall idea is

that of performing a local Gaussian approximation of the likelihood function and

to perform sequential updates of the approximating parameters. While a thorough

treatment of how the computation is done is outside the scope of this thesis, we state

below the overall resulting shape of the inference formula, as its similarity w.r.t. that

of Laplace is used in Chapter 6. Additional details can be found in [209].

Property 7 (Inference Equations for EP Approximation). Given a finite collection

of test points x∗, the EP approximated latent posterior is a GP with the following

mean and kernel functions:

µ̄(x∗) = µ(x∗) + Σx∗,x(K + Σ̃)−1µ̃

Σ̄x∗,x∗ = Σx∗,x∗ − Σx∗,x(K + Σ̃)−1Σx,x∗

where Σ̃, µ̃ and K are computed as described in [168].

Simplification for the Case of Probit Regression Once the posterior distribu-

tion over the latent space has been computed, this is needed for the computation of

the posterior predictive distribution through the evaluation of the integral of Equa-

tion (3.8). Unfortunately, the latter is usually intractable analytically and Monte

Carlo approximations or quadrature formulas have to be used. However, in the two-

class case, when the probit likelihood function is used then the integral can be solved

analytically and explicit derivation yields:

π(x∗) = Φ

(
µ̄(x)√

λ−2 + Σ̄x∗,x∗

)
where λ > 0 is the scaling factor, and Φ is the probit function. This yields an

analytical formula for the predictive posterior distribution in the case of Gaussian

analytical approximations, and will allow us in Chapter 6 to obtain improved formal

bounds in this case.
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Decision Theory for Classification The most commonly employed loss function

in classification is the 0−1 loss, which assigns a cost of 0 to correct classifications, and

a cost of 1 to wrong ones. We will refer to the 0−1 loss as the canonical loss function

for classification problems. It can be shown that the optimal decision w.r.t. this loss

can be retrieved by selecting the class associated with the index that maximises the

posterior predictive distribution, that is:

i∗ = arg max
i∈{1,...,m}

πi(x
∗).

A classifier built in such a way is also called the optimal Bayes classifier. Other cost

functions can be used depending on the application (e.g. for medical diagnosis taking

certain wrong decisions might be less “costly” than taking some other ones).

Maximum Likelihood Estimation for the Hyper-Parameters The MLE ap-

proach can be used in the classification case as well for estimating values of the

hyper-parameters. In the case of the Laplace or of the EP approximated posterior

distribution the form and the derivation of the formulas is similar to that of the

regression case. This follows from the fact that in the Laplace and in the EP approx-

imation we are effectively approximating the posterior over the latent function with

a Gaussian process. The computation of the derivatives in these two cases is however

a bit more involved, and details can be found in [168]. As for the regression models

discussed in the thesis, unless otherwise specified, we employ MLE for the estimation

of the hyper-parameters involved in all of the GP classification models discussed in

this thesis.

Example 2 (GP classification model). We consider a simple two-class classification

problem over a two-dimensional input vector x = [x1, x2]. Namely, we generate sam-

ples from a standard normal distribution and shift half of them one unit towards the

bottom-right of the 2D space for the first class, and towards the top-left for the second

class. We aim at learning a classification GP with prior mean set to zero and kernel

function chosen as the squared-exponential function, with maximum likelihood estima-

tion of the hyper-parameters. Since this is a two-class problem, we utilise the probit

likelihood function so to obtain the simplified inference equations discussed above.

In Figure 3.2 we compare the predictive posterior distribution obtained when using

Laplace (left plot) and EP (right plot) approximation methods, along with the training

samples used. Since this is a simple problem, the decision boundary obtained by the

two methods is very similar, so that perfectly equal results are obtained in terms of
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(a) Laplace approximated posterior. (b) EP approximated posterior.

Figure 3.2: A two-dimensional and two-class classification problem obtained by shift-
ing a 2-d Gaussian distribution in two difference direction.

classification accuracy. Note however how the predictive posterior distribution esti-

mated through EP is more confident in doing prediction around the actual mode of

the two Gaussian distributions, while the mode set by EP is a bit shifted too much

toward the decision boundary when compared to the true value.

3.3 Affective Models

In Chapter 5 and 6 we will test the methods developed there against standard bench-

mark datasets for regression and classification tasks. This will allow us to investi-

gate how they behave under controlled conditions. Then, in Chapter 7, instead, we

will explore the applicability of our methodologies in real-world recognition/detection

datasets on affective computing.

We will consider the problem of affective state recognition, framed as a machine

learning classification problem, and Gaussian process models learned in these set-

tings. In fact, because of the small size of the datasets typical of affective recognition

tasks, deep models do not offer a viable learning paradigm in these settings. On the

other hand, GPs, and Bayesian models in general, can be used to effectively exploit

both the information available in a (small) training dataset and the prior information

known about the problem at hand, in the form of a prior distribution assumed over

the solution space, and are hence particularly appealing for this task. Furthermore,

GPs provide results which, thanks to the methods that will be discussed in this thesis,

are amenable to interpretation and formal analysis, which is of paramount importance

for clinical applications. In particular, we focus on arousal and valence recognition
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Figure 3.3: Representation of Russel’s circumplex model of affect [176].

from the Electro-Dermal Activity (EDA) and Heart Rate Variability (HRV) physi-

ological signals. That is, the input variable x of our datasets will be composed of

raw, physiological signals in the form of time series of data. The output variable y

will instead capture the emotion, affective and psycho-physiological state of a person.

These concepts are introduced and reviewed in the rest of this section.

3.3.1 Valence and Arousal Modelling

When talking about emotion recognition, the question naturally arises of how to

provide supervision for the input data. By relying on psychological theories of affect,

this is usually done by assuming a model for the affective state of a person. In

particular, the dimensional model of affect (also known as the Russel’s circumplex

model [176]) assume that the affective state of a person can be characterised by two

continuous variables, denoted as arousal and valence. Intuitively, while valence codes

emotional events in the positive-to-negative scale, arousal is related to the fight-or-

flight response and codes our activation level as a response to the event. In Russel’s

model arousal and valence are constrained to a two dimensional circle, hence defining

a continuous trade off between high/low arousal and high/low valence.

With classification in mind the circumplex model of affect can be discretised for

emotional labels, an example of which is given in Figure 3.3. For example, boredom is

described by low arousal and negative valence, while happiness may be described as

positive valance and slightly high arousal situation. As such, the estimation of valence

and arousal constitutes a building block toward the development of a more refined

emotion recognition system. In Chapter 7 we will focus on emotion recognition and

will independently analyse valence and arousal in video-induced valence recognition
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tasks, and in pain-induced arousal recognition tasks. In particular, we will discretise

the x-axis and the y-axis of the dimensional model of affect, so as to map it into

two two-class classification problems, in which our dataset ground truth, y, is de-

fined according to an evaluation of the severity of the emotion induction experiment

performed. More specifically we analyse the following three datasets.

CPT dataset The Cold-Pressure Test (CPT) dataset is a dataset on physically-

induced arousal recognition that was introduced in [71]. It consists of EDA and HRV

recordings from 26 healthy subjects. During the experiment, two diverse physiological

conditions were experienced by the subjects, Condition 1, which is the resting state

to ensure hemodynamic stabilization, and Condition 2, which is the presence of a

physical stressor known to alter the Autonomic Nervous System (ANS) dynamics, i.e.,

cold pressure. During the resting state, the subjects were asked to sit in a comfortable

position for 4 minutes while watching a black screen. During the cold-pressure test

phase, instead, the subjects immersed their left hand into a tank filled with ice and

water at a temperature of around 4 degrees centigrade and for a period of 3 minutes.

The problem posed by the dataset is that of using the EDA and HRV signals from

the subjects in order to infer whether they were recorded during the resting phase

(low arousal class) or during the test phase (high arousal class). Additional details

on the dataset can be found in [71].

DEAP dataset The DEAP dataset [115] consists of multi-modal physiological

recordings, taken from 32 healthy subjects (19-37 years old, mean = 26.9, 50% fe-

males) while they were watching different affective video clips (40 in total). The

videos were selected from a set of 120 one-minute extracts of music videos that have

been previously rated by 14 volunteers for arousal and valence through an online self-

assessment platform. During each trial, the index of the current trial was first shown

for 2 seconds to each subject. Subsequently, 5 seconds of baseline followed. Then,

the subjects were exposed to the emotional stimulus for 1 minute. Finally, they were

asked to mark the mentioned dimensions on a scale of 1 to 9 after the stimulus. More

details on the dataset can be found in [115]. From this dataset we extract the EDA

signal, and pose the problem of inferring the valence class (low vs. high) using the

latter as the only input source. In particular, we focus on the recordings associated

to those videos that scored higher in terms of arousal and valence. The final dataset

thus obtained consists of 105 training points.
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BVHP dataset In the BVHP dataset [200], a group of 87 subjects underwent

heat-induced pain experiment of four different intensities, while their physiological

response was being recorded. Each pain stimulus was applied at the subject’s right

arm for around 5 seconds. The four temperatures were selected as those equally

distributed between subject-specific pain tolerance threshold, established before the

experiment itself. Each of the specific pain level stimulus was elicited 20 times in a

randomised order for each study participant. There was a randomised resting phase

of 8 to 12 seconds between each of the pain-inducing stimuli. Further information

on the dataset can be found in [200]. From this dataset as well, we extract the EDA

signal, and choose the affective state corresponding to the highest level of heat pain

stimulus, and the resting state. This choice follows previous research findings that

were performed on the same dataset [129, 205, 191]. As such, we obtain a two-class

classification dataset made of 348 observations.

3.3.2 Electro-Dermal Activity

The term Electro-Dermal Activity (EDA) is used to designate variations of the elec-

trical properties of the skin as a consequence of sweat secretion. Importantly, sweat

glands are exclusively innervated by the sympathetic nervous system, so that changes

in EDA directly reflect variations in the activity of the sympathetic nervous system.

The latter is in turn closely related to the concept of emotional arousal, so that a

direct link between EDA and arousal is believed to exist (though recent works on long

term EDA monitoring challenge this explanation [159]). EDA can be measured by

applying a low constant voltage to the skin, then unobtrusively measuring the result-

ing conductance (referred to as the skin conductance EDA signal8). This close link

between EDA and arousal, along with the ease of measuring it, is likely the reason

for the wide deployment of EDA for emotional analysis in the psychology literature,

starting over 100 years ago [57].

In physiological terms, the EDA signal can be described as the super-position

of two components, that is, the tonic and the phasic component [82]. These affect

the overall EDA signals at different time scales, and are in turn affected by external

stimuli in different ways. The tonic component is mainly responsible for the EDA

baseline level, i.e. the Skin Conductance Level (SCL). On the other hand, the pha-

sic component is constituted by the short-term responses to stimuli, also known as

skin conductance responses, which are characterised by quick increase in the signal

8For simplicity we will refer to this simply as EDA.
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amplitude, followed by an exponential decay shaped signal drop. Depending on the

objective of the analysis to be carried out, approaches in the literature tend to focus

either on the SCL (mid to long-term monitoring [114]) or SCR (short-term analysis

for specific stimulus response [89]), or on a combination of the two.

Machine learning pipelines that build on the EDA signals for affective recognition

then usually proceed by applying standard feature extraction methods to the signals.

Those include statistical, frequency, time/frequency, and nonlinear analysis methods

[181, 45, 160]. In Chapter 7, we will build GPs on top of a physiologically-based

mathematical model of EDA, the cvxEDA model. Given an n samples long EDA

signal x, cvxEDA provides a physiologically sound interpretation of its generation in

terms of tonic and phasic components, in a probabilistic fashion. Namely, denoting

with t the tonic component of the EDA signal, and with r its phasic component,

cvxEDA models the signal generation procedure as a super-position between signals:

x = r + t+ ε (3.9)

where ε is assumed to be additive white noise. The tonic activity contains information

about the overall psycho-physiological state of the subject, while the phasic compo-

nent shows rapid changes in EDA signals directly related to an external physiological

stimulation. In physiological terms, the phasic component is the output of the con-

volution between the sudomotor nerve activity (SMNA) and an Impulse Response

Function which describes the sweat diffusion process. We refer to the sparse SMNA

driver of phasic component as p. An example of the behaviour of cvxEDA is given in

Figure 3.4.

3.3.3 Heart Rate Variability

Heart Rate Variability (HRV) analysis is perhaps the most common tool used for

extracting features from and analysing the human heart rate. It refers to a way of

measuring how the heart rate changes with time and frequency. Its application spans

many fields from emotion recognition, to evaluation of risk of vascular events for

hypertensive patients [140], to evaluation of neurodegenerative processes in elderly

affected by dementia [39], and many other applications in the medical settings of

relevance for the quantification of cardiac or autonomic dysfunction [52, 100, 10].

The general idea behind HRV analysis for emotion recognition is that both the

parasympathetic and the sympathetic nervous systems influence the heart rhythm,

though relying on different signalling mechanisms and hence at different frequencies

and timescales. By careful analysis of the HRV signal and its derivative, one could
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Figure 3.4: CvxEDA [81] modelling results when applied to EDA signal.

thus distinguish between parasympathetic and sympathetic activity, which are corre-

lated to the user’s arousal and valence level [1]. A number of different HRV features

have been proposed in the literature. These range from simple statistical properties

extracted from the HR time-signal (time features [151]) and geometrical character-

istics of its empirical distribution (geometric features [1]) to sophisticated features

that analyse the properties of the signal in the frequency domain [89], using Poincaré

analysis [25], or that evaluate the fractal dimension and the entropy of the signal

(nonlinear features [139]). An example of an HRV signal is shown in Figure 3.5.

3.4 Summary

In this chapter we have introduced and discussed the key concepts that form the back-

ground of this thesis. First, we have introduced Gaussian processes as a particular

form of stochastic processes and reviewed their main properties. We have then dis-

cussed how GPs can be used to solve supervised machine learning problems, both in

regression and classification settings, by relying on the Baysian formulation of model

learning. GP models learned through Bayesian inference will be the main modelling

formalism that we will employ in the rest of the thesis.

Finally, we have focused our attention on a specific setting for machine learning,

affective recognition, that is, the problem of inferring from physiological signals the

affective state of a subject. Because of the clinical relevance of such applications,

safety is among the main concerns for practitioners in the field. As such, we will use
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Figure 3.5: Heart rate variability signal, shown as the difference between consecutive
heart rate samples.

the three affective recognition problems introduced in this chapter as a testbed for

the tools that we will develop for formal verification of GP models.

In the following chapter we will formalise the notion of safety for GP models under

adversarial perturbations.
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Chapter 4

Robustness for Gaussian Process
Models in Bayesian Inference
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While robustness against adversarial attacks has a straightforward meaning in

deterministic modelling, in Bayesian learning, because of the distinction between the

likelihood and the loss function, training yields a posterior distribution, a posterior

predictive distribution and a model decision. Thus, an obvious question that comes

to mind is which one of these we should analyse the robustness of, and in which

context does it make sense to do so? We have seen in the discussion of Chapter 3

that the approach so far taken in the literature is mixed, and different methods have

naturally adapted themselves to slightly different definition of adversarial robustness

in Bayesian settings. In this chapter we formally introduce and compare two different

notions of robustness for Bayesian learning models that we then investigate in the

remainder of this thesis. In particular, we focus on robustness computed in adversarial

44



settings, that is, we take a non-deterministic approach over the input space of the

problem, and the measures of robustness that we compute are worst-case, in the sense

that they account for the worst possible behaviour over all the input points x included

in a given subset T of the input space Rd.

In the first problem formulation (that we give in Section 4.1) we consider the

robustness of the stochastic behaviour of the GP. Namely, we define worst-case guar-

antees over each individually sampled trajectory f from the GP posterior, and hence

compute the probability (with respect to the posterior GP probability space) that

sampled models are robust to adversarial attacks. We refer to this as probabilistic

adversarial robustness. Intuitively, probabilistic adversarial robustness evaluates the

uncertainty of the posterior distribution under adversarial perturbations. By deriving

a simple statistical estimator for its empirical evaluation, we then discuss how proba-

bilistic adversarial robustness is related to pointwise measures of uncertainty, and can

be seen as their extension to worst-case analysis for (infinite) subsets of input points.

In this sense, probabilistic adversarial robustness is a property of the posterior

model itself, and does not depend in any way upon the decision making procedure used

on top of the Bayesian modelling. For this reason, in Section 4.2 we pose the problem

of computing the adversarial robustness of the overall prediction-plus-decision model.

Intuitively, here we are interested in providing guarantees over the non-existence of

input points, coming from a given subset T , that force the optimal decision made

under a given loss function to change with respect to that of a reference point x∗ ∈
T . This provides us with a measure of adversarial robustness that is the direct

counter-part of the adversarial robustness guarantees used in deterministic settings

(as discussed in Section 2.1). In classification settings, we also discuss a quantitative

version of adversarial robustness, which entails the computation of the reachability

ranges over the posterior predictive distribution, which is intimately related with

reachability measures used for deterministic neural networks.

We conclude the chapter with a discussion on the relationship that exists between

probabilistic adversarial robustness and adversarial robustness of Bayesian models as

defined here.
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4.1 Probabilistic Robustness Against Adversarial

Perturbations

We consider a Gaussian process f(x) defined over the input space Rd, d > 0, with

values in Rm,m > 0, and associated probability measure P .1

In deterministic settings, the adversarial safety of a machine learning model f is

defined as the worst-case prediction, f(x), around a given input point, also known as

worst-case (local) prediction to bounded adversarial perturbations [189]. Specifically,

given an input point x∗ one proceeds by fixing a neighbourhood T around x∗ (for

example a metric ball centred around it), a threshold δ > 0, and checking whether

hinv(f(x∗), f(x)) := ||f(x∗)− f(x)|| − δ ≤ 0 ∀x ∈ T, (4.1)

for a given norm || · ||. We refer to the property above as δ-invariance and denote it

with the function hinv. In general, we refer to deterministic constraints as above as

specifications. In classification settings, one is usually interested in checking whether

the predicted class changes under adversarial perturbations, so that one-sided differ-

ences are more meaningful, as these capture drops in per-class classification confi-

dence. This is encoded in the following specification:

hconf (f(x∗), f(x)) := fi(x
∗)− fi(x)− δ ≤ 0 ∀x ∈ T (4.2)

for a given output index i ∈ {1, . . . ,m}. Intuitively, if hconf is less than zero then one

is guaranteed that the model confidence in predicting output i will not drop by more

than δ in T .

In Bayesian modelling, rather than having a single model f , we are given a full

distribution over the function solution space. A straightforward extension of the

deterministic adversarial robustness can then be obtained by simply propagating the

value of a specification h through the probability measure P associated with the

stochastic process defined by the learning model. We call this probabilistic adversarial

robustness, which is defined formally below.

Definition 2 (Probabilistic Adversarial Robustness). Let T ⊆ Rd and fix x∗ ∈ T .

Consider a specification function h : Rm × Rm → R and call

φ(x∗, T, h) = P (∃x ∈ T s.t. h (f(x∗),f(x)) > 0)

= 1− P (∀x ∈ T , h (f(x∗),f(x)) ≤ 0)

1While the methods discussed in Chapters 5 and 6 are specific to GP models, the problem for-
mulation discussed in this chapter applies to Bayesian learning models in general. Similar properties
were in fact used in [27] and [207] for the analysis of BNNs.
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Then we say that the model f is robust with probability 1− ε > 0 for x∗ with respect

to the adversarial set T and function h iff

φ(x∗, T, h) ≤ ε. (4.3)

Intuitively, in Definition 2 we can consider a test point x∗ and a compact set T

containing x∗, and compute the probability that the realisations f of f remain close

(accordingly to the transformation h) to f(x∗), for each x ∈ T . We refer to

Psafe(x
∗, T, h) = 1− φ(x∗, T, h) = P (∀x ∈ T , h (f(x∗),f(x)) ≤ 0)

as the safety probability, and to φ(x∗, T, h) as the probability of being unsafe. For

simplicity, we assume that T is a compact set, and that both f and h are smooth, so

that we can rewrite the safety probability as:

Psafe(x
∗, T, h) = P (max

x∈T
h (f(x∗),f(x)) ≤ 0).

This allows us to convert the computation of probabilistic robustness in Chapter 5 to

that of the supremum of a GP, and will enable us to use the Borell-TIS inequality.

The specification h captures the concept of closeness in the output space, and its

definition will, of course, depend on the particular application. The two definitions

given in Equations (4.1) and (4.2), in particular, represent the case in which we

are respectively interested in investigating the normed invariance of the GP output

(which is of relevance, e.g., in the case in which the GP is modelling a robot that

moves in a critical space), and in single-output value drops (which is of relevant, e.g.,

in classification problems). For simplicity, we adopt the following two notations for

probabilistic adversarial safety related to hconf and hinv:

φ1(x∗, T, δ) := φ(x∗, T, hconf) (4.4)

φ2(x∗, T, δ) := φ(x∗, T, hinv). (4.5)

We now discuss probabilistic adversarial robustness in the two-dimensional regres-

sion problem that was introduced in Example 1.

Example 3 (Probabilistic Adversarial Robustness). Consider the GP whose training

was described in Example 1. Consider now the origin point xo = [0, 0], let γ = 0.1,

and define T oγ = [xo − γ, xo + γ]. As xo is a saddle point for the target function,

which is closely mimicked by the GP, variations of the mean around it are relatively

small. Analogously, the variance function exhibits a flat behaviour around xo, meaning

greater confidence of the GP in performing predictions around xo (which is a direct
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consequence of the fact that the training samples are mostly clustered around xo and

that the underlying noise has a small variance). As such, we expect realisations of

the GP to be consistently stable in a neighbourhood of xo, which in turn translates to

low values for φ2(xo, T oγ , δ).

On the other hand, around x∗ = [3, 3] the a-posteriori mean changes quickly and

the variance is high, reflecting higher uncertainty, partially due to the increased dis-

tance from the region in which training samples are located. Hence, letting T ∗γ =

[x∗−γ, x∗+γ], we expect the values of φ2(x∗, T ∗γ , δ) to be greater than those computed

for xo.

In the above example we refer, of course, to the safety of the trained model. In fact,

in Bayesian learning settings, the a-posteriori model is used for making predictions

on unseen test points. That is, we aim at computing probabilistic adversarial robust-

ness on the posterior stochastic process f̄ = f |D over the un-observable variable f̄ .

We remark that this is different from the posterior predictive distribution, which is

instead defined over the output variable y. Assuming that f is a GP, in the case of

regression the posterior f̄ is still a Gaussian process, so that what was stated above

actually holds independently of whether we are analysing the prior or the posterior

model. As highlighted in Section 3.2.2, the situation is, in general, different for GP

classification models, as the posterior distribution is not Gaussian anymore. Unless

otherwise stated, in this thesis we will assume that we are working with Gaussian

approximations of the GP latent posterior. Bounds on the posterior process π(f̄)

over the classification probability vector can also be then computed by relying on the

computation of the inverse of the employed likelihood function, σ. Our discussion

will then be applicable both to the GP regression posterior and the GP classification

latent posterior, and when talking about probabilistic adversarial robustness we will

often refer to a GP f without mentioning whether it is a regression or a classifica-

tion model. The situation is different for adversarial safety, and different notions and

techniques will be introduced and derived for regression and classification models in

that case.

In Chapter 5 we will derive a method for the over-approximation of adversarial

probabilistic safety as defined for φ1 and φ2 for GPs in Bayesian learning settings. In

the next subsection we derive a simple statistical estimator for φ that can be used to

gain insights in simple, low dimensional problems.
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4.1.1 Statistical Estimator for Probabilistic Adversarial Ro-
bustness

Let f1, . . . , fM be Monte Carlo samples from f , that is, each fl : Rd → Rm is a

realisation of the GP f . Consider now a grid of equally distanced points x(1), . . . , x(N)

of T , and define the quantity

f̄Nl = max
x∈{x(1),...,x(N)}

h(fl(x
∗), fl(x)), (4.6)

which, as N is finite, can be computed by simple enumeration. We hence define the

estimator:

φ̄M,N =
1

M

M∑
l=1

I[f̄Nl > 0] (4.7)

where the operator I[·] evaluates the Boolean formula in its argument to either 1 (for

true) or 0 (for false). Then, assuming continuity of the sampled paths from f , we

have that φ̄M,N thus defined converges to φ(x∗, T, h) as M and N grow to infinity. To

see that, it suffices to observe that from the continuity assumption we have that f̄Nl
converges to the actual maximum in T with probability 1 as the grid grows denser,

and φ̄M,N is then a standard statistical estimator for a mean.

We notice that, though the estimator φ̄M,N will not provide formal bounds, some

weak guarantees can be computed from it depending on the information available

about the process f . In fact, if a Lipschitz constant, Ll, is known for the sample

paths fl, it is then possible to use it for an over-approximation of the error incurred

in Equation (4.6), which is, by definition of Lipschitz constant, less than LlD, where

D is the maximum distance between two adjacent grid points. Notice also that, for

a given, fixed N > 0 and sequence of points x(1), . . . , x(N), we have that φ̄M,N is a

statistical estimator of the mean of a Bernoulli variable, so that confidence bounds can

be easily computed for reasoning about the (statistical) quality of the approximation.

We can use this statistical estimator for the computation of the probabilistic ro-

bustness of the simple regression problem introduced above, in order to check against

our interpretation of φ.

Example 4 (Probabilistic Adversarial Robustness - Continued). In Figure 4.1 we

plot a statistical estimation of the property φ2 computed in xo and x∗ with respect to

the sets T oγ and T ∗γ (defined in Example 3) with γ = 0.1. We do this for a range of

values of δ (i.e., the maximum allowed variation) ranging from 0 to 0.075.
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The values reported in the figure are estimated by using an input space grid of

2025 equally distanced points, and by sampling 10000 trajectories from the posterior

GP. To get an idea of the quality of the approximation provided we notice that, given

that γ is equal to 0.1, the maximum distance between points in the grid is of the order

of 0.0045
√

2. We further notice that local Lipschitz constants of the true function

can be computed in the two sets by direct inspection of the maximum of the Jacobian.

Namely, we obtain LT oγ =
√

2 and LT ∗γ = 3.1
√

2. As the GP mean mimics closely

the true function and the a-posteriori variance is small, for the sake of simplicity

we can approximate the Lipschitz constant of the GP trajectories with that of the

true function.2 Hence, we have that the error that we incur because of the finite

approximation of the supermum of Equation (4.6) is bounded by 0.0090 in LT oγ and

by 0.0279 in LT ∗γ , which in the worst-case could result in a shift to the right of the

two curves reported in the plot of these two respective values. We see already that

for high-dimensional and strongly non-linear systems the finite approximation would

quickly become prohibitive, as a huge amount of grid points would be necessary to

obtain a reasonable approximation error.

Recall that φ2 represents the probability of finding an adversarial example in T ,

that is, a point whose distance from the prediction in the reference point is more than

δ. Clearly, then for small values of δ that probability approaches 1 and decreases

monotonically as the value of δ increases. It is interesting to notice that the curves

follow an exponential-type of decay from the values 1 to 0. This is in accordance to

the theory of GPs, where the Borell-TIS inequality (see Property 3) predicts a similar

trend for the supremum random variable. Notice also how the values estimated for

xo are markedly smaller than those computed for x∗, which is in accordance to the

intuition provided in Example 3.

We also can observe how the property behaves “probabilistically” with respect to

δ only in the (small) interval in which the values computed are strictly in the range

(0, 1). For example, when δ > 0.06 we have that (statistically) the trajectories that

we sample from the GP will be δ-invariant around x∗ with probability 1. That also

means that any decision that we can make based on the GP posterior distribution

- and that follows the shape of Equation (3.5) - will be robust against δ-adversarial

examples, so that probabilistic adversarial robustness implies, in certain cases, also

2Notice that, given two points in the input space x and y, the joint distribution of the random
variables they induce through a GP is Gaussian, so that for every K > 0 there is a non-null
probability that they will be more than K units apart from each other. So an actual Lipschitz
constant for the overall GP does not exist (a distribution of them may exist) and the argument
above is approximate also in this sense.
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Figure 4.1: Statistical estimation of φ2 in xo and x∗ with respect to the sets T oγ and
T ∗γ for the regression problem introduced in Example 3.

guarantees on the decisions made. This observation will be formalised in Section

4.2.4, when discussing the relationship between adversarial probabilistic robustness

and adversarial robustness of GPs.

4.1.2 Why Probabilistic Guarantees?

Probabilistic adversarial robustness, in a sense, considers the adversarial robustness of

each model sampled from f . Notice that this is different from the adversarial robust-

ness of the GP decision (which is discussed in the next section), as it is independent

and prior to the decision-making step. Hence, it is a property of the stochastic process

itself, rather than the machine learning model used for making point predictions.

As such, probabilistic robustness estimations can be used, for example, to guide

the decision making procedure, e.g., by adjusting the loss function used for Bayesian

decision making by giving more weight to robust samples at integration time. This

can be achieved by defining the loss function L used in Equation (3.5) with a weight

that depends on the posterior sample chosen. Because of its probabilistic nature,

probabilistic adversarial robustness can also be used for adjusting the likelihood model

used at training time, and hence soft-guiding the learning toward more adversarially

robust models. In fact, one can simply add to the likelihood function a term that

depends on the adversarial robustness of sampled models f from f . Then robustness

learning follows directly from the Bayesian rule (a similar approach was taken in [126]

and for deterministic neural networks in [78]).
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There are cases in which the stochastic behaviour of a GP is meaningful and is

not just an artefact of the learning process. For example, in control applications

where a stochastic plant is modelled by a GP, then the GP posterior distribution is

used in order to try to capture the uncertainty of the environment. GP realisations

then describe the paths derived from the plant dynamics (that is, actual possible

trajectories of the system), and safety can only be reasonably described in terms of

probabilities, as there is uncertainty around the actual dynamics of the latter. In this

case, probabilistic adversarial robustness can furnish guarantees for a controller that

is learned under the uncertain environment.

As observed in Example 4, probabilistic adversarial robustness can be used to

provide some guarantees over the possible decisions made by the model. This property

will be discussed in detail in Section 4.2, where we will focus on the robustness of

model decisions. Probabilistic adversarial robustness can also be seen as an extension

of measures of uncertainty used in Bayesian learning. This is discussed below.

4.1.3 Probabilistic Robustness and Pointwise Uncertainty Mea-
sures

Probabilistic adversarial safety is intimately related to measures of uncertainty used

in Bayesian machine learning. As an illustrative example, the author in [63] argues

that aleatoric and epistemic uncertainty of a Bayesian model can be captured by

looking at the variation ratio of its prediction on a point x∗, that is, at the quantity:

1

M

M∑
l=1

I [h(fl(x
∗), y∗) > 0] (4.8)

where fl, l = 1, . . . ,M , are Monte Carlo samples from the GP, and y∗ is a fixed value

in the output space (e.g. the ground truth output for x∗). Note how the statistical

estimator for probabilistic safety (Equation (4.7)) can be seen as a generalisation of

the variation ratio in which the worst-case value from a subset of the input space

T is picked and used in place of the constant value y∗. So, in a sense, probabilistic

adversarial safety can be interpreted as a worst-case measure of uncertainty around

an input point x∗.

Interestingly, uncertainty measures similar to that of Equation (4.8), i.e. point-

wise, have been recently discussed as a way to flag possible adversarial examples,

albeit obtaining mixed results [84, 183, 29]. Given this relationship, it is possible

to build similar rejection-based defences against adversarial attacks for probabilistic

adversarial robustness. In fact, we observe that pointwise measures cannot actually
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provide formal guarantees on the behaviour of a stochastic process. This is because

each process evolves in the input space Rd in a strongly correlated manner, while

pointwise heuristics tacitly assume independence between the process realisations in

each point of the input field. The intuition behind this is illustrated below.

Example 5 (Limitations of Pointwise Uncertainty). Consider a discrete-time stochas-

tic process (f(x), x ∈ N) that takes values in R, and let T = {x(1), ..., x(10)} be the set

associated to the first 10 time instants. Assume, for simplicity, that f(x(1)) is equal

to 0 with probability 1, and that we are interested in computing probabilistic safety as

formulated for hinv (defined in Equation 4.1), that is:

φ2(x(1), T, δ) = P (∀x ∈ T, f(x) < δ),

for a given δ > 0. Assume that, for all xi, xj ∈ T , f(xi) and f(xj) are independently

and equally distributed random variables such that for each x ∈ T we have P (f(x) <

δ) = 0.85. Then, if we compute the above property we obtain

φ2(x(1), T, δ) = 0.8510 ≈ 0.197.

Thus, even though at each point f(x) has relatively high probability of being safe,

φ2(x(1), T, δ) is still small. This is because safety under adversarial perturbations

depends on a set of points, and this must be accounted for to give robustness guarantees

for a given stochastic model. Note that, to simplify, we used a discrete set T , but the

same reasoning remains valid even if T ⊆ Rd, d > 0, as is used in this thesis.

In Chapter 5 we will discuss, in a case of study, the suitability of using probabilistic

adversarial robustness as a defence mechanism against adversarial attacks and discuss

its limitations in those settings. In the next section, we discuss adversarial robustness

and compare it with probabilistic safety.

4.2 Robustness Against Adversarial Perturbations

Given a posterior GP, in Definition 2 we considered the probabilistic behaviour of

the GP under adversarial perturbations. In certain applications one might be, how-

ever, more interested in the robustness of the actual decision of the GP and giving

guarantees on that. When computing Bayesian optimal decisions, model decision is

deterministic since the uncertainty over the output is marginalised out in the integra-

tion of Equation (3.5). As such, measures of robustness used in this setting correspond

exactly with those used for deterministic learning models, the only difference being
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that the output value of the GP is computed by means of the integration in Equation

(3.5) for a given loss function L. Hence, we have the following.

Definition 3 (Adversarial Robustness). Let T ⊂ Rd and fix an x∗ ∈ T . Consider a

loss function L and a specification h. Let yopt(x) represent the optimal decision for

a generic point x with respect to the loss function L computed for the GP f . Then

we say that the pair (f , L) is robust in x∗ with respect to specification h and the

adversarial perturbations of T , iff

h(yopt(x), yopt(x
∗)) ≤ 0 ∀x ∈ T.

When discussing adversarial robustness associated with the optimal decision de-

scribed in Section 3.2.1 and Section 3.2.2, we will simply refer to adversarial robust-

ness as a property of f , with the understanding that it is computed with respect

to the standard loss (that is a symmetric loss for the regression case and 0-1 loss

for classification). As for the case of probabilistic adversarial robustness, we assume

smoothness of the specification and of the GP used for training, and that T is a com-

pact set, so that checking for adversarial robustness can be done by the computation

of the maximum of h(yopt(x), yopt(x
∗)) in T .

Because of the fact that the optimal decision is different and defined over different

output spaces in the cases of regression and classification, we explain in detail the

notions of adversarial safety in these two cases below.

4.2.1 The Regression Case

In the regression case, given the canonical loss function, we obtain that the optimal

decision is given by the mean of the posterior GP, so that the definition of adversarial

safety can be made explicit. In this case we focus on invariance of the decision, that is,

specification hinv defined in Equation (4.1) as this is generally of interest for regression

problems. We then obtain the following.

Definition 4 (Adversarial Robustness in Regression). Let T ⊂ Rd and x∗ ∈ T .

We say that the GP posterior regression model f is δ-robust in x∗ with respect to

adversarial attacks in T iff

||µ̄(x∗)− µ̄(x)|| ≤ δ ∀x ∈ T, (4.9)

where µ̄ is the a-posteriori mean of the GP.
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Figure 4.2: Adversarial safety threshold for the GP regression model introduced in
Example 3.

The definition, is completely akin to that used in deterministic settings, for ex-

ample when attacking neural networks. In fact, for a GP the mean corresponds to

the maximum of the distribution so that, under convergence assumptions, it would

be retrieved by a deterministic scheme that relies on regularised maximum likelihood

estimations. Notice how regression adversarial safety does not take into consideration

the variance of the model - it is interested only in the most likely model, among the

ones obtained by Bayesian inference.

Example 6. We evaluate adversarial safety on the GP learned on the regression task

introduced in Example 3. In order to do so, we first compute δmax
inv := maxx∈T ||µ̄(x∗)−

µ̄(x)||. Given a value δ then, checking whether Definition 4 is satisfied or not is

equivalent to checking δmax
inv ≤ δ. We do this around the point xo and x∗ defined in

Example 3, and for sets T with the radius γ that varies between 0 and 1. The results

of this analysis are plotted in Figure 4.2.

For simplicity, we approximate the value of δmax
inv using a grid search over 2500 grid

points.3 Similar bounds based on the Lipschitz constant as those provided in Example

4 can be computed in this case too, to get an idea of the quality of the approximation.

As one would intuitively expect, in Figure 4.2, we observe that the value of δmax
inv

increases as γ increases, as that implies larger adversarial perturbation regions T .

Also the values computed around x∗ are greater than those computed around xo, which

is in accordance with the problem intuition discussed in Example 3. It is interesting

to observe that, given that the underlying true function is a quadratic function, and

that the underlying model noise is small, we would expect the mean function to behave

3In Chapter 5 we will see how formal bounds on the mean variation can be actually computed,
so that this checking can be done in a safe manner and without sampling.
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as a quadratic function. While this is the case around xo, the behaviour around x∗ is

almost linear, i.e. incorrect and underestimating the true function. This follows from

the fact that the training points are mostly clustered around xo, so that around x∗ the

GP is actually in extrapolation regime. While this is captured very well by the model

variance (plotted in Figure 3.1), adversarial robustness, relying only on the mean,

cannot take that into account.

4.2.2 The Classification Case

In the classification case, given the 0-1 loss, we obtain the optimal Bayes classifier

as that assigning to the input x∗ the class associated to the index of the maximum

of the predictive posterior distribution vector. In cases in which we are interested in

checking for changes in classification, we obtain the following definition.

Definition 5 (Adversarial Robustness in Classification). Let T ⊂ Rd and fix x∗ ∈ T .

Consider the posterior predictive distribution π associated to the GP. Then we say

that classification GP is robust in x∗ with respect to adversarial attacks in T iff

arg max
i∈{1,...,m}

πi(x) = arg max
i∈{1,...,m}

πi(x
∗) ∀x ∈ T.

Notice that the definition for adversarial safety of the optimal Bayes classifier given

above is different from its deterministic counterpart. Interestingly, adversarial safety

for classification defined over the optimal Bayes classifier does take into account the

uncertainty of the model. In fact, under convergence assumptions in the deterministic

setting one may retrieve the maximum likelihood (or maximum a-posteriori) classifier,

while the Bayes optimal classifier is defined by moderating the class probabilities with

respect to the latent posterior distribution. Those are in general different, as the

variance affects the decision made by the Bayes optimal classifier [168].

Example 7 (Adversarial Robustness). Consider the classification GP model trained

with Laplace approximation that was introduced in Example 2. Since it is a two-class

problem, in this case we have then that to check the estimated class of an input point

it suffices to check whether its predictive posterior distribution π(x) is greater or less

then 0.5 - which is the decision threshold associated to the Bayes optimal classifier.

The predictive posterior distribution that we obtained in Example 2 along with the

training samples used are depicted again in the left plot of Figure 4.3.

Form this, we select two reference points (orange crosses in the plot), and denote

the one in the top-left of the plot as x∗,(1), and the one close to the decision threshold
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as x∗,(2). We evaluate the adversarial safety of the two points over a neighbourhood

box Tγ of radius γ, with γ that varies between 0 and 1. In order to do that, we first

notice that both x∗,(1) and x∗,(2) are assigned to class 2 by the GP. Hence, to check for

classification changes we need to check whether there exists in each one of the Tγ an x

such that π(x) is greater than 0.5. Hence, it suffices, to compute πmax = maxx∈Tγ π(x)

and check it against the decision threshold. For simplicity, we approximate the value

of πmax with a grid search similar to the one performed in Example 6.4

The results for this analysis are depicted in the right plot of Figure 4.3. Of course,

we obtain that πmax is monotonically increasing with the value of γ, as greater values

for γ imply larger boxes T . Also notice that we do not observe any classification

changes for x∗,(1) (i.e., the pink line is always below the decision threshold 0.5). As

it can be seen by inspecting the left plot, in fact variation of about γ ≈ 3 would be

required to cross the classification thereshold when starting from x∗,(1). On the other

hand, as x∗,(2) is close to the classification threshold, already for γ ≈ 0.5 we observe

that the point is not robust to adversarial perturbations.

It is interesting to note from this simple example how the initial confidence that

we put in the class of a point is not related to its robustness against adversarial

perturbations. In fact, x∗,(2) predictive distribution changes quickly from ≈ 0.05 to

≈ 0.95, while the predictive distribution around x∗,(1) is mostly stable around 0.4.

This can be seen as an illustrative example for a classification problem of what we

already observed in Example 5, that is, that pointwise measures of uncertainty might

be inadequate under adversarial settings.

From the example above we have seen how the computation of adversarial safety

requires us to first compute bounds on the posterior predictive distribution. Those

can then be checked against the decision threshold for changes in the classification

output.5 This leads us to the following generalisation of adversarial safety, which also

provides a quantitative version of Definition 5.

Definition 6 (Adversarial Prediction Ranges). Let T ⊂ Rd. Consider the posterior

predictive distribution π associated to a GP. Let:

πmin,i(T ) = min
x∈T

πi(x) for i = 1, . . . ,m

πmax,i(T ) = max
x∈T

πi(x) for i = 1, . . . ,m

4In Chapter 6 we will develop a branch-and-bound method that provably converges to πmax in
finite time.

5Actually, in the two-class classification case, assuming a decision bound of 0.5, it suffices to check
the mean of the posterior distribution. However, on other occasions (i.e., multi-class classification
or thresholds different from 0.5) we have to evaluate the full posterior predictive distribution [209].
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Figure 4.3: Left: A two-dimensional and two-class classification problem obtained
by shifting a 2-d Gaussian distribution in two difference direction. Right: Grid
estimation of upper bounds on the posterior predictive estimations in two points
from the dataset. The bounds can be used to check for adversarial robustness by
checking whether they cross, or not, the decision threshold line (drawn at 0.5).

then we call adversarial prediction range in T for class i ∈ {1, . . . ,m} the value:

δi(T ) = πmax,i(T )− πmin,i(T ).

It is easy to see that the computation of the adversarial prediction ranges poses

a more general problem than that of adversarial robustness in the classification case,

and the knowledge of all the πmin,i(T ) and πmax,i(T ) can be used straightforwardly to

provide guarantees on the adversarial robustness of the GP classification model.

Definition 6 enables a similar quantitative measure to that computed for deter-

ministic neural networks in [175]. As discussed above for Definition 5, the difference

from the deterministic notion stems from the fact that in the Bayesian optimal clas-

sifier we take into consideration the moderated class probabilities, and not just the

maximum likelihood solution. As such, the computed classification ranges actually

take into account the classification uncertainty as well.

Notice that, while the computation of the prediction ranges furnishes useful in-

formation in the case of classification model, it is completely trivial for regression

problems. In fact, the predictive posterior of a GP regression model is a Gaussian

distribution, so that its support is always the whole of the real line R.

4.2.3 Why Adversarial Robustness?

Adversarial robustness takes into consideration both the posterior distribution over

the GP and the decision made on top of that. In a sense it is a straightforward gen-

eralisation of the concept of test set accuracy used in frequentist learning paradigms
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to evaluate the generalisation capabilities of a model, though under the assumption

of worst-case adversarial perturbations. As such, adversarial robustness as defined

above is mostly relevant when we are primarily interested in the point prediction

made by the GP, rather than its stochastic properties, that is, when we look at the

machine learning pipeline results from the GP as a whole. For this reason, adversarial

robustness (at least in the deterministic case) is often studied along with classification

problems, where the estimated class output for an unseen test point is used down the

modelling pipeline as a basis for additional decisions. For example, this is the case

when using machine learning models for medical diagnosis, where at the end of the

day the doctor has to make a single choice over the condition of their patient.

Another range of applications for adversarial robustness is when we are using the

GP to model a controller, as for example it is the case for the HCAS case of study

[104] or for self-driving cars (though bare GPs are generally not employed for this

problem). It makes sense in this case to enact just one decision, the optimal one, as

the concept of a car that drives probabilistically is not a very appealing one. In these

scenarios the practitioner is usually more interested in having guarantees about the

final output of the model, rather than the stochastic behaviour of its unobservables.

4.2.4 Adversarial Robustness and Probabilistic Robustness

We now consider the mutual relationship between adversarial robustness and proba-

bilistic robustness. As discussed above, the main difference between the two notions

lies in our attitude toward the uncertainty captured by the Bayesian model. While

this is fully taken into account by probabilistic robustness, we marginalise it out be-

fore the computation of adversarial robustness. Fundamentally, from the modelling

perspective, this comes from the fact that probabilistic robustness analyses the ro-

bustness of the GP posterior model, in the form of the posterior distribution over

the unobservable variable f , while adversarial robustness looks at the final output of

the modelling, that is, given by the decision making procedure which estimates the

(observable) output y. In this sense, being a probabilistic quantity, probabilistic ro-

bustness can be used at modelling time, in order to change our model in terms of the

likelihood or loss function. Adversarial robustness, instead, has more of a determinis-

tic learning flavour, where we are only interested in the accuracy of our overall model,

rather than its stochastic behaviour. Roughly speaking, the difference is analogous to

that that exists between Bayesian measures of fitness and performance as estimated

through frequentist indices such as the root-mean-squared-error or accuracy.
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Of course, as observed in Example 4, having probabilistic guarantees implies some

loose bound on adversarial safety as well, similarly to how the knowledge of a distri-

bution can give us guarantees about its expected value, as noted in [207] in a related

context. To see that, we focus for simplicity on a GP over a single un-observable,

f ∈ R, and consider a one-sided property. Let T be a neighbourhood around a point

x∗, and consider a safety threshold δ, then we have that the safety probability in this

case is given by:

Psafe(x
∗, T, hconf) = P (∀x ∈ T, f(x∗)− f(x) ≤ δ) = 1− P

(
max
x∈T

(f(x∗)− f(x)) > δ

)
= 1− E

[
max
x∈T

I [f(x∗)− f(x) > δ]

]
.

Then by simple algebraic reasoning with probabilities we have that:

1− E
[
max
x∈T

I [f(x∗)− f(x) > δ]

]
≤ 1−max

x∈T
E [I [f(x∗)− f(x) > δ]]

= min
x∈T

(1− E [I [f(x∗)− f(x) > δ]]) = min
x∈T

(1− P (f(x∗)− f(x) > δ))

= min
x∈T

(P (f(x∗)− f(x) < δ)) .

As a first observation, we then have that

P (∀x ∈ T, f(x∗)− f(x) ≤ δ) ≤ min
x∈T

(P (f(x∗)− f(x) < δ))

which extends to the continuous case the observation made in Example 5. By ob-

serving that f(x∗)−f(x) is distributed according to a Gaussian distribution, we can

employ the Chernoff concentration inequality to the argument of the minimum to

obtain:

min
x∈T

(P (f(x∗)− f(x) < δ)) ≤ min
x∈T

exp

(
−(µ(x∗)− µ(x)) +

1

2
ξx∗,x + δ

)
,

where ξx∗,x is the variance of f(x∗)−f(x). As the exponential is a monotonic function,

we obtain that the right hand-side minimum can be computed by computing the

minimum of the argument of exp. By definition of minimum we also have that

min
x∈T

(
−(µ(x∗)− µ(x)) +

1

2
ξx∗,x + δ

)
≤ ξ∗ + δ −max

x∈T
(µ(x∗)− µ(x)),

where we have set ξ∗ = 1
2
ξx∗,x∗ . So finally we obtain:

P (∀x ∈ T, f(x∗)− f(x) ≤ δ) ≤ exp

(
ξ∗ + δ −max

x∈T
(µ(x∗)− µ(x))

)
, (4.10)
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which relates probabilistic robustness (Definition 2) with adversarial robustness (Defi-

nition 4) in the case of regression GPs. Intuitively, checking for probabilistic adversar-

ial robustness implies a worst-case bound on adversarial robustness as well. Of course,

this is adjusted depending on the GP variance, as adversarial robustness does not ex-

plicitly depend upon the GP posterior variance. As such, probabilistic adversarial

robustness can be considered as a tighter requirement than adversarial robustness.

To qualitatively analyse the relationship, let’s assume for simplicity that the vari-

ance is small, so that we obtain:

δ −max
x∈T

(µ(x∗)− µ(x)) & ln (P (∀x ∈ T, f(x∗)− f(x) ≤ δ)).

That is, adversarial robustness scales as the logarithm of probabilistic robustness. If,

for example, probabilistic robustness is equal to one, then we obtain δ−maxx∈T (µ(x∗)−
µ(x)) > 0, which implies that the adversarial robustness condition is satisfied.

Similar formulas to that in Equation (4.10) can be obtained in the case in which

the absolute value of the specification is considered, that is, by splitting the formula

in two. The equations complicate somewhat for the quantitative analysis of classifi-

cation, but qualitative analysis can be done by working just with the latent process

f and analysing per-class changes by using the one-sided specification as done above,

so that, for example, in the two-class case we might just be interested in checking for

µ(x) > 0.5, as that is the classification threshold of the Bayes optimal classifier.

4.3 Summary

In this chapter we considered two different notions of robustness for GPs under ad-

versarial perturbations. Namely, we have defined probabilistic adversarial robustness,

which takes into account the uncertainty of the GP posterior model, and adversarial

robustness, which is computed by first marginalising out the uncertainty and then

computing the optimal decision according to a given loss function. We have discussed

how the two different notions are of interest for different applications and at different

stages of the learning pipeline. Finally, we have discussed the quantitative relationship

that exists between probabilistic adversarial robustness and adversarial robustness,

by employing Chernoff’s concentration inequality for Gaussian distribution. In the

next chapter, we will develop a framework for the computation of probabilistic ro-

bustness of posterior GP models. The design of a branch-and-bound scheme for the

computation of adversarial robustness will instead be the topic of Chapter 6.
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We remark that adversarial robustness properties are not the only kind of interest-

ing robustness properties to analyse in Bayesian settings. Depending on the assump-

tions, statistical robustness might be more suitable for certain purposes (e.g., under

white noise corruption of the input data, as for example occurring over communica-

tion channels); as well as robustness to hyper-parameter changes or prior functions

(which is particularly interesting when, as is often the case, those are unknown); or

robustness against poisoning attacks of the training dataset; or over distributional

shift of the test set.
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In this chapter we consider probabilistic robustness of Gaussian processes against

adversarial perturbations in Bayesian inference settings, as defined in Section 4.1.

Specifically, given a GP model trained on some dataset, a test input and a neighbour-

hood around the latter, we are interested in computing the probability that there

exists a point in this neighbourhood such that the realisation of the GP on the latter

point differs from that on the initial test input point by at least a given threshold.

The measure we compute is probabilistic in the sense that it takes into account the

uncertainty intrinsic in the Bayesian learning process, explicitly working with the a-

posteriori distribution of the GP. In other words, probabilistic robustness is defined

over the probability space induced by the GP on its output and no distribution is

assumed for the input space, for which we take an adversarial perspective.

We show how an upper bound on probabilistic robustness can be computed by

relying on the Borell-TIS inequality for the supremum of a GP (see Property 3 in

Section 3.1). We subsequently employ Dudley’s Entropy Integral [47], and reduce

the problem of computing the GP supremum to the solution of a set of optimisation

problems defined over the GP a-posteriori mean, variance and normed derivatives over

a particular distance metric. Hence, we develop a general framework for the solution

of these optimisation problems that relies on the computation of Lower and Upper

Bounding Functions (LBFs and UBFs respectively) for the GP kernel. Building on

the linearity of the GP inference equations (Properties 5, 6 and 7), we propagate

LBFs and UBFs through the a-posteriori formula to obtain linear and quadratic

programming problems that we solve for safe approximations of these quantities.

We first evaluate and the method discussed here on the two-dimensional regression

problem introduced in Example 3 and then apply it for the analysis of the behaviour of

BNNs on the MNIST handwritten digit recognition dataset. Namely, by relying on the

weak convergence of infinitely-wide BNNs to GPs with deep kernels (see Property 4),

we investigate the limit probabilistic robustness of fully-connected ReLU architectures

to adversarial perturbations.

This chapter is organised as follows. In Section 5.1, we derive a functional form of

a safe lower-bound to probabilistic robustness for GPs. In Section 5.2, we show how

the bound constants can be computed for a general GP, under smooth assumption

on the kernel function, by relying on suitably derived kernel decompositions. In

Section 5.3, we analyse how to obtain fitting decompositions on the kernel functions

introduced in Section 3.1.2. In Section 5.4, we discuss the computational complexity

of the methodology introduced. In Section 5.5, we employ the methods for computing
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probabilistic robustness of GPs on a 2-dimensional regression task and for the limit

analysis of BNNs on the MNIST dataset. We report in this chapter proofs and proof

sketches for the main results.

5.1 Bounding Probabilistic Safety

In this section we proceed by finding a lower bound in analytic form to probabilistic

safety for a generic posterior GP model f̄ = f |D. We first find the bound for φ1

(defined in Equation (4.4)) and then generalise it to φ2 (defined in Equation (4.5))

by means of the union bound of probabilities. For simplicity of presentation, we start

our investigation with the assumption that the compact input set T is a box in the

input space, that is, T = [xL, xU ] ⊂ Rd, with xUi − xLi = D, for i = 1, . . . , d and for a

given D > 0. We discuss how the formulas can be generalised in Subsection 5.1.3.

5.1.1 Bound for φ1 over an Input Box

Consider a given test point x∗, and a generic input point x′ in Rd. It is straight-

forward to notice that f̄([x∗, x′]) is still a Gaussian process, as its finite-dimensional

distributions are all Gaussian. Consider, then, the matrix A = [I;−I] ∈ Rm×2m,

where I is the identity matrix of dimension m. For Property 1 we have that the

stochastic process

f o(x′) := A · f̄([x∗, x′]) = f̄(x∗)− f̄(x′)

is still a Gaussian process. Furthermore, its mean and kernel over a generic input can

be computed explicitly and are given by:

µo(x′) = µ̄(x∗)− µ̄(x′)

Σo
x′,x′′ = Σ̄x∗,x∗ + Σ̄x′,x′′ − Σ̄x∗,x′′ − Σ̄x′,x∗ ,

for x′ and x′′ ∈ Rd. Basically, f o(x′) is the stochastic process that describes how

the posterior GP changes with respect to its realisation on a test point x∗. For the

computation of φ1 we are interested in computing the supremum process of each

component of f o(x′), which can then be used to check for the validity of the property

hconf, that is, the formula fi(x
∗) − fi(x′) > δ, for a given index i ∈ {1, . . . ,m}. In

order to do that we apply the Borell-TIS inequality, which gives us an analytical

shape for the upper bound random variable, and subsequently employ the Dudley’s

entropy integral [3, 47] for its computation. To do so, we firstly need to define an
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appropriate pseudo-metric space in which to analyse the GP. We denote with f̂ o(x′)

the zero-centred GP defined as f̂ o(x′) := f o(x′)− µo(x′). Then, we define:

di(x
′, x′′) =

√
E[(f̂ oi (x′)− f̂ oi (x′′))2]. (5.1)

We assume that the distances induced by the pseudo-metric di are bounded by an `p

metric by means of a multiplicative constant Ki,p > 0, as follows:

di(x
′, x′′) ≤ Ki,p||x′ − x′′||p ∀x′, x′′ ∈ T. (5.2)

We refer to Ki,p as the metric bounding constant with respect to the metric `p. Notice

that, as all the `p norms in finite-dimensional vector spaces are strongly equivalent,

a value for Ki,p found for any p ∈ N can be straightforwardly transformed to obtain

a valid metric bounding constant, Ki,q, for any other `q, with q 6= p. Hence, for

simplicity of notation we will simply refer to a constant Ki := Ki,p in general without

referring to the particular metric `p with respect to which it was computed. We then

have that the following theorem holds.

Theorem 1. Consider a test point x∗ and let T ⊆ Rd be a box with layers of length

D > 0. Let i ∈ {1, . . . ,m}, define:

µo,sup
i := sup

x∈T
µoi (x) (5.3)

dsup
i := sup

x′,x′′∈T
di(x

′, x′′) (5.4)

ξsup
i := sup

x∈T
(Σo

x,x)i,i (5.5)

and consider a metric bounding constant Ki > 0 defined as in Equation (5.2). For

δ > 0 let

ηi = δ − µo,sup
i − 12

∫ 1
2
dsup
i

0

√√√√d ln

(√
dKiD

z
+ 1

)
dz.

Define

φ̂i1(x∗, T, δ) :=

e−
η2
i

2ξ
sup
i if ηi > 0

1 if ηi ≤ 0
(5.6)

Then, it holds that

φi1(x∗, T, δ) ≤ φ̂i1(x∗, T, δ).
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Proof. If ηi ≤ 0 then φ̂i1(x∗, T, δ) = 1, which is obviously an upper bound for

φi1(x∗, T, δ), the latter being a probability.

We now consider the case in which ηi > 0. We proceed by casting the GP as a

zero-mean one-dimensional process, to which we can apply the Borell-TIS inequality.

In fact, we have that:

φi1(x∗, T, δ)

(By definition of φ1)

=P (∃x ∈ T s.t.
(
f̄i(x)− f̄i(x∗) > δ

)
(By definition of supremum)

=P
(

sup
x∈T

f oi (x) > δ
)

(By linearity of GPs)

=P
(

sup
x∈T

(
f̂ oi (x) + µoi (x)

)
> δ
)

(By definition of supremum and of µo,sup
i )

≤P
(

sup
x∈T

f̂ oi (x) > δ − µo,sup
i

)
.

We can bound the probability that the supremum random variable f̂ o,sup
i := supx∈T f̂

o
i (x)

is greater than a given threshold by using the Borell-TIS inequality (see Property 3),

so that we have:

P (f̂ o,sup
i > δ − µo,sup

i ) ≤ exp

−
(
δ − µo,sup

i − E
[
f̂ o,sup
i

])2

2ξsup
i


as long as the condition:

δ − µo,sup
i − E

[
f̂ o,sup
i

]
> 0 (5.7)

is met. The last bit that we need to compute is then the expected value of the

supremum of the GP, E
[
f̂ o,sup
i

]
, plus verifying that Equation (5.7) holds. This can

be achieved by employing Dudley’s Entropy Integral [47], and is done in Lemma 1,

reported below, in which we obtain the following upper bound by relying on the fact

that T is a box:

E
[
f̂ o,sup
i

]
≤ 12

∫ 1
2
dsup
i

0

√√√√d ln

(√
dKiD

z
+ 1

)
dz.
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By using the definition of ηi and by assumption, we then have that 0 < ηi ≤ δ −
µo,sup
i − E

[
f̂ o,sup
i

]
, so that the condition in Equation (5.7) is met. Furthermore, we

have that:

exp

−
(
δ − µo,sup

i − E
[
f̂ o,sup
i

])2

2ξsup
i

 ≤ exp

(
− η2

i

2ξsup
i

)
which proves the theorem statement.

Lemma 1. Let f̂ be a zero-mean GP defined over the field space Rd, and let T ⊂ Rd

be an hyper-cube. Consider the generic ith component of the GP with i ∈ {1, . . . ,m},
and consider Ki and dsup

i defined as in the statement of Theorem 1, then:

E
[
sup
x∈T

f̂i(x)

]
≤ 12

∫ 1
2
dsup
i

0

√√√√d ln

(√
dKiD

z
+ 1

)
dz,

where D is the edge-length of T .

Proof. By directly employing the Dudley’s entropy integral [3] to the GP f̂ we obtain:

E
[
sup
x∈T

f̂i(x)

]
≤ 12

∫ 1
2
dsup
i

0

√
ln(N(di, z, T ))dz,

where N(di, z, T ) is the smallest number of balls of radius z according to metric di

(defined in Equation (5.1)) that completely covers T . In particular, in the case in

which T is an hyper-cube of edge-length D, we proceed by first computing N for

the `2 metric. That is we proceed by computing N(`2, r, T ), which is the number of

covering balls of diameter r of T under `2 norm. As the largest hyper-cube contained

inside a d−sphere of diameter r has a side of length r√
d
, we obtain:

N(`2, r, T ) ≤

(
1 +

D
√
d

r

)d

.

Now, for the definition of Ki we have that:

di(x
′, x′′) ≤ Ki||x′ − x′′||2

for all x′ and x′′ ∈ T . Thus, all the points inside a ball of radius r = z
Ki

will have

a distance in the di metric smaller or equal than z. Hence, the number of covering

balls of radius z for T , according to pseudo-metric di is upper-bounded by

N(di, z, T ) ≤

(√
dDKi

z
+ 1

)d

which proves the statement of the Lemma.
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In Theorem 1 we derive φ̂i1(x∗, T, δ) as an upper bound for φi1(x∗, T, δ). This

provides us with a lower bound (that is, worst-case analysis) for checking probabilistic

robustness of the posterior Gaussian process f̄ . Notice that the bound provides

interesting information only as long as ηi > 0, as it otherwise defaults to 1 (see

Equation (5.6)). Intuitively, the requirement ηi > 0 translates to the requirement

that the expected value of the supremum random variable is safe with respect to the

property that we are verifying. Of course, in general nothing can be said about the

case in which ηi ≤ 0, as we can come up with examples in which the variance of the

supremum can be as small as we want it to be, which would make the probability

of being robust vanishingly small. In the experiments reported in Section 5.5, we

empirically observe ηi > 0 in many cases that are of interest for applications.

Notice also that in order to be able to explicitly compute φ̂i1(x∗, T, δ) we need to

first compute a set of constants, which are the results of four different optimisation

problems, namely: µo,sup
i , dsup

i , ξsup
i and Ki. In Section 5.2, we present a general

framework for the safe approximation (i.e., providing formal bounds) of these quanti-

ties for GPs in Bayesian inference settings. Before doing this, in the next subsection

we show how the upper bound for φ1 can be extended to an upper bound for φ2 by

using the union bound of probability.

5.1.2 Bound for φ2 over an Input Box

The overall idea for the computation of φ2 is that of applying the same line of ar-

guments to each of the m output components of the GP as in the case of φ1, and

then merging the results together by means of the union bound of probability. This

is formalised in the statement below.

Theorem 2. Consider a test point x∗ and let T ⊆ Rd be a box with layers of length

D > 0. Define:

µo,sup := sup
x∈T
||µo(x)||p

dsup
i := sup

x′,x′′∈T
di(x

′, x′′) for i = 1, . . . ,m

ξsup
i := sup

x∈T
(Σo

x,x)i,i for i = 1, . . . ,m

and consider metric bounding constants Ki > 0, for i = 1, . . . ,m, defined as in

Equation (5.2). For δ > 0 let

η̄i =
δ − µo,sup

m
− 12

∫ 1
2
dsup
i

0

√√√√d ln

(√
dKiD

z
+ 1

)
dz.
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Define:

φ̂2(x∗, T, δ) =

2
∑m

i=1 e
− η̄2

i
2ξi if η̄i > 0, i = 1, . . . ,m

1 otherwise

Then, it holds that

φ2(x∗, T, δ) ≤ φ̂2(x∗, T, δ).

Proof. If any of the η̄i is negative then φ̂2 defaults to 1 and the theorem statement is

obviously true.

Consider now the case in which η̄i > 0 for all i ∈ {1, . . . ,m}. The overall idea is

to reduce this case to that of Theorem 1 by using the union bound. We first notice

that η̄i > 0 for all i implies that δ − µo,sup > 0. Hence:

φ2(x∗, T, δ) = P (∃x ∈ T s.t. ||f̄(x∗)− f̄(x)||p > δ
)

(By definition of supremum)

=P
(

sup
x∈T
|f o(x)| > δ

)
(By definition of Lp norm)

=P

sup
x∈T

p

√√√√ m∑
i=1

|f oi (x)|p > δ


(By closure of GPs wrt linear operations and definition of µo,sup )

≤P

sup
x∈T

p

√√√√ m∑
i=1

|f̂ oi (x)|p > δ − µo,sup


(By the positivity of |f̂ oi (x)| and of δ − µo,sup)

=P

(
sup
x∈T

m∑
i=1

|f̂ oi (x)|p > (δ − µo,sup)p
)

≤P
(
∨i∈{1,...,m} sup

x∈T
|f̂ oi (x)|p > (δ − µo,sup)p

m

)
(By the positivity of |f̂ oi (x)| and of δ − µo,sup)

=P

(
∨i∈{1,...,m} sup

x∈T
|f̂ oi (x)| > (δ − µo,sup)

p
√
m

)
(By the union bound and symmetric properties of Gaussian distributions)

≤2
n∑
i=1

P

(
sup
x∈T

f̂ oi (x) >
δ − µo,sup

p
√
m

)
.
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Exactly as done for Theorem 1, we can apply the Borell-TIS inequality here and

Dudley’s entropy integral to the last term of the inequality and thus prove the theorem

statement.

As a result of the above theorem, we can derive a formal upper bound φ̂2 on the

probabilistic robustness property associated to φ2. Notice how the role played by

each individual η̄i is the same as that played by ηi in the theorem above, and the

same rationale then applies to the condition η̄i > 0. Notice also that the explicit

computation of the bound relies on the same set of constants as for the case of φ̂1,

which here needs to be computed for every i.

5.1.3 Generalisation to Compact Sets

Theorems 1 and 2 have been stated for the case in which T is a box in the input space.

However, the theorems can be extended for more general compact sets, at the cost of

more complex analytic expression. A way to achieve this is to approach it case by case,

computing the explicit solution of the Dudley entropy integral over more complicated

input set, that is, by generalising Lemma 1 to classes of sets which are different from

boxes. In particular, this requires us to be able to compute (or to over-approximate)

N(`2, r, T ), i.e. the minimum number of `2-balls that cover the set T . Lemma 1

tackles the explicit case of input boxes because of the simple analytical formula that

results from it, and the fact that those are customarily used for adversarial attacks

[77]. However, this can be generalised straightforwardly to generic axis-aligned hyper-

rectangles, hyper-spheres, ellipsoids, and similar compact sets T with simple shapes.

Alternatively, for a generic compact set T , the bounds in Theorems 1 and 2 can

be used to build safe approximations by using the union bound of probability, as

done, e.g., in [207] in the case of probabilistic safety for BNNs. In fact, since T is a

compact set, it is also bounded. Hence, it is possible to enclose T in the union of a

finite number of interior disjointed hyper-cubes Tl, l = 1, . . . , nL, that is, such that:

T ⊆
nL⋃
l=1

Tl T̊l ∩ T̊k = ∅ l 6= k,

and furthermore the over-approximation error can be made vanishingly small. Then,
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for a general property h, we have that:

φ(x∗, T, h)

=P (∃x ∈ T s.t. h(f(x∗), f(x)) > 0)

≤P (∃x ∈
nL⋃
l=1

Tl s.t. h(f(x∗), f(x)) > 0)

≤
nL∑
l=1

P (∃x ∈ Tl s.t. h(f(x∗), f(x)) > 0)

=

nL∑
i=1

φ(x∗, Tl, h)

where the last inequality comes from the application of the union bound.

5.2 Optimisation Framework for GPs

In this section, we build a general framework for the computation of the quantities

required for the explicit computation of φ1 and φ2, that is, those defined in Equations

(5.2)–(5.5). The method builds on a generalisation of the method employed in [103]

for the squared-exponential kernel in the setting of Kriging regression. Specifically,

we derive a bounding scheme for the computation of µo,sup
i and ξsup

i , and use that to

compute a fast bound on dsup
i and Ki. Notice that the required quantities depend

only on separate class indexes i ∈ {1, . . . ,m}. Hence, for simplicity, in this section we

consider a GP with a single output value, f̄ : Ω×Rd → R, and we will omit the explicit

dependence on i, with the understanding that this represents just one component of

the actual posterior GP that we are interested in bounding. Furthermore, and unless

otherwise specified, because the bound in Theorems 1 and 2 relies on T being a box,

we will make the slightly more general assumption, in this section, that T = [xL, xU ]

is an axis-aligned hyper-rectangle in the input space Rd. The fact that we explicitly

allow for hyper-rectangles will enable us to directly use the scheme obtained here

in branch-and-bound settings, where the initial input box T is split into a series of

smaller axis-aligned hyper-rectangles.

We start by giving the following definition.

Definition 7 (Bounded Kernel Decomposition). Consider a one-dimensional kernel

function Σ : Rd × Rd → R and a compact set T . We say that (ϕ, ψ, U) is a bounded

decomposition for Σ in T if Σx′,x′′ = ψ (ϕ (x′, x′′)) and the following conditions are

satisfied:
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1. ϕ : Rd × Rd → R is linearly separable and continuously differentiable along the

coordinate lines, so that ϕ(x′, x′′) =
∑d

j=1 ϕj(x
′
j, x
′′
j );

2. ψ : R→ R is continuously differentiable and with a finite number of flex points;

3. U : RN × Rd × RN → R is an upper bounding function such that for any

vector of coefficients c = [c1, . . . , cN ] ∈ RN and finite set of associated in-

put points [x(1), . . . , x(N)] ∈ RN × Rd, with N ∈ N,1 we have that U(c) ≥
supx∈T

∑N
i=1 ciϕ(x, x(i)).

Intuitively, a kernel decomposition separates the part of the kernel function that

depends on the two inputs (represented by ϕ) with the part of the kernel that relates

their dependence to the variance of the GP (represented by ψ). Assumptions 1 and 2

usually follow immediately from the smoothness of kernel functions used in practice.2

Assumption 3 guarantees that we are able to upper bound the kernel functions. The

key idea is that, thanks to the linearity of the inference equations for GPs, we can

then propagate this bound through the inference equations to obtain bounds on the

a-posteriori mean and variance of the GP, which are then used to compute bounds

on the 4 quantities required for the evaluation of φ̂. Of course, not all the possible

kernel functions Σ have kernel decomposition (for example if they are not smooth).

However, in Section 5.3 we explicitly compute kernel decompositions (ϕ, ψ, U) for the

main kernel functions used in applications.

Before computing bounds on mean and variance, we prove the following.

Proposition 1. Let Σ be a kernel and (ϕ, ψ, U) be a bounded decomposition. Consider

a compact set T , then for every x̄ ∈ Rd there exists a set of real coefficients āL, b̄L,

āU and b̄U such that:

gL(x) := āL + b̄Lϕ (x, x̄) ≤ Σx,x̄ ≤ āU + b̄Uϕ (x, x̄) =: gU(x) ∀x ∈ T.

In other words, gL and gU respectively represent an LBF and a UBF on the kernel

function, given a fixed input point.

Proof. We show how to compute āL and b̄L; the same arguments can be used for the

computation of āU and b̄U by simply considering −Σx,x̄.

1In the remainder of this thesis, we will always compute U on the training set points, for
simplicity of notation we hence omit the dependence on [x(1), . . . , x(N)].

2The finite number of flex points can be guaranteed, for example, by inspecting the function
derivatives.
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Consider cL = −1 and cU = 1 coefficients associated to the input point x̄. Let

ϕL = U(cL) and ϕU = U(cU), then by Assumption 3 of bounded kernel decomposition

we have that ϕ(x, x̄) ∈ [ϕL, ϕU ] for all x ∈ T . Consider now the function ψ restricted

to the interval [ϕL, ϕU ]. Then there are four cases to consider for ψ.

Case 1 If ψ happens to be concave in [ϕL, ϕU ], then, by definition of a concave

function, a lower bound is given by the line that links the points (ϕL, ψ(ϕL)) and

(ϕU , ψ(ϕU)), that is, gL is simply the LBF with coefficients:

b̄L =
ψ(ϕL)− ψ(ϕU)

ϕL − ϕU
āL = ψ(ϕL)− b̄LϕL.

Case 2 If ψ happens to be a convex function, then, by definition of convex function

and by the differentiability of ψ, a valid lower bound is given by the tangent line

in the middle point ϕC = (ϕL + ϕU)/2 of the interval, that is, gL is the LBF with

coefficients:

b̄L =
dψ(ϕC)

dϕ

āL = ψ(ϕL)− b̄LϕL.

Case 3 Assume now that ψ is concave in [ϕL, ϕF ], and convex in [ϕF , ϕU ] (the

arguments are very similar if we assume the first interval to be the one in which

ψ is convex and the second to be the one in which it is concave). In other words,

there is only one flex point ϕF ∈ (ϕL, ϕU). Let ā′L, b̄′L be coefficients for linear lower

approximation in [ϕL, ϕF ] and ā′′L, b̄′′L analogous coefficients in [ϕF , ϕU ] (respectively

computed as for Case 1 and Case 2 above), and call g′ and g′′ the corresponding

functions. Define gL to be the LBF function of coefficients āL and b̄L that goes

through the two points (ϕL,min(g′(ϕL), g′′(ϕL))) and (ϕU , g′′(ϕU)). We then have

that gL is a valid lower bound function for ψ in [ϕL, ϕU ]. In order to prove this we

distinguish between two cases:

1. if min(g′(ϕL), g′′(ϕL)) = g′(ϕL), then we have that gL(ϕL) = g′(ϕL) ≤ g′′(ϕL),

and gL(ϕU) = g′′(ϕU). Hence, because of linearity, gL(ϕ) ≤ g′′(ϕ) in [ϕL, ϕU ],

and in particular in [ϕF , ϕU ] as well. This also implies that gL(ϕF ) ≤ g′′(ϕF ) ≤
g′(ϕF ). On the other hand, gL(ϕL) = g′(ϕL), hence gL(ϕ) ≤ g′(ϕ) in [ϕL, ϕF ].

Combining these two results and by construction of g′ and g′′ we have that

gL(ϕ) ≤ ψ(ϕ) in [ϕL, ϕU ].
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2. if min(g′(ϕL), g′′(ϕL)) = g′′(ϕL), then in this case we have gL = g′′, and just have

to show that g(ϕ) ≤ g′(ϕ) in [ϕL, ϕF ]. This immediately follows by noticing

that g′′(ϕF ) ≤ g′(ϕF ) and g′′(ϕL) ≤ g′(ϕL).

Case 4 In the general case, as we have a finite number of flex points, we can divide

[ϕL, ϕU ] in subintervals in which ψ is either convex or concave. We can then proceed

iteratively from the two left-most intervals by repeatedly applying Case 3.

The above proposition allows us to explicitly compute coefficients of an LBF and a

UBF on the overall kernel value, for any fixed point x̄ in the input space. The overall

idea is that, since the a-posteriori mean and variance is defined in terms of summation

and multiplication of pieces of the form Σx,x(i) , for all the x(i) in the training dataset

D, then we can compute LBFs and UBFs corresponding to each point in the training

set, and propagate them through the inference equations for any unseen test point

in T . Thanks to the function U we are then able to bound the resulting LBFs and

UBFs by the overall mean and variance functions. This is formalised in the following

two subsections.

5.2.1 Bounding the A-Posteriori Mean

Concerning the mean function, we want to compute µo,sup := supx∈T µ
o(x), where

µo(x) = µ̄(x∗)− µ̄(x). As x∗ is fixed, we can take µ̄(x∗) out of the sup calculations so

that we have µo,sup = µ̄(x∗)− infx∈T µ̄(x). In this section we show how to compute a

lower bound µLT for the a-posteriori mean function in an axis-aligned hyper-rectangle

T , i.e. such that µLT ≤ infx∈T µ̄(x), for a kernel Σ with an associated bounded kernel

decomposition (φ, ψ, U).3 In order to do that, we propagate the LBFs and UBFs for

the kernels computed as for Proposition 1 through the inference formula for the GP

posterior.

For simplicity, we assume that the prior mean function µ(x) is zero (see Remark

1 for a discussion on the validity of this assumption and how to extend the method

presented below to the general case). Then the a-posteriori mean is given by:

µ̄(x) = Σx,xt =
N∑
i=1

Σx,x(i)ti (5.8)

3In fact, it is straightforward to see that computing something smaller than the actual infimum
provides us with a worst-case scenario and then still produces a valid bound when used for the
computation of φ̂.
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where t = (Σx,x + σ2I)
−1

y is a vector of RN . Then a lower bound to the mean

function can be computed analytically, as stated in the following proposition.

Proposition 2. Let Σ be a kernel with bounded decomposition (ϕ, ψ, U). Consider

a
(i)
L , b

(i)
L , a

(i)
U and b

(i)
U , the set of coefficients for LBFs and UBFs associated to each

training point x(i), i = 1, . . . , N (computed as for Proposition 1). Define:

(ā
(i)
L , b̄

(i)
L ) =

{
(a

(i)
L , b

(i)
L ), if ti ≥ 0

(a
(i)
U , b

(i)
U ), otherwise

Then

µLT :=
N∑
i=1

ā
(i)
L + U([b̄

(1)
L , . . . , b̄

(N)
L ]) ≤ inf

x∈T
µ̄(x).

Proof. By construction of the a
(i)
L , b

(i)
L , a

(i)
U and b

(i)
U we have that:

a
(i)
L + b

(i)
L ϕ(x, x(i)) ≤ Σx,x(i) ≤ a

(i)
U + b

(i)
U ϕ(x, x(i)).

By applying Lemma 2, reported below, we then have that:

Σx,x(i)ti ≥ ā
(i)
L + b̄

(i)
L ϕ(x, x(i)) ∀x ∈ T. (5.9)

Hence, we have that
∑N

i=1

(
ā

(i)
L + b̄

(i)
L ϕ(x, x(i))

)
is an LBF to the posterior mean. The

statement of the theorem then follows directly from the definition of U .

Lemma 2. Let gL(t) = aL + bLt and gU(t) = gU(t) = aU + bU t be an LBF and UBF

to a function g(t) ∀t ∈ T , i.e. gL(t) ≤ g(t) ≤ gU(t) ∀t ∈ T . Consider two real

coefficients α ∈ R and β ∈ R. Define

b̄L =

{
αbL ifα ≥ 0

αbU ifα < 0
āL =

{
αaL + β ifα ≥ 0

αaU + β ifα < 0
(5.10)

b̄U =

{
αbU ifα ≥ 0

αbL ifα < 0
āU =

{
αaU + β ifα ≥ 0

αaL + β ifα < 0
(5.11)

Then:

ḡL(t) := āL + b̄Lt ≤ αg(t) + β ≤ āU + b̄U t =: ḡU(t)

That is, LBFs can be propagated through linear transformation by redefining the co-

efficients through Equations (5.10)–(5.11).
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The bound on the mean computed in this way scales linearly with the number of

training data used, that is, N linear over-approximations are made for the computa-

tion of the bound. As such, we expect the bound to be tight when N is small and its

quality to decrease when more training samples are used.

Remark 1. The above proposition was proved in the case in which the prior mean

function was assumed to be identically null. In the general case, we notice that the

prior mean function has an additive contribution to the posterior mean. In the case

of regression, one can proceed by subtracting the prior mean function explicitly from

the dataset, so that the GP can be learned by then assuming an identically null prior.

Hence, the identically null mean assumption is not restrictive in the case of regression.

However, for classification models, the prior is put on the latent space, so that it is not

possible to subtract it from the dataset (as the latent space is an artificial construct

and it is intrinsic to the learning process itself). In this case, the prior function, if

not identically null, needs to be explicitly accounted for in the computation of µLT .

Thanks to linearity and to Lemma 2, we have that the additive contribution of the

prior function is simply added to Equation (5.9) from the proof of the proposition

above. In general, we need to assume that we are able to compute an LBF to the

prior mean function, which can then be combined with ā
(i)
L + b̄

(i)
L ϕ(x, x(i)), so that

we are still able to explicitly compute the value for µLT using the bounding function

U . In Chapter 7 we study the specific case in which the prior function for the GP

classification model employed there comes from a (non-linear) physiological model,

and is hence not-null. Explicit formulas for classes of non-null prior functions used

in practice are given in that chapter.

5.2.2 Variance Computation

For the variance, we want to compute ξ = supx∈T Σo
x,x. By definition of Σo

x,x and by

using the inference equation for the a-posteriori variance we have:

Σo
x,x = (Σx∗,x∗ + Σx,x − 2Σx,x∗)− (Σx∗,xSΣT

x∗,x + Σx,xSΣT
x,x − 2Σx∗,xSΣT

x,x). (5.12)

where S = (Σx,x + σ2I)
−1

. The first three terms in the equation above come from

the prior distribution, while the second part is the modification due to the dataset

observation. In particular, the term Σx,x is the prior variance of the generic input x

of T . We define

σ2
p = max

x∈T
Σx,x (5.13)
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i.e., the maximum prior variance in T . For stationary kernels, which are of particular

relevance for applications, we have that σ2
p = Σx,x is equal to a constant value, so

that we can simply replace its value in the computation of ξ. In the general case

we assume we are able to compute a rough upper-bound such that σ2
p ≥ Σx,x for all

x ∈ T . As such, by taking out of the sup computation the terms that do not depend

on the optimisation variable x, and by substituting σ2
p for Σx,x we then have:

ξ ≤ Σx∗,x∗ − Σx∗,xSΣT
x∗,x + σ2

p − inf
x∈T

(
Σx,xSΣT

x,x + 2Σx,x∗ − 2Σx∗,xSΣT
x,x

)
. (5.14)

In order to get an upper bound on ξ we only need to obtain a lower bound to the inf

in the right-hand-side of Equation (5.14). In the following proposition we show how

this can be obtained by solving a convex quadratic programming problem.

Proposition 3. Let Σ be a kernel with bounded decomposition (ϕ, ψ, U). Consider

a
(i)
L , b

(i)
L , a

(i)
U and b

(i)
U , the set of coefficients for LBFs and UBFs associated to each

training point x(i), i = 1, . . . , N , and analogously consider a∗L, b∗L, a∗U and b∗U associated

to x∗. Let r = [r(1), . . . , r(N)], r∗, ϕ(i), ϕ
(i)
j , ϕ∗ and ϕ∗j , for i = 1, . . . , N and j =

1, . . . , d, be slack continuous variables. Let ξ̄ be the solution of the following convex

quadratic programming problem:

inf
x∈T

(
rSrT − 2Σx∗,xSrT + 2r∗

)
subject to: r(i) + a

(i)
L + b

(i)
L ϕ

(i) ≤ 0 i = 1, . . . , N

r(i) − a(i)
U − b

(i)
U ϕ

(i) ≤ 0 i = 1, . . . , N

r∗ + a∗L + b∗Lϕ
∗ ≤ 0

r∗ − a∗U − b∗Uϕ∗ ≤ 0

a
(i)
j,L + b

(i)
j,Lxj − ϕ

(i)
j ≤ 0 i = 1, . . . , N j = 1, . . . , d

ϕ
(i)
j − a

(i)
j,U − b

(i)
j,Uxj ≤ 0 i = 1, . . . , N j = 1, . . . , d

a∗j,L + b∗j,Lxj − ϕ∗j ≤ 0 j = 1, . . . , d

ϕ∗j − a∗j,U − b∗j,Uxj ≤ 0 j = 1, . . . , d

ϕ(i) =
d∑
j=1

ϕ
(i)
j ϕ∗ =

d∑
j=1

ϕ∗j i = 1, . . . , N j = 1, . . . , d

Then ξUT := Σx∗,x∗ − Σx∗,xSΣT
x∗,x + σ2

p − ξ̄ is an upper bound for ξ.

Proof. By setting r = Σx,x and r∗ = Σx,x∗ in the infimum computation in Equation

(5.14), we obtain the objective function of the problem statement: rSrT−2Σx∗,xSrT +

2r∗, which is quadratic on the variable vector [r, r∗]. Since Σx,x is a covariance matrix,
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it follows that it is positive definite, and hence S = (Σx,x + σ2I)
−1

is a positive definite

matrix, which implies that the objective function is a quadratic convex function in

the slack variable vector [r, r∗]. In order to obtain a convex program we then need

to linearise the constraints r = Σx,x and r∗ = Σx,x∗ . We show how this is done for a

generic index i = 1, . . . , N ; the arguments for r∗ are fully analogous.

We have that r(i) = Σx,x(i) = ψ(ϕ(x, x(i))). By Proposition 1 we have that:

a
(i)
L + b

(i)
L ϕ

(
x, x(i)

)
≤ Σx,x(i) ≤ a

(i)
U + b

(i)
U ϕ

(
x, x(i)

)
.

Hence, the dependence of ψ on the constraints can be linearised by considering the

following over-approximation for the definition of r(i):

r(i) + a
(i)
L + b

(i)
L ϕ

(
x, x(i)

)
≤ 0

r(i) − a(i)
U − b

(i)
U ϕ

(
x, x(i)

)
≤ 0.

The final step is to linearise the dependency over ϕ
(
x, x(i)

)
. We introduce slack

variables ϕ(i) = ϕ(x, x(i)), and ϕ
(i)
j = ϕj(xj, x

(i)
j ). For Assumption 1 of Definition 7

we have that ϕ(x, x(i)) =
∑d

j=1 ϕj(xj, x
(i)
j ). Let i ∈ {1, . . . , N} and let j ∈ {1, . . . , d},

then by applying Proposition 1 with ψ := ϕj(·, x(i)
j ) and ϕ := x, we have that there

exists a set of coefficients a
(i)
j,L, b

(i)
j,L, a

(i)
j,U and b

(i)
j,U such that:

a
(i)
j,L + b

(i)
j,Lxj ≤ ϕj(xj, x

(i)
j ) ≤ a

(i)
j,U + b

(i)
j,Uxj.

Hence, we can over-approximate the set of constraints ϕ(i) = ϕ(x, x(i)) and ϕ
(i)
j =

ϕ(xj, x
(i)
j ) with the following set of linear constraints:

a
(i)
j,L + b

(i)
j,Lxj − ϕ

(i)
j ≤ 0

ϕ
(i)
j − a

(i)
j,U − b

(i)
j,Uxj ≤ 0

ϕ(i) =
d∑
j=1

ϕ
(i)
j .

The formula for ξUT then follows by the definition of infimum and by Equation (5.14).

Crucially, the proposition above casts the computation of the quantity ξ as the

solution of a convex quadratic programming problem, for which ready-made solver

software exists [173].
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5.2.3 Distance Computation

Concerning the upper bound of the distance function, we want to compute dsup :=

supx′,x′′∈T d(x′, x′′). It would be possible to proceed here in a similar fashion as de-

scribed in the variance case above and reduce the upper bounding of dsup to the

solution of a convex quadratic optimisation problem (with roughly double the num-

ber of variables in Section 5.2.2). However, for computational reasons, we instead

rely on the bound on ξ to provide a quick upper bound on dsup. In fact, since d is

a semi-distance function, we can employ the triangular inequality and obtain that

d(x′, x′′) ≤ d(x′, x∗) + d(x′′, x∗). For the definition of ξ, and for the symmetry of d,

we have that each individual summand is upper-bounded by ξUT , so that we obtain

the following.

Proposition 4. Consider a generic compact set T , and let ξUT be an upper-bound for

ξ in T . Then:

dsup ≤ 2ξUT .

5.2.4 Metric Bounding

The last quantity we are interested in computing is the metric bounding constant

K, which bounds the ratio between the distance d and an arbitrary `p distance. We

derive a safe over-approximation for K that relies solely on the prior distribution of

the GP. In fact, we have that:

d(x′, x′′) =
√

Σx′,x′ + Σx′′,x′′ − 2Σx′,x′′ −
(
ΣT
x′,xSΣx′,x + ΣT

x′′,xSΣx′′,x − 2ΣT
x′,xSΣx′′,x

)
≤
√

Σx′,x′ + Σx′′,x′′ − 2Σx′,x′′ ≤
√

2
√
σ2
p − Σx′,x′′ =: d̄(x′, x′′), (5.15)

with σ2
p defined as per Equation (5.13). Because of the above inequality, we have

that a bounding constant K̄ for the function d̄ is still a bounding constant for the

pseudo-metric d. In particular, it follows that the statement below holds.

Proposition 5. Let d̄ defined as in Equation (5.15) and consider a generic `p metric

|| · ||. Consider:

K̄ =

√
max
x′,x′′∈T

2
σ2
p − Σx′,x′′

||x′ − x′′||2
=

√
max
x′,x′′∈T

2
σ2
p − ψ(ϕ(x′, x′′))

||x′ − x′′||2
. (5.16)

Then K̄ is a metric bounding constant for d in T w.r.t. metric || · ||, that is:

d(x′, x′′) ≤ K||x′ − x′′|| ∀x′, x′′ ∈ T.
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Proposition 5 guarantees that we can then find a valid metric bounding constant

by directly solving the optimisation problem of Equation (5.16). This, in general,

is not a trivial problem, as it is non-linear and defined over the two d-dimensional

continuous variables x′ and x′′. However, for a stationary kernel over the norm ||·|| we

can select ϕ(x′, x′′) = ||x′−x′′||, which reduces the above problem to a single-variable

optimisation problem in the slack optimisation variable ϕ = ||x′ − x′′||:

max
ϕ∈[0,ϕU ]

√
2
σ2
p − ψ(ϕ)

ϕ2
, (5.17)

for suitably computed ϕU in T . The maximum can then be computed by relying

on the smoothness of ψ for the computation of the derivatives. Notice that in the

non-stationary kernel case the maximisation problem defined in Equation (5.16) is in

general unbounded. To see that, it suffices, in fact, to observe that the denominator

tends to zero every time that x′ = x′′, while this is generally not the case for the nu-

merator in the non-stationary kernel case. Nevertheless, by performing a normalising

transformation of the input space we are still able to restrict Equation (5.16) to the

bounded case for problems which are of interest in practice. In particular, the case

for the ReLU kernel is discussed in the following section.

Remark 2 (Soundness of our Approach). Notice that the bounds φ̂1 and φ̂2 that we

compute in Theorems 1 and 2 are defined for the exact computation of the constants

defined in Equations (5.2)–(5.5). While the exact, analytical computation of those is

intractable, the approach we developed above provides their safe over-approximations,

that is, such that a worst case-scenario is taken into account. As such, the bounds

that we actually compute are more pessimistic then what is actually obtained by the

exact definitions of φ̂1 and φ̂2. With a slight abuse of notation, in the rest of these

chapter we will refer to this pessimistic approximation simply as φ̂1 and φ̂2.

5.3 Kernel Function Decomposition

In this section we compute explicit kernel decomposition (ϕ, ψ, U) for the kernels

introduced in Section 3.1.2 and the ReLU deep kernel introduced in Section 3.1.3.
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5.3.1 Squared-Exponential Kernel

For the squared-exponential kernel, we build a bounded kernel decomposition by

setting:

ψ(ϕ) = σ2 exp (−ϕ)

ϕ(x′, x′′) =
d∑
j=1

θj(x
′
j − x′′j )2.

It is straightforward to notice that Assumptions 1 and 2 are met by this decom-

position. Concerning the definition of U , consider a set x(1), . . . , x(N) of N points

in the input space and associated real coefficients c1, . . . , cN . For a hyper-rectangle

T = [xL, xU ] we have that:

sup
x∈T

N∑
i=1

ciϕ(x, x(i)) = sup
x∈T

N∑
i=1

ci

d∑
j=1

θj(xj − x(i)
j )2 = sup

x∈T

d∑
j=1

θj

N∑
i=1

ci(xj − x(i)
j )2

= sup
x∈T

d∑
j=1

(
θj

N∑
i=1

cix
2
j − 2θj

N∑
i=1

cix
(i)xj + θj

N∑
i=1

cix
(i)2

)

=
d∑
j=1

sup
xj∈[xLj ,x

U
j ]

(
θj

N∑
i=1

cix
2
j − 2θj

N∑
i=1

cix
(i)xj + θj

N∑
i=1

cix
(i)2

)
.

The right-hand-side of the last equation simply involves the computation of the max-

imum of a 1-d parabola over an interval of the real line, which can be done exactly

and in constant time by simple inspection of the derivative function and by evalu-

ating the function at the extrema of the interval. Call x̄j the only critical point of

the jth parabola, and denote with hj(xj) = αjx
2
j + βjxj + γj the parabola associ-

ated with the jth coordinate value, with αj = θj
∑N

i=1 ci, βj = −2θj
∑N

i=1 cix
(i) and

γj = θj
∑N

i=1 cix
(i)2, then we set:

U(c) =
d∑
j=1

Uj(c) (5.18)

where:

Uj(c) =

{
max {hj(xLj ), hj(x

U
j ), hj(x̄j)} if x̄j ∈ [xLj , x

U
j ]

max {hj(xLj ), hj(x
U
j )} otherwise

.

Finally, as the squared-exponential kernel is stationary, the computation of K follows

directly from Equation (5.17).
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5.3.2 Rational Quadratic Kernel

An analogous argument to the one above holds for the rational quadratic kernel,

where we can set:

ψ(ϕ) = σ2
(

1 +
ϕ

2

)−α
ϕ(x′, x′′) =

d∑
j=1

θj(x
′
j − x′′j )2.

As the definition of ϕ is exactly the same as for the squared-exponential kernel, then

the bounding function U can be defined as in Equation (5.18).

5.3.3 Matérn Kernel

For half-integer values, the explicit form of the Matérn Kernel allows us to find an

analogous kernel decomposition to the two discussed above:

ψ(ϕ) = σ2kp exp (−
√
k̂pϕ)

p∑
l=0

kl,p
p−l
√
k̂pϕ

ϕ(x′, x′′) =
d∑
j=1

θj(x
′
j − x′′j )2.

5.3.4 Periodic Kernel

For the periodic kernel we define:

ψ(ϕ) = σ2 exp(−0.5ϕ)

ϕ(x′, x′′) =
d∑
j=1

θj sin(pj(x
′
j − x′′j ))2.

Assumptions 1 and 2 are trivially satisfied because of the smoothness of ψ and ϕ. For

the definition of the bounding function U we have that:

sup
x∈T

N∑
i=1

ciϕ(x, x(i)) = sup
x∈T

N∑
i=1

ci

d∑
j=1

θj sin(pj(xj − x(i)
j ))2

≤
N∑
i=1

d∑
j=1

sup
xj∈[xLj ,x

U
j ]

ciθj sin
(
pj(xj − x(i)

j )
)2

.

The supremum in the final equation can be obtained by simply inspecting the deriva-

tive of ciθj sin
(
pj(xj − x(i)

j )
)2

and its function value at the extrema of each interval
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[xLj , x
U
j ]. Let Uij(ci) be the value computed in such a way for each i and j, then we

define:

U(c) =
d∑
j=1

N∑
i=1

Uij(ci). (5.19)

5.3.5 ReLU Kernel

By noticing that the definition of the ReLU kernel is recursive on the number of layers,

for simplicity of notation we limit our discussion to the single layer. The general case

can simply be dealt with by iterating the decomposition that we compute below over

the number of layers of the deep kernel. For fast computation with the ReLU kernel,

we build on the pre-processing procedure outlined by [123].

Formally, we assume that our input variable x is normalised to vary within the

coordinate hyper-box [0, 1]d, and we map that into the frontier of the unity sphere of

Rd+1, whose generic point we denote with z, by using hyper-spherical coordinates:

z1 = cos(θ1)

z2 = sin(θ1) cos(θ2)

...

zd+1 = sin(θ1) . . . sin(θd)

for θj ∈ [0, π], when j = 1, . . . , d − 1, and θd ∈ [0, 2π]. For simplicity, we then work

with hyper-spherical coordinate. We write θ = [θ1, . . . , θd] for the vector of polar

coordinates and z(θ) for the vector of Cartesian coordinates associated to it, and we

indicate the region in which θ can vary with Θ = [0, π]d−1 × [0, 2π]. We define:

ϕ(z′, z′′) = k1 + k2z
′ · z′′

ψ(ϕ) = σ2
b +

σ2
wk3

2π

(
sin
(
cos−1 ϕ

)
+ ϕ

(
π − cos−1 ϕ

))
with k3 = σ2

b + σ2
w

d+1
, k1 =

σ2
b

k3
and k2 = σ2

w

k3(d+1)
. By the smoothness of the dot product,

the sine and cosine function it follows that Assumptions 1 and 2 of Definition 7 are

met by the above decomposition. Concerning the definition of U , let θ(1), . . . , θ(N)

be the polar coordinate vectors associated to N points with associated coefficients

c1, . . . , cN , and consider T = [θL, θU ] a hyper-rectangle in Θ, then:

sup
θ∈T

N∑
i=1

ciϕ(θ, θ(i)) = k1

N∑
i=1

ci + k2 sup
θ∈T

[
z(θ) ·

(
N∑
i=1

ciz(θ(i))

)]
.
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Let z̄ =
(∑N

i=1 ciz(θ(i))
)

, then the only thing we are interested in computing is then

the supremum of the dot product z(θ) · z̄ =
∑d

j=1 zj(θ)z̄j. To do this, we re-write the

dot-product in polar coordinates with the following recursion:

z(θ) · z̄ =g1(θ1, . . . , θd)

g1(θ1, . . . , θd) =z̄1 cos θ1 + sin θ1g2(θ2, . . . , θd)

...

gd−1(θd−1, θd) =z̄d−1 cos θd−1 + sin θd−1gd(θd)

gd(θd) =z̄d cos θd + z̄d+1 sin θd.

We then proceed iteratively starting from gd. To find the minimum and maximum of

gd, we notice that it is a one-dimensional real function over a compact interval, [θLd , θ
U
d ],

and has only one critical point corresponding to the zero of its derivative, i.e. θCd =

arctan (z̄d+1/z̄d). Then, let Md and md be respectively the maximum and minimum

of gd in [θLd , θ
U
d ], which can be computed by simply inspecting the values of gd at the

two extrema of the intervals and at the critical point (if this belongs to the interval).

We thus define the two auxiliary functions gMd−1 = z̄d−1 cos θd−1 + Md sin θd−1 and

gmd−1 = z̄d−1 cos θd−1 +md sin θd−1, whose maximum and minimum, MM
d−1, Mm

d−1, mM
d−1,

mm
d−1, can be found exactly as for gd. We then have that Md−1 = max{MM

d−1,M
m
d−1}

and md−1 = min{mM
d−1,m

m
d−1} are maximum and minimum values for gd−1. The

procedure can then be iterated up until g1, by propagating maximum and minimum

values, Mj and mj, through each function gj−1. By setting U(c) = k1

∑N
i=1 ci + k2M1

we then obtain a valid value for the kernel bounding function U .

Notice that the ReLU kernel is not stationary. Still, a valid value for the constant

K in this case can be computed by starting from Equation (5.16) as follows. By

explicit derivation we have that in the unity sphere of Rd+1:

σ2
p = Σx,x = σ2

b +
σ2
wk3

2
.

We also have that on the surface of the hyper-sphere ||x′ − x′′||2 = 1− αx′,x′′ , where

αx′,x′′ = x′ · x′′. Hence, by parameterising the set T × T with the generic angular

coefficients 0 < α < 1 between a generic (x′, x′′) ∈ T × T , x′ 6= x′′, the argument of

the maximum in Equation (5.16) boils down to:

σ2
p −

σ2
wk3

2π
(sin (arccos (k1 + k2α)) + (k1 + k2α)(π − arccos (k1 + k2α)))

1− α
.
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We notice that the denominator of the above equation decreases as α ∈ (0, 1) in-

creases, and that the numerator increases as α increases4. Hence, by continuity in

(0, 1), the above equation is upper-bounded by the limit of the function for α→ 1−.

By explicit computation we have:

K̄ =
√
σ2
wk3k2 =

σ2
w√

d+ 1
.

5.3.6 Kernel Addition

Consider now the case in which the kernel function Σ is defined by linear composition

of two kernels Σ′ and Σ′′ such as:

Σx′,x′′ = k′Σ′x′,x′′ + k′′Σ′′x′,x′′ ∀x′, x′′ ∈ Rd (5.20)

for some given k′ and k′′ ≥ 0. Then, we have that kernel decomposition for Σ′ and Σ′′,

along with the other quantities that need to be computed, can be simply propagated

through the sum. To see that, let (ϕ′, ψ′, U ′) and (ϕ′′, ψ′′, U ′′) be the two kernel

decomposition. Then, by simply summing up the LBFs and UBFs for Σ′ and Σ′′,

Proposition 1 can be generalised to this case as follows.

Proposition 6. Let g′L, g′U , g′′L and g′′U be lower and upper bounding function for Σ′x,x̄

and Σ′′x,x̄, for all x ∈ T , as computed in Proposition 1. Then

gL(x) = k′g′L(x) + k′′g′′L(x)

gU(x) = k′g′U(x) + k′′g′′U(x)

are respectively lower and upper bounding functions on Σx,x̄.

As a consequence of the above proposition it directly follows that the infimum of

the posterior mean function over the compact set T can be safely lower bounded for

the kernel Σ by setting:

µLT = k′µ′LT + k′′µ′′LT ,

where µ′LT and µ′′LT are computed by applying Proposition 2 to the kernels Σ′ and Σ′′.

Similarly, Proposition 3 can be generalised by considering two sets of slack variables,

one associated to ϕ′ and one to ϕ′′, and relying directly on the lower and upper

bounding functions defined in Proposition 6.

4To see this, it suffices to compute the derivative for the ReLU kernel and note that the corre-
lation between two inputs decreases as the angle between the two of them increases.
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Concerning the computation of metric bounding constant K̄, we notice that σ2
p =

k′σ′2p + k′′σ′′2p is a valid upper bound on the value of supx∈T Σx,x, where σ′p and σ′′p are

the corresponding values for Σ′ and Σ′′. Then, for every x′ and x′′ ∈ T we have that:

σ2
p − Σx′,x′′

||x′ − x′′||
=
k′σ′2p + k′′σ′′2p − k′Σ′x′,x′′ − k′′Σ′′x′,x′′

||x′ − x′′||

= k′
σ′2p − Σ′x′,x′′

||x′ − x′′||
+ k′′

σ′′2p − Σ′′x′,x′′

||x′ − x′′||
≤ k′K̄ ′ + k′′K̄ ′′,

where K̄ ′ and K̄ ′′ are metric bounding constants computed for the two building block

kernels Σ′ and Σ′′.

5.3.7 Kernel Multiplication

In the case in which two kernels are combined through multiplication, we have that

Σx′,x′′ = Σ′x′,x′′Σ
′′
x′,x′′ . This case can be reduced to the addition by considering the two

following McCormick’s inequalities [138]:

Σx′,x′′ = Σ′x′,x′′Σ
′′
x′,x′′ ≥ Σ′LΣ′′x′,x′′ + Σ′x′,x′′Σ

′′
L − Σ′LΣ′′L (5.21)

Σx′,x′′ = Σ′x′,x′′Σ
′′
x′,x′′ ≤ Σ′UΣ′′x′,x′′ + Σ′x′,x′′Σ

′′
L − Σ′UΣ′′L, (5.22)

where Σ′L, Σ′U , Σ′′L and Σ′′U are lower and upper values to Σ′ and Σ′′ in T , respectively.

Then we can proceed by using the kernel summation of Equation (5.21) when com-

puting lower bounding function on the kernel, and Equation (5.22) when computing

the upper bounding function, and by using the techniques discussed in the section

just above.

5.4 Computational Complexity

After training the GP, the computational cost of computing the bounds on the mean

is of the order O(mK), where m is the output dimension of the GP and K is the

computational cost of computing the kernel bounding function U for each particular

kernel considered. For the squared-exponential kernel5 that scales as N + d, where

N is the size of the dataset and d is the size of the input space, as can be seen from

Equation (5.18). For the periodic kernel have that K is of the order of Nd, as can be

deduced from Equation (5.19). Finally, for the ReLU kernel, by iterating the formulas

derived in Section 5.3.5 over the kernel’s number of layers, we have that K scales as

(N + d)L, where L is the number of layers.

5And kernels that have an analogous definition for ϕ.
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The computational cost of the bound on the variance is dominated by the solution

of the m convex quadratic optimisation problems defined in Proposition 3 (one for ev-

ery output dimension). This is polynomial in the problem size, i.e. 2(d+N+Nd+1).

In practice, some of the problem constraints (and hence some of the slack variables

related to them) can be dropped for scalability. In fact, as this enlarges the feasi-

ble region of the problems, the computation would still produce a valid bound on ξ.

The computation of the metric bounding constant K for the kernels discussed in this

chapter, and for the value of dsup, can be done in constant time (for each output dimen-

sion), by relying on the analytical expressions that we derived above. Tighter values

of K and dsup can be possibly derived, but at the cost of an increased computational

time. The applications of the formulas for the kernel sum and kernel multiplication

have the effect of doubling each computation. Hence, the computational cost in that

case scales with the worst of the two kernel functions Σ′ and Σ′′.

The computation of the integrals in the statement of Theorem 1 and 2 cannot

be done analytically, and hence the computational time of the final bound has an

additional cost that depends on the quadrature formula used. In particular, we employ

the rectangular integration formula, which is linear in the number of grid points used.

Notice that, by relying on the fact that the integrand is a monotonic decreasing

function of z, we have that considering the rectangular formula on the first point of

each sub-interval of the integration grid will still produce a valid bound on φ1 and φ2.

In general, the tightness of the approximations computed above scales with the

size of the input set T , and hence they can all be refined by using a branch-and-bound

optimisation technique, which we implement and apply in the experiments discussed

in Section 5.5. However, branch and bound has a worst-case cost that is exponential

in d, the dimension of the input space.

Interestingly, we notice that the computational time for the computation of prob-

abilistic safety depends strongly on the size of the dataset N . This is an inherent

problem of GP Bayesian models; in fact, training and inference with GPs is cubic on

the size of the training set. Sparse GP techniques [185] have been developed exactly

for this reason; by reducing the effective size of the dataset stored in the GP covari-

ance matrix,6 they are employed to speed up GP training for large datasets. This

also has the effect of additionally speeding up the verification of GP Bayesian models.

6That is, either by removing training samples or by building synthetic inducing points.
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5.5 Experimental Evaluation

In this section we experimentally investigate the behaviour of the bounds on φ1 and

φ2 derived in this chapter in two modelling tasks. We first visualise the quality of the

bounds in the 2-dimensional regression task that was introduced in Section 4.1. Then,

in Subsection 5.5.2, we rely on weak convergence of wide BNNs to GPs with deep

kernel to analyse the probabilistic robustness of deep and wide BNNs in adversarial

settings.

5.5.1 2-D Regression Task

We visualise the empirical behaviour of the bounds for φ1 and φ2 on the 2-dimensional

regression task, which was introduced in Example 3 of Section 4.1. We employ for

the analysis the same settings that we introduced and adopted in Examples 3 and 4

for the statistical estimation of probabilistic adversarial robustness.
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Figure 5.1: Upper bounds (solid lines) and sampling approximation (dashed lines)
for φ1 (top plot) and φ2 (bottom plot) on xo and x∗.
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5.5.1.1 Results

Figure 5.1 shows the values obtained for φ̂1 and φ̂2 on xo and x∗ for values δ ranging be-

tween 0 and 0.2. We observe that values computed for x∗ are consistently greater than

those computed for xo, which captures and probabilistically quantifies the increased

uncertainty of the GP around x∗, as well as the increased ratio of mean variation

around it (see Figure 3.1). Notice also that values for φ̂1 are always smaller than

the corresponding φ̂2 values. This is a direct consequence of the fact that, for equal

values of γ and δ, φ2 is a stronger requirement than φ1 as the latter is not affected by

variations that tend to increase the value of the GP output (as that simply translates

to increased confidence in classification settings). In Figure 5.1 we also compare the

upper bounds obtained with estimation for φ1 and φ2 based on sampling of the GP in

a discrete grid around the test points, with the method described in Section 4.1.1. We

remark that this provides us with just an empirical under-approximation of the actual

values of φ1 and φ2, referred to as φ̄1 and φ̄2 respectively. The results suggest that

the approximation is tighter around xo than around x∗. In fact, higher variance will

generally imply a looser bound provided by the Borell-TIS inequality, and also due

to the over-approximations introduced in the computation of the constants required

in the theorems.
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Figure 5.2: First row: three images randomly selected from the MNIST test set, along
with detected SIFT features. Second row: respective φ̂1 values for γ = 0.05. Third
row: respective φ̂1 values for γ = 0.15.
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5.5.2 BNNs Limit Behaviour on MNIST

We now apply the methods presented above to GPs defined over deep kernels, in an

effort to provide a probabilistic analysis of adversarial examples on BNNs. We remark

that this analysis is exact for GPs, but only approximate for BNNs, by virtue of weak

convergence of the induced distributions between deep kernel GPs and deep BNNs.

We focus on GPs with ReLU kernel, which directly correspond to fully-connected

BNNs with ReLU activation functions.

Training We follow the experimental setting of [123], that is, we train a selection

of ReLU GPs on a subset of the MNIST dataset using least-square classification (i.e.

posing a regression problem to solve the classification task) and rely on optimal hyper-

parameter values estimated through extensive hyper-parameter search in the latter

work. Note that the methods we presented are not constrained to specific kernels or

classification models, and can be generalized by suitable modifications to the constant

computation part. Classification accuracy obtained on the full MNIST test set varied

between 77% (by training only on 100 data samples) to 95% (training on 2000 data

samples). Already at 2000 data samples the memory requirements of GP training

become prohibitive for standard laptop computers. Larger values of data samples

can be considered by using sparse GP methods. This is not explored in this thesis;

however, we remark that the verification methods proposed in this chapter adapt

without any modifications to the sparse GP settings. Unless otherwise stated, we

perform our analyses on the best model obtained using 1000 training samples, that

is, a two-hidden-layer architecture with σ2
w = 3.19 and σ2

b = 0.00.

Analysis Settings For scalability purposes we adopt the idea from [206, 175] of

performing a feature-level analysis. Namely, we pre-process each image using SIFT

[130]. From its output, we keep salient points and their relative magnitude, which we

use to extract relevant patches from each image, in the following referred to as features.

We apply the analysis to thus extracted features. Unless otherwise stated, feature

numbering follows the descending order of magnitude (i.e. importance). We first

analyse the probabilistic robustness of the GP with the deep kernel when adversarial

modifications are applied to the 5 most important features on three images randomly

selected from the MNIST test set. We then investigate, in the same setting, the

behaviour of the prediction uncertainty on the worst-case perturbations under varying

values for the kernel hyper-parameters.
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5.5.2.1 Feature-based Robustness Analysis

In the first row of Figure 5.2 we consider three images from the MNIST test data,

and for each we highlight the first five features extracted by SIFT (or less if SIFT

detected less than five relevant features). For each image x(i), feature fj and γ > 0

we consider the set of images T
fj ,γ

x(i) given by the images differing from x(i) in only the

pixels included in fj and by no more than γ for each pixel.

We plot the values obtained for φ̂1 as a function of δ for γ = 0.05 and γ = 0.15,

respectively, on the second and third row of Figure 5.2. Recall that φ̂1 represents an

upper-bound on the probability of finding x ∈ T fj ,γ
xi such that the classification confi-

dence for the correct class in x drops by more than δ compared to that of x(i). Since a

greater γ value implies a larger neighbourhood T
fj ,γ

x(i) , intuitively φ̂1 will monotonically

increase along with the value of γ. Interestingly, the rate of increase is significantly

different for different features. In fact, while most of the 14 features analysed in

Figure 5.2 have similar φ̂1 values for γ = 0.05, the values computed for some of the

features using γ = 0.15 are almost double (e.g. Feature 4 for the third image), and

remain fairly similar for others (e.g. Feature 3 for the first image). Also, the relative

ordering in robustness for different features is not consistent for different values of γ

(e.g. Features 2 and 5 from the first image). This highlights the need of performing

parametric analysis of adversarial attacks, which take into account different strengths

and misclassification thresholds, as suggested in [16]. Finally, notice that, though

only 14 features are explored here, the experiment shows no clear relationship be-

tween feature magnitude as estimated by SIFT and feature robustness, which calls

for caution in adversarial attacks and defences that rely on black-box feature im-

portance metric. Note also that an empirical analysis of the robustness based on the

sampling method discussed in Section 4.1.1, similarly to that performed in Figure 5.1,

becomes infeasible for this case study as, in order to have good estimation accuracy,

a fine grid over a high-dimensional input space would be required.

5.5.2.2 Variance Analysis

Most active defences are based upon rejecting samples characterised by high uncer-

tainty values. After uncertainty is estimated, defences of this type usually proceed by

setting a meta-learning problem whose goal is to distinguish between low and high

variance input points, so as to flag potential adversarial examples [85, 56]. However,

as we discussed in Chapter 2, mixed results are obtained with this approach [29].
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Figure 5.3: Normalized variance σ̄2 as a function of L (number of layers of the corre-
sponding BNN) and |D| (number of training points).

In this subsection we aim at analyzing how the variance around test samples

changes with different training settings for the three test points discussed previously.

We use the method developed for variance optimisation (see Subsection 5.2.2) to

compute:

σ̄2(x∗) =
1

Σ̄x∗,x∗
sup

x∈T f1,γ

x∗

Σ̄x,x,

that is, we look for the highest variance point in the T f1,γ
x∗ neighbourhood of x∗, and

normalise its value with respect to the variance at x∗. We use γ = 0.15 and perform

the analysis only on Feature 1 (i.e. the most relevant one accordingly to SIFT) of

each image.

Figure 5.3 plots values of σ̄2(x∗) as a function of the number of layers of the ReLU

kernel (from 1 to 10) and samples (from 100 to 2000) included in the training set.

Firstly, notice how maximum values of σ̄2(x∗) are perfectly aligned with the results

of Figure 5.2. That is, less robust features are associated with higher values of σ̄2(x∗)

(e.g. Feature 1 for image 1). This highlights the relationship between the existence

of adversarial examples in the neighbourhood of a point and model uncertainty. We
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observe that the normalised variance value consistently monotonically increases with

respect to the number of training samples used. This suggests that, as more and

more training samples are input into the training model, the latter becomes more

confident in predicting “natural” test samples compared to “artificial” ones. Unfor-

tunately, as the number of layers increases, the value of σ̄2(x∗) decreases rapidly to a

plateau. This seems to point to the fact that defence methods based on a-posteriori

variance thresholding become less effective with more complex neural network archi-

tectures, which could be a justification for the mixed results obtained so far using

active defences.

5.6 Summary

We presented a formal approach for the probabilistic robustness analysis of Bayesian

inference with Gaussian processes with respect to adversarial examples and invariance

properties as introduced in Chapter 4. We discussed how the properties considered

cannot be computed exactly for a general GP, and have derived a framework for their

safe over-approximation.

Specifically, our bounds are based on the Borell-TIS inequality and the Dudley

entropy integral, which are theoretically known to give tight bounds for the study

of suprema of Gaussian processes [3]. We have then introduced a general framework

for the computation (and safe-approximation) of various constants related to the GP

posterior. The optimisation framework that we have derived builds on a suitably

defined kernel decomposition and the explicit form of GP inference equations so as

to derive LBFs and UBFs for the a-posteriori characteristics of the GP. This opti-

misation framework, used here for the computation of probabilistic safety, will form

the backbone of the methodology presented in Chapter 6 for the computation of

adversarial robustness of GP Bayesian learning models.

We have next empirically investigated the tightness and the behaviour of our

bound on a simple 2-dimensional quadratic regression task, where we observed how

the bound varied with different computational parameters and its exponential decay

with respect to the size of the input ball. Finally, we have relied upon the weak

convergence property of BNNs to GPs with deep kernels and applied the methods

developed for the computation of probabilistic robustness of the latter as a way to

investigate the robustness of BNNs in adversarial settings. In the MNIST dataset, we

have observed how feature importance, as computed by SIFT, is empirically uncorre-

lated with robustness at the feature level. Interestingly, our optimisation framework
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allowed us to perform an analysis of how the worst-case posterior variance is affected

by adversarial attacks, which provided us with insights with respect to the behaviour

of active defence methodologies used against adversarial examples.

One of the main limitations of our method is that, though providing a safe over-

approximation for the GP supremum, the Borell-TIS inequality does not come with

a bounding error, so that it is difficult to know in practice how tight the bound is

compared to the actual probabilistic safety value for a given GP. Only qualitative

statements can, in fact, be made about the tightness of our bound (e.g., it scales with

the GP variance and with its - unknown - Lipschitz constants). This compounds

in our analysis of BNNs, as the central limit theorem provides convergence only

in the limit of infinitely-wide BNNs and only in the sense of weak convergence of

distributions. Hence, the observations we made with respect to the behaviour of

BNNs on adversarial examples are to be understood in the context of this limit only;

and would not hold for, e.g., a network with a bottleneck layer [135]. Interestingly,

similar observations about infinitely-wide BNNs have been made in a subsequent

work [26], which analysed their adversarial robustness in similar settings. In another

follow up work [207], we have developed a method specifically tailored to BNNs for the

computation of probabilistic robustness, which just relies on the computation of LBFs

and UBFs to the BNN prediction distribution, and can be made arbitrarily close to

the actual value by relying on a branch-and-bound scheme. Nevertheless, since this is

the first work that analysed probabilistic robustness of a Bayesian learning model in

adversarial settings, we believe that our results and methods represent a step towards

the application of Bayesian models in safety-critical applications.
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In this chapter we consider the adversarial robustness of GP models as defined in

Section 4.2. Namely, given a compact subset of the input space T ⊆ Rd, representing
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a neighbourhood around a test point x∗, a GP trained on a dataset D, and a loss

function L we pose the problem of computing guarantees over the optimal decision

made by the GP for all points x ∈ T . In particular, we focus on the case in which L is

a canonical loss function. In the regression case we thus compute explicit guarantees

over the mean of the posterior GP distribution, and show how the methods presented

in Chapter 5 for the mean computation can be straightforwardly used in these settings

as well.

On the other hand, for classification models we rely on the computation of lower

and upper bounds on the posterior predictive distributions. As discussed in Section

4.2.2, in fact, this allows us to give guarantees over changes of classification over input

sets T . In order to do so, we proceed by discretising the GP latent space, by means

of which we derive an upper and a lower bound on the GP output by analytically

optimising a set of Gaussian integrals whose parameters depend upon the extrema

of the GP posterior mean and variance in T . Extending the optimisation framework

for GPs introduced in Section 5.2, we show how the latter can be bounded by solving

a set of convex quadratic and linear programming problems, for which solvers are

readily available [23]. Finally, for any given error tolerance ε > 0, we prove that there

exists a discretisation of the latent space that ensures convergence of the branch and

bound to values ε-close to the actual maximum and minimum class probabilities in

finitely many steps. The method we discuss here is anytime (i.e. the bounds provided

are at every step an over-estimation of the actual output ranges over T , and can hence

be used to provide guarantees) and ε-exact (the actual values are retrieved in finitely

many steps up to any arbitrary error ε > 0 selected a-priori).

We apply our approach to analyse the robustness profile of GP classification mod-

els on a two-dimensional dataset, the SPAM dataset, and a feature-based analysis of a

binary and a three-class subset of the MNIST dataset. In particular, we compare the

guarantees computed by our method with the robustness estimation approximated by

adversarial attack methods for GPs; we analyse the effect of approximate Bayesian

inference techniques and hyper-parameter optimisation procedures on adversarial ro-

bustness; and utilise the methods presented here for interpretability analysis of the

GP posterior output. Interestingly, across the three datasets analysed, we observe

that approximation based on expectation propagation gives more robust classifica-

tion models than Laplace approximation, and that GP robustness increases with the

number of hyper-parameters training epochs.

This chapter is organised as follows. In the next section, we show how bounds on

the classification ranges can be found in the case of two-class classifications. We pro-
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vide a branch-and-bound implementation of the method, and prove that the branch-

and-bound scheme will converge in finitely many steps to the actual classification

ranges, up to any desired error tolerance ε > 0. We show in Section 6.2 how the

computation for the bound in the multi-class case can be cast as a series of two-class

computations by means of iterative conditioning, and use that to derive a safe over-

approximation of the classification ranges in the multi-class case. In Section 6.3 we

highlight how to deal with GPs learned for regression problems, which requires just a

subset of the methods employed for the classification case. The optimisation frame-

work presented in Chapter 5 is extended to the requirements of the method discussed

in this chapter in Section 6.4. We show how adversarial robustness can be used for

interpretability analysis in Section 6.5. In Section 6.6 we discuss the computational

complexity of the method. Experimental results on a 2D classification problem, on

the SPAM dataset and on the MNIST dataset are given in Section 6.7.

6.1 Bounding Adversarial Robustness in the Two-

Class Classification Case

We start the chapter with a treatment of the two-class classification case. The ex-

tension to the multi-class scenario is then described in Section 6.2, and the regression

case is discussed in Section 6.3.

As explained in Section 3.2.2, in this case we have a GP over a one-dimensional

input space, which greatly simplifies the computations. We assume to be working

with a Gaussian analytical approximation technique for the posterior (e.g., Laplace

or EP). That is, the posterior GP over the latent space is described by a single output

GP of the form: f̄ : Ω × Rd → R, and we denote with σ : R → [0, 1] its likelihood

function. We then omit the output index from the notation that we use in this section.

As we have discussed in Subsection 4.2.2, in order to compute guarantees over

the Bayes optimal classifier, we pose the problem of computing the prediction ranges

over a generic compact set T , i.e. we aim to compute:

πmin(T ) = min
x∈T

π(x)

πmax(T ) = max
x∈T

π(x).

Similarly to what we have done in Chapter 5, for simplicity of presentation we assume

that T is an axis-aligned hyper-rectangle in the input space Rd. The general case can

then be obtained by computing over-approximations analogous to those discussed in

Section 5.1.3.
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Figure 6.1: Top: Computation of upper and lower bounds on πmin(T ), i.e. the mini-
mum of the classification range on the search region T . Bottom: The search region
is repeatedly partitioned into sub-regions (only first partitioning visualised), reducing
the gap between best lower and upper bounds until convergence (up to ε) is reached.

6.1.1 Outline of Approach

An outline of the approach that we use in the two-class classification settings is

illustrated in Figure 6.1 for the computation of πmin(T ) over a one-dimensional set T

plotted along the x-axis (the method for the computation of πmax(T ) is analogous).

For any given region T we aim to compute lower and upper bounds for both πmin(T )

and πmax(T ), that is, we compute real values πLmin(T ), πUmin(T ), πLmax(T ) and πUmax(T )

such that:

πLmin(T ) ≤πmin(T ) ≤ πUmin(T ) (6.1)

πLmax(T ) ≤πmax(T ) ≤ πUmax(T ). (6.2)
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We refer to πLmin(T ) and πUmax(T ) as over-approximations of the ranges, as they pro-

vide pessimistic estimation of the actual values of πmin(T ) and πmax(T ), and hence

tighter guarantees. On the other hand, we refer to πUmin(T ) and πLmax(T ) as under-

approximations because they provide an optimistic estimation of the actual values

that we want to compute. In order to compute these over- and under-approximations,

we compute a lower and an upper bound function (the lower bound function is de-

picted with a dashed red curve in Figure 6.1) to the GP output (solid blue curve)

in the region T . We then find the minimum of the lower bound function, πLmin(T )

(shown in the plot), and the maximum of the upper bound function, πUmax(T ) (not

shown). Then, valid values for πUmin(T ) and πLmax(T ) can be computed by evaluating

the GP predictive distribution on any point in T (a specific πUmin(T ) is depicted in

Figure 6.1). Finally, we iteratively refine the lower and upper bounds computed in T

with a branch-and-bound algorithm. Namely, the region T is recursively subdivided

into sub-regions, for which we compute new (tighter) bounds, until these converge up

to a desired tolerance ε > 0.

6.1.2 Computation of Bounds

In this paragraph we show how to compute πUmax(T ), an upper bound on the maximum,

and πLmin(T ), a lower bound on the minimum of the GP predictive distribution. In

order to do so, we work on the assumption that the likelihood function σ(f) is a

monotonic, non-decreasing, and continuous function of the latent variable (notice

that this is trivially satisfied by all the commonly used likelihood functions, e.g.,

logistic and probit [109]).

By relying on the fact that we are working with Gaussian analytical approxi-

mations of the posterior latent distribution, we have that the predictive posterior

distribution on a generic point x can be written down as:

π(x) =

∫
R
σ(ξ)N (ξ|µ̄(x), Σ̄(x))dξ (6.3)

where µ̄ and Σ̄ are the posterior mean and variance functions respectively. As dis-

cussed in Chapter 3, the above integral cannot be in general solved analytically.

Hence, we proceed by performing a discretisation of the latent space. By relying on

the linearity of integrals and the monotonicity of the likelihood function σ, we ob-

tain the following proposition, which bounds the extrema of the predictive posterior

distribution with a finite sum of weighted Gaussian integrals.
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Proposition 7. Let S = {Sl = [al, bl] | l = 1, . . . ,M} be a partition of R (the latent

space) in a finite set of intervals. Then, it holds that:

πmin(T ) ≥
M∑
l=1

σ(al) min
x∈T

∫ bl

al

N (ξ|µ̄(x), Σ̄(x))dξ (6.4)

πmax(T ) ≤
M∑
l=1

σ(bl) max
x∈T

∫ bl

al

N (ξ|µ̄(x), Σ̄(x))dξ. (6.5)

Proposition 7 guarantees that the GP predictive distribution in T can be bounded

by solving M optimisation problems. Each of these problems seeks to find the a-

posteriori mean and variance that maximise or minimise the integral of a Gaussian

over an axis-aligned hyper-rectangle T . In order to solve them, we proceed by first as-

suming the knowledge of lower and upper bounds on the posterior mean and variance

in T , that is, µLT , µUT , ΣL
T and ΣU

T such that:

µLT ≤ min
x∈T

µ̄(x) µUT ≥ max
x∈T

µ̄(x) (6.6)

ΣL
T ≤ min

x∈T
Σ̄(x) ΣU

T ≥ max
x∈T

Σ̄(x). (6.7)

Notice how µLT , µUT , ΣL
T and ΣU

T are similar to the quantities that we have computed

in Section 5.2 in the case of probabilistic robustness. We will discuss in Section 6.4

how the optimisation framework developed in the context of probabilistic adversarial

safety can be adapted for the purposes of this chapter.

By inspection of the derivatives of the integrals in Equations (6.4) and (6.5), the

proposition below then follows.

Proposition 8. Let µc = a+b
2

and Σc(µ) = (µ−a)2−(µ−b)2

2 log µ−a
µ−b

. Then it holds that:

max
x∈T

∫ b

a

N (ξ|µ̄(x), Σ̄(x))dξ ≤
∫ b

a

N (ξ|µ̄∗, Σ̄∗)dξ

=
1

2

(
erf

(
µ̄∗ − a√

2Σ̄∗

)
− erf

(
µ̄∗ − b√

2Σ̄∗

))
(6.8)

min
x∈T

∫ b

a

N (ξ|µ̄(x), Σ̄(x))dξ ≥
∫ b

a

N (ξ|
¯
µ∗,

¯
Σ∗)dξ

=
1

2

(
erf

(
¯
µ∗ − a
√

2
¯
Σ∗

)
− erf

(
¯
µ∗ − b
√

2
¯
Σ∗

))
(6.9)
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where we have:

µ̄∗ = arg min
µ∈[µLT ,µ

U
T ]

|µc − µ|

Σ̄∗ =

{
ΣL
T if µ̄∗ ∈ [a, b]

arg minΣ∈[ΣLT ,Σ
U
T ] |Σc(µ̄∗)− Σ| otherwise

¯
µ∗ = arg max

µ∈[µLT ,µ
U
T ]

|µc − µ|

¯
Σ∗ = arg min

Σ∈{ΣLT ,Σ
U
T }

[erf(b|
¯
µ∗,Σ)− erf(a|

¯
µ∗,Σ)]

Proof. We provide the proof for the minimum case; similar arguments hold for the

maximum.

By definition of µLT , µUT , ΣL
T , ΣU

T , we have that for every x ∈ T , µ̄(x) ∈ [µLT , µ
U
T ]

and Σ̄(x) ∈ [ΣL
T ,Σ

U
T ]. Thus:

min
x∈T

∫ b

a

N (ξ|µ̄(x), Σ̄(x))dξ ≥ min
µ∈[µLT ,µ

U
T ]

Σ∈[ΣLT ,Σ
U
T ]

∫ b

a

N (ξ|µ,Σ)dξ =

1

2
min

µ∈[µLT ,µ
U
T ]

Σ∈[ΣLT ,Σ
U
T ]

(
erf

(
µ− a√

2Σ

)
− erf

(
µ− b√

2Σ

))
=

1

2
min

µ∈[µLT ,µ
U
T ]

Σ∈[ΣLT ,Σ
U
T ]

Φ(µ,Σ)

where we have set Φ(µ,Σ) := erf
(
µ−a√

2Σ

)
− erf

(
µ−b√

2Σ

)
. By looking at the partial

derivatives we have that:

∂Φ(µ,Σ)

∂µ
=

√
2√
πΣ

(
e−

(µ−b)2
2Σ − e−

(µ−a)2

2Σ

)
≥ 0⇔ µ ≤ a+ b

2
= µc

and that if µ 6∈ [a, b]:

∂Φ(µ,Σ)

∂Σ
=

1√
2πΣ3

(
(µ− bi)e−

(µ−bi)
2

2Σ2 − (µ− ai)e−
(µ−ai)

2

2Σ2

)
≥ 0

⇔ Σ ≤ (µ− a)2 − (µ− b)2

2 log µ−a
µ−b

= Σc(µ)

otherwise the last inequality has no solutions. As such, µc and Σc will correspond to

global maximum with respect to µ and Σ, respectively. As Φ is symmetric w.r.t. µc

we have that the minimum value w.r.t. to µ is always obtained for the point furthest

away from µc, that is, at
¯
µ∗ = arg maxµ∈[µLT ,µ

U
T ] |µc−µ|. The minimum value w.r.t. to

Σ will hence be either for ΣL
T or ΣU

T , that is
¯
Σ∗ = arg minΣ∈{ΣLT ,Σ

U
T }

Φ(
¯
µ∗,Σ).

In summary, given lower and upper bounds for the a-posteriori mean and variance

in T , Proposition 8 allows us to analytically bound the M optimisations of Gaussian
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integrals posed by Equations (6.4) and (6.5). Through this, we can compute values

for πLmin(T ) and πUmax(T ), which satisfy the left-hand-side of Equation (6.1) and the

right-hand-side of Equation (6.2). Furthermore, note that by definition of πmin(T ) and

πmax(T ), we have that, for every x ∈ T , setting πUmin(T ) := π(x) and/or πLmax(T ) :=

π(x) provides values which satisfy the right-hand-side of Equation (6.1) and the left-

hand-side of Equation (6.2) (we will discuss in Section 6.4 how to pick values of x̄

that empirically speed up convergence of branch and bound). Therefore we have the

following.

Corollary 1. Let S = {Sl = [al, bl] | l = 1, . . . ,M} be a partition of the latent space

R in a finite set of intervals. Consider µLT , µUT , ΣL
T , ΣU

T as defined by Equations (6.6)

and (6.7), and define for each l = 1, . . . ,M µ̄∗l , Σ̄∗l ,
¯
µ∗l and

¯
Σ∗l to be the solution to

the Gaussian integral optimisation problem computed as in Proposition 8. Fix two

points x̄ ∈ T and
¯
x ∈ T , and define:

πLmin(T ) :=
1

2

M∑
l=1

σ(al)

(
erf

(
¯
µ∗l − al√

2
¯
Σ∗l

)
− erf

(
¯
µ∗ − bl√

2
¯
Σ∗l

))

πUmax(T ) :=
1

2

M∑
l=1

σ(bl)

(
erf

(
µ̄∗l − al√

2Σ̄∗l

)
− erf

(
µ̄∗ − bl√

2Σ̄∗l

))
πUmin(T ) := π(

¯
x)

πLmax(T ) := π(x̄).

Then πLmin(T ), πUmax(T ), πUmin(T ) and πLmax(T ) thus defined satisfy the conditions of

Equations (6.1) and (6.2).

In Section 6.1.4 we will show how the bounds computed as described in this

section can be used to develop a branch-and-bound scheme converging to πmin(T ) and

πmax(T ). First, however, we notice that discretisation of the latent space performed

in this section was necessary because of the fact the predictive posterior distribution

could not be written down in explicit form. Interestingly, as discussed in Chapter 3,

when the probit function is chosen for the likelihood function, then the integral of

Equation (6.3) can be expressed in closed form in terms of the erf function, which

leads to a simplification of Proposition 7 and 8. We discuss this particular case in

the following section.

6.1.3 Bounds for Probit Classification

For the case that the likelihood σ is taken to be the probit function, that is, σ(f̄) =

Φ(λf̄) is the cdf of the univariate standard Gaussian distribution scaled by λ > 0,
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we have seen in Chapter 3 that the predictive posterior distribution can be written

down as:

π(x) = Φ

(
µ̄(x)√

λ−2 + Σ̄(x)

)
.

We can use this explicit form to derive analytic upper and lower bounds to the

posterior predictive distribution without the need to apply Proposition 7, by relying

on upper and lower bounds for the latent mean and variance functions. This can be

obtained by direct inspection of the derivatives of Φ

(
µ̄(x)√

λ−2+Σ̄(x)

)
. By proceeding

similarly to how we did for the proof of Proposition 8 we obtain the following.

Proposition 9. When the probit likelihood is used for σ, we have that

πLmin(T ) := Φ

(
µLT√

λ−2 +
¯
Σ∗

)
≤ πmin(T ) (6.10)

and

πmax(T ) ≤ Φ

(
µUT√

λ−2 + Σ̄∗

)
=: πUmax(T ) (6.11)

with

¯
Σ∗ =

{
ΣU
T if µLT ≥ 0

ΣL
T otherwise

Σ̄∗ =

{
ΣL
T if µUT ≥ 0

ΣU
T otherwise.

Crucially the proposition above allows us to avoid performing the discretisation

of the latent space in the case of the probit likelihood, which both implies a faster

procedure to compute the bound and a tighter bound as well. Notice also that often,

even in the case in which the sigmoid likelihood is used, at integration time this is

approximated by using a scaled version of the probit with λ =
√
π/8 (see e.g. [18]).

Thus also in these cases we can avoid performing the discretisation of the latent space.

6.1.4 Branch-and-Bound Algorithm

In this paragraph we implement the bounding procedure into a branch-and-bound

algorithm and prove convergence up to any a-priori specified ε > 0. The overall idea

behind branch-and-bound optimisation is that of alternating between bounding the

function we are interested in optimising in our search domain T and splitting the

search region T into smaller regions, on which we compute the bound in the next

iteration. This procedure creates a search tree, in which descending depth implies

smaller search regions. The intuition behind the method is that, as we explore the
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branch and bound search tree depth-wise, the search regions become smaller, so that

the bounds get closer to the true function, and we thus slowly converge to the actual

optimum. By computing lower and upper bounds on the quantity of interest, we are

then able to prune our search tree for regions on which optimal values cannot occur.

A branch-and-bound scheme built on top of the bounding procedure derived in

Section 6.1.2 for the computation of πmin(T ) is summarised in Algorithm 1, which we

now briefly describe (an analogous scheme can be written down for πmax(T ) as well).

After initialising πLmin(T ) and πUmin(T ) to trivial values and the exploration regions

stack R to the singleton {T}, the main optimisation loop is entered until convergence

(lines 2–9). Among the regions in the stack, we select the region R with the most

promising lower bound (line 3), and refine its lower bound using Propositions 7 and

8 (lines 4–5) as well as its upper bound through evaluation of points in R (line 6).

If further exploration of R is necessary for convergence (line 7), then the region R is

partitioned into two smaller regions R1 and R2, which are added to the regions stack

and inherit R’s bound values (line 8). We do the split by randomly selecting an index

j ∈ {1, . . . , d} among the input dimensions, and by splitting R at the mid-point along

the jth dimension. Finally, the freshly computed bounds local to R ⊆ T are used to

update the global bounds for T (line 9). Namely, πLmin(T ) is updated to the smallest

value among the πLmin(R) values for R ∈ R, while πUmin(T ) is set to the lowest observed

value yet explicitly computed in line 6.

Algorithm 1 Branch and bound for πmin(T )

Input: Input space subset T ; error tolerance ε > 0; latent mean/variance functions
µ̄(·) and Σ̄(·).
Output: Lower and upper bounds on πmin(T ) with πUmin(T )− πLmin(T ) ≤ ε

1: Initialisation: Stack of regions R← {T}; πLmin(T )← −∞; πUmin(T )← +∞
2: while πUmin(T )− πLmin(T ) > ε do
3: Select region R ∈ R with lowest bound πLmin(R) and delete it from stack
4: Find [µLR, µ

U
R] and [ΣL

R,Σ
U
R] for latent mean and variance functions over R

5: Compute πLmin(R) from [µLR, µ
U
R] and [ΣL

RΣU
R] using Corollary 1

6: Find πUmin(R) by evaluating π(x) in a point in R
7: if πUmin(R)− πLmin(R) > ε then
8: Split R into two sub-regions R1, R2, add them to stack and use

πLmin(R), πUmin(R) as initial bounds for both sub-regions

9: Update πLmin(T ) and πUmin(T ) with current best bounds found

10: return [πLmin(T ), πUmin(T )]

By construction of the algorithm it is clear that, if it terminates, then the resulting

values will provide us with an over- and under-approximation of the true value πmin(T )
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with a known error ε > 0. Crucially, for our approach to work we have to show that

Algorithm 1 converges, i.e. that the loop of lines 2−9 terminates in a finite number of

iterations. In order to prove that that is the case, we rely on the theory of convergence

for branch-and-bound algorithms. In particular, to prove convergence of a branch-

and-bound scheme up to an error ε > 0 it suffices to show that the two following

conditions hold [8]:

1. Consistency Condition: πLmin(R) ≤ πmin(R) ≤ πUmin(R) ∀R ⊆ T.

2. Uniform Convergence: ∀ε > 0 ∃ r > 0 s.t. ∀R ⊆ T with diam(R) ≤ r ⇒
|πUmin(R)− πLmin(R)| ≤ ε.

Intuitively, the first condition makes sure that the bounds computed are actually

consistent over all the subsets of our initial input region T . It is easy to see that

this follows automatically by the construction in Section 6.1.2. The second condition,

instead, ensures that the lower and the upper bounds converge uniformly to each

other as we reduce the maximum diameter of the branch-and-bound search region to

zero. Building on these two conditions we can show the finite-time convergence of

our method.

In the following theorem, we show that, for any error ε > 0 selected a-priori,

there exists a discretisation of the latent function such that the branch-and-bound

scheme introduced in Algorithm 1 meets the uniform convergence conditions and

hence terminates in a finite number of iterations.

Theorem 3. Assume that µLR, µUR, ΣL
R, ΣU

R are bounding functions for the a-posteriori

mean and variance such that:

µLR → min
x∈R

µ̄(x), µUR → max
x∈R

µ̄(x), ΣL
R → min

x∈R
Σ̄(x), ΣU

R → max
x∈R

Σ̄(x) (6.12)

every time that diam(R) → 0. Then, for ε > 0, there exists a partition of the latent

space S and r̄ > 0 such that, for every R ⊆ T with diam(R) < r̄, it holds that

|πUmin(R)− πLmin(R)| ≤ ε. (6.13)

Proof. Consider an ε > 0, and a generic axis-aligned hyper-rectangle R ⊆ T of

diameter diam(R) := r > 0 less than a fixed r̄ > 0. We want to find a value for r̄

for which the condition in Equation (6.13) is surely met. We start by observing that

πUmin(R) is defined by computing the predictive posterior distribution on a fixed point

of R. Let x̄ ∈ R be such a point, define µ̄ := µ̄(x̄) and Σ̄ := Σ̄(x̄), then we have that:

πUmin(R) =

∫
σ(ξ)N (ξ|µ̄, Σ̄)dξ.
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Consider now a generic M > 0; we define the discretisation of the latent space

SM = {[al, bl] | l = 1 . . . ,M} with the following equations:

a1 = −∞

bl = σ−1

(
σ(al) +

1

M

)
l = 1, . . . ,M

al+1 = bl l = 1, . . . ,M,

that is, we discretise the y-axis into M equally distanced intervals and map that

discretisation back to the x-axis through the link function, σ−1. We then have that

the left-hand-side of Equation (6.13) can be written explicitly as:∣∣∣∣∣∣∣
∫
σ(ξ)N (ξ|µ̄, Σ̄)dξ −

M∑
l=1

σ(al) min
µ∈[µLR,µ

U
R]

Σ∈[ΣLR,Σ
U
R]

∫ bl

al

N (ξ|µ,Σ)dξ

∣∣∣∣∣∣∣ . (6.14)

Let µ∗,(l) and Σ∗,(l) be the solutions to the lth minimisation problems defined inside

the summation of the equation above, then we have:∣∣∣∣∣
∫
σ(ξ)N (ξ|µ̄, Σ̄)dξ −

M∑
l=1

σ(al)

∫ bl

al

N (ξ|µ∗,(l),Σ∗,(l))dξ

∣∣∣∣∣
=

∣∣∣∣∣
M∑
l=1

(∫ bl

al

σ(ξ)N (ξ|µ̄, Σ̄)dξ − σ(al)

∫ bl

al

N (ξ|µ∗,(l),Σ∗,(l))dξ
)∣∣∣∣∣

≤

∣∣∣∣∣
M∑
l=1

((
σ(al) +

1

M

)∫ bl

al

N (ξ|µ̄, Σ̄)dξ − σ(al)

∫ bl

al

N (ξ|µ∗,(l),Σ∗,(l))dξ
)∣∣∣∣∣

≤

∣∣∣∣∣ 1

M

M∑
l=1

∫ bl

al

N (ξ|µ̄, Σ̄)dξ

∣∣∣∣∣+

∣∣∣∣∣
M∑
l=1

σ(al)

∫ bl

al

(
N (ξ|µ̄, Σ̄)−N (ξ|µ∗,(l),Σ∗,(l))

)
dξ

∣∣∣∣∣
≤ 1

M

∣∣∣∣∫
R
N (ξ|µ̄, Σ̄)dξ

∣∣∣∣+
M∑
l=1

σ(al)

∣∣∣∣∫ bl

al

(
N (ξ|µ̄, Σ̄)−N (ξ|µ∗,(l),Σ∗,(l))

)
dξ

∣∣∣∣
≤ 1

M
+

M∑
l=1

∣∣∣∣∫ bl

al

(
N (ξ|µ̄, Σ̄)−N (ξ|µ∗,(l),Σ∗,(l))

)
dξ

∣∣∣∣ . (6.15)

Now, thanks to the conditions in Equation (6.12), we have that as r → 0 both mean

and variance converge to the actual maximum and minimum values in R. By further

noticing that µ̄ and Σ̄ are by construction always inside the (vanishing) interval

[µLR, µ
U
R] × [ΣL

R,Σ
U
R], then for continuity of the Gaussian pdf we have that for each

l = 1, . . . ,M :

lim
r→0

∣∣∣∣∫ bl

al

(
N (ξ|µ̄, Σ̄)−N (ξ|µ∗,(l),Σ∗,(l))

)
dξ

∣∣∣∣ = 0
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which means that the second term in Equation (6.15) can be made vanishingly small,

in particular less than ε
2
. By selecting M = d2

ε
e the theorem statement holds.

The above theorem guarantees that, by scaling the number of discretisation points

M w.r.t. the inverse of ε, the branch-and-bound scheme of Algorithm 1 will converge

in a finite number of steps to a solution of the optimisation problem with an error

upper-bounded by ε. Notice that the larger the M that we select, the smaller the con-

tribution to the bounding error that comes from the discretisation will be. However,

a greater value for M also implies that the number of optimisation problems for µ∗,(l)

and Σ∗,(l) to be solved will increase, so a trade-off exists in terms of computational

time for the selection of the value of M . Notice also that when the analytical bound

for the probit is used, we do not need to perform a discretisation of the latent space.

As such, other than just having a faster way of computing the bound, we also ob-

tain that the approximation error incurred in the bounding is smaller, and we would

expect faster convergence in this case as well.

We remark that, convergence of the branch-and-bound scheme is linked to the

design of converging upper and lower bounds to the a-posterior mean and variance

function, that is, meeting the conditions in Equation (6.12). This will be discussed

in detail in Section 6.4. First, in the next section, we show how the results obtained

here for two-class classification can be extended to the multi-class case.

6.2 Extension to Multiclass Classification

In this section we show how the results for two-class classification can be generalised

to the multi-class case. Given a class index i ∈ {1, . . . ,m}, we are interested in

computing upper and lower bounds on the ith component of the posterior predictive

distribution πi(x) for every x ∈ T . In order to do so, we extend Proposition 7 to

the multi-class case in Proposition 10, and show that the resulting multi-dimensional

integrals can be reduced to the two-class case by conditioning in Proposition 11. Un-

fortunately, in the multi-class case the use of the multi-dimensional probit likelihood

does not lead to any meaningful mathematical simplifications. For simplicity of the

arguments, we thus explicitly tackle only the case of the softmax likelihood, but sim-

ilar arguments can be applied straightforwardly to the case of the multi-dimensional

probit, and other likelihood functions that have similar monotonicity properties.

The following is a direct extension of Proposition 7, where the discretisation is

performed in a multi-dimensional latent space.
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Proposition 10. Let S = {Sl = [al, bl] | l ∈ {1, . . . ,M}} be a finite partition of the

latent space Rm, with [al, bl] = [al,1, bl,1]× . . .× [al,m, bl,m]. Then, for i ∈ {1, . . . ,m}:

πmin,i(T ) ≥
M∑
l=1

σi(
¯
ξl) min

x∈T

∫
Sl

N (ξ|µ̄(x), Σ̄(x))dξ

πmax,i(T ) ≤
M∑
l=1

σi(ξ̄
l) max

x∈T

∫
Sl

N (ξ|µ̄(x), Σ̄(x))dξ.

where

¯
ξl = [bl,1, . . . , bl,i−1, al,i, bl,i+1, . . . , bl,m]

ξ̄l = [al,1, . . . , al,i−1, bl,i, al,i+1, . . . , al,m].

Proof. We prove the statement for the minimum case; the arguments for the maxi-

mum are analogous. By simple properties of integral and definition of minimum we

have that:

πmin,i(T ) = min
x∈T

∫
Rm

σ(ξ)N (ξ|µ̄(x), Σ̄(x))dξ = min
x∈T

M∑
l=1

∫
Sl

σ(ξ)N (ξ|µ̄(x), Σ̄(x))dξ

≤
M∑
l=1

min
x∈T

∫
Sl

σ(ξ)N (ξ|µ̄(x), Σ̄(x))dξ.

Taking partial derivatives of the softmax likelihood we have that:

∂σi(ξ)

∂ξk
=

{
σi(ξ)(1− σi(ξ)) if k = i

−σi(ξ)σk(ξ) if k 6= i

hence we have that the softmax is monotonically increasing along the direction i and

monotonically decreasing along all the other dimensions k 6= i. Thus, its minimum

in a generic axis-aligned hyper-rectangle [al,1, bl,1]× . . .× [al,m, bl,m] will occur in the

vertex defined as
¯
ξl = [bl,1, . . . , bl,i−1, al,i, bl,i+1, . . . , bl,m]. Thus, we have that the chain

of inequalities above can be lower-bounded by computing the softmax on
¯
ξl and taking

it outside of the integral computation, which yields:

M∑
l=1

σi(
¯
ξl) min

x∈T

∫
Sl

N (ξ|µ̄(x), Σ̄(x))dξ.

In summary, Proposition 10 guarantees that, for all x ∈ T , πi(x) can be upper-

and lower-bounded by solving M optimisation problems over a multi-dimensional
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Gaussian integral. In Proposition 11, we show that upper and lower bounds for

the integral of a multi-dimensional Gaussian distribution, such as those appearing

in Proposition 10, can be obtained by optimising a marginalised product of uni-

dimensional Gaussian integrals over both the input and the latent space.

We first introduce the following notation. We denote with µ̄i:j(x) the subvector of

µ̄(x) containing only the components from i to j, with i ≤ j, and similarly we define

Σ̄i:k,j:l(x) to be the submatrix of Σ̄(x) containing rows from i to k and columns from

j to l, with i ≤ k and j ≤ l.

Proposition 11. Let S =
∏m

i=1[ai, bi] ⊂ Rm be an axis-aligned hyper-rectangle in the

latent space. For i ∈ {1, . . . ,m− 1} and fI ∈ Rm−i−1, define I = (i+ 1) : m and

µ̄fi (x) = µ̄i(x)− Σ̄i,I(x)Σ̄−1
I,I(x)(fI − µ̄I(x)) (6.16)

Σ̄f
i (x) = Σ̄i,i(x)− Σ̄i,I(x)Σ̄−1

I,I(x)Σ̄T
i,I(x). (6.17)

Let SI =
∏m

j=i+1[ai, bi], then we have that:

max
x∈T

∫
S

N (ξ|µ̄(x), Σ̄(x))dξ ≤

max
x∈T

∫ bm

am

N (ξ|µ̄m(x), Σ̄m,m(x))dξ
m−1∏
i=1

max
x∈T
f∈SI

∫ bi

ai

N (ξ|µ̄fi (x), Σ̄f
i (x))dξ

(6.18)

min
x∈T

∫
S

N (ξ|µ̄(x), Σ̄(x))dξ ≥

min
x∈T

∫ bm

am

N (ξ|µ̄m(x), Σ̄m,m(x))dξ
m−1∏
i=1

min
x∈T
f∈SI

∫ bi

ai

N (ξ|µ̄fi (x), Σ̄f
i (x))dξ.

(6.19)

Proof. We consider the minimum case. The maximum follows similarly.

Consider the latent posterior process f̄ , whose mean and variance function we

denote with µ̄(x) and Σ̄(x). Then, we have

min
x∈T

∫
S

N (ξ|µ̄(x), Σ̄(x))dξ = min
x∈T

P (f̄(x) ∈ S) = min
x∈T

P (ai ≤ f̄i(x) ≤ bi, i = 1, . . . ,m) =

min
x∈T

P (am ≤ f̄m(x) ≤ bm)
m−1∏
i=1

P (ai ≤ f̄i(x) ≤ bi|f̄I(x) ∈ SI) ≥

(By Lemma 3 reported below)

min
x∈T

P (am ≤ f̄m(x) ≤ bm)
m−1∏
i=1

min
fI∈SI

P (ai ≤ f̄i(x) ≤ bi|f̄I(x) = fI) ≥
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min
x∈T

P (am ≤ f̄m(x) ≤ bm)
m−1∏
i=1

min
x∈T
fI∈SI

P (ai ≤ f̄i(x) ≤ bi|f̄I(x) = fI).

Notice that, for each i ∈ {1, . . . ,m−1}, P (ai ≤ f̄i(x) ≤ bi|f̄I(x) = fI) is the integral

of a uni-dimensional Gaussian random variable conditioned on a jointly Gaussian

random variable. The statement of the theorem then follows by the application of

the conditioning equations for Gaussian distributions stated in Property 2 (Section

3.1.1).

Lemma 3. Let X and Y be random variables with joint density function fX,Y . Con-

sider measurable sets A and B. Then, it holds that

P (X ∈ A|Y ∈ B) ≥ inf
y∈B

P (X ∈ A|Y = y).

Proof.

P (X ∈ A|Y ∈ B) =
P (X ∈ A, Y ∈ B)

P (Y ∈ B)
=

∫
B

∫
A
fX,Y (x, y)dxdy∫
B
fY (y)dy

=

∫
B

∫
A
fX|Y (x|y)fY (y)dxdy∫

B
fY (y)dy

≥
∫
B
fY (y)dy infy∈B

∫
A
fX|Y (x|y)dx∫

B
fY (y)dy

= inf
y∈B

P (X ∈ A|Y = y).

Proposition 11 reduces the computation of the bounds for the multi-class case

to a product of extrema computations over univariate Gaussian distributions, for

which Proposition 8 can then be iteratively applied. In order to do that, we need to

compute lower and upper bounds to the conditional latent mean and the conditional

latent variance defined in Equations (6.16) and (6.17). To do this, we firstly need

to compute all the upper and lower bounds to each of the entries of the latent mean

vector and latent variance matrix, which we do with the methods described in Section

6.4, and which we denote with µLi,T and µUi,T , for i = 1, . . . ,m and ΣL
i,j,T and ΣU

i,j,T , for

i = 1, . . . ,m and j = 1, . . . ,m. We then notice that Equations (6.16) and (6.17) can

be expressed as a rational function in the entries of the mean vector, variance matrix

and latent variable vector. After writing them down explicitly we can then propagate

the upper and lower bound of each entry down through the rational function equations

by simple interval propagation techniques, which results in an upper and lower bound

on µ̄fi (x) and Σ̄f
i (x) for x ∈ T and f ∈ SI , which we denote with µL,fi,T , µU,fi,T , ΣL,f

i,T

and ΣU,f
i,T . This process can then be iterated backward from i = m to i = 1, up
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until all of the required bounds are computed. Unfortunately, because of the need to

symbolically compute a matrix inversion, the explicit formulas for the computation

of µL,fi,T , µU,fi,T , ΣL,f
i,T and ΣU,f

i,T in general are rather convoluted and long (though still

consisting of the simple ratio between polynomials). In the following example, we

give an explicit treatment of the illustrative case when m = 3; the general case can

then be obtained by proceeding in a similar fashion for m > 3.

Example 8. Consider the case of three-class classification, that is, with m = 3. We

have that the integrals associated with i = m = 3 in Equations (6.19) and (6.18) are

computed with respect to µ̄m(x) and Σ̄m,m(x), so that for their over-approximation we

require only the knowledge of the bounds on the posterior latent mean and variance,

µLm,T , µUm,T , ΣL
m,m,T and ΣU

m,m,T , and no extra computation is required.

For i = 2, we have that I = 3, so that the conditional latent mean and variance

are given by:

µ̄f2(x) = µ̄2(x)− Σ̄2,3(x)

Σ̄3,3(x)
(f3 − µ̄3(x))

Σ̄f
2(x) = Σ̄2,2(x)−

Σ̄2
2,3(x)

Σ̄3,3(x)

for x ∈ T and f3 ∈ S3 = [a3, b3]. By noticing that by construction we know

that µ̄2(x) ∈ [µL2,T , µ
L
2,T ], µ̄3(x) ∈ [µL3,T , µ

L
3,T ], Σ̄2,3(x) ∈ [ΣL

2,3,T ,Σ
U
2,3,T ], Σ̄3,3(x) ∈

[ΣL
3,3,T ,Σ

U
3,3,T ], Σ̄2,2(x) ∈ [ΣL

2,2,T ,Σ
U
2,2,T ] and f ∈ [a3, b3], we can simply use the for-

mula for interval bound propagation to propagate these 6 input intervals to obtain

lower and upper bounds on µ̄f2 and Σ̄f
2 .

For i = 1 the equations complicate somewhat, because we now have that I = [2, 3].

Thus, explicit equations for the conditional mean and variance are given by:

µ̄f1(x) = µ̄1(x)−
∑3

k=2

∑3
l=2 Σ̄1,k(x)Σ̄k,l(x)(fl − µ̄l(x))

Σ̄2,2(x)Σ̄3,3(x)− Σ̄2
2,3(x)

Σ̄f
2(x) = Σ̄1,1(x)−

∑3
k=2

∑3
l=2 Σ̄1,k(x)Σ̄k,l(x)Σ̄1,l(x)

Σ̄2,2(x)Σ̄3,3(x)− Σ̄2
2,3(x)

.

Notice again that we have upper and lower bounds for all the quantities involved in

the computations in the right-hand-side of the equations above. Hence, again by using

interval bound arithmetic, we can compute lower and upper bounds for the quantities

in the left-hand-side, which is exactly what we need for the bounding of the integrals.

Analogously to what we discussed for the two-class case, the resulting bound can

be refined through a branch-and-bound algorithm to ensure convergence up to any

desired tolerance ε > 0.
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Before deriving ways for computing bounds on a-posteriori mean and variance, we

first discuss adversarial robustness in the regression case.

6.3 The Case of Regression

While for computing adversarial robustness guarantees for classification models we

had to go through the computation of upper and lower bounds on the GP posterior

predictive distribution, the analysis is much simpler for the regression case. In fact,

using the canonical loss function, we obtain that the optimal decision corresponds

with the a-posteriori latent mean function µ̄(x) of the posterior GP distribution, as

discussed in Section 3.2.1. Guarantees over the decision can then be made simply

by relying on upper and lower bounds for the mean function, that is, µLi,T and µUi,T
for every i = 1, . . . ,m. A branch-and-bound scheme can hence be defined directly

over the mean function, without the need of bounding the variance or any additional

quantities that were needed for the classification case. This makes the computation

in the regression case much faster and simpler in practice. In the next section we will

discuss how these bounds can be computed, and will prove that as diam(T ) shrinks

to zero, they converge uniformly. Thus, a branch-and-bound scheme built on top of

these bounds would converge in a finite number of iterations to a solution ε-close to

the actual one, for any ε > 0 selected a-priori.

Additionally, one might be interested in computing similar properties to that

computed above over the posterior predictive distribution for the classification case.

In the regression case we have noticed that the support of the predictive posterior

distribution is always unbounded - as it is a Gaussian distribution - so that reason-

able properties to compute include the computation of guarantees that the posterior

predictive distribution is above/below a threshold with a given probability. Notice

that, as the posterior predictive distribution is itself Gaussian, this problem is exactly

the one tackled in Chapter 5, so that these methods discussed there can be directly

applied.

6.4 Extension of Optimisation Scheme for GPs

In this chapter we have so far developed ways to give guarantees on the adversarial

robustness of a posterior GP, both in case of classification and in case of regression

learning models. The methods we have developed relied on the assumption that we

were able to compute lower and upper bounds over the extrema of the a-posteriori
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mean and variance of the latent GP for any axis-aligned hyper-rectangle of the input

space. That is, for each axis-aligned hyper-rectangle R ⊆ T , i ∈ {1, . . . ,m} and

j ∈ {1, . . . ,m}, we required the knowledge of µLi,R, µUi,R, ΣL
i,j,R and ΣU

i,j,R, such that:

µLi,R ≤ min
x∈R

µ̄i(x) µUi,R ≥ max
x∈R

µ̄i(x)

ΣL
i,j,R ≤ min

x∈R
Σ̄i,j(x) ΣU

i,j,R ≥ max
x∈R

Σ̄i,j(x).

While the development of such bounds is in itself enough for the safe bounding of

adversarial robustness, to ensure the convergence guarantees provided by Theorem 3

we also need to show that these bounds are converging, i.e., that the conditions in

Equation (6.12) hold true.

In this section we build on the optimisation framework developed for GPs in

Chapter 5, and show how it can be adapted for the computations required here,

and how convergence can be guaranteed depending on the properties of the kernel

decomposition provided. For simplicity we present the framework for GPs built over a

single latent output (i.e., capturing the two-class classification case, or single output

regression). The extension to the multi-class case is straightforward, it suffices to

iterate the computations m times for the mean, and m(m+1)
2

for the variance. Notice

that, in the variance case when bounding covariances, that is, for i 6= j, we will have

one kernel decomposition for the kernel of the ith component and one for the kernel

of the jth output component. Taking this into account, the rest will follow exactly

as in the single output case.

6.4.1 Bounds on A-posteriori Mean

Notice that µLR corresponds exactly to the quantity computed in Proposition 2 of Sec-

tion 5.2, so that the bounds developed there can here be employed straightforwardly.

µUR can be computed in the same way, just by putting a minus sign in front of the

a-posteriori mean function µ̄. In this section we prove that the bounds thus provided

are converging. First, we prove that the LBFs and UBFs given by Proposition 1 yield

converging bounds.

Lemma 4. Let Σ be a kernel with bounded decomposition (ϕ, ψ, U). Consider a

compact set T ⊂ Rd, x̄ ∈ T , and let, for every axis-aligned hyper-rectangle R ⊆ T ,

gRL (x) and gRU (x) be the LBF and UBF computed on R for Σ using Proposition 1.

Then we have that gRL and gRU converge uniformly to Σx̄,x as diam(R)→ 0.
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Proof. We prove the lemma for the LBF. An analogous argument can be made for

the UBF.

Let ε > 0, we want to find an r̄ > 0 such that diam(R) < r̄ implies maxx∈R |gRL (x)−
Σx̄,x| < ε. Consider ϕRL and ϕRU , lower and upper bound values for ϕ in R. By taking

r̄ small enough we can assume without loss of generality that ψ(ϕ) has at most one

flex point in [ϕRL , ϕ
R
U ]. We then have the following three cases.

CASE 1: if ψ(ϕ) is concave then gRL is defined as the line connecting the two

extreme points of the interval [ϕRL , ϕ
R
U ]. Since ψ(ϕ) is concave, we have that it obtains

its minimum in one of these two extrema, so that we have

min
x∈R

gRL (x) = min
x∈R

Σx̄,x.

By Assumption 2 of kernel decompositions (see Definition 7), it follows that ψ is

Lipschitz continuous on any compact interval, so that we have that:

lim
r→0

∣∣∣∣min
x∈R

Σx̄,x −max
x∈R

Σx̄,x

∣∣∣∣ = 0

where r = diam(R). Putting the two results together we have that the difference

between minx∈R g
R
L (x) and maxx∈R Σx̄,x vanishes whenever that r tends to zero, which

proves the statement.

CASE 2: if ψ(ϕ) is convex then gRL is the Taylor expansion of ψ(ϕ) around the

mid-point of the interval, truncated at the first-order. By continuity of ϕ we then

obtain that shrinking r shrinks also the width of the interval [ϕRL , ϕ
R
U ], which then,

relying on the properties of truncation error of Taylor expansions, proves the lemma

statement.

CASE 3: in the case in which a flex point exists, gRL is defined to be the maximum

line that is below the two LBFs respectively defined over the convex and the concave

part of the interval. Since by Case 1 and Case 2 these converge, then we also have

that gRL converges.

As the bound that we compute on the mean is obtained by summing together the

individual gRL computed over each training point x(i), it then follows that convergence

of all the gRL combined with a tight bounding function U implies convergence of the

a-posteriori mean bound. This is formally stated in the proposition below.

Proposition 12. Let Σ be a kernel with bounded decomposition (ϕ, ψ, U). Then

bounds on the a-posteriori mean µLR and µUR computed through the application of

Proposition 2 converge if the bounds provided by U do so.
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Proof. We discuss the case of µLR; the arguments are analogous for µUR.

We have that µ̄(x) =
∑N

i=1 Σx,x(i)ti. By Proposition 2, we have that:

N∑
i=1

tiḡ
(i)
L (x) ≤

N∑
i=1

Σx,x(i)ti (6.20)

where ḡ
(i)
L (x) = g

(i)
L (x) if ti ≥ 0 and ḡ

(i)
L (x) = g

(i)
U (x) otherwise. For Lemma 4 we have

that each g
(i)
L converges uniformly to Σx,x(i) for each x(i). As ti is a scalar quantity

then we also have that each tiḡ
(i)
L (x) converges uniformly to Σx,x(i)ti. Hence, we have

that the bounds in Equation (6.20) converge uniformly as diam(R) = r → 0, by virtue

of being a linear combination of bounds that converge uniformly. The statement of

the proposition then follows by the definition of U .

Hence, convergence of the bounds on the a-posteriori mean and variance is reduced

to a property of the kernel bounding function U .

Remark 3. In Section 5.3 we have computed explicit kernel decomposition for many

kernel functions used in practice. It is easy to see that the functions U provided in

that section converge to the actual values requested. In fact, the computation of U is

actually exact in all the cases discussed there except for the periodic kernel, where the

over-approximation comes from swapping the minimum and the sum computations. In

this case, convergence of the bound provided by U then follows easily from the linearity

of summations. Similarly, for the addition and multiplication formulas of the kernels,

we have that convergence of U follows from the convergence of each individual sub-

kernel bounding function.

6.4.2 Bounds on A-posteriori Variance

In Section 5.2.2 we were interested in computing an upper-bound on the variance

of the difference of the GP outputs between a given test point and a generic input

point in T . For the computation of adversarial robustness we are instead interested in

just bounding the variance of a generic input point itself. This leads us to a simpler

form of the function that we are optimising and leaves us with only two terms from

Equation (5.12), that is Σx,x −Σx,xSΣT
x,x, where S = Σ−1

x,x. For simplicity we assume

that Σx,x = σ2
p for all x ∈ T ,1 so that we are only interested in computing:

σ2
p −min

x∈T
Σx,xSΣT

x,x σ2
p + min

x∈T
−Σx,xSΣT

x,x.

1If this is is not the case, then Σx,x can be replaced by either its maximum or minimum value
according to whether we want to compute the minimum or the maximum of the a-posteriori variance,
similarly to what we did in Section 5.2.2.
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Upper Bound of Variance The computation of the maximum (that is, the left-

hand-side of the equation above) follows exactly like the computations performed in

Section 5.2.2. In fact, here we just have a simpler form for the objective function and

a reduced number of constraints. Therefore, by proceeding similarly to what we did

for Proposition 3 one can prove the following.

Proposition 13. Let Σ be a kernel with bounded decomposition (ϕ, ψ, U). Consider

a
(i)
L , b

(i)
L , a

(i)
U and b

(i)
U , a set of coefficients for LBFs and UBFs associated to each

training point x(i), i = 1, . . . , N . Let r = [r(1), . . . , r(N)], ϕ(i), ϕ
(i)
j , for i = 1, . . . , N

and j = 1, . . . , d, be slack continuous variables. Let σ̄2 be the solution of the following

convex quadratic programming problem:

min
x∈T

rSrT

subject to: r(i) + a
(i)
L + b

(i)
L ϕ

(i) ≤ 0 i = 1, . . . , N

r(i) − a(i)
U − b

(i)
U ϕ

(i) ≤ 0 i = 1, . . . , N

a
(i)
j,L + b

(i)
j,Lxj − ϕ

(i)
j ≤ 0 i = 1, . . . , N j = 1, . . . , d

ϕ
(i)
j − a

(i)
j,U − b

(i)
j,Uxj ≤ 0 i = 1, . . . , N j = 1, . . . , d

ϕ(i) =
d∑
j=1

ϕ
(i)
j i = 1, . . . , N j = 1, . . . , d.

Then ΣU
T := σ2

p − σ̄2 is an upper bound for the posterior variance Σ̄x,x in T .

Lower Bound of Variance The situation is unfortunately more complicated for

the computation of minx∈T −Σx,xSΣT
x,x. In fact, though we can write down an optimi-

sation problem akin to that of Proposition 13, since S is positive definite we have that

−S is negative definite, which means that the function we would want to optimise

is quadratic concave in that case. Thus, a number of local minima may exist, and

simple quadratic optimisation would not be guaranteed to obtain the global solution.

However, as we are interested in dealing with worst-case scenario analyses, we need

to compute the global minimum. This is unfortunately an NP-hard problem, whose

exact solution would make a branch-and-bound algorithm based on it impractical.

Instead, we follow the methods discussed in [173] and proceed by computing a

safe lower bound to that, that is, we want to compute a lower bound to the solution
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of:

min
x∈T
−rSrT

subject to: r(i) + a
(i)
L + b

(i)
L ϕ

(i) ≤ 0 i = 1, . . . , N

r(i) − a(i)
U − b

(i)
U ϕ

(i) ≤ 0 i = 1, . . . , N

a
(i)
j,L + b

(i)
j,Lxj − ϕ

(i)
j ≤ 0 i = 1, . . . , N j = 1, . . . , d

ϕ
(i)
j − a

(i)
j,U − b

(i)
j,Uxj ≤ 0 i = 1, . . . , N j = 1, . . . , d

ϕ(i) =
d∑
j=1

ϕ
(i)
j i = 1, . . . , N j = 1, . . . , d

We highlight the details of the procedure applied to our specific setting below. First,

we start by re-writing the constraints of the optimisation problem above in matrix

form. We introduce the aggregate variable vector z = [x1, . . . , xd, ϕ
(1), . . . , ϕ(N), ϕ

(1)
1 , . . . , ϕ

(N)
d ].

Since the constraints are linear, it is possible to define two matrices Ar and Az such

that the optimisation problem above can be equivalently written down as:

min−rTSr (6.21)

Subject to: Arr + Azz ≤ b

rL ≤ r ≤ rU

zL ≤ z ≤ zU

for suitably defined vectors b, rL, rU , zL, zU . Now, as S is symmetric and positive

definite, there exists a matrix of eigenvectors U = [u(1), . . . ,u(N)] and a diagonal ma-

trix of the associated eigenvalues λ(i), for i = 1, . . . , N , Λ, such that S = UΛUT . We

hence define r̂(i) = u(i) ·r for i = 1, . . . , N , the rotated variables, and r̂ the aggregated

vector of rotated variables, and compute their ranges [r̂(i),L, r̂(i),U ] by solution of the

following 2N linear programming problems:

min /max u(i) · r

Subject to: Arr + Azz ≤ b

rL ≤ r ≤ rU

zL ≤ z ≤ zU .

Implementing the change of variables into the optimisation problem defined in Equa-
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tion (6.21) we obtain:

min−r̂TΛr̂

Subject to: Ar̂r̂ + Azz ≤ b

r̂L ≤ r̂ ≤ r̂U

zL ≤ z ≤ zU

where we have set Ar̂ = ArU . We then notice that r̂TΛr̂ =
∑N

i=1 λ
(i)r̂(i)2. Each sum-

mand is a simple one-dimensional quadratic function, for which we can find a linear

LBF by relying on Case 1 or Case 2 from Proposition 1. Let α(i) and β(i) be coeffi-

cients of such LBFs, then we have that α(i) + β(i)r̂(i) ≤ −λ(i)r̂(i),2 for all i = 1, . . . , N .

Let β = [β(1), . . . , β(N)] and α̂ =
∑N

i=1 α
(i), then we can lower-bound the optimisation

problem defined in Equation (6.21) with the following linear programming problem:

min
(
α̂ + βT r̂

)
(6.22)

Subject to: Ar̂r̂ + Azz ≤ b

r̂L ≤ r̂ ≤ r̂U

zL ≤ z ≤ zU .

As a consequence we have the following.

Proposition 14. Let
¯
σ2 be the solution of the linear programming problem defined

in Equation (6.22). Then ΣL
T := σ2

p +
¯
σ2 is a lower bound for the posterior variance

Σ̄x,x in T .

Convergence of Variance Bound The convergence of the bounds computed on

the variance to the actual values in hyper-rectangles R ⊆ T , with diam(R) → 0,

is an immediate consequence of Lemma 4, and proceeds similarly to what we have

shown for the a-posteriori mean. In fact, we have that the objective function for the

upper bound (that is, Proposition 13) is exact, and the over-approximation comes

only from the feasible region of the optimisation problem. However, this is relaxed by

using LBFs and UBFs that come directly from Proposition 1, so that their uniform

convergence implies that the over-approximated feasible region converges to the actual

one in the limit of diam(R) shrinking to 0. Similarly, for the lower-bounding of the

variance, the only difference comes from the fact that we use Proposition 1 also for the

lower-bounding of the optimisation function. However, this will converge as well to

the actual objective function. Thus, the exact solution of both optimisation problems

converges uniformly to the actual values, for R small enough.
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Remark 4. Convergence, as shown above, relies on the fact that we compute exact

solution to linear programming problems and to quadratic convex problems. Though

this is achievable in theory, in practice, because of floating point arithmetic and com-

putational time requirements, it is difficult at times to guarantee that. So, although

the bounds derived in this chapter are formal, their software implementation in this

form can lead to numerical errors that may add up, and become relevant depending

on the precision required by a given application (e.g., if the GP is controlling a robot

performing a delicate intervention in humans, where even millimetres could be fatal).

In those cases it is possible to account for the additional error first by solving the

dual programming problems instead of the primal ones, as those provide a worst-case

solution at any point in time. Second, it is possible to use bounds for finite-precision

arithmetic and propagate them through the bounds computed in Proposition 1, and

down through the whole optimisation pipeline.

6.4.3 Computation of Under-approximations

As discussed in Section 6.1, in order to obtain πUmin(T ) and πLmax(T ) it suffices to

evaluate the GP posterior predictive distribution in any point of T . However, the

closer πUmin(T ) and πLmax(T ) are to πmin(T ) and πmax(T ), respectively, the faster the

branch and bound algorithm will converge (as per line 7 in Algorithm 1). Notice that,

in solving the optimisation problems associated to µLT , µ
U
T , ΣL

T and ΣU
T , we obtain four

extrema points in T on which the GP assumes the optimal values for the a-posteriori

mean and variance bounds. As these points belong to T and provide extreme points

for the latent function, they are promising candidates for the evaluation of πUmin(T )

and πLmax(T ). Specifically, in line 6 of Algorithm 1, we evaluate the GP posterior

distribution on all four of the extrema and select the one that gives us the best bound

among them.

6.5 Interpretability Analysis

We now consider how adversarial robustness can be used to compute quantitative

interpretability metrics over the GP predictions. In fact, as discussed in Chapter 3

and highlighted by the works on adversarial examples [189], there is a clear connection

between adversarial examples and quantified interpretability of a model output. That

is, through computing a local adversarial example one can quantify the susceptibility

of an image (or test point) features in producing consisted predictions.
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As an illustrative example of a possible metric, we build on LIME [170], which

is a black-box method for local interpretability analysis of ML models that works

by performing local linear approximations of the ML model and by looking at the

coefficients of these approximations. Namely, we generalise that metric to the non-

linear computations for the specific case of GPs. Specifically, given a test point x∗

and a γ > 0, consider the one-sided intervals T jγ (x∗) = [x∗, x∗+γej] (with ej being the

vector of 0s except for 1 at dimension j) and T j−γ(x
∗) = [x∗ − γej, x∗]. We compute

how much the maximum and minimum values can change over the one-sided intervals

in both directions:

∆j
γ(x
∗) =

(
πmax(T jγ (x∗))− πmax(T j−γ(x

∗))
)

(6.23)

+
(
πmin(T jγ (x∗))− πmin(T j−γ(x

∗))
)
. (6.24)

Intuitively, this provides a non-linear generalisation of numerical gradient estimation,

which is close to the metric used in [170] as γ shrinks to 0. Interestingly, this allows us

to take into account non-linear behaviour in the finite proximity of a test point, which

would be ignored by a differential analysis of the prediction. Notice how the maxi-

mum and minimum can be over-approximated by using the optimisation framework

introduced above in the case of GPs classification models.

The measure can also be used straightforwardly for the evaluation of the global

behaviour of a given feature. In fact, while ∆j
γ(x
∗) is local to a given x∗, following

LIME, global interpretability information is obtained by averaging local results over

M test points, i.e. by computing

∆j
γ =

1

M

M∑
i=1

∆i
γ(x
∗,(i)).

6.6 Computational Complexity

Proposition 8 implies that the bounds in Proposition 7 can be obtained in O(M),

with M being the number of intervals the real line is being partitioned into (this

should scale proportionally to 1
ε
, where ε is the desired error tolerance, as discussed

in the proof of Theorem 3). The computational complexity for computing µLT , µUT
and ΣU

T was discussed in Chapter 5. Concerning ΣL
T , we have to solve 2N + 1 linear

programming problems, where N is the size of the training set. In practice, some of

these problems need not be computed, which means that a looser bound is computed,

but faster. Refining through branch and bound has a worst-case cost exponential in

the number of dimensions of T . While the mean computation is straightforward, the
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computations for the variance are more computationally involved. In practice, we

find it beneficial to just update the mean bounds and refine those for the variance

only if convergence does not happen after the first few thousand of iterations. This

also implies that the regression case is much faster, as variance computation is not

required in that setting.

Regarding the multi-class case, we have that in practice an increased computa-

tional cost comes from the fact that we need to discretise a multi-dimensional latent

space. Similarly to what we have seen in the two-class case, we have that, in order

to achieve convergence up to a value ε, a discretising grid of the order of 1
εm

needs to

be used, which makes the bound explode very quickly with increasing m. Another

practical issue due to using the multi-class bound is that, while in the two-class case

the sigmoid function is interesting (that is, significantly different from either 0 or 1)

only in a small interval of R, the softmax function is dependent on relative values

between components rather than their absolute values, and the use of a fixed grid is

sub-optimal in this case. Instead, we proceed by building an actual grid only around

the mode of the Gaussian posterior distribution at the test point x∗, and choosing

the width that depends on the posterior variance around there. For the rest of the

points in the space, in fact, the GP assigns probability almost 0 to any realisation, so

that their relative importance to the bound vanishes, and we are still able to obtain

a tight bound in this case as well.

In the experimental section, we will provide analysis for the actual running time

of the bound computation.

6.7 Experimental Results

We employ the methods developed in this chapter to experimentally analyse the

robustness of GP models in adversarial settings. We give results for three datasets:

(i) Synthetic2D, the two-dimensional dataset that was introduced in Example 7; (ii)

the SPAM dataset [46]; (iii) a two-class subset of the MNIST dataset [122] with

classes 3 and 8 (i.e., MNIST38) and a three-class subset with classes 3, 5 and 8 (i.e.,

MNIST358).

Training For the Synthetic2D dataset we analyse the GP that was trained in Ex-

ample 7. For the SPAM dataset we first standardise the data to zero mean and unit

variance. Then, we perform a feature-reduction step by iteratively training an `1-

penalised logistic regression classifier and discarding the least relevant features, up
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until test set accuracy starts to diminish. This procedure leaves us with 11 features

out of the initial 57. We then train a two-class classification GP over the training set,

with a zero mean prior, a squared exponential kernel (employing MLE for estimating

the kernel hyper-parameters) and use the probit likelihood. The GP thus computed

achieves a test set accuracy of around 93%.

After sub-sampling the images to 14 × 14 pixels2, we use similar settings for the

MNIST38 dataset, achieving a test set accuracy of around 98% while training on 1000

training samples. Finally, for MNIST358 we perform multi-class classification using

the softmax likelihood function and training setting similar to that for MNIST38,

obtaining a test set accuracy of around 93%.

Unless otherwise stated, the approximate posterior distribution is computed using

the Laplace estimation method.

Analysis Settings We compute adversarial robustness in neighbourhoods of the

form T = [x∗ − γ, x∗ + γ] around a given point x∗ and for γ > 0. Unless otherwise

stated, we run the branch-and-bound algorithm until convergence up to an error

threshold ε = 0.02. Similarly to what we did in the experimental evaluation of

Chapter 5, for MNIST38 we perform a feature-level analysis for scalability reasons.

Namely, we restrict our analysis only to salient patches of each image. We employ

SIFT [130] or use the relevant pixels corresponding to the shortest GP length-scales

in order to define those salient patches. We note that any other method for feature

selection from images can be used in the place of this.

6.7.1 Runtime analysis

We first empirically analyse the runtime of the branch-and-bound method proposed

here on the MNIST38 dataset. Namely, we aim to asses how the CPU time required

by branch-and-bound for the computation of πmax(T ) is affected by (i) the size of

the input set T ; (ii) the desired error threshold ε and; (iii) the number of training

points, N . All runtimes analysed below were obtained on a MacBook Pro with a 2.5

GHz Intel Core i7 processor and 16GB RAM running on macOS Mojave 10.14.6, by

averaging the results for 50 test points randomly selected from MNIST38.

2This reduces the number of hyper-parameters that need to be estimated by MLE and increases
the numerical stability of the GP, while achieving comparable accuracy.
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Figure 6.2: Average runtimes of Algorithm 1 to calculate πmax(T ) up to a specified
error tolerance ε for 50 test points randomly taken from MNIST38. Left: Average
runtimes as we increase the number of input dimensions. Right: Average runtimes
for different values of ε for a fixed number of dimensions d = 5.

Effect of Input Set Size In the left plot in Figure 6.2 we depict our algorithm

running times for increasing number of input dimensions considered during computa-

tion (that is, the number of image pixels that can actually be changed, which defines

the effective dimension of T ). Namely, we vary the dimension of T from 1 (i.e.,

single-pixel variations) to 10, and analyse the results for γ = 0.125 and γ = 0.25. As

discussed in Section 6.6, we have that the branch-and-bound algorithm has a worst-

case computational time which is exponential in d, and we empirically observe that

for γ = 0.25 the computational time starts to increase quickly already for d = 10. It

is interesting to note also the magnitude of the effect that γ has on the running time.

Simply halving γ reduces the computational time required for d = 10 from about 4

minutes to just about 4 seconds.

Effect of Error Tolerance In the right plot in Figure 6.2 we depict our algorithm

running times against an increasing error tolerance ε that varies from 0.005 to 0.025,

for d = 5. Of course, we obtain that looser requirements (i.e. greater values for ε)

require less computing time. Interestingly, also in this case we observe an exponential

(decaying) trend for the empirical computational time.

Effect of Number of Training Points We analyse the effect that the number of

training samples has on the computational runtime of our method in Figure 6.3. The

plot is obtained using γ = 0.1 and the 5 most important pixels as selected by SIFT.

The required time grows polinomially with N up until branch-and-boudn refinement

is not needed, after that the grows takes on an exponential rhythm.
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Figure 6.3: Average runtimes of Algorithm 1 on 50 MNIST test images with respect
to the number of samples, N , used at training time.
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Figure 6.4: First row: Contour plot and test points for Synthetic2D (left); projected
contour plot and test points for 2 dimensions of SPAM (right, dimensions 2 and 8
as selected by `1-penalised logistic regression); red dots mark selected test points.
Second row: Safety analysis for the two selected test point. Shown are the upper and
lower bounds on πmax(T ) (solid and dashed blue curves) and the GPFGS adversarial
attack (pink curve).
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Figure 6.5: First row: Sample of 8 from MNIST38 along with 10 pixels selected
by SIFT (left) and sample of 3 from MNIST38 along with the 3 pixels that have
the shortest lengthscales after GPC training (right). Second row: Safety analysis
for the two images. Shown are the upper and lower bounds for ε = 0.02 on either
πmax(T ) or πmin(T ) (solid and dashed blue respectively green curves) and the GPFGS
adversarial attack (pink curve).

6.7.2 Adversarial Local Safety

We depict the local adversarial safety results for four points selected from the Syn-

thethic2D, SPAM, and MNIST38 datasets in Figures 6.4 and 6.5. To this end, we

set T ⊆ Rd to be a `∞ γ−ball around the chosen test point and iteratively increase γ

(x-axis in the second row plots), checking whether there are adversarial examples in

T . Namely, if the point is originally assigned to class 1 (respectively class 2) we check

whether the minimum classification probability in T is below the decision boundary

threshold, that is, if πmin(T ) < 0.5 (resp. πmax(T ) > 0.5). We compare the values

provided by our method (blue solid and dashed line for class 2, green solid and dashed

line for class 1) with GPFGS (a gradient-based method for attacking GPs mean pre-
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diction [85], pink line curve in the plot). Naturally, as γ increases, the neighborhood

region T becomes larger, hence the confidence for the initial class can decrease. Inter-

estingly, while our method succeeds in finding adversarial examples in all cases shown

(i.e. both the lower and upper bound on the computed quantity cross the decision

boundary), the heuristic attack fails to find adversarial examples in the Synthetic2D

and the MNIST38 case. This happens as GPFGS builds on linear approximations of

the GP posterior distribution function, hence failing to find solutions when its non-

linearities are significant. In particular, near the point selected for the Synthetic2D

dataset (red dot in the contour plot) the gradient of the GP points away from the

decision boundary. Hence, no matter what value γ takes, GPFGS will not increase

above 0.5 in this case (pink line of the bottom-left plot). On the other hand, for the

SPAM dataset, the GP model is locally linear around the selected test point (red dot

in top right contour plot). Interestingly, the MNIST38 examples (Figure 6.5) pro-

vide results analogous to those for Synthetic2D. While our method finds adversarial

examples on both occasions, GPFGS fails to do so (even with γ = 1.0, which is the

maximum region possible for normalised pixel values).

6.7.3 Adversarial Local Robustness

We evaluate the empirical distribution of the adversarial prediction ranges (see Defi-

nition 6) on 50 randomly selected test points for each of the three datasets considered.

That is, given T , we compute δ = πmax(T )− πmin(T ). Notice that a smaller value of

δ implies a more robust model. In particular, we analyse how the GP model robust-

ness is affected by the training procedure used. We compare the robustness obtained

when using either the Laplace or the Expectation Propagation (EP) posterior approx-

imations technique. Further, we investigate the influence of the number of marginal

likelihood evaluations (epochs) performed during hyper-parameter optimisation on

robustness.

Results are depicted in Figure 6.6, for 10, 40 and 100 hyper-parameter optimisation

epochs. Note that the analyses for the MNIST38 samples are restricted only to

the most influential SIFT features, and thus δ values for MNIST38 are smaller in

magnitude than for the other two datasets (for which all the input variables are

simultaneously changed). Interestingly, this empirical analysis demonstrates that

GPs trained with EP are consistently more robust than those trained using Laplace.

In fact, for both Synthetic2D and MNIST38, EP yields a model about 5 times more

robust than Laplace. For SPAM, the difference in robustness is the least pronounced.

While Laplace approximation works by local approximations, EP calibrates mean and
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Figure 6.6: Boxplots for the distribution of robustness on the three datasets, com-
paring Laplace and EP approximation.

variance estimation by a global approach, which generally results in a more accurate

approximation [167].

We compare Laplace and EP posterior approximations with that made by Hamil-

tonian Monte Carlo (HMC), that is, as in [143] we use HMC as a gold standard for

Bayesian inference. The empirical distances found on the posterior approximation

w.r.t. HMC are on average as follows (smaller values are better): (i) Synthetic2D

- Laplace: 1.04, EP: 0.14; (ii) SPAM - Laplace: 0.35, EP: 0.32; (iii) MNIST38 -

Laplace: 0.52, EP: 0.32. This shows a correlation between the robustness and the

posterior approximation quality in the datasets considered. These results quantify

and confirm for GPs that a more refined estimation of the posterior is beneficial for

model adversarial robustness [27]. Interestingly, the values of δ decrease as the num-

ber of training epochs increases, thus robustness improves with training epochs. This

is in contrast to what is observed in the deep learning literature [194]. More training

in Bayesian settings may imply better calibration of the latent mean and variance

function to the observed data.

6.7.4 Interpretability Analysis

Finally, we show how adversarial robustness can be used for interpretability analysis

for GP models. We provide comparison with pixel-wise LIME [170], a model-agnostic
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interpretability technique that relies on local linear approximations.

Figure 6.7: First row: Samples selected from MNIST358. Second row: Inter-
pretability metric estimation using our method. Third row: Results obtained using
LIME.

Local Interpretability for MNIST358 Figure 6.7 shows the results for three

samples selected from MNIST358 (top row), with the heat maps depicting the results

of our method (second row) and those for LIME (third row, greyed out pixels are

marked as irrelevant by LIME). The colour gradient varies from red (positive impact,

pixel value increase resulting in increased class probability of shown digit) to blue

(negative impact, pixel value increase decreasing the class probability). For digit 3,

our method obtains, for example, a contiguous blue patch on the left. Increasing the

values of these pixels would modify the 3 into an 8. Indeed, when whitening the pixels

of the blue patch, the class 3 probability assigned by the model decreases from 0.58

to 0.40. Similarly, for digit 5, our methods identify a blue patch that would change

the 5 into an 8, and again the GP model indeed lowers its class 5 probability when

the patch is whitened. Similarly, for digit 8, our method identifies a blue patch of 3
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pixels towards the top left, which would turn it into something resembling digit 3 if

whitened.
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Figure 6.8: Global feature sensitivity analysed by LIME and our metric ∆i
γ. All

values normed to unit scale for better comparison. Top: Results for Synthetic2D
dataset mapped out on plane. Bottom: Results for SPAM dataset.

Global Interpretability for the Binary Datasets We perform global inter-

pretability analysis on the GP models trained on the Synthetic2D and SPAM datasets,

using 50 random test points. The results are shown in Figure 6.8. For Synthetic2D

(top row), LIME suggests that a higher probability of belonging to class 1 (depicted

as the direction of the arrow in the plot) corresponds to lower values along dimension

1 and higher values along dimension 2. As can be seen in the corresponding contour

plot in Figure 6.4 (top left), the exact opposite is true, however. LIME, as it is built

on linearity approximations, fails to take into account of the global behaviour of the

GP. When using a small value of γ our approach obtains similar results to LIME.

However, with γ = 2.0 the global relationship between input and output values is cor-

rectly captured. For SPAM, on the other hand (Figure 6.8, bottom), due to linearity

of the dataset and GP, a local analysis correctly reflects the global picture.
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6.8 Summary

We presented a set of methods for computing, for any compact set of input points,

adversarial robustness guarantees over regression and classification GP models. In

particular, we have developed a branch-and-bound scheme that provides upper and

lower bounds to the quantities needed for the analysis, and proved that it converges

in finitely many steps to a value ε-close to the actual one, for any ε > 0 selected

a-priori.

In order to do so, we have found it necessary to extend the optimisation frame-

work that we had previously developed in Chapter 5 for the computation of upper

and lower bounds on the a-posteriori variance, and to provide guarantees of conver-

gence of the lower and upper bounds computed using these techniques. We have then

employed our method for the analysis of three datasets, providing results for adver-

sarial robustness, bounds over the predictive posterior distribution and local/global

interpretability analysis. One of the results observed in the experimental sections

relates the robustness of a model with the “quality” of the posterior distribution ap-

proximation, and with the hyper-parameters calibration. Interestingly, these results

suggest the existence of a positive correlation between adversarial robustness and

the quality of fitness of a Bayesian model. This is completely opposite to what it is

usually observed in frequentist approaches to learning, for example, in deep neural

networks, where better accuracy was empirically observed to imply worst adversarial

robustness [187].

We have performed further analysis of this trade-off (or lack thereof) in Bayesian

neural network settings, by using statistical measures of adversarial global robustness

in [121]. Interestingly, the cited work empirically confirms the preliminary results dis-

cussed in this chapter in large scale experiments with BNNs, where we have observed

the existence of a positive relationship between accuracy and robustness in adversar-

ial settings for BNNs. In follow on work [26], we have investigated the reasons behind

this behaviour, and developed a plausible theoretical framework for the explanation

of the behaviour for BNNs. Interestingly, this relies on an over-parameterisation limit

for BNNs. As GPs can be seen as over-parameterised BNNs, that work could pro-

vide an interpretation for the behaviour that we observe in this chapter, and thus a

theoretical confirmation for the results that we observe.

One of the main limitations of the approach presented in this chapter is related

to its computational time. Fundamentally, the problem that we are trying to solve is

a non-linear optimisation problem. From the universal theorem, we know that GPs
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can approximate any smooth function, so that the problem of optimising a general

GP is equivalent to that of optimising a general smooth function and is thus NP.

As such, the exponential computational time requirement of the algorithm is to be

expected. A possible mitigation technique, which was not explored in this chapter,

is that of verifying sparse GPs. In fact, as seen in Section 6.6, the computational

time for verification is strongly dependent on the number of training samples that

we use, so that reducing their effective numbers implies a strong reduction in the

computational requirement for convergence.

Finally, notice that the methods developed in this chapter for classification are

strongly dependent on the posterior Gaussian approximation assumption. It is easy to

see how the propositions presented can be generalised to the case in which a mixture

of Gaussian distributions is employed. However, if different classes of approximating

distributions are to be employed, new bounding propositions, specific to them, need

to be developed.
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In this chapter we investigate the behaviour of our methods developed for the

computation of adversarial robustness of GPs in affective recognition problems. In

fact, in directly dealing with the mental health of clinical and sub-clinical populations,

the safety and the robustness of models learned in these setting is of paramount

importance if those models are to be deployed in the wild. Furthermore, because

of the necessity for human and expert participation in data collection experiments,

affective datasets are often small in size, sparsely labelled and hence far away in
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practice from the big data assumption necessary for end-to-end learning [44]. For

instance, the three datasets introduced in Section 3.3 are composed of a number of

overall training points that range from 52 to 348, making deep learning impractical

in these settings. As such, affective recognition problems provide us with the perfect

real world testbed for learning and verification of GP models.

In this chapter, we first describe how competitive state-of-the-art classification

models based on GPs can be developed for affective recognition from physiological

signals (Section 7.1). In order to do so, we will design physiologically-based GP priors

that build on top of physiologically justified assumptions about the data generating

process. We argue how this will allow us to learn the GP model directly from the

raw data, enabling end-to-end learning in the settings when just a few hundreds of

data points are actually available. In Section 7.3 we then implement and compare

GP-based models from valence and arousal recognition from Electrodermal-Activity

(EDA) and from (Heart Rate Variability) HRV signals, in the three datasets in-

troduced in Section 3.3. The topic of Section 7.4 will thus be the verification and

interpretability of the models derived by using the methods developed in Chapter 6.

In order to do that, we will show how, thanks to the linearity of the posterior inference

equations for GPs, the optimisation framework for the a-posteriori mean and variance

can be straightforwardly extended in the case of non-null prior function Section 7.2.

We then conclude the chapter with a summary of the overall observations made and

a discussion on the results obtained and their physiological interpretations.

7.1 GPs for Affective Recognition

In settings in which large datasets are available, and especially in the case of BNNs, it

is often argued in the literature that the use of an uninformative and flexible enough

prior is sufficient for obtaining competitive modelling performances. As argued above

and in Chapter 3, this is unfortunately not the case in affective recognition tasks,

where datasets tend to count observations in the order of hundreds, which is several

orders of magnitude less than datasets normally used in computer vision tasks. We

thus begin this chapter with an investigation of whether and how prior design in

Bayesian settings affects model performance, and use Gaussian processes for this

purpose, as an illustrative argument in favour of a Bayesian principled approach.
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Figure 7.1: Pipeline of psycho-physiological state recognition with PhGP model.

7.1.1 Outline of the Approach

In particular, we aim at relying on prior information in order to build a learning

system that can potentially take from the best of both worlds, that is, on the one hand

incorporating previous problem-specific findings and physiological modelling in the

form of a prior distribution over the GP model, while on the other hand working with

raw physiological signals at inference time so that information not captured at the

feature level can still be potentially extracted from the dataset in automatic fashion.

This approach naturally flows from within the Bayesian learning framework, where

the prior and the dataset information are simply merged by means of the inference

formulas. For simplicity of reference, throughout the chapter, we denote a GP learned

along these modelling lines as a Physiologically-informed Gaussian Process (PhGP)

model.

A depiction of the complete prediction pipeline for the PhGP model is given

in Figure 7.1, in the case of recognition of affective, psycho-physiological states from

EDA recordings (block A of the plot). First, information from a physiologically-based
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model of the physiological signals is encoded into a probabilistic generative model that

captures their relationship with the raw input signal and the subject’s affective state

(block B in the plot). This is then used, together with a MAP estimation of the

feature representation and an approximate MLE for the hyper-parameters, to define

a Gaussian process prior over the PhGP model (block C in the plot). Posterior

Bayesian inference is thus performed on top of PhGP to obtain a prediction for the

subject’s affective state y(i) ∈ {0, 1}. Finally, we employ interpretability analysis on

top of the PhGP to provide a quantitative explanation of the prediction made (block

D in the plot). The specifics of each step necessary for the prior design are discussed

in the remainder of this section.

7.1.2 Physiologically-informed Gaussian Process Prior

The PhGP model builds on Bayesian learning for embedding information from a

physiological model (as those discussed in Section 3.3 for the case of EDA and HRV

signals) directly into the training process. To do so, we simply aim at encoding the

model as a functional distribution over the latent variable f ∈ R and feed it into the

definition of the GP prior.

Specifically, we encode a physiological model as a set of unobservable sub-processes

s = [s1, . . . , sl]. The assumption is that, given a subject’s affective state, y, the process

s gives rise to the observable physiological signal x according to a stochastic generative

model of the form:

p(x, y, s1, . . . , sl) (7.1)

for an unknown density function p.1 Ideally, the space in which the sub-processes

contained in s are defined allows for a better understanding of the signal properties,

and for the extraction of a set of relevant quantifiers, which we denote as ω(s) =

[ω1(s), . . . , ωn(s)] ∈ Rn. In this way, the relationship with the subject’s affective

state, y, is understood in terms of direct, physiological correlation.

In PhGP, we consider the feature vector ω(s) as the building block of the prior

knowledge used to approximate the effect of s on the generation of the subject condi-

tion y in Equation (7.1) and employ a parametric approach to estimate it. Technically,

all kinds of prior functions could be assumed. However, having justification or inter-

pretation of why a complicated prior would be necessary is not easy. In our work, we

1In the case of EDA and HRV (discussed in Section 7.1.3), a physiological model aims to capture
the relationship between the subject’s condition and the SNS activity that gives rise to a variation
of the signal properties.
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investigate the suitability of a polynomial and a trigonometric parametric function,

which are customarily used and implemented in standard tools for GP classification

[168], as follows:

m1(s|α) =
d∑
p=1

n∑
j=1

αpjωj(s)p (7.2)

m2(s|α) =
d∑
p=1

α(1)
p cos

(
n∑
j=1

α
(2)
pj ωj(s) + α(3)

p

)
, (7.3)

where α is a vector of unknown hyper-parameters that adapt the shape of mj(s|α).

Parameter d in Equation (7.2) is the degree of the polynomial function and we re-

trieve a constant, linear, quadratic and cubic function respectively for the values

d = 0, 1, 2, 3. In Equation (7.3), instead, d represents the number of projected cosine

components .

We then observe that, by using the probabilistic relationship that exists between

x and s, mj(s|α) can be used so to naturally induce a prior mean function over the

GP. By marginalising over the random variable s we, in fact, obtain:

µ(x|α) =

∫
mj(s|α)p(s|x)ds. (7.4)

In general, this cannot be integrated for analytically, so in practice we employ a Monte

Carlo approximation for its computation, as follows:

µ(x|α) ≈
M∑
i=1

mj(si|α) (7.5)

for M random samples of s from p(s|x). The prior function is then defined by the

choice of the kernel function, for which we employ the squared-exponential kernel.

The mean and covariance resulting from the combination of Equation (7.4) and

the squared-exponential kernel centres the PhGP prior around the model estimation

provided by the physiologically-based generative model. The learning procedure for

the PhGP model then follows the lines outlined in Section 3.2.2 for classification

with GPs. In particular, for the a-posteriori mean of the PhGP, and in the case of

the Laplace approximate posterior distribution, employing the inference equations of

Property 6 we obtain:

µ̂(x∗) =

∫
mj(s|α)p(s|x∗)ds + k∗TK−1̂f
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where the solution provided by the physiological model is adapted by the raw signal

data naturally following Bayes rule.

It is easy to see that a standard MLE for the hyper-parameters can be obtained

for the PhGP model when using a pointwise estimation of the physiological process

s. To see that, let α denote the vector of hyper-parameters for the prior mean, and

β denote the vector of hyper-parameters for the kernel function. Marginalising the

latent variable, making explicit the dependence of the posterior distribution on the

hyper-parameters and applying the inference formulas, we obtain that for the case of

the Laplace approximation the marginal log-likelihood of the GP is given by:

log p(y|D, α, β) = log

∫
p(y|f(x))p(f(x)|D, α, β)df(x) =

−1

2
f̂TK−1̂f + log p(y|f(x))− 1

2
log |I +W

1
2KW

1
2 |, (7.6)

where K explicitly depends on β, while both f̂ and W implicitly depend both on

α and β. Equation (7.6) can be directly optimised for the values of the hyper-

parameters to select the modelling that best justify the training data D, which can be

shown to provide an approximation of the maximum likelihood estimation for α and

β [167]. In order to do so in the case of PhGP, we can employ the standard gradient-

based optimisation method employed for GP models, by additionally propagating

the derivatives with respect to α through Equation (7.4). To do that, we proceed by

approximating the derivative computation by considering the MAP solution for the

sub-process s, so that we approximate:

µ(x|α) =

∫
mj(s|α)p(s|x)ds ≈ mj(sMAP|α). (7.7)

We thus have that dµ(x|α)
dα

≈ dmj(sMAP|α)

dα
. The latter is straightfroward to compute as

sMAP does not depend on any hyper-parameters and can be computed analytically

for Equations (7.2)-(7.3).2

7.1.3 EDA and HRV Priors

We now give an explicit formulation for PhGP in the case of EDA and HRV modelling,

by considering the modelling procedures discussed in Chapter 3, i.e. cvxEDA for the

EDA and feature analysis method for the HRV model. Specifically, these are used to

build the vector of quantifiers ω(s) = [ω1(s), . . . , ωn(s)] ∈ Rn, which are then used as

the building blocks of the prior distribution.

2Numerical differentiation methods need to be used in the general case.
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In particular, for the EDA model, we encode the parameters of the model in

Equation (3.9) in the stochastic generative model of the form described by Equation

(7.1), where x is the EDA signal and the phasic, the tonic and the SMNA driver of the

phasic components (r, t, p) are the sub-processes denoted as s1, s2, s3, which explain

the generation of x. We then use standard quantifiers for x, t, r and p employed in

the literature so as to form a set of features for the EDA-related component of the

vector ω, i.e. ωEDA(s):

• ωr,p(s): Quantifiers from p and r: the number of significant phasic driver

peaks (nSCR), the sum of SCR amplitudes (SumAmpSCR), the maximum

value of SCR amplitudes (MaxAmpSCR), the mean value of phasic activity

(PhasicMean) and the standard deviation of phasic activity (PhasicStd) [81].

• ωt(s): Quantifiers from t: mean of tonic activity (TonicMean), standard devi-

ation of tonic activity (TonicStd) [81].

• ωx(s): Quantifiers from x: EDASymp, which is highly correlated to the activity

of the sympathetic nervous system and is obtained by integrating the spectrum

of x within the (0.045− 0.25Hz) frequency band [71].

On the other hand, concerning the HRV signal, we model the sympathetic and

parasympathetic interaction by using time and frequency analysis methods discussed

in Section 3.3. Namely, through the time domain analysis of HRV we will compute

first and second order statistical moments, which we denote with µHRV and σ2
HRV.

By computing its frequency spectrum we then quantify the low-frequency (LF) and

high-frequency (HF) indeces for HRV, as well as their ratio [1]. Hence, we define the

HRV-related component of the vector ω, i.e. ωHRV(s), as:

ωHRV =

[
µHRV, σ

2
HRV, LFHRV , HFHRV ,

LFHRV
HFHRV

]
Finally, for the case of arousal recognition and when employing both the EDA and

HRV signal, we implement into the prior also a feature that quantifies the interaction

between HRV and EDA signals. In fact, the correlation between the high-frequency

power of the HRV with the parasympathetic activity and the EDA spectral power

with the sympathetic outflow can be used for the evaluation of the sympathovagal

balance [71, 72], which we denote as ωHE.
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7.2 Extension of Optimisation Framework for Non-

null Prior Mean

The optimisation framework that we have introduced in Chapter 6 for the computa-

tion of adversarial robustness for GP was presented for the case in which the prior

mean was assumed to be null (or constant). As discussed in Remark 1, while in the

regression case we can assume a null mean without loss of generality, the same does

not apply to classification models. In this section, we see how the formula for ad-

versarial robustness can be extended to the case of non-null prior in the case of GP

classification, and in particular we discuss the case of PhGP modelling.

By looking at the inference equations for the a-posteriori mean and variance3,

we notice that, while the functional form of the a-posteriori variance is not affected

by a modification of the mean prior, the effect on the a-posteriori mean is two fold.

First, the kernel matrix multiplication is centred around the prior mean computed

on the training vector x, which simply translates into a different definition for the

constant vector t of Equation (5.8), so that this does not fundamentally alter the way

in which computations are performed in Section 6.4. The second effect is linear on

the prior function computed on the test point x∗, so that µ(x∗) is simply added to

the computation of the a-posteriori mean. As such, in order to compute bounds in

the case of a non-null prior mean function µ it suffices to compute a lower and upper

bound over the a-priori mean function, that is, µL,pr
T and µU,pr

T such that:

µL,pr
T ≤ min

x∈T
µ(x) µU,pr

T ≥ max
x∈T

µ(x).

How to compute suitable values for µL,pr
T and µU,pr

T is a problem that depends,

of course, on the exact form of the prior function used. In general, for prior mean

functions that can be written down analytically, a variance of the methods discussed

in Proposition 1 of Chapter 5 can be used, though in the general case one might

have to resort to numerical optimisation methods if smoothness assumptions are not

satisfied. The bounding problem is actually quite simple for the polynomial and

trigonometric functions introduced in Equations (7.2) and (7.3), and can be solved

by means of interval bound propagation techniques. In particular, in the polynomial

case, the overall solution can be written down in closed from.

3Both in the case of Laplace approximation (see Property 6) and in the case of EP approximation
(see Property 7).
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Proposition 15 (Bound for Polynomial Function). Consider the following polyno-

mial function:

µ(x) =
d∑
p=1

n∑
j=1

αpjx
p
j

and let T = [xL, xU ] ⊂ Rd be an hyper-rectangle in the input space. Define

[
x̄L,pj , x̄U,pj

]
=

{
[minx∈{xLj ,xUj } x

p
j ,maxx∈{xLj ,xUj } x

p
j ] if αpj ≥ 0

[maxx∈{xLj ,xUj } x
p
j ,minx∈{xLj ,xUj } x

p
j ] otherwise

. (7.8)

Let:

µL,prT =
d∑
p=1

m∑
j=1

αpjx̄
L,p
j

µU,prT =
d∑
p=1

m∑
j=1

αpjx̄
U,p
j

then it holds that:

µL,prT ≤ µ(x) ≤ µU,prT ∀x ∈ T.

For the case of the trigonometric prior function similar bounds can be obtained,

by further accounting for the periodicity of the cosine function in the computations

performed in Equation (7.8).

The application of the proposition above, together with the methods developed

in Chapter 6, allow us to formally bound the posterior predictive distribution (and

hence compute adversarial robustness) of the GP in the case in which a polynomial

prior function is used. This yields the following Corollary:

Corollary 2 (A-posteriori Bound for Polynomial Prior Mean). Consider a GP with

prior mean function given by Equation (7.4), and kernel Σ with a bounded decomposi-

tion (ϕ, ψ, U). Let T be an axis-aligned hyper-rectangle of the input space Rd. Define

t = Σx,xK
−1(̂f − µ(x)), and let µLT , µUT be computed as for Proposition 2 for this

choice of t. Consider µL,prT and µU,prT as defined in Proposition 7.8. Then it follows

that µ̄LT and µ̄UT defined as:

µ̄LT = µL,prT + µLT

µ̄UT = µU,prT + µLU

are upper and lower bounds for the a-posteriori mean of the GP in T .
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Notice that the result stated in the corollary just above does not yet suffice to

perform computations in the case of PhGP. In fact, while the prior functions is, in that

case, polynomial (or trigonometric) over the feature vector ω, it is not so with respect

to the input variable x, to which ω is only probabilistically related. Approximations

for this case are discussed in the following section.

7.2.1 Propagating Through the Feature Space

In the PhGP model, the prior mean is defined by marginalisation over the process s.

In general, this cannot be computed exactly, and in fact in Section 7.1.2 we relied on

Monte Carlo sampling to approximate its computation. Unfortunately, this makes

analytical optimisation of the resulting mean intractable. Similarly to what we have

done in the case of the computation of hyper-parameters, in order to compute bounds

on the prior mean we rely on a MAP estimation of s, so that we obtain:

µ(x|α) ≈ µMAP(x) := m1(sMAP|α)

where m1(si|α) is defined as in Equation (7.2). The idea is that Proposition 15 can be

applied to the function above, once the hyper-rectangle T over x is mapped into an

hyper-rectangle over the feature space ω. We denote with ω(x) = [ω1(x), . . . , ωn(x)]

the feature vector computed on top of the MAP solution for s given an observed value

for x. Then we have that the following holds.

Proposition 16 (Bound for PhGP MAP estimation). Let for each i = 1, . . . , n:

ωLi ≤ min
x∈T

ωi(x) ωUi ≥ max
x∈T

ωi(x). (7.9)

Let µLω and µUω be lower and upper bounds for the polynomial function of Equation

(7.2) in
∏n

i=1[ωLi , ω
U
i ] computed as for Proposition 15. Then it follows that:

µLω ≤ µMAP(x) ≤ µUω ∀x ∈ T.

Hence, Proposition 16 guarantees that, given bounds on the feature vector ω,

we can compute an overall bound on the prior mean function for PhGP, which we

can then use for the computation of adversarial robustness. Unfortunately, still, the

computation of the bounds on ω is not trivial in the general case. It is easy to see

how rectangular bounds on the input space x can be propagated for time-domain and

statistical features such as mean, standard deviation and min/max of the signals.

For the general case, however, e.g., frequency-domain features, we instead rely on
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numerical optimisation methods for the approximation of the bounds, and specifically

on gradient-based methods. Notice that the upper and lower bounds obtained for

PhGP can, in general, be only approximated for that reason, and are only as good

as our approximation of the feature range is.

If we assume that the features extracted are smooth enough, then by relying on

observations from numerical optimisation, we can expect the approximation to be

good for input region T of small sizes, and to become looser as the region grows. In

branch-and-bound settings, this implies that the approximation actually gets tighter

as we explore the branch-and-bound tree by depth, which means that we still achieve

convergence in the limit of infinitely many iterations. However, in practice, we lose

the possibility of computing formal error bounds when the branch-and-bound is ter-

minated after a finite number of iterations.

7.3 Experimental Model Validation

In this section, we first give detail of the experimental settings used and then provide

comparison of the behaviour of PhGP in modelling affective recognition tasks with

respect to GP trained with uninformative priors and Support Vector Machine (SVM)

classification.

7.3.1 Experimental Settings

We perform our experiments on the three datasets that were introduced in Section 3.3,

i.e., the CPT, DEAP and BVHP datasets for affective recognition from physiological

signals. We pre-process the EDA signal in each training set by down-sampling it to 32

Hz and standardising to zero mean and unit standard deviation. We extract the heart

rate signal from the ECG signal by using the Pan-Tompkins detection method for R-

waves, and compute the HRV signals from that after smoothing of the obtained RR

intervals. For the DEAP dataset, since the EDA of the 32 subjects were recorded by

means of two different EDA acquisition systems, we select only the first 21 subjects,

i.e., the largest group recorded with the same system, so as to avoid a bias in the

features that was evident from a preliminary visual inspection of the signals.

We train and compare the results of 4 different models:

• Raw-GP : a GP learned directly from the raw physiological signal, with no prior

physiological information is accessible by the model.

143



• Feat-GP : a GP learned solely from the feature vector ω extracted from the

physiological signal, with the actual signal is not available to the model.

• PhGP : a GP with non-null prior which probabilistically combines the informa-

tion from the physiological model and the raw signals, by embedding the former

in the prior GP distribution, and by updating it by means of Bayesian inference

directly computed on top of the raw input signal space.

• SVM-RFE : an SVM model learned with recursive feature elimination, as this

provides a standard benchmark that is customarily applied for affective com-

puting datasets of size comparable to those of the three we are here analysing

[181].

The results reported are computed through a Leave-One-Subject-Out (LOSO)

cross-validation procedure, so that the results and the models obtained are subject-

independent, in terms of sensitivity, specificity and accuracy of predictions [220].

Namely, at each iteration of the LOSO validation scheme, the recognition model is

trained using data from M − 1 subjects (where M is the total number of subjects)

and tested on the data from the left-out subject. This procedure is iterated M times.

7.3.2 Parametric Analysis of PhGP Prior Model

In Figure 7.2 we give results of a prior selection experiment on the CPT dataset. In

particular, we analyse 6 different shapes of the prior function (i.e., null, constant,

linear, quadratic, cubic and trigonometric), and three different feature vectors ω.

Namely, with Feature Set 1 we denote the results associated to only ωHRV, that is,

only the features extracted from the HRV signal. Feature Set 2 denotes the results

associated with the EDA-related features, that is, when using ωEDA. Finally, Feature

Set 3 is used to represent the overall, combined results when utilising the full vector

ω described in Section 7.1.3.

Interestingly, from the results we observe that the GP trained is able to obtain an

accuracy significantly above 50% (i.e., that of a random classifier in this task) only

when a non-trivial prior function is used, that is, only in the PhGP settings. Notice

that the improvements are more marked for the cases in which HRV features are used

(i.e., Feature Sets 1 and 2), which may be intuitively justified by observing that HRV

dynamics tends to have a more markedly non-linear behaviour compared with that

of EDA [158].

144



0
10
20
30
40
50
60
70
80

Zero	 Constant Linear	 Quadratic	
polynomial	

Cubic	
polynomial

Weighted	
sum	of	

projected	
cosines

Ac
cu
ra
cy
	(%

)

a-priorimean	functional	form	

Feature	Set	1	
Feature	Set	2	
Feature	Set	3	

Figure 7.2: Classification results in terms of accuracy (%) using three sets of features
with six different choices of mean prior function.

The highest LOSO accuracy (≈ 70%) is achieved when Feature Set 3 is used in

combination with the linear prior function. Here, the results for the other feature

sets also demonstrate that the linear function outperforms more complicated prior

functions. This might be related with the risk of overfitting that comes from applying

MLE for the estimation of the prior function hyper-parameter vector, α, whose size

increases quickly for more flexible prior functions. In fact, MLE techniques have

been observed in the literature to give rise to overfitting problems, similarly to those

observed in frequentist learning settings. There is a significant increase in accuracy

(approximately +20%) when the linear function is chosen for Feature Set 3 compared

to the case when a null a-priori mean function is considered. The recognition accuracy

for Feature Set 2 without the choice of prior function is 58%. Although this value is

2% higher compared to the form of weighted sum of projected cosines for the mean

function, it is still 4% lower than the constant mean function and 6% lower than the

linear function. The classification results for Feature Set 1 also show a significant

increase in recognition (≈ 16%) when an appropriate prior function is chosen.

In Table 7.1 we list the the results for a prior selection experiment on the DEAP

and BVHP datasets, in terms of LOSO sensitivity, specificity and accuracy. No-

tice that we do not give results for PhGP with zero and constant mean, as those

correspond to the Raw-GP formulation, which is already included in the table. Com-

parative results of the performance of the PhGP model with Raw-GP, Feat-GP and

SVM-RFE empirically demonstrate the advantages of relying both on physiological

signal analysis and raw-signal information in terms of recognition performance. The
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results reported in the table suggest that the PhGP model obtains higher accuracy

for all choices of GP prior functions compared to the Raw-GP model both in DEAP

and in the BVHP datasets. Though potentially having access to the same infor-

mation (that is, the full raw signal), the Raw-GP model tends to overfit, while the

PhGP methods benefits from the physiologically-informed prior in shaping its output

distribution. Furthermore, PhGP provides results comparable to, and at times signif-

icantly better, than the Feat-GP model, which has access only to the features and not

the raw signal. For example, with the linear prior function 3% and 10% lower overall

accuracy is obtained when using Feat-GP compared to PhGP. Notice that Feat-GP

significantly outperforms Raw-GP in the DEAP dataset (up to a 10% improvement),

while the opposite is true for the BHVP dataset (up to an 8% improvement of Raw-

GP compared to Feat-GP). While it is difficult to understand why that is the case,

notice that PhGP, by drawing on from both models, is able to achieve competitive

performance in both datasets, i.e., it successfully takes into account the information

from the raw data and from the physiologically-based feature model. Moreover, for

all the results obtained and reported in Table 7.1 we observe that choosing a non-

trivial prior function leads to improved performance under LOSO validation, which

confirms the results of Figure 7.2. Finally, we notice that, also in these settings, the

linear prior gives more consistent performance across the two datasets.

In Figure 7.3 we analyse the performance of PhGP for different subsets of features

taken from the EDA (introduced in Section 7.1.3) in the DEAP and BHVP datasets.

We have that choosing the full set of features (i.e., ωEDA and blue bars in the two plots)

obtains the highest balanced performance between LOSO sensitivity and specificity

of the prediction, and therefore highest accuracy compared to selecting subsets of

features for the DEAP dataset. Although the feature subsets with ωx and ωt vectors

result in higher sensitivity than ωEDA in this dataset, the specificity is very low (53%

for ωx and 58% for ωt). We do not observe any significant difference in this case for

the BVHP dataset, for which all the models obtained comparable accuracy. This is

due to the fact thatRaw-GP (that is, when no physiological information is used for

the definition of the prior) already obtains comparable accuracy in BVHP, so that

PhGP can obtain similar performance independently of the prior function used.

7.3.3 Recognition results

We compare the PhGP model with SVM trained with recursive feature elimination

[215] on the DEAP and BHVP datasets in Table 7.2. Building on the results from the

previous section, we train the GP models using the linear form for the prior function
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Dataset: DEAP

Raw-GP Feat-GP PhGP

Prior Sens. Spec. Acc. Sens. Spec. Acc. Sens. Spec. Acc.

Zero 84 47 65 73 56 64 − − −
Constant 67 63 65 72 52 64 − − −
Linear 66 67 68 69 87 78 81 82 81
Quadratic 74 70 72 77 80 78 68 78 73
Cubic 76 62 69 77 57 68 89 62 75
Trig. 73 68 70 73 58 65 92 51 72

Dataset: BVHP

Zero 95 89 92 89 84 86 − − −
Constant 95 90 92 87 85 86 − − −
Linear 97 91 94 87 88 87 95 98 97
Quadratic 95 95 95 87 85 87 97 99 98
Cubic 93 93 95 87 85 86 95 99 98
Trig. 93 93 94 89 84 86 98 98 98

Table 7.1: Recognition results of the Raw-GP, Feat-GP and PhGP models considering
different forms of functions for parametric modelling of the prior distribution for the
two datasets. The values are expressed as percentages of sensitivity, specificity and
accuracy of the performance of the recognition model.

Figure 7.3: Comparative performance (sensitivity, specificity and accuracy) of PhGP
with different subsets of features in the prior function for DEAP dataset (left) and
BVHP dataset (right). Refer to Section 7.1.3 for the definition of each subset.
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and, for the case of PhGP, using the full feature set for the vector ω. Overall, PhGP

improves on the LOSO accuracy obtained by the SVM-RFE method by 17% and 7%,

respectively, on the DEAP and BVHP raw datasets. It is interesting to note how all

the GP models outperform the SVM-RFE method; in fact, the latter tend to overfit

in these settings. Furthermore, using an MLE for the hyper-parameters of the prior in

the GP settings, we also obtain a form of feature selection in the prior space, though

in an approximate Bayesian fashion, which provides better generalisation properties.

The results of the PhGP model offer higher accuracy compared to a recent study

performed in similar settings on the DEAP dataset, which obtained 71% accuracy

[182] (similar to that obtained by SVM-RFE). Similarly to this study, previous stud-

ies have conducted experiments on the BVHP dataset with the aim of classifying

the baseline and the highest pain level and validated their results with LOSO cross

validation, achieving 74% [204, 129], 80% [128], 82% [105] and recently 85% [191]

accuracy. Interesting, PhGP improves significantly on the accuracy of all of these

methods. We finally notice that the higher recognition results obtained on the BVHP

dataset compared to those for the DEAP dataset are probably due to the fact that

pain detection can be considered an easier task than emotion detection, as confirmed

in the literature [181, 205]. However, notice that we gain full benefit from that,

especially when we consider the raw signal as a source of information as well. This

suggests that many pain-related features that can be extracted from the physiological

signals are not currently accounted for in the feature extraction methodologies that

exist in the literature.

Model Sensitivity (%) Specificity (%) Accuracy (%)
DEAP BVHP DEAP BVHP DEAP BVHP

Raw-GP 74 95 70 95 72 95
Feat-GP 77 97 80 88 78 87

SVM with RFE 60 77 68 83 64 70
PhGP 81 95 82 98 81 97

Table 7.2: Comparison of the performance of Raw-GP, Feat-GP and PhGP models
and the standard SVM algorithm embedded with RFE method for the two datasets.

7.4 Model Analysis Results

In the previous experimental section, we have empirically observed how the GP learn-

ing framework enabled us to learn competitive machine learning models on three
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affective recognition tasks. This was enabled by their Bayesian formulation, which

allowed us to learn models that were able to access information from raw signal data

and from physiologically-based modelling, and combine these in a probabilistic fash-

ion. In addition to obtaining good accuracy performance, for the purposes of this

thesis, another advantage of GPs lies in the fact that, thanks to their analytical

formulation, they are amenable of verification and interpretability analysis with the

methods discussed in Chapter 6 and extended in Section 7.2.

7.4.1 Interpretability Results

We compute the interpretability index ∆j
γ(x
∗) (introduced in Section 6.5) for each

test point and for each model trained on the DEAP and BHVP datasets in a LOSO

setting. The results of this analysis are plotted in the heat-maps in Figure 7.4 for the

Raw-GP, Feat-GP and PhGP models. The vertical axis represents the subject index,

which, since the analysis is done in LOSO settings, also means on a different GP,

i.e. one that was learned on top of the remaining training data. The horizontal axis

in the first and third column (corresponding to the Raw-GP and the PhGP model)

represents the ∆j
γ value for each selected data patch from the input EDA signal.

On the other hand, in the second column (i.e., that corresponding to the Feat-GP

model), ∆j
γ is computed for each feature index in the ωEDA vector, and the order in

which they are put in the axis, is arbitrary. In all heat-maps the colour bar varies

from blue, denoting the value 0 for ∆j
γ, i.e. no effect on the predictive distribution, to

red, denoting the value 1 for ∆j
γ. Each colour bar is normalised with respect to the

maximum value observed for the model, so that the maximum value of ∆j
γ in each

plot is always 1.

It is interesting to note the consistency in the ∆j
γ values reported in each of these

maps. Those refer to different models but learned in the same settings (only the

training/test set split changes), so this highlights how the results obtained by inter-

pretability analysis are in a sense qualitatively independent from the specific subjects,

and shows that the model is learning features and patterns that are specific to the

problem itself, rather than the particular subject involved. From the heat-map of

the Raw-GP model in the DEAP dataset, we observe that the patches corresponding

to the 48th-52th seconds of the whole 60s duration of the EDA acquisition has the

highest contribution in recognition. On the other hand, the first 18 seconds and the

36th-42th seconds of the data show the least contribution in almost all of the sub-

jects. This trend is different in the BVHP dataset, where the highest contribution is
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correspondent to the only patch occurring around the 2th-3th second of the EDA sig-

nal. The heat-maps corresponding to the Feat-GP model show the high contribution

of the SumAmpSCR index in DEAP dataset whereas the features related to tonic

activity (Tonicmean and Tonicstd) are the most informative quantifiers for detecting

the pain stimulus. Concerning the PhGP model, the patches of data corresponding to

the highest value of ∆j
γ in the BVHP dataset are located at the first and the second

second of the pain stimulus. These patches are possibly where the highest alterations

in physiology due to pain stimulus are present.

Figure 7.4: Plots (a) and (d): heat-maps displaying the contribution of each data
patch in DEAP/pain dataset for Raw-GP model. Plots (b) and (e): heat-maps
displaying contribution of each feature index for DEAP/pain dataset for Feat-GP
model. Plots (c) and (f): heat-maps displaying the contribution of each data patch
for DEAP/BVHP dataset for PhGP model.

In Figure 7.5 we plot average results for the interpretability analysis over all the

subjects for each model (blue line for average, and shaded blue area showing standard

deviation), and across different values for γ (red line and red shaded area), ranging

from 0 to 1. The similarity in the dynamical trends of the blue and red lines in

the plot confirms and quantifies the consistency in interpretability analysis of all the

models in both datasets regardless of the particular subject or the choice of γ value

and subject.
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Figure 7.5: Plots (a) and (d): show contribution of data patch for DEAP and BVHP
datasets for Raw-GP model. Plots (b) and (e): show contribution of each feature
index for DEAP and BVHP datasets for Feat-GP model. Plots (c) and (f): show
contribution of each data patch for DEAP and BVHP datasets for PhGP model. The
thick continuous blue and red lines indicate, respectively, the average of ∆j

γ metric
across subjects and across γ values. The shaded blue and red areas indicate their
respective standard deviation estimation.

7.4.2 Verification Results

We compute bounds on the minimum and maximum of the predictive posterior dis-

tribution on the PhGP model trained on the CPT dataset. We vary the maximum

radius of perturbation allowed, γ, from 0 to 0.4, and allow for variation of the whole

input space of the model. We notice, by inspection of the data, that, since we are

standardising the data to zero mean and unit standard deviation (and not normalising

them to [0, 1]) as it is customarily done for physiological signals, the gamma radius

of 0.4 already covers almost entirely the empirical data manifold. For simplicity of

representation, the line in the plots show the trend of the bounds only on 10 input

points randomly sampled from the test set. We use an error tolerance ε = 0.01 in

the branch-and-bound. Recall that, since this is a two-class classification problems,

to verify the behaviour of the model, it suffices to compare the bounds with respect

to the Bayesian optimal decision threshold, i.e., 0.5.

We plot the results of these analysis in Figure 7.6; in the left plot we show the
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Figure 7.6: Computation of lower bound on minimum (left plot) and upper bound
on maximum (right plot) of the predictive posterior distribution of PhGP on 10 test
points randomly sampled from the CPT dataset. Verification for the Bayes optimal
Classifier can be retrieved by comparing the solid lines with the decision threshold
(dashed grey line).

lower bound on the minimum of the predictive probability, while the upper bound

on the maximum is shown in the right plot. The decision threshold is depicted with

a grey dashed line. The coloured solid lines, represents the values of the bounds

obtained for each one of the 10 test points selected. The existence of an adversarial

attack at given value for γ for a point which is initially classified in class 2 (that is the

value at γ = 0 lies above the decision threshold) can be retrieved from the plots by

checking whether πLmin is below the threshold. Conversely for a point that starts from

below the decision threshold we have to check whether at πUmin at a given γ is above

the threshold. Interestingly, all the points have a similar trend and the gradients of

the bounds with respect to γ is qualitatively similar. Notice that, already for γ = 0.2

all the points selected are susceptible to adversarial attacks.
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7.5 Summary

In this chapter we have applied GP models in three affective recognition dataset.

First, we have shown how, by building on their Bayesian formulation, GPs provide

us with a perfect learning framework for combining information from physiologically-

based models and training data in the form of raw signals, which is particularly

beneficial when only a small amount of labelled data is available at training time.

Experimentally, we have also seen how GPs learned in these settings are able to ob-

tain competitive prediction performance, while still relying on simple shallow models

that can be interpreted. For this purpose, we have extended the framework for the

computation of bounds on the posterior predictive distribution of a GP to the setting

of non-null prior, and discussed approximation for the cases of the PhGP models.

The so developed methodology was then employed to perform interpretbility analysis

for the obtained model.

Further development of such techniques, and the definition of explainability met-

rics and extensions of the methodology derived here, can play a crucial role toward

deployment of machine learning models in real-world affective recognition settings, as

this would allow one to provide guarantees of model behaviour and/or explanations of

why and under which condition a model might fail [170]. In fact, the interpretability of

a model, and not its performances, is a key aspect to build trust of the clinical practi-

tioners in automated affective tasks. Finally, notice that GPs are beneficial because of

their data-efficient nature, but in situations where a large dataset is available similar

techniques based on BNNs could be developed. One of the greatest obstacles in that

direction is the fact that BNN priors are usually chosen to be uninformative because

of the difficulty in interpreting their meaning. Even though, because of the “big data”

assumption, one might find it unnecessary to build physiologically-informed priors in

those settings, the formulation of such priors itself provides a simple justification for

the model behaviour - being the model centred around the prior, and using the data

only when the prior fails - which can be intuitively explained to practitioners.

153



Chapter 8

Conclusions

In this thesis, we have considered robustness of Bayesian inference with Gaussian

process models under adversarial attack settings. Our investigation led us to discuss

two different notions of robustness. The former, probabilistic adversarial robustness,

captures the stochastic dynamics of the posterior model, and can, in fact, be seen as

a rough generalisation of uncertainty measures to the adversarial prediction scenario.

Then, in defining adversarial robustness, we have taken into account the overall de-

cision of the model, which depends also on the loss function employed for Bayesian

decision making, and can be seen as a generalisation of measures used in the frequen-

tist learning settings (e.g. for deep neural networks). We have also discussed how, in

the context of classification models, adversarial robustness is closely related to the

computation of lower and upper bound ranges on the posterior predictive distribution

of the Bayesian model.

The core methodology that was then developed throughout the thesis, is a gen-

eral optimisation framework for posterior GP models, which is centred around the

computation of lower and upper bounding functions for posterior mean and variance

of the GP, along with other related and derived quantities. By relying on the Borell-

TIS inequality and the Dudley entropy integral, we have seen how the optimisation

framework allowed us to compute formal over-approximations of the probabilistic ad-

versarial robustness of GPs. Regarding the computation of adversarial robustness,

we have relied on a discretisation of the latent space to convert the problem to that

of the optimisation of a set of Gaussian integrals, which again we formally bounded

using our GP optimisation framework.

Utilised the central limit theorem, in order to employ the methods developed for

GPs to the verification of infinitely-wide Bayesian neural networks. Thanks to the

fact that inference for GPs is exact, this then allowed us to perform formal analysis

of the behaviour of the BNN posterior under adversarial settings, which highlighted

154



some possible reasoning behind the mixed results observed in the literature for the

use of uncertainty as a defense against adversarial attacks.

In further experiments on three benchmark datasets, we have found that adversar-

ial robustness of the posterior GPs increases with a more refined training procedure

(e.g., a better approximation or a more time-consuming MLE methods). This re-

sult suggests that exact posterior, along with a well-calibrated prior model, could

provide a natural defence against adversarial examples in Bayesian settings. This is

crucially different to what is observed in neural networks, where the more training is

performed, the more the network becomes vulnerable to attack, and specific robust

training techniques needed to be developed.

Finally, we have applied our techniques on three datasets to automate affective

recognition from physiological signals. We have argued that, because of the small

size typical of affective computing datasets and the absolute requirement of safety

in situations of clinical relevance, GPs make a perfect modelling framework for this

purpose. We have seen how carefully designing a prior on top of physiologically-based

mathematical models allowed us to obtain competitive and even state-of-the-art per-

formance on the three datasets analysed. We have then employed our techniques for

GP verification to compute safety guarantees on top of a selection of these models, and

performed formal interpretability analysis, which allowed us to obtain physiologically

meaningful quantification and interpretation of the GP predictions.

8.1 Future Work

This thesis, analysed and discussed the first works, to the best of our knowledge,

developed towards the computation of formal robustness guarantees for Bayesian

models in adversarial settings. A number of the methods that we have discussed in

previous chapters, and the preliminary results obtained in the case studies analysed

here, have already been extended in works that I have co-authored during my DPhil.

An obvious research direction was that of extending the methods presented in

Chapter 5 to the iterative prediction settings, which we achieved in [163], where we

have also shown the application of such bounds for the synthesis of safe controllers.

Furthermore, while the methods discussed in Chapter 5 apply to BNNs only in the

infinite width limit, in [207] we have found that these computations could be per-

formed for BNNs by relying on an optimisation framework akin to the one discussed

in Chapter 6. The very preliminary observation we have made for the GP settings,

about the correlation between the “quality” of the posterior computation and the
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robustness against adversarial examples, we have later confirmed in large scale ex-

periments on BNNs [121], and through the development of a theoretical framework

[26]. Additionally, the methods developed in Chapter 5 for the computation of prob-

abilistic adversarial robustness are formal, but suffer from scalability issues. Thus, in

[27] we have developed a statistical model checking method for the computation of

probabilistic robustness with a-priori statistical guarantees.

Several other directions for future research arise from the results of this thesis.

We highlight some of these in the following paragraphs.

Adversarially Robust Training and Decisions for Bayesian models. While

idealised Bayesian methods are provably robust to adversarial attacks [64, 26], in

practice it might be infeasible or too computationally involved to arrive at a model

close to the actual limit, robust behaviour. In these cases it would be beneficial

to adapt the concept of certified robust learning [78] to the Bayesian settings. In

order to do that in a probabilistic way, one can proceed by modifying the likelihood

model so as to take into account not only the prediction with respect to the ground

truth, but also the behaviour of the worst-case adversarial prediction. Of course, it

is unreasonable to expect to obtain a methodology that provably converges for the

general case, as it is difficult enough to obtain a model whose accuracy converges to the

optimal one, since the training landscape is high-dimensional and non-linear for most

problems of practical interest. However, by computing formal adversarial bounds

such as those above, it is possible to provide certification for the behaviour of the

objective function, and under smoothness assumption, for the improved robustness of

models that are learned in a robust way, compared with models trained in a standard

way. Interestingly, in Bayesian settings, robust training may also help the learning of

the model and/or empirically improve the quality of our posterior approximation. In

fact, since under the overparameterised assumption the posterior is provably robust,

then pushing the learning towards robust posterior may have the effect of pushing it

towards the true posterior.

An alternative approach involves working with the model loss function instead

of the likelihood function. One can compute bounds on the posterior predictive

distribution, or the posterior distribution itself, and use these to formulate a particular

loss function that emphasises specific properties of the latent function, and not just

the accuracy of the resulting model. In this way, training of the model proceeds in

the standard way, while verification is used a-posteriori to guide the Bayesian decision

making procedure.
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Adversarially Robust Model Design. The preliminary results of Chapter 6,

combined with the empirical and theoretical results we have discussed in [121] and

[26], hint at the fact that when the prior model is correctly specified then the result-

ing Bayesian model will tend to be automatically robust against adversarial attacks.

However, the question of how to correctly specify a prior model, in general, is not

any simpler than coming up with a robust model. In the case of Gaussian processes,

even though squared-exponential kernels provide us with a universal approximator,

the question remains of how to select the hyper-parameters of the model, which is

often done either qualitatively or by means of approximate inference methods on

the available data. For the case of Bayesian neural networks, even though overpa-

rameterised networks with uninformative priors suffice as universal approximators,

the practical computational requirements of these become prohibitive for real-world

datasets (e.g. ImageNET). In Bayesian learning, the evidence framework was devel-

oped for principled probabilistic and data-driven model comparison [131]. We plan to

employ the methodologies developed in this thesis to perform an extensive empirical

and theoretical investigation of the suitability of the evidence measure for gauging

the adversarial robustness of a model, and eventually building on its shortcoming

with a similar approach to that discussed above for the modification of the likelihood

function. Notice how methods for the modification of the likelihood functions and

for the selection of the prior distribution could constitute building blocks of a future

methodology for the synthesis of certifiable robust Bayesian models.

Verification of Hybrid and Deep Models. Scaling Bayesian models to be com-

petitive compared to frequentist approaches has proven to be a rather difficult task.

Recently models that try to take the best of both worlds have been developed, e.g.

hybrid neural networks Gaussian process models [67, 24] and deep GPs [41]. These

represent an effort to combine principled uncertainty quantification provided by Gaus-

sian processes and the representational capabilities of deep learning. As the interest

for these models increases in application scenarios [218, 31, 116], the question arises

whether and how the techniques developed in this thesis can be employed in these

settings. Intuitively, a probabilistic combination of the methods that we presented in

[207] and [27] for tackling Bayesian neural networks with those discussed in Chapters

5-6 could provide a building block for their computation in hybrid models and deep

networks. However it is not yet clear how to account for the probabilistic interface

between them.
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Physiologically inspired Neural Networks Priors. In Chapter 7 we have seen

how, by relying on physiologically-based priors, GPs are able to obtain competitive

and state-of-the-art results on affective computing tasks made up of relatively small

datasets. We justified our choice of relying on GP models by the fact that they

are amenable to verification thanks to the methods we had previously developed

in Chapters 5-6. However, because of the recent development of similar methods for

Bayesian neural networks [207], the question naturally arises as to whether something

similar could be achieved using BNNs. In fact, GPs are fundamentally shallow models,

and hence suffer from weak representational capabilities, which could be overcome by

using BNNs, which would allow us to scale to more complicated tasks. Unfortunately

the definition of meaningufl prior fucntions is a difficult task in BNN settings. In

fact, for BNNs the prior is naturally defined over the weight space. The effect that

this has on the latent space is non-linear and hence difficult to evaluate in practice.

A qualitative understanding can be obtained by relying on the pioneering work of

Neal [146], which shows how BNN priors can be evaluated in the limit by means of

GPs. One could then consider employing the methods that we developed for GPs

in Chapter 7 to the limiting GP, which represents the infinite-width limit of BNNs,

leading to an approximate treatment of finite BNNs. In a second step, we could

then look at whether interpretability metrics similar to that we discussed for GPs in

Chapter 6 could be derived for BNNs, and how these can be employed for reverse-

engineering specific prior functions.

8.2 Outlook

In this thesis we have investigated the problem of robustness for Gaussian processes

in adversarial settings, providing the first of such treatments within the Bayesian

learning paradigm. This has allowed us to experimentally find several interesting

properties of Bayesian models, whose adversarial behaviour we have shown to be fun-

damentally different than that of the frequentist methods. One such is their tendency

to be naturally robust to adversarial attacks when the model is accurately specified.

Compared to standard applications of (probabilistic) verification, and even to

the verification of deterministic neural networks, analysis of adversarial robustness

of Bayesian models is a new and unexplored field. As the search for robust machine

learning models continues, we hope that the preliminary results and the methodologies

discussed in this thesis will provide the motivation and the initial means to further

investigate the many fascinating properties of Bayesian models.
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[172] Stefano Rosa, Andrea Patanè, Xiaoxuan Lu, and Niki Trigoni. Commonsense:

Collaborative learning of scene semantics by robots and humans. In Proceedings

of the 1st International Workshop on Internet of People, Assistive Robots and

Things, pages 1–6. ACM, 2018.

[173] J Ben Rosen and Panos M Pardalos. Global minimization of large-scale con-

strained concave quadratic problems by separable programming. Mathematical

Programming, 34(2):163–174, 1986.

176



[174] Philipp V Rouast, Marc Adam, and Raymond Chiong. Deep learning for hu-

man affect recognition: insights and new developments. IEEE Transactions on

Affective Computing, 2019.

[175] Wenjie Ruan, Xiaowei Huang, and Marta Kwiatkowska. Reachability anal-

ysis of deep neural networks with provable guarantees. arXiv preprint

arXiv:1805.02242, 2018.

[176] James A Russell. A circumplex model of affect. Journal of personality and

social psychology, 39(6):1161, 1980.
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