
What Is Formal Verification Without
Specifications? A Survey on Mining LTL

Specifications

Daniel Neider1,2 and Rajarshi Roy3(B)

1 TU Dortmund University, Dortmund, Germany
2 Center for Trustworthy Data Science and Security, University Alliance Ruhr,

Dortmund, Germany
3 Department of Computer Science, University of Oxford, Oxford, UK

rajarshi.roy@cs.ox.ac.uk

Abstract. Virtually all verification techniques using formal methods
rely on the availability of a formal specification, which describes
the design requirements precisely. However, formulating specifications
remains a manual task that is notoriously challenging and error-prone.
To address this bottleneck in formal verification, recent research has thus
focussed on automatically generating specifications for formal verifica-
tion from examples of (desired and undesired) system behavior. In this
survey, we list and compare recent advances in mining specifications in
Linear Temporal Logic (LTL), the de facto standard specification lan-
guage for reactive systems. Several approaches have been designed for
learning LTL formulas, which address different aspects and settings of
specification design. Moreover, the approaches rely on a diverse range of
techniques such as constraint solving, neural network training, enumer-
ative search, etc. We survey the current state-of-the-art techniques and
compare them for the convenience of the formal methods practitioners.

1 Introduction

Formal methods refer to the discipline of computer science that employs mathe-
matically rigorous techniques to ensure the safe behavior of software, hardware,
and cyber-physical systems. There have been countless success stories of for-
mal methods, ranging over several application domains such as communication
systems [23,47], railway transportation [5,6], aerospace [20,27], and operating
systems [40,70], to name but a few. We refer the reader to the exceptional text-
book by Baier and Katoen [7] for a comprehensive introduction.

However, there is an important catch with verification techniques: they
assume the availability of functional and usable specifications that precisely
describe the design requirements. This assumption is often unrealistic as design-
ing specifications, which had been primarily a manual task, proves not only to
be tedious but also error-prone. Consequently, the availability of formal specifi-
cations is widely regarded as a major bottleneck in formal methods [2,11,67].
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025
N. Jansen et al. (Eds.): Principles of Verification: Cycling the Probabilistic Landscape,
LNCS 15262, pp. 109–125, 2025.
https://doi.org/10.1007/978-3-031-75778-5_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-75778-5_6&domain=pdf
https://doi.org/10.1007/978-3-031-75778-5_6

110 D. Neider and R. Roy

To overcome this limitation, recent efforts have focused on developing meth-
ods that can automatically generate specifications from examples of desired and
undesired system behavior. Notably, a significant body of research has emerged
that concentrates on learning specifications in Linear Temporal Logic (LTL).
This focus on LTL is due to its dual benefits: mathematical precision and inter-
pretability. The latter has recently become of increasing interest as it facilitates
the application of LTL beyond formal verification to areas such as reinforcement
learning [48], planning [72], and other AI-related domains.

This survey provides a comprehensive overview of the diverse body of work
focused on learning LTL specifications. In the past decade, researchers have tack-
led this task from multiple perspectives, spanning various settings and method-
ologies. As summarized in Table 1, these efforts can be differentiated based on
their learning setup, methodology, and the guarantees they provide, offering a
nuanced understanding of the field.

We specifically focus on approaches addressing the passive learning problem,
where the objective is to learn concise LTL formulas that accurately capture
user-provided examples of a system’s behavior. These examples typically consist
of two categories: positive (desirable) and negative (undesirable) system behav-
iors. However, in many practical scenarios, it is unrealistic to assume the avail-
ability of perfectly labeled examples for both classes. Real-world data is often
noisy, making it challenging to accurately classify the data. Furthermore, in
many safety-critical domains, such as autonomous vehicles and medical devices,
obtaining negative examples may be infeasible or even risky (potentially harming
humans). As a result, some approaches have explored less conventional settings,
including noisy data and scenarios where only positive examples are available.

The approaches summarized in Table 1 share a common thread: they employ
search strategies to navigate the space of possible LTL formulas, although these
strategies differ substantially in their methodology. Some approaches leverage off-
the-shelf constraint solvers (e.g., SAT and SMT solvers) by carefully encoding the
learning problem in propositional or first-order logic, while others employ special-
ized enumeration techniques tailored to the task. A third category of approaches
harnesses advances in deep learning to identify promising LTL formulas. As a
result, the search strategies, considered LTL fragments, and theoretical guaran-
tees vary substantially.

The remainder of this paper compares and contrasts the underlying principles
of the aforementioned approaches, categorized into three distinct groups based on
their search strategies. These categories comprise constraint-based, enumeration-
based, and neural-network-based methods, which will be explored in Sects. 3, 4,
and 5, respectively. Section 2 provides the required background on LTL and the
learning problem we consider.

2 Preliminaries

System Executions and Words. Informal methods, executions or trajectories
of systems are typically formalized as sequences of symbols from a finite non-
empty set Σ, known as alphabet. We refer to such sequences as words over Σ.

Survey on Mining LTL Specifications 111

Table 1. Comparison of Related Works and Their Features. ‘Pos’ and ‘Neg’ refer to
positive and negative examples, respectively; ‘SAT’, ‘MaxSAT’, ‘MILP’ refer to satisfi-
ability, maximum satisfiability, and mixed-integer linear programming, respectively.

Work Primary techniques LTL
Fragments

Classification Input Data Guarantees

Neider and Gavran [52],
Riener [64]

SAT full LTL perfect Pos+Neg sound, complete,
minimal

Camacho and
Mcllraith [15]

SAT full LTL perfect Pos+Neg sound, complete,
minimal

Raha et al. [60] enumerative search,
dynamic programming

comb. of
directed LTL

perfect/noisy Pos+Neg sound

Arif et al. [3] Syntax-Guided Synthesis past-time LTL perfect Pos+Neg sound, complete,
minimal

Gaglione et al. [26] MaxSAT full LTL noisy Pos+Neg sound, complete,
minimal

Chou et al. [18] MILP,
counterexample-guided

full LTL perfect Pos only sound, complete

Ghiorzi et al. [30] enumerative search full LTL perfect Pos+Neg sound, complete,
minimal

Ielo et al. [38] Answer Set Programming full LTL perfect Pos+Neg sound, complete,
minimal

Roy et al. [66] SAT,
counterexample-guided

full LTL perfect Pos only sound, complete,
language minimal

Valizadeh et al. [69] enumerative search, GPU
acceleration

full LTL perfect/noisy Pos+Neg sound

Luo et al. [48] Graph Neural Network full LTL noisy Pos+Neg No
Wan et al. [72] Graph Neural Network full LTL noisy Pos+Neg No

A word w = a0a1 . . . , where ai ∈ Σ, can be either finite or infinite, depending
on whether the execution it represents is finite or infinite. The set of infinite
words over Σ is denoted by Σω, while the set of finite words is denoted by Σ∗.
Given a word w = a1a2 . . . in Σ∗ or Σω, we let w[i] := ai denote symbol of w
at position i and w[i :] := aiai+1 . . . the suffix starting from the starting from
position i. The length |w| of a word w is the number of its symbols. In particular,
the empty word, denoted by ε, has length zero.

Linear Temporal Logic (LTL). The logic LTL [58] is the de facto standard
for reasoning about executions, or sequences of events, of reactive systems. Typ-
ically, specific events in a system are abstracted using a set P of propositions,
which represent events or properties of interest in the system under consideration.
A system execution is then modeled by a word over the alphabet Σ = 2P , cap-
turing the propositions that hold true at specific time points along the system’s
execution.

Given a set P of propositions, the syntax of LTL formulas is defined induc-
tively using the grammar

ϕ := p ∈ P | ¬ϕ | ϕ ∨ ϕ | Xϕ | ϕUϕ,

where ¬ (not) and ∨ (or) are Boolean operators, while X (neXt) and U (Until)
are so-called future-time temporal operators. Several derived Boolean operators,
including ∧ (conjunction) and → (implication), as well as temporal operators,
such as F (Eventually), G (Always), W (Weak Until), and R (Release), are often

112 D. Neider and R. Roy

added as syntactic sugar. Additionally, some works also incorporate past-time
temporal operators, including P (Previously) and S (Since), which are past-time
analogs of X and U, respectively.

To define the semantics of LTL, one usually uses a “model relation”, denoted
by |=, which captures when the suffix of a word w ∈ (2P)ω starting at a position
∈ N satisfies an LTL formula ϕ. Formally, this relation is given as follows:

w, i |= p if and only if p ∈ w[i]
w, i |= ¬ϕ if and only if w, i �|= ϕ

w, i |= ϕ1 ∨ ϕ2 if and only if w, i |= ϕ1 or w, i |= ϕ2

w, i |= Xϕ if and only if w, i + 1 |= ϕ

w, i |= ϕ1 Uϕ2 if and only if w, j |= ϕ2 for some j ≥ i and
w, k |= ϕ1 for each i ≤ k < j

If the entire word starting at position 0 satisfies ϕ (i.e., w, 0 |= ϕ), we simply
write w |= ϕ and say that w satisfies ϕ.

Traditionally, LTL has been interpreted over infinite words, but there is a
growing interest in interpreting LTL over finite words [32], particularly in arti-
ficial intelligence applications. To reflect this shift, it is sufficient to adapt the
model relation slightly, taking into account the end of a word in the operators X
and U. More precisely, we modify the model relation for a finite word w ∈ (2P)∗

as follows:

w, i |= Xϕ if and only if i < |w| − 1 and w, i + 1 |= ϕ

w, i |= ϕ1 Uϕ2 if and only if u, j |= ϕ2 for some |w − 1| ≥ j ≥ i and
u, k |= ϕ1 for each i ≤ k < j

The size of an LTL formula ϕ, denoted by |ϕ|, is defined as the number of
its unique subformulas. For example, the size of ϕ := (pUG q) ∨ X(G q) is six
since it contains six unique subformulas: (pUG q) ∨ X(G q), pUG q, X(G q),
G q, p, and q.

When learning LTL formulas, it is useful to have a canonical representation.
A common approach is to use a so-called syntax directed acyclic graph (DAG),
which is a syntax tree that merges common subformulas. Figure 1 illustrates the
distinction between a syntax tree (Fig. 1a) and a syntax DAG (Fig. 1b) for the
formula ϕ := (pUG q) ∨X(G q). Notably, the size of a formula and the number
of nodes in its syntax DAG coincide, whereas the number of nodes in the syntax
tree can be exponentially larger.

Passive Learning of LTL Formulas. With the necessary groundwork estab-
lished, we now turn our attention to the central task of this survey: learning LTL
formulas from examples. To this end, we assume that the examples of desired
and undesired system executions are bundled in a sample, denoted by S. In
the standard setting for passive learning of LTL formulas, this sample takes the

Survey on Mining LTL Specifications 113

Fig. 1. Representations of LTL formula ϕ = (pUG q) ∨ X(G q)

form of a pair S = (P, N), comprising two sets of words: P , consisting of positive
examples, and N , comprising negative examples, where P ∩ N = ∅.

A crucial concept in this setting is that of consistency, where an LTL formula
ϕ is said to be consistent with the sample S if it satisfies two conditions: firstly,
every word u ∈ P must satisfy ϕ (i.e., u |= ϕ), and secondly, every word v ∈ N
must not satisfy ϕ (i.e., v �|= ϕ). This definition allows us to define the passive
learning task formally.

Definition 1 (Passive Learning of LTL formulas). Given a sample S =
(P, N), compute a minimal LTL formula ϕ that is consistent with S.

A crucial aspect of the above definition is the minimality requirement for the
prospective LTL formula, as emphasized by Neider and Gavran [52]. Notably,
the problem becomes trivial if this size restriction is relaxed: for any u ∈ P and
v ∈ N , one can construct a formula ϕu,v that captures the first symbol where
u and v differ using a sequence of X-operators and a suitable propositional for-
mula, ensuring that u |= ϕu,v and v �|= ϕu,v. Then, the conjunction of these
formulas,

∧
u∈P

∨
v∈N ϕu,v, is consistent with the sample S. However, a formula

that simply enumerates the differences in the positive and negative examples suf-
fers from overfitting and fails to generalize the temporal patterns. Furthermore,
the resulting formula can become excessively complex, thereby compromising its
interpretability.

While the above problem states the standard passive learning problem, in
practice, a perfect sample may not always be available. The sample may be
noisy (involving misclassifications, sensor reading errors, etc.) or incomplete (e.g.,
only positive examples are available). Therefore, several works adapt the passive
learning problem to accommodate these scenarios.

3 Constraint-Based Approaches

As hinted at in the introduction, constraint-based approaches leverage off-the-
shelf solvers to search for prospective LTL formulas. These solvers employ a
wide range of technologies, including solvers for satisfiability (SAT) [8,51] and
maximum satisfiability (MaxSAT) [12] for propositional logic, Inductive Logic
Programming (ILP) [29], Mixed Integer Linear Programming (MILP) [53], and
Syntax-Guided Synthesis (SyGuS) [1].

114 D. Neider and R. Roy

At the heart of constraint-based approaches lies the idea of translating the
learning problem into one or several satisfiability problems within a suitable
logical framework (e.g., SAT or SMT). Although the solver technologies may
differ, the underlying logical encodings of the learning problem exhibit strik-
ing similarities across most works. In particular, most approaches separate the
encoding of the syntax of the prospective formula from its semantics, allowing
for a flexible and modular formulation of the search problem. This modularity
enables the customization of the search to accommodate specific requirements,
such as targeting a particular subclass of formulas or satisfying a specific subset
of examples.

To further illustrate this approach, let us consider one of the pioneering works
in this category, the paper by Neider and Gavran [52], which leverages SAT solv-
ing. The core of their approach revolves around constructing a series (ΦS

n)n=1,2,...

of propositional formulas that facilitate the search for prospective LTL formulas
of increasing size n. Specifically, each formula ΦS

n satisfies two crucial proper-
ties: (i) it is satisfiable if and only if there exists an LTL formula of size n that
is consistent with S and (ii) a satisfying assignment of ΦS

n contains sufficient
information to construct such an LTL formula. By incrementally increasing the
value of n until ΦS

n becomes satisfiable, one can obtain an LTL formula that is
guaranteed to be minimal and consistent with S.

The formula ΦS
n is constructed as a conjunction of two subformulas, ΦS

n =
ΦDAG

n ∧Φcon
n . The subformula ΦDAG

n encodes the syntax DAG of the prospective
LTL formula and encompasses a range of constraints, ensuring that fundamental
properties of a syntax DAG of an LTL formula are satisfied (e.g., each node being
labelled by a unique LTL operator and each node having at most two children).
On the other hand, the subformula Φcon

n ensures that the the positive examples
satisfy the prospective LTL formula while the negative ones violate it. To this
end, the formula Φcon

n encodes of the semantics of LTL on the given positive and
negative words similar to Bounded Model Checking [19]. They rely on the SAT
solver Z3 [51] for their implementation.

Riener [64] expanded upon the work of Neider and Gavran, streamlining the
SAT encoding by preprocessing the possible syntactic structures of LTL formulas,
formalized as partial DAGs. By precomputing and storing partial DAGs, which
are not yet labeled with LTL operators, Riener’s approach enables a more effi-
cient search by decomposing the search space according to the underlying DAG
structure. This innovation potentially enables parallelization, thereby accelerat-
ing the encoding process and reducing computational complexity.

Camacho and Mcllraith [15] propose a SAT encoding similar to that of Nei-
der and Gavran, leveraging Alternating Finite Automata (AFA), a type of finite
state acceptors for words. Since the definition of AFA are distinct from LTL, both
approaches seem different at the first glance. However, it is well established that
counter-free AFA, a specific subclass of AFA, are equivalent to LTL in terms of
their expressive power. Furthermore, the syntactic structure and semantic inter-
pretation of counter-free AFA, as demonstrated by Camacho and Mcllraith [15,
Theorem 1, Property 1], show a striking resemblance to those of LTL, ultimately
leading to an encoding that is almost identical to that of Neider and Gavran.
They rely on the SAT solver Pycosat [10] for their implementation.

Survey on Mining LTL Specifications 115

Arif et al. [3] elevate the SAT-based encoding of Neider and Gavran to a
syntax-guided synthesis (SyGUS) framework. Such frameworks, employed in pro-
gramming synthesis, inherently support various search heuristics, including sym-
metry breaking, rewrite rules, and others. Notably, in contrast to previous work
that translates LTL semantics to SAT in a straightforward manner [52], Arif et
al. rely on a bit-vector arithmetic-based encoding. They use the CVC4SY solver
[63] for their implementation.

Ielo et al. [38] elevate the SAT-based encoding of Neider and Gavran to
the Answer Set Programming (ASP) framework, a declarative programming
paradigm that allows for defining problems in terms of rules and constraints.
They devise two formulations of the passive learning problem in ASP, as an
abduction problem and as a context-dependent learning problem. They rely ASP
solvers such as CLINGO and ILASP [28] in their implementation.

Learning from Noisy Data. To accommodate noisy data, a relaxation of the
requirement for the generated formula to be consistent with all examples is
necessary. This relaxed consistency criterion is often expressed using metrics
of misclassification, such as the loss function l(S, ϕ) =

∑
u∈P

[u�|=ϕ]+
∑

v∈N
[v|=ϕ]

|P |+|N | ,
where S = (P, N) and the Iverson bracket [] maps true statements to 1 and
false to 0. This loss quantifies the proportion of examples misclassified by the
formula ϕ and closely mimic standard loss functions used in statistical machine
learning.

To learn minimal LTL formulas that minimize the above loss function,
Gaglione et al. [26] propose translating the problem into a Maximum Satisfi-
ability (MaxSAT) instance, mirroring the techniques employed by Neider and
Gavran [52] and Riener [64] for propositional logic. MaxSAT extends the clas-
sical satisfiability problem of propositional logic, allowing for the definition of
hard constraints (mandatory clauses) and soft constraints (optional clauses). The
solution to a MaxSAT problem is a variable assignment that satisfies all hard
constraints and as many soft constraints as possible. Gaglione et al. capitalize
on this technology by designating all clauses in ΦDAG

n as hard constraints and
selected clauses in Φcon

n as soft constraints. As a result, they obtain a mini-
mal LTL formula that minimizes the specified loss function. They rely on the
MaxSAT solving capabilities of Z3 [12] for their implementation.

In fact, by following a similar method, almost all of the constraint-based
approaches can potentially be extended to noisy settings if the solver employed
allows such relaxations.

Learning from Positive Examples Only. The problem of learning from positive
examples only is a special case of the one-class learning task, where only one
class of inputs (positive or negative) is available. This problem frequently arises
in AI applications, particularly in the context of explainability, where one seeks
to infer the behavior of an autonomous agent from observational data.

Unlike learning from noisy data, extending constraint-based approaches to
learn from only positive examples is not straightforward. The primary reason

116 D. Neider and R. Roy

for this is that learning LTL formulas from positive examples is an inherently
ill-posed problem. Given a set of positive examples P , the smallest LTL formula
that is consistent with P is the trivial formula true, which is satisfied by any
word. Clearly, this formula is too general and does not provide any insights into
the underlying (temporal) patterns in the examples.

To address this challenge, Roy et al. [66] propose strongness—or specificity—
as an additional optimization parameter besides the size of the formula. In partic-
ular, the authors solve formulate a learning task wherein, given a set P of positive
examples and a size bound n > 0, the goal is to learn an LTL formula ϕ that
satisfies the following three conditions: (i) each w ∈ P satisfies ϕ, (ii) ϕ has size
at most n, and (iii) there exists no other formula with the former two properties
that implies ϕ. To tackle this problem, Roy et al. employ a counterexample-
guided inductive synthesis loop [1], which leverages negative examples to guide
the learning algorithm towards a most specific LTL formula. In each iteration of
the loop, the authors utilize one of the aforementioned SAT-based methods to
construct a consistent LTL formula. This formula is then analyzed, and if neces-
sary, used to generate a new negative example that directs the search towards
a more specific formula. This iterative process continues until no formulas more
specific than the current formula can be found, at which point the algorithm
terminates.

Chou et al. [18] propose learning LTL formulas from positive examples of
high-dimensional data. They rely on domain specific non-convex cost functions
involving the positive examples and LTL formulas to ensure that the prospective
formula tightly describes the examples. To search for the prospective formula,
they provide a joint encoding of the cost functions and the syntax DAG of LTL
formulas using Mixed Integer Linear Programming (MILP). They rely on the
MILP solver IPOPT [71] for their implementation.

4 Enumeration-Based Approaches

The constraint-based approaches discussed in Sect. 3 provide a systematic
method for learning arbitrary LTL formulas. However, the performance of these
approaches is limited by the capabilities of the underlying solvers. The search
techniques typically employed in the solvers are not optimized for learning LTL
formulas, thus often leading to bottlenecks in scalability.

As a result, recent works have started exploring alternative search strategies
that are tailored to navigate through the search space of LTL formulas efficiently.
These approaches search through relevant/interesting LTL formulas in a more
targeted manner that results in scalability, typically at the expense of the mini-
mality of the learned formulas.

A prominent example of this approach is Scarlet, a tool developed by Raha
et al. [60,61] that detects and accumulates common temporal patterns in a
given sample. For instance, analyzing a sample consisting of a positive word
u = {p}{p}{q}{p}{r}{p} and a negative word v = {p}{p}{r}{p}{q}, Scarlet
extracts the formula F(q ∧ F(r)), which captures the order in which the propo-
sitions q and r appear. By employing dynamic programming, the tool identifies

Survey on Mining LTL Specifications 117

a large number of such patterns, which are then translated into a simple yet
expressive LTL fragment named directed LTL. Scarlet then combines a suitable
selection of directed LTL formulas to construct a consistent formula using a novel
procedure called Boolean subset cover. Unlike constraint-based approaches, Scar-
let’s search strategy integrates syntax and semantics computations in a single,
unified process, resulting in a more efficient and effective method for learning
LTL formulas.

Another notable example is the highly parallelized algorithm developed by
Valizadeh et al. [69], which is designed to leverage the processing power of Graph-
ics Processing Units (GPUs). Their approach comprises two pivotal procedures:
relaxed unique checks (RUCs) and divide and conquer (D&C). The RUCs pro-
cedure performs a bottom-up search through the syntax of LTL formulas, elimi-
nating redundant formulas that exhibit the same behavior on the given sample.
Since this procedure is resource-intensive, it cannot be easily extended to large
samples. To mitigate this, the D&C procedure partitions the sample into smaller,
manageable subsets on which RUCs can be applied in parallel. The resulting
formulas can then be combined using Boolean combinations to generate one con-
sistent LTL formula. Internally, Valizadeh et al.’s approach employs bit-vectors
to encode the semantics of LTL formulas, which can be highly efficiently imple-
mented on GPUs. By exploiting the parallel processing capabilities of GPUs, the
authors achieve a significant speedup, making their approach perhaps the most
scalable one of all.

Ghiorzi et al. [30] propose a range of heuristics to expedite the enumeration of
LTL formulas. Inspired by Riener [64], the authors first employ an enumeration
strategy based on partial DAGs to navigate the search space quickly. Then, they
utilize LTL rewrite rules to eliminate equivalent and redundant formulas, lever-
aging rules such as ϕ∧¬ϕ ≡ false and ¬Fϕ ≡ G(¬ϕ). Additionally, the authors
efficiently eliminate tautologies and contradictions by alternately checking the
satisfaction of enumerated LTL formulas on positive and negative examples.

5 Neural Network-Based Approaches

Recent research also focuses on leveraging the optimized training capabilities
of neural networks to achieve scalability in the LTL learning process. However,
due to the inherent uncertainty of neural network training, these approaches
lack theoretical guarantees regarding the consistency of the learned LTL formu-
las. Nonetheless, they can produce reasonably good LTL formulas from large,
typically noisy datasets.

The current approaches specifically exploit Graph Neural Networks
(GNNs) [36] to learn LTL formulas. GNNs are a powerful neural architecture
that learns vector representations of vertex and edge features, typically called
embeddings. More formally, GNNs define a message-passing process between ver-
tices in a graph, where each vertex aggregates information from its neighbors to
update its own representation. This process is repeated several times, allowing
the model to learn complex patterns and relationships between vertex and edge
features.

118 D. Neider and R. Roy

The critical insight to understanding the connection of LTL and GNNs is to
view a word w = a1a2 . . . an as a linear graph v1 → v2 · · · → vn with n nodes.
This representation allows associating a feature vector xi to each node vi that
tracks the satisfaction of the different subformulas of a prospective LTL formula
ϕ when evaluated at the i-position of an example (see the definition of the model
relation on Page 4). By leveraging message passing, the satisfaction of the entire
formula ϕ can be computed by aggregating the feature vectors of nodes vj with
j > i according to the semantics of LTL.

Luo et al. [48] built upon the insight of representing words as linear graphs
to train a GNN on a sample S = (P, N). Subsequently, the authors use the
learned network weights to extract an LTL formula that closely approximates
the behavior of the GNN on the given sample.

Although Luo et al.’s work pioneered the use of GNNs for learning LTL
formulas, it suffers from the limitation that the extracted LTL formula might
accurately capture the behavior of the trained GNN. Wan et al. [72] address this
shortcoming by introducing an enhanced architecture. In particular, the authors
devise a faithful encoding of the LTL semantics within the GNN architecture,
achieved through parametric constraints on the network weights. This innovative
encoding ensures that a consistent LTL formula can always be reliably extracted
from the trained GNN.

6 Other Settings

Our discussion thus far has centered around the classical passive learning prob-
lem for LTL as defined in Definition 1. However, several variants of this problem
have been explored, each presenting unique challenges. In this section, we discuss
three such extensions, highlighting their distinct characteristics and proposed
solutions.

6.1 Mining LTL Based on Templates

A key property of Definition 1 is that it makes no restrictions on the syntac-
tic structure of an LTL formula as long as this formula is consistent with the
given sample. In practice, however, users sometimes want to incorporate domain
knowledge into the learning process or must confine the solutions to specific LTL
fragments. Unfortunately, the methods discussed in Sects. 3 to 5 do not offer this
level of fine-grained control and, thus, cannot be applied in such situations.

To address this limitation, researchers have proposed methods that allow
users to provide a partial formula, typically referred to as a template or sketch,
where parts can be omitted (typically indicated by a question mark). In this
framework, the task of a learning algorithm is then to infer the missing part of
a template (or sketch) so that the completed formula is consistent with a given
set of examples. Notable examples operating in this setting are the methods by
Lemieux et al. [44] and Lutz et al. [49]. The former approach considers templates,
called property types, in which question marks serve as placeholders for missing

Survey on Mining LTL Specifications 119

propositions. By contrast, the latter approach introduces so-called sketches in
which placeholders can represent missing operators and even entire subformulas.

For example, Li et al. [45] have developed a method to mine LTL speci-
fications in the GR(1) fragment of LTL, using templates that include GF?,
G(? → X?), and others. Similarly, Shah et al. [68] have focused on conjunctive
LTL formulas built from a limited set of typical temporal properties collected by
Dwyer et al. [22]. Another notable example is the work by Kim et al. [39], which
considers a set of interpretable LTL templates originating in software system
development and seeks to infer formulas robust to noise in the input data.

6.2 Mining LTL from Natural Language

One of the significant barriers to adopting temporal logic in practice is the limited
expertise of practitioners and engineers in this area [34,37]. As a result, they often
prefer to specify their requirements in natural language, which is more intuitive
and accessible to them. Several research efforts have focused on bridging this gap
by automatically extracting LTL formulas from natural language descriptions.
Early approaches [24,31,33,43,55] achieved this by efficiently parsing English
sentences to translate them into LTL and other temporal logic formulas. The
advent of data-driven techniques has led to the development of neural-network-
based methods [17,35,56] that rely on human-labeled pairs of natural language
descriptions and corresponding logic formulas. More recently, researchers have
begun to leverage the impressive natural language understanding capabilities of
Large Language Models to enhance the translation capabilities further [21,25,
46,57], offering promise for more effective and efficient property specification.

6.3 Logics Beyond LTL

The widespread adoption of continuous-time logics, such as Signal Temporal
Logic (STL), in the context of cyber-physical systems has spawned a significant
body of research focused on learning specifications in STL. In fact, a compre-
hensive survey by Bartocci et al. [9] is dedicated entirely to this problem. Most
of these works concentrate on learning formulas with a specific syntactic struc-
ture [13] or identifying time intervals for given STL formulas [4,41,42]. A handful
of works also tackle the more general passive learning problem, where the goal
is to learn STL formulas of arbitrary structure [50,54].

In addition to linear-time properties, there exist several works focusing
on learning branching-time properties in Computation Tree Logic (CTL). For
instance, Chan [16] addresses the problem of completing simple CTL templates,
while Wasylkowski and Zeller [73] investigate inferring operational preconditions
for Java methods in CTL. Recent research by Pommellet et al. [59] and Bordais
et al. [14] demonstrate that constraint-based techniques can be used to learn
not only CTL but also Alternating-time Temporal Logics (ATL), which extends
CTL for multi-agent systems.

120 D. Neider and R. Roy

Apart from LTL, STL and CTL, there is also research on learning formulas
in other temporal logics, such as Metric Temporal Logic (MTL) [62], and the
Property Specification Language (PSL) [65].

7 Conclusion

This survey provides a comprehensive overview of the diverse research efforts
focused on learning specifications in temporal logic, with a particular emphasis
on Linear Temporal Logic. We systematically compared and contrasted these
works based on their search strategies to navigate the vast space of possible
formulas. Some approaches leverage off-the-shelf solvers, while others propose
customized enumeration techniques or exploit advances in deep learning to facil-
itate the learning process. By synthesizing the strengths and limitations of these
approaches, we aim to provide a roadmap for future research in this exciting and
rapidly evolving field.

Acknowledgements. Rajarshi Roy acknowledges partial funding by the ERC under
the European Union’s Horizon 2020 research and innovation programme (grant agree-
ment No.834115, FUN2MODEL) and Daniel Neider acknowledges funding by Deutsche
Forschungsgemeinschaft (DFG) (grant number 459419731).

References

1. Alur, R., et al.: Syntax-guided synthesis. In: Formal Methods in Computer-Aided
Design, FMCAD 2013, Portland, OR, USA, 20–23 October 2013, pp. 1–8. IEEE
(2013). https://ieeexplore.ieee.org/document/6679385/

2. Ammons, G., Bodík, R., Larus, J.R.: Mining specifications. In: Launchbury, J.,
Mitchell, J.C. (eds.) Conference Record of POPL 2002: The 29th SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, Portland, OR,
USA, 16–18 January 2002, pp. 4–16. ACM (2002). https://doi.org/10.1145/503272.
503275

3. Arif, M.F., Larraz, D., Echeverria, M., Reynolds, A., Chowdhury, O., Tinelli,
C.: SYSLITE: syntax-guided synthesis of PLTL formulas from finite traces. In:
FMCAD, pp. 93–103. IEEE (2020)

4. Asarin, E., Donzé, A., Maler, O., Nickovic, D.: Parametric identification of tempo-
ral properties. In: Khurshid, S., Sen, K. (eds.) RV 2011. LNCS, vol. 7186, pp. 147–
160. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29860-8_12

5. Bacherini, S., Fantechi, A., Tempestini, M., Zingoni, N.: A story about formal
methods adoption by a railway signaling manufacturer. In: Misra, J., Nipkow, T.,
Sekerinski, E. (eds.) FM 2006. LNCS, vol. 4085, pp. 179–189. Springer, Heidelberg
(2006). https://doi.org/10.1007/11813040_13

6. Badeau, F., Amelot, A.: Using B as a high level programming language in an
industrial project: Roissy VAL. In: Treharne, H., King, S., Henson, M., Schneider,
S. (eds.) ZB 2005. LNCS, vol. 3455, pp. 334–354. Springer, Heidelberg (2005).
https://doi.org/10.1007/11415787_20

7. Baier, C., Katoen, J.: Principles of Model Checking. MIT Press, Cambridge (2008)

https://ieeexplore.ieee.org/document/6679385/
https://doi.org/10.1145/503272.503275
https://doi.org/10.1145/503272.503275
https://doi.org/10.1007/978-3-642-29860-8_12
https://doi.org/10.1007/11813040_13
https://doi.org/10.1007/11415787_20

Survey on Mining LTL Specifications 121

8. Barrett, C., et al.: CVC4. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011.
LNCS, vol. 6806, pp. 171–177. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-22110-1_14

9. Bartocci, E., Mateis, C., Nesterini, E., Nickovic, D.: Survey on mining signal tem-
poral logic specifications. Inf. Comput. 289(Part), 104957 (2022). https://doi.org/
10.1016/J.IC.2022.104957

10. Biere, A.: Picosat essentials. J. Satisf. Boolean Model. Comput. 4(2-4), 75–97
(2008). https://doi.org/10.3233/SAT190039

11. Bjørner, D., Havelund, K.: 40 years of formal methods. In: Jones, C., Pihlajasaari,
P., Sun, J. (eds.) FM 2014. LNCS, vol. 8442, pp. 42–61. Springer, Cham (2014).
https://doi.org/10.1007/978-3-319-06410-9_4

12. Bjørner, N.S., Phan, A.: νz - maximal satisfaction with Z3. In: Kutsia, T.,
Voronkov, A. (eds.) 6th International Symposium on Symbolic Computation in
Software Science, SCSS 2014, Gammarth, La Marsa, Tunisia, 7–8 December 2014.
EPiC Series in Computing, vol. 30, pp. 1–9. EasyChair (2014). https://doi.org/10.
29007/JMXJ

13. Bombara, G., Vasile, C.I., Penedo, F., Yasuoka, H., Belta, C.: A decision tree app-
roach to data classification using signal temporal logic. In: Proceedings of the 19th
International Conference on Hybrid Systems: Computation and Control, HSCC
2016, pp. 1–10. Association for Computing Machinery, New York (2016). https://
doi.org/10.1145/2883817.2883843

14. Bordais, B., Neider, D., Roy, R.: Learning branching-time properties in CTL and
ATL via constraint solving. CoRR abs/2406.19890 (2024). https://doi.org/10.
48550/ARXIV.2406.19890

15. Camacho, A., McIlraith, S.A.: Learning interpretable models expressed in linear
temporal logic. In: ICAPS, pp. 621–630. AAAI Press (2019)

16. Chan, W.: Temporal-logic queries. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000.
LNCS, vol. 1855, pp. 450–463. Springer, Heidelberg (2000). https://doi.org/10.
1007/10722167_34

17. Cherukuri, H., Ferrari, A., Spoletini, P.: Towards explainable formal methods: from
LTL to natural language with neural machine translation. In: Gervasi, V., Vogel-
sang, A. (eds.) REFSQ 2022. LNCS, vol. 13216, pp. 79–86. Springer, Heidelberg
(2022). https://doi.org/10.1007/978-3-030-98464-9_7

18. Chou, G., Ozay, N., Berenson, D.: Learning temporal logic formulas from sub-
optimal demonstrations: theory and experiments. Auton. Robots 46(1), 149–174
(2022). https://doi.org/10.1007/S10514-021-10004-X

19. Clarke, E.M., Biere, A., Raimi, R., Zhu, Y.: Bounded model checking using satisfi-
ability solving. Formal Methods Syst. Des. 19(1), 7–34 (2001). https://doi.org/10.
1023/A:1011276507260

20. Cofer, D., Miller, S.: DO-333 certification case studies. In: Badger, J.M., Rozier,
K.Y. (eds.) NFM 2014. LNCS, vol. 8430, pp. 1–15. Springer, Cham (2014). https://
doi.org/10.1007/978-3-319-06200-6_1

21. Cosler, M., Hahn, C., Mendoza, D., Schmitt, F., Trippel, C.: nl2spec: interactively
translating unstructured natural language to temporal logics with large language
models. In: Enea, C., Lal, A. (eds.) CAV 2023, Part II. LNCS, vol. 13965, pp. 383–
396. Springer, Heidelberg (2023). https://doi.org/10.1007/978-3-031-37703-7_18

22. Dwyer, M.B., Avrunin, G.S., Corbett, J.C.: Property specification patterns for
finite-state verification. In: Ardis, M.A., Atlee, J.M. (eds.) Proceedings of the Sec-
ond Workshop on Formal Methods in Software Practice, Clearwater Beach, Florida,
USA, 4–5 March 1998, pp. 7–15. ACM (1998). https://doi.org/10.1145/298595.
298598

https://doi.org/10.1007/978-3-642-22110-1_14
https://doi.org/10.1007/978-3-642-22110-1_14
https://doi.org/10.1016/J.IC.2022.104957
https://doi.org/10.1016/J.IC.2022.104957
https://doi.org/10.3233/SAT190039
https://doi.org/10.1007/978-3-319-06410-9_4
https://doi.org/10.29007/JMXJ
https://doi.org/10.29007/JMXJ
https://doi.org/10.1145/2883817.2883843
https://doi.org/10.1145/2883817.2883843
https://doi.org/10.48550/ARXIV.2406.19890
https://doi.org/10.48550/ARXIV.2406.19890
https://doi.org/10.1007/10722167_34
https://doi.org/10.1007/10722167_34
https://doi.org/10.1007/978-3-030-98464-9_7
https://doi.org/10.1007/S10514-021-10004-X
https://doi.org/10.1023/A:1011276507260
https://doi.org/10.1023/A:1011276507260
https://doi.org/10.1007/978-3-319-06200-6_1
https://doi.org/10.1007/978-3-319-06200-6_1
https://doi.org/10.1007/978-3-031-37703-7_18
https://doi.org/10.1145/298595.298598
https://doi.org/10.1145/298595.298598

122 D. Neider and R. Roy

23. Fecko, M.A., et al.: A success story of formal description techniques: Estelle spec-
ification and test generation for MIL-STD 188–220. Comput. Commun. 23(12),
1196–1213 (2000)

24. Finucane, C., Jing, G., Kress-Gazit, H.: LTLMoP: experimenting with language,
temporal logic and robot control. In: 2010 IEEE/RSJ International Conference on
Intelligent Robots and Systems, Taipei, Taiwan, 18–22 October 2010, pp. 1988–
1993. IEEE (2010). https://doi.org/10.1109/IROS.2010.5650371

25. Fuggitti, F., Chakraborti, T.: NL2LTL - a Python package for converting natural
language (NL) instructions to linear temporal logic (LTL) formulas. In: Proceedings
of the Thirty-Seventh AAAI Conference on Artificial Intelligence and Thirty-Fifth
Conference on Innovative Applications of Artificial Intelligence and Thirteenth
Symposium on Educational Advances in Artificial Intelligence, AAAI 2023/IAAI
2023/EAAI 2023. AAAI Press (2023). https://doi.org/10.1609/aaai.v37i13.27068

26. Gaglione, J.-R., Neider, D., Roy, R., Topcu, U., Xu, Z.: Learning linear temporal
properties from noisy data: a MaxSAT-based approach. In: Hou, Z., Ganesh, V.
(eds.) ATVA 2021. LNCS, vol. 12971, pp. 74–90. Springer, Cham (2021). https://
doi.org/10.1007/978-3-030-88885-5_6

27. Gario, M., Cimatti, A., Mattarei, C., Tonetta, S., Rozier, K.Y.: Model checking
at scale: automated air traffic control design space exploration. In: Chaudhuri, S.,
Farzan, A. (eds.) CAV 2016. LNCS, vol. 9780, pp. 3–22. Springer, Cham (2016).
https://doi.org/10.1007/978-3-319-41540-6_1

28. Gebser, M., Kaminski, R., Kaufmann, B., Schaub, T.: Answer Set Solv-
ing in Practice. Synthesis Lectures on Artificial Intelligence and Machine
Learning, Morgan & Claypool Publishers (2012). https://doi.org/10.2200/
S00457ED1V01Y201211AIM019

29. Gelfond, M., Lifschitz, V.: Classical negation in logic programs and disjunctive
databases. New Gener. Comput. 9(3/4), 365–386 (1991). https://doi.org/10.1007/
BF03037169

30. Ghiorzi, E., Colledanchise, M., Piquet, G., Bernagozzi, S., Tacchella, A., Natale,
L.: Learning linear temporal properties for autonomous robotic systems. IEEE
Robotics Autom. Lett. 8(5), 2930–2937 (2023). https://doi.org/10.1109/LRA.2023.
3263368

31. Ghosh, S., Elenius, D., Li, W., Lincoln, P., Shankar, N., Steiner, W.: ARSENAL:
automatic requirements specification extraction from natural language. In: NASA
Formal Methods, NFM (2016). https://doi.org/10.1007/978-3-319-40648-0_4

32. Giacomo, G.D., Vardi, M.Y.: Linear temporal logic and linear dynamic logic on
finite traces. In: Rossi, F. (ed.) IJCAI 2013, Proceedings of the 23rd Interna-
tional Joint Conference on Artificial Intelligence, Beijing, China, 3–9 August 2013,
pp. 854–860. IJCAI/AAAI (2013). http://www.aaai.org/ocs/index.php/IJCAI/
IJCAI13/paper/view/6997

33. Giannakopoulou, D., Pressburger, T., Mavridou, A., Rhein, J., Schumann, J.,
Shi, N.: Formal requirements elicitation with FRET. In: International Conference
on Requirements Engineering: Foundation for Software Quality, REFSQ (2020).
http://ceur-ws.org/Vol-2584/PT-paper4.pdf

34. Greenman, B., Saarinen, S., Nelson, T., Krishnamurthi, S.: Little tricky logic: mis-
conceptions in the understanding of LTL. Art Sci. Eng. Program. 7(2) (2023)

35. Hahn, C., Schmitt, F., Kreber, J.U., Rabe, M.N., Finkbeiner, B.: Teaching tempo-
ral logics to neural networks. In: 9th International Conference on Learning Rep-
resentations, ICLR 2021, Virtual Event, Austria, 3–7 May 2021. OpenReview.net
(2021). https://openreview.net/forum?id=dOcQK-f4byz

https://doi.org/10.1109/IROS.2010.5650371
https://doi.org/10.1609/aaai.v37i13.27068
https://doi.org/10.1007/978-3-030-88885-5_6
https://doi.org/10.1007/978-3-030-88885-5_6
https://doi.org/10.1007/978-3-319-41540-6_1
https://doi.org/10.2200/S00457ED1V01Y201211AIM019
https://doi.org/10.2200/S00457ED1V01Y201211AIM019
https://doi.org/10.1007/BF03037169
https://doi.org/10.1007/BF03037169
https://doi.org/10.1109/LRA.2023.3263368
https://doi.org/10.1109/LRA.2023.3263368
https://doi.org/10.1007/978-3-319-40648-0_4
http://www.aaai.org/ocs/index.php/IJCAI/IJCAI13/paper/view/6997
http://www.aaai.org/ocs/index.php/IJCAI/IJCAI13/paper/view/6997
http://ceur-ws.org/Vol-2584/PT-paper4.pdf
https://openreview.net/forum?id=dOcQK-f4byz

Survey on Mining LTL Specifications 123

36. Hamilton, W.L., Ying, R., Leskovec, J.: Representation learning on graphs: meth-
ods and applications. IEEE Data Eng. Bull. 40(3), 52–74 (2017). http://sites.
computer.org/debull/A17sept/p52.pdf

37. Holzmann, G.J.: The logic of bugs. In: SIGSOFT FSE, pp. 81–87. ACM (2002)
38. Ielo, A., Law, M., Fionda, V., Ricca, F., De Giacomo, G., Russo, A.: Towards

ILP-based LTLF passive learning. In: Bellodi, E., Lisi, F.A., Zese, R. (eds.) ILP
2023. LNCS, vol. 14363, pp. 30–45. Springer, Heidelberg (2023). https://doi.org/
10.1007/978-3-031-49299-0_3

39. Kim, J., Muise, C., Shah, A., Agarwal, S., Shah, J.: Bayesian inference of linear
temporal logic specifications for contrastive explanations. In: IJCAI, pp. 5591–5598.
ijcai.org (2019)

40. Klein, G., et al.: seL4: formal verification of an operating-system kernel. Commun.
ACM 53(6), 107–115 (2010)

41. Kong, Z., Jones, A., Belta, C.: Temporal logics for learning and detection of anoma-
lous behavior. IEEE Trans. Autom. Control 62(3), 1210–1222 (2017). https://doi.
org/10.1109/TAC.2016.2585083

42. Kong, Z., Jones, A., Medina Ayala, A., Aydin Gol, E., Belta, C.: Temporal
logic inference for classification and prediction from data. In: Proceedings of
the 17th International Conference on Hybrid Systems: Computation and Control,
HSCC 2014, pp. 273–282. Association for Computing Machinery, New York (2014).
https://doi.org/10.1145/2562059.2562146

43. Kress-Gazit, H., Fainekos, G.E., Pappas, G.J.: Translating structured English to
robot controllers. Adv. Robot. 22(12), 1343–1359 (2008)

44. Lemieux, C., Beschastnikh, I.: Investigating program behavior using the texada
LTL specifications miner. In: Cohen, M.B., Grunske, L., Whalen, M. (eds.) 30th
IEEE/ACM International Conference on Automated Software Engineering, ASE
2015, Lincoln, NE, USA, 9–13 November 2015, pp. 870–875. IEEE Computer Soci-
ety (2015). https://doi.org/10.1109/ASE.2015.94

45. Li, W., Dworkin, L., Seshia, S.A.: Mining assumptions for synthesis. In: MEM-
OCODE, pp. 43–50. IEEE (2011)

46. Liu, J.X., et al.: Lang2LTL: translating natural language commands to tempo-
ral robot task specification. CoRR abs/2302.11649 (2023). https://doi.org/10.
48550/ARXIV.2302.11649

47. Lowe, G.: Breaking and fixing the Needham-Schroeder public-key protocol using
FDR. Softw. Concepts Tools 17(3), 93–102 (1996)

48. Luo, W., Liang, P., Du, J., Wan, H., Peng, B., Zhang, D.: Bridging LTLf inference
to GNN inference for learning LTLf formulae. In: AAAI, pp. 9849–9857. AAAI
Press (2022)

49. Lutz, S., Neider, D., Roy, R.: Specification sketching for linear temporal logic.
In: André, É., Sun, J. (eds.) ATVA 2023, Part II. LNCS, vol. 14216, pp. 26–48.
Springer, Cham (2023). https://doi.org/10.1007/978-3-031-45332-8_2

50. Mohammadinejad, S., Deshmukh, J.V., Puranic, A.G., Vazquez-Chanlatte, M.,
Donzé, A.: Interpretable classification of time-series data using efficient enumer-
ative techniques. In: HSCC 2020: 23rd ACM International Conference on Hybrid
Systems: Computation and Control, Sydney, New South Wales, Australia, 21–24
April 2020, pp. 9:1–9:10. ACM (2020). https://doi.org/10.1145/3365365.3382218

51. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78800-3_24

http://sites.computer.org/debull/A17sept/p52.pdf
http://sites.computer.org/debull/A17sept/p52.pdf
https://doi.org/10.1007/978-3-031-49299-0_3
https://doi.org/10.1007/978-3-031-49299-0_3
https://doi.org/10.1109/TAC.2016.2585083
https://doi.org/10.1109/TAC.2016.2585083
https://doi.org/10.1145/2562059.2562146
https://doi.org/10.1109/ASE.2015.94
https://doi.org/10.48550/ARXIV.2302.11649
https://doi.org/10.48550/ARXIV.2302.11649
https://doi.org/10.1007/978-3-031-45332-8_2
https://doi.org/10.1145/3365365.3382218
https://doi.org/10.1007/978-3-540-78800-3_24

124 D. Neider and R. Roy

52. Neider, D., Gavran, I.: Learning linear temporal properties. In: Bjørner, N.S.,
Gurfinkel, A. (eds.) 2018 Formal Methods in Computer Aided Design, FMCAD
2018, Austin, TX, USA, October 30 - November 2, 2018, pp. 1–10. IEEE (2018).
https://doi.org/10.23919/FMCAD.2018.8603016

53. Nemhauser, G.L., Wolsey, L.A.: Integer and Combinatorial Optimization. Wiley
Interscience Series in Discrete Mathematics and Optimization. Wiley (1988).
https://doi.org/10.1002/9781118627372

54. Nenzi, L., Silvetti, S., Bartocci, E., Bortolussi, L.: A robust genetic algorithm
for learning temporal specifications from data. In: McIver, A., Horvath, A. (eds.)
QEST 2018. LNCS, vol. 11024, pp. 323–338. Springer, Cham (2018). https://doi.
org/10.1007/978-3-319-99154-2_20

55. Nikora, A.P., Balcom, G.: Automated identification of LTL patterns in natural
language requirements. In: ISSRE 2009, 20th International Symposium on Software
Reliability Engineering, Mysuru, Karnataka, India, 16–19 November 2009, pp. 185–
194. IEEE Computer Society (2009). https://doi.org/10.1109/ISSRE.2009.15

56. Oh, Y., Patel, R., Nguyen, T., Huang, B., Pavlick, E., Tellex, S.: Planning with
state abstractions for non-Markovian task specifications. In: Bicchi, A., Kress-
Gazit, H., Hutchinson, S. (eds.) Robotics: Science and Systems XV, University
of Freiburg, Freiburg im Breisgau, Germany, 22–26 June 2019 (2019). https://doi.
org/10.15607/RSS.2019.XV.059

57. Pan, J., Chou, G., Berenson, D.: Data-efficient learning of natural language to
linear temporal logic translators for robot task specification. In: IEEE International
Conference on Robotics and Automation, ICRA 2023, London, UK, May 29 - June
2, 2023, pp. 11554–11561. IEEE (2023). https://doi.org/10.1109/ICRA48891.2023.
10161125

58. Pnueli, A.: The temporal logic of programs. In: 18th Annual Symposium on Foun-
dations of Computer Science, Providence, Rhode Island, USA, 31 October - 1
November 1977, pp. 46–57. IEEE Computer Society (1977). https://doi.org/10.
1109/SFCS.1977.32

59. Pommellet, A., Stan, D., Scatton, S.: SAT-based learning of computation tree
logic. In: Benzmüller, C., Heule, M.J.H., Schmidt, R.A. (eds.) IJCAR 2024, Part I.
LNCS, vol. 14739, pp. 366–385. Springer, Cham (2024). https://doi.org/10.1007/
978-3-031-63498-7_22

60. Raha, R., Roy, R., Fijalkow, N., Neider, D.: Scalable anytime algorithms for learn-
ing fragments of linear temporal logic. In: Fisman, D., Rosu, G. (eds.) TACAS 2022.
LNCS, vol. 13243, pp. 263–280. Springer International Publishing, Cham (2022).
https://doi.org/10.1007/978-3-030-99524-9_14

61. Raha, R., Roy, R., Fijalkow, N., Neider, D.: Scarlet: scalable anytime algorithms
for learning fragments of linear temporal logic. J. Open Source Softw. 9(93), 5052
(2024). https://doi.org/10.21105/JOSS.05052

62. Raha, R., Roy, R., Fijalkow, N., Neider, D., Pérez, G.A.: Synthesizing efficiently
monitorable formulas in metric temporal logic. In: Dimitrova, R., Lahav, O., Wolff,
S. (eds.) VMCAI 2024. LNCS, vol. 14500, pp. 264–288. Springer, Cham (2024).
https://doi.org/10.1007/978-3-031-50521-8_13

63. Reynolds, A., Barbosa, H., Nötzli, A., Barrett, C., Tinelli, C.: cvc4sy: smart and
fast term enumeration for syntax-guided synthesis. In: Dillig, I., Tasiran, S. (eds.)
CAV 2019, Part II. LNCS, vol. 11562, pp. 74–83. Springer, Cham (2019). https://
doi.org/10.1007/978-3-030-25543-5_5

64. Riener, H.: Exact synthesis of LTL properties from traces. In: FDL, pp. 1–6. IEEE
(2019)

https://doi.org/10.23919/FMCAD.2018.8603016
https://doi.org/10.1002/9781118627372
https://doi.org/10.1007/978-3-319-99154-2_20
https://doi.org/10.1007/978-3-319-99154-2_20
https://doi.org/10.1109/ISSRE.2009.15
https://doi.org/10.15607/RSS.2019.XV.059
https://doi.org/10.15607/RSS.2019.XV.059
https://doi.org/10.1109/ICRA48891.2023.10161125
https://doi.org/10.1109/ICRA48891.2023.10161125
https://doi.org/10.1109/SFCS.1977.32
https://doi.org/10.1109/SFCS.1977.32
https://doi.org/10.1007/978-3-031-63498-7_22
https://doi.org/10.1007/978-3-031-63498-7_22
https://doi.org/10.1007/978-3-030-99524-9_14
https://doi.org/10.21105/JOSS.05052
https://doi.org/10.1007/978-3-031-50521-8_13
https://doi.org/10.1007/978-3-030-25543-5_5
https://doi.org/10.1007/978-3-030-25543-5_5

Survey on Mining LTL Specifications 125

65. Roy, R., Fisman, D., Neider, D.: Learning interpretable models in the property
specification language. In: IJCAI, pp. 2213–2219. ijcai.org (2020)

66. Roy, R., Gaglione, J., Baharisangari, N., Neider, D., Xu, Z., Topcu, U.:
Learning interpretable temporal properties from positive examples only. CoRR
abs/2209.02650 (2022)

67. Rozier, K.Y.: Specification: the biggest bottleneck in formal methods and auton-
omy. In: Blazy, S., Chechik, M. (eds.) VSTTE 2016. LNCS, vol. 9971, pp. 8–26.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-48869-1_2

68. Shah, A., Kamath, P., Shah, J.A., Li, S.: Bayesian inference of temporal task
specifications from demonstrations. In: NeurIPS, pp. 3808–3817 (2018)

69. Valizadeh, M., Fijalkow, N., Berger, M.: LTL learning on GPUS. In: Gurfinkel,
A., Ganesh, V. (eds.) CAV 2024. LNCS, vol. 14683, pp. 209–231. Springer, Cham
(2024). https://doi.org/10.1007/978-3-031-65633-0_10

70. Verhulst, E., de Jong, G.: OpenComRTOS: an ultra-small network centric embed-
ded RTOS designed using formal modeling. In: Gaudin, E., Najm, E., Reed,
R. (eds.) SDL 2007. LNCS, vol. 4745, pp. 258–271. Springer, Heidelberg (2007).
https://doi.org/10.1007/978-3-540-74984-4_16

71. Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-
search algorithm for large-scale nonlinear programming. Math. Program. 106(1),
25–57 (2006). https://doi.org/10.1007/S10107-004-0559-Y

72. Wan, H., Liang, P., Du, J., Luo, W., Ye, R., Peng, B.: End-to-end learning of LTLF
formulae by faithful LTLF encoding. In: AAAI, pp. 9071–9079. AAAI Press (2024)

73. Wasylkowski, A., Zeller, A.: Mining temporal specifications from object usage.
Autom. Softw. Eng. 18(3–4), 263–292 (2011)

https://doi.org/10.1007/978-3-319-48869-1_2
https://doi.org/10.1007/978-3-031-65633-0_10
https://doi.org/10.1007/978-3-540-74984-4_16
https://doi.org/10.1007/S10107-004-0559-Y

	What Is Formal Verification Without Specifications? A Survey on Mining LTL Specifications
	1 Introduction
	2 Preliminaries
	3 Constraint-Based Approaches
	4 Enumeration-Based Approaches
	5 Neural Network-Based Approaches
	6 Other Settings
	6.1 Mining LTL Based on Templates
	6.2 Mining LTL from Natural Language
	6.3 Logics Beyond LTL

	7 Conclusion
	References

