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Abstract
Solving a reinforcement learning (RL) problem
poses two competing challenges: fitting a poten-
tially discontinuous value function, and gener-
alizing well to new observations. In this paper,
we analyze the learning dynamics of temporal
difference algorithms to gain novel insight into
the tension between these two objectives. We
show theoretically that temporal difference learn-
ing encourages agents to fit non-smooth com-
ponents of the value function early in training,
and at the same time induces the second-order
effect of discouraging generalization. We corrob-
orate these findings in deep RL agents trained
on a range of environments, finding that neu-
ral networks trained using temporal difference
algorithms on dense reward tasks exhibit weaker
generalization between states than randomly ini-
tialized networks and networks trained with policy
gradient methods. Finally, we investigate how
post-training policy distillation may avoid this pit-
fall, and show that this approach improves general-
ization to novel environments in the ProcGen suite
and improves robustness to input perturbations.

1. Introduction
The use of function approximation in reinforcement learning
(RL) faces two principal difficulties: existing algorithms are
vulnerable to divergence and instability (Baird, 1993), and
value estimates that do converge tend to generalize poorly to
new observations (Zhang et al., 2018). Crucial to both
of these difficulties is the concept of interference, the degree
to which an update to an agent’s predictions at one state influ-
ences its predictions at other states. Function approximation
schemes with weaker interference, such as those induced
by tabular value functions or tile coding schemes, have been
shown empirically to produce more stable behaviour and
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faster convergence in value-based algorithms on a number of
classic control domains (Ghiassian et al., 2020). However,
such schemes by construction require treating the value
functions for different states independently, limiting the
function approximator’s potential for generalization.

Deep RL algorithms are notoriously prone to overfitting
to their training. environment’s observations and dynamics
(Lewandowski, 2020; Farebrother et al., 2018; Cobbe et al.,
2021; Zhang et al., 2018). While many prior works have
sought training methodologies to improve generalization
(Igl et al., 2019; Raileanu et al., 2021), the source of the
relative tendency of deep RL methods to overfit to their
training distribution remains under-explored. This work
studies a mechanism to explain why value-based deep RL
agents tend to generalize poorly to new environments and
observations. One avenue that we will draw on in particular
is the study of agents’ learning dynamics, which can reveal
insights into not just the convergence of algorithms, but
also into the trajectory taken by the agent’s value function.

In this work, we study how interference evolves in deep RL
agents. Our primary contributions will be twofold: first, to
provide a rigorous theoretical and empirical analysis of
the relationship between generalization, interference, and
the dynamics of temporal difference learning; second, to
study the effect of distillation, which avoids the pitfalls of
temporal difference learning, on generalization to novel
environments. Towards this first contribution, we extend the
analysis of Lyle et al. (2021) to show that the dynamics of
temporal difference learning accelerate convergence along
non-smooth components of the value function first, resulting
in implicit regularization towards learned representations
that generalize weakly between states. Our findings present
an explanation for widely-observed vulnerability of value-
based deep RL agents to overfit to their training observations
(Raileanu and Fergus, 2021; Zhang et al., 2018).

We then evaluate whether these findings hold empirically
across a range of popular deep RL benchmarks. We measure
interference by constructing a summary statistic which eval-
uates the extent to which optimization steps computed for
one state influence predictions on other states, which we call
the update rank. We find that value-based agents trained
with temporal difference (TD) methods learn representa-
tions with weak interference between states, performing
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updates similar to those of a lookup table, whereas networks
trained with policy-gradient losses learn representations
for which an update on one state has a large effect on the
policy at other states. Finally, we show that post-training pol-
icy distillation is a cheap and simple approach to improve the
generalization and robustness of learned policies.

2. Background
We focus on the reinforcement learning problem, which we
formalize as a Markov decision process (MDP) (Puterman,
1994). An MDP consists of a tuple ⟨X , A,R, P, γ,X0⟩,
where X denotes the set of states, A the set of actions,
R : X ×A→ R a reward function, P : X ×A→P(X ) a
possibly stochastic transition probability function, γ ∈ [0, 1)
the discount factor, and X0 the initial state. In reinforcement
learning, we seek an optimal policy π∗ : X → P(A)
which maximizes the expected sum of discounted returns
from the initial state.

Value-based reinforcement learning seeks to model the
action-value function

Qπ∗
(x, a) = E[

∑
t≥0

γtRt(xt, at)|x0 = x, a0 = a] (1)

as a tool to learn an optimal policy. Given a policy π, we
leverage a recursive expression of the value function as
the fixed point of the policy evaluation Bellman operator,
defined as follows

(TπQ)(x, a) = EP (x′|x,a),π(a′|x′)[R(x, a) + γQ(x′, a′)].
(2)

Temporal difference learning (Sutton, 1988) performs up-
dates based on sampled transitions (xt, at, rt, x

′
t), leverag-

ing a stochastic estimate of the Bellman targets.

To find an optimal policy, we turn to the control setting. We
let the policy πt, used to compute the target, be greedy
with respect to the current action-value function Qt. This
results in updates based on the Bellman optimality operator

(T ∗Qt)(x, a) = E[R(x, a) + γmax
a′

[Qπt(x′, a′)]] . (3)

In control problems, Q-learning (Watkins, 1989; Watkins
and Dayan, 1992) is a widely-used stochastic approxima-
tion of the Bellman optimality operator. When a function
approximator Qθ, with parameters θ, is used to approx-
imate Qπ, as in deep reinforcement learning, we perform
semi-gradient updates f(θ) of the following form, where
a∗ = argmaxa(Qθ(xt+1, a)).

f(θ) = (∇θQθ)[rt + γQθ(xt+1, a
∗)−Qθ(xt, at)] (4)

Policy gradient methods (Sutton et al., 2000) operate di-
rectly on a parameterized policy πθ. We let dπ denote the

stationary distribution induced by a policy π over states
in the MDP. Policy gradient methods aim to optimize the pa-
rameters θ of the policy so as to maximize the objective
J(πθ) = Ex∼dπθ

∑
a πθ(a|x)Qπθ (x, a). This objective

can be maximized by following the gradient

∇θJ(πθ) = Ext,at [∇θ log πθ(at|xt)Q
πθ (xt, at)] . (5)

Variations on this learning rule include actor-critic methods
(Konda and Tsitsiklis, 2000), which use a baseline given
by a value-based learner to reduce update variance, and
trust-region based methods, such as TRPO (Schulman et al.,
2015) and PPO (Schulman et al., 2017).

Generalization arises in reinforcement learning in the con-
text of solving new reward functions (Dayan, 1993), and
in the case of large observation spaces or procedurally-
generated environments, where some degree of general-
ization to new observations is necessary in order to obtain
good performance at deployment (Kirk et al., 2021). We will
be concerned in this paper with the generalization gap in-
curred by a policy learned on a set of environments EXtrain

on the test environment.

EEXtrain
,π[

∞∑
t=0

γtR(xt, at)]− EEXtest ,π
[

∞∑
t=0

γtR(xt, at)]

(6)
In general, EXtest

will be assumed to share some struc-
ture with EXtrain

. In large observation spaces, EXtest
may

be equal to EXtrain
with a different initial state distribu-

tion, while for multi-environment problems EXtrain
may

be homomorphic to EXtest (Zhang et al., 2020). A nec-
essary condition for generalization to new observations
is that a parameter update computed on a training state
changes the agent’s policy on the unseen test states, a
phenomenon we will refer to as interference. While in-
terference is defined in many ways in the literature, we
use it here to refer to the effect of an optimization step
performed on the loss of one transition to change the agent’s
predicted value of other states in the environment, following
a usage similar to Bengio et al. (2020).

3. Related work
Generalization in RL. A number of prior works have pre-
sented methods to quantify and improve generalization in
reinforcement learning (Igl et al., 2019; Raileanu et al.,
2021; Hansen and Wang, 2021; Laskin et al., 2020; Yarats
et al., 2020; Wang et al., 2020; Cobbe et al., 2020; Ken-
ton et al., 2019). The study of generalization in deep RL
has focused principally on overfitting to limited observations
(Song et al., 2019), and generalization to novel environments
(Farebrother et al., 2018; Cobbe et al., 2019). Work on gener-
alization in deep learning more broadly has shown that
neural networks are biased towards ‘simple’ functions, for
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varying notions of simplicity (Pérez et al., 2019; Hochre-
iter and Schmidhuber, 1995; Fort et al., 2020; Izmailov
et al., 2018; Farnia et al., 2020). The study of this bias
in reinforcement learning tasks (Yang et al., 2022), has
demonstrated that the bias of neural networks to smooth
functions can harm value approximation accuracy in deep
RL, and proposes tuning the scale of learnable Fourier fea-
tures as one means of ensuring high-frequency components
of the value function are captured, an approach also followed
by Brellmann et al. (2021). Raileanu and Fergus (2021) fur-
ther highlight that the process of learning a value function
can induce overfitting, improving generalization to novel
environments by decoupling value approximation and policy
networks in actor critic architectures.

Interference and stability. Off-policy temporal differ-
ence learning is not guaranteed to converge in the pres-
ence of function approximation (Baird, 1993; Tsitsiklis
and Van Roy, 1997), the setting under which deep RL
algorithms are most commonly used. The key driver of
instability is interference, which has been studied in set-
tings ranging from bandits (Schaul et al., 2019) to deep
RL (Fedus et al., 2020; Achiam et al., 2019). A number
of approaches which specifically reduce the effect of a gradi-
ent update for state s on the target V (s′) have been shown
to improve the stability and robustness of these methods
(Ghiassian et al., 2020; Lo and Ghiassian, 2019). Many
prior works have also endeavoured to define and analyze
interference in deep RL (Liu et al., 2020b;a; Bengio et al.,
2020), and to study its role in the stability of offline al-
gorithms (Kumar et al., 2021). Similarly, some recent
methods (Shao et al., 2020; Pohlen et al., 2018) include
an explicit penalty which discourages gradient updates from
affecting the target values.

4. Learning dynamics and generalization
This section will explore a tension between learning dy-
namics in neural networks, which tend to ‘generalize-then-
memorize’ (Kalimeris et al., 2019), and the dynamics of
temporal difference learning with tabular value functions,
discussed in Section 4.1, which tend to pick up informa-
tion about the value function’s global structure only late
in training. We go on to study how these learning dynamics
may affect the structure of gradient updates in the function
approximation setting in Section 4.2.

Eigendecomposition of transition operators. An impor-
tant concept in our theoretical analysis will be that of the
eigendecomposition of the environment transition matrix.
We will follow the precedent of prior work in consider-
ing diagonalizable transition matrices, for which further
discussion can be found in many excellent prior works
(Machado et al., 2017; Stachenfeld et al., 2017; Mahade-
van, 2005). The relationship between the smoothness of

an eigenfunction and its corresponding value has been noted
in prior work (Mahadevan, 2005; Mahadevan and Maggioni,
2007). However, previous discussion of this connection
has defaulted to an intuitive notion of smoothness without
providing an explicit definition. We provide a concrete
definition of the smoothness of a function on the state space
X of an MDPM in order to provide an unambiguous char-
acterization to which we will refer throughout this paper.
Definition 4.1. Given a function V : X → R, MDPM, and
policy π, define its expected variation ρ(V ) as

ρ(V ) =
∑
x∈X
|V (x)− EPπ(x′|x)V (x′)| . (7)

We say V is smooth if ρ(V ) is small.

This expression reveals a straightforward relationship be-
tween the eigenvalue λi associated with a normalized eigen-
vector vi and the smoothness of that eigenvector:∑
x∈X
|vi(x)− EPπ(x′|x)vi(x

′)| =
∑
x∈X
|(1− λi)vi(x)| (8)

In other words, the eigenvalue of an eigenvector precisely de-
termines the variation of the eigenvector over the entire state
space. If λ = 1, for example, then the eigenvector must
be constant over the MDP, whereas if λ = −1, then we have
EPπ(x′|x)[V (x′)] = −V (x) and the expected value fluc-
tuates between extremes when stepping from one state
to another. The variance over next-state values can in
principle be large even for functions of low variation by
our definition, though in our empirical evaluations (see e.g.
Figure 2) smooth eigenvectors tended to also exhibit little
variance. For our analysis of the expected updates performed
by TD learning, we will find the smoothness of the expected
updates to be a more useful quantity than the variance.

4.1. Tabular dynamics

We begin by studying the learning dynamics of tabular
value functions. We consider a continuous-time approx-
imation of the dynamics followed by the value function
using different update rules. Our analysis will contrast
Monte Carlo updates, which regress on the value function,
with Bellman updates, which regress on bootstrapped targets
and correspond to the expected update performed by TD
learning. For simplicity, we will ignore the state visita-
tion distribution; analogous resulst for non-uniform state-
visitation distributions are straightforward to derive from our
findings. We follow the approach of Lyle et al. (2021) in ex-
pressing the dynamics of Monte Carlo (MC) updates as
a continuous-time differential equation

∂tVt = V π − Vt

where Vt ∈ RX is a function on the state space X of the
MDP, resulting in the trajectory

Vt = exp(−t)(V0 − V π) + V π .
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Figure 1. Left: value function of a near-optimal policy on MountainCar. States correspond to velocity (x-axis) and position (y-axis). Middle:
eigenvectors associated with this policy computed for a discretization of the MountainCar state space. Right: value approximation
error by eigenbasis coefficient along a trajectory generated by tabular TD updates with learning rate α = 0.1 on the discretized
MountainCar MDP. We compare 25 of the most-smooth eigenfunctions with 25 eigenfunctions corresponding to negative eigenvalues, and
normalize the error by the magnitude of the projection of V π onto the basis spanned by each set of vectors. Each transparent line
corresponds to the dot product with a different eigenvector, while the solid lines show the mean over each subspace.

Intuitively, this corresponds to a ‘straight line’ trajectory
where the estimated value function Vt converges to V π

along the shortest path in RX . In practice, most deep
RL algorithms more closely resemble temporal difference
updates, which are expressed as

∂tVt = −(I − γPπ)Vt +Rπ (9)
Vt = exp(−t(I − γPπ))(V0 − V π) + V π . (10)

Under this decomposition, we can show that a predicted
value function trained via TD learning will converge more
slowly along smooth eigenvectors of Pπ .

Observation 4.1. Let Pπ be real diagonalizable, with
eigenvectors v1, . . . , v|X | corresponding to eigenvalues
λ1 > · · · ≥ λ|X |, and let Vt be defined as in Equation 10.
Write Vt =

∑|X |
i=1 α

t
ivi to express the value function at

time t with respect to the eigenbasis {vi}. Then the con-
vergence of Vt to the value function V π =

∑|X |
i=1 α

π
i vi

can be expressed as follows:

αt
i − απ

i = exp(−t(1− γλi))(α
0
i − απ

i ) .

The implications of Observation 4.1 on the learned value
function depend to some extent on the eigendecomposi-
tion of V π. If V π is equal to the constant function, then
we expect the high-frequency components of Vt to quickly
converge to zero. If V π puts weight on non-smooth eigen-
vectors, then early values of Vt may assign disproportion-
ately high weights to these components relative to their
contribution to V π. In practice, value functions tend to
exhibit a mixture of smooth and discontinuous regions,
as can be seen in the illustration of a near-optimal value
function in MountainCar in Figure 1. The correspond-
ing expression of V ∗ with respect to the eigenbasis of
Pπ consequently places non-zero coefficients on eigen-
vectors corresponding to negative eigenvalues in order to

fit this discontinuity, though its spectrum is dominated by
smooth eigenfunctions. The following result highlights
that non-smooth components of a predicted value function,
while contributing relatively little to the Monte Carlo error,
contribute disproportionately to the TD error, providing
an incentive to fit these components early in training.

Theorem 4.1. Let Pπ be real diagonalizable with eigen-
values λ1 > · · · > λn and (vk)

n
k=1 the corresponding

(normalized) eigenvectors. Then for any value function V ,
the TD error TD(Vt) = ∥Vt−TπVt∥2 can be bounded as as

∥TD(Vt)∥2 = ∥TπVt − Vt∥2 (11)

= ∥
∑

(1− γλi)(α
π
i − αt

i)(vi)∥2 (12)

≤
n∑

i=1

(απ
i − αt

i)
2(1− γλi)

2 (13)

with equality when Pπ has orthogonal eigenvectors.

Monte Carlo updates, which simply regress on the value
function, give equal weight to errors along any component of
the basis. These incentives provide some intuition for the dif-
ferent trajectories followed by Monte Carlo and TD updates:
in order to minimize the TD loss, the value function must
quickly become accurate along non-smooth components
of the value function; however, its error due to smooth com-
ponents such as the bias term of the function will have little
effect on the loss and so converges more slowly. We provide
an illustrative example of the relationship between the eigen-
value associated with a subspace and the convergence rate of
the value function in that subspace in Figure 1.

4.2. Function approximation with kernels

Most function approximation schemes leverage the assump-
tion that states which are close together in observation space
are likely to have similar values; i.e. they encode a pref-
erence towards smooth (with respect to the observations)
functions. This pushes against the tendency of temporal
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Figure 2. Networks trained to fit high-frequency target functions exhibit pathological interpolation properties when later fine-tuned
on a value function. Left: visualization of pre-training targets (top) and final value estimate (bottom) after the pre-trained network
is fine-tuned on the value function. Right: loss on the set of training states (top) and a finer-grained set of states which interpolate the training
set (bottom) of each fine-tuned network.

difference updates to encourage Vt to fit the components
of the value function with large variation first. To investigate
this tension, we consider the kernel gradient descent regime.

Formally, a kernel is a positive definite symmetric func-
tion K : X × X → R. In our case, we will define X
to be the state space of an MDP. Letting x ⊆ X , we
denote by K̃ the (symmetric) matrix K(x,x) with en-
tries K(x,x)i,j = K(xi,xj). Loosely speaking, a ker-
nel encodes the similarity between two states, allowing
us to incorporate certain forms of inductive bias into the
value function approximation. Importantly, the similarity of
two states under K does not inform us about how sim-
ilar the states’ initial values are, but rather how an update
to the value function at one state influences the value of
the other; in other words, in our setting it is a proxy for
the interference between two states. Under kernel gra-
dient descent, the trajectory of a function is defined in
terms of a kernel K and the function-space gradient of
a cost function. We can translate TD semi-gradient up-
dates into the kernel gradient descent regime as follows:

∂tVt = K̃((γPπ − I)Vt +Rπ) . (14)

It is straightforward then to obtain analogous results as
before on the convergence of Vt to V π based on the eigen-
decomposition of the matrix K̃(γPπ−I) in cases where this
matrix is positive definite, though many notable cases occur
where this condition does not hold. This decomposition will
not in general have a closed form in terms of the eigen-
decompositions of K̃ and Pπ, but special cases have been
studied in the setting of linear regression by Ghosh and
Bellemare (2020) and can be related to kernel gradient
descent straightforwardly as discussed in Appendix A.2.
This setting also describes the dynamics of neural networks
in the limit of infinite width (Jacot et al., 2018; Fort et al.,
2020; Lee et al., 2020), which follow kernel gradient descent
with respect to the neural tangent kernel.

A more interesting case occurs when we assume some states
in the environment are not updated during training.

Theorem 4.2. Let K be a kernel and π a fixed policy in an
MDP with finite state space X . Let Xtrain ⊂ X be a subset
of states in the support of π, Xtest = X \Xtrain, and let Vt

be a value trajectory obtained by applying kernel semi-
gradient updates on the set Xtrain to some initial value
function V0(Xtrain) with kernel K. Let Kall be defined as

Kall = K(Xtrain, Xtrain)⊕K(Xtest, Xtrain) . (15)

Then the trajectory of Vt on the entire state space X will
be as follows,

∂tVt(X) = (Kall)[(T
πVt − Vt)(Xtrain)] . (16)

A full derivation is provided in Appendix A.2. These dynam-
ics diverge notably from the standard kernel gradient descent
regime in that changes to predictions on the test set can now
influence the dynamics of Vt on the training set. A large
K(Xtest, Xtrain) implies that updates to the training set
carry great influence over predictions on the test set, but
at the cost of increasing asymmetry in Kall when viewed as
an operator on RX . In Appendix C.2 we illustrate how
this asymmetry can harm stability in the case of a sim-
ple radial basis function kernel when the test states are
used as bootstrap targets. Combining insights from 4.2
and Observation 4.1, we arrive at an intriguing conclu-
sion: in the case of smooth kernels, the components of
the value function most suitable to approximation via the
kernel K are precisely those which appear in the value
estimate of the training set only later in the trajectory. As a
result, the kernel does not receive the necessary informa-
tion to generalize accurately to new observations. This
observation runs contrary to the standard kernel regression
regime, where one argument in support of early stopping is
that kernel gradient descent methods converge along smooth
components fastest (Jacot et al., 2018). At the same time it is
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Figure 3. Agents trained on games from Atari. The networks initially exhibit low update rank, but after 50 iterations (5M frames
of experience), the updates rank increases significantly. This is tracked in the bottom plots over the course of approximately 7M
frames. Random parameters refers to the update rank obtained by a randomly initialized neural network.

an obvious effect of bootstrapping, which requires that
the agent update its predictions several times in order to
propagate information about the value function through
the entire input space. This effect is illustrated in Figure 10
in Appendix C.2.

4.3. Non-linear function approximation

The linearized dynamics followed in the neural tangent
regime fail to take into account the evolution of the net-
work features. We now turn our attention toward the effect
of temporal difference updates on the gradient structure
of a function approximator by considering the second-order
effects of TD semi-gradient updates under finite step sizes.
We consider the system

θt+1 ← θt + α∇θV (θt) · [(γPπ − I)V (θt) +Rπ] (17)

which can be viewed as an Euler discretization of the dynam-
ics described in Equation 10 in the presence of function
approximation. We will use the notation f(θt) to refer
to the semi-gradient update on parameters θt inducing value
function Vθt , and write TD(θ) = 1

2∥Vθ−□TπVθ∥2, where
the □ denotes a stop-gradient. This results in the following
gradient flow:

∂tθt = ∇θV (θt) · [(γPπ − I)V (θt) +Rπ] . (18)

Using the continuous-time system (18) to approximate the
discrete-time system (17) will gradually accumulate increas-
ing errors, proportional to (αn)2, as it does not take into
account the effect of the discrete step size on higher-order
gradients of Vθ. We apply a similar analysis to that of Barrett
and Dherin (2021) and Smith et al. (2020) to understand the
effect of the discrete learning dynamics on the gradient
structure of Vθ itself. We let

f1(θ) =
1

2
∇θ∥∇θTD(θ)∥2 + γ(∇⊤

θ V Pπ∇θV )f(θ) (19)

to obtain a second-order correction describing the effect of
gradient descent on the gradient structure of the learned
representation.

Observation 4.2 (Second-order dynamics). Let θt be de-
fined by the discrete-time system (17) with step size α. Let
f1(θ) be defined as in (19). Let θ̃t denote the trajectory
obtained by following the dynamics:

∂tθ̃t = f(θ̃t) +
α

2
f1(θ̃t) . (20)

Then we have θn ≈ θ̃nα+O((nα)3), where θ̃nα denotes the
value of θ̃t at time t = nα.

The form of f1 constructed in Equation 19 consists of two
terms: a semi-gradient norm penalty term with respect
to the instantaneous TD error, and a gradient dot prod-
uct term which discourages negative interference between
nearby states. Since early in training the TD error will
tend to be relatively discontinuous and less structured than
the true value function (see e.g. Figure 2), the gradient
norm penalty will have the effect of discouraging inter-
ference between states. Figure 3 illustrates how fitting
highly variable targets early in training can discourage a neu-
ral network from smoothly generalizing between states. We
observe a similar phenomenon in deep RL agents in Figure 3,
where networks trained in dense-reward games (whose early
TD targets will exhibit greater variation) exhibit weaker
interference after training than they did at initialization.

In combination, the findings of this section suggest that
the dynamics of temporal difference learning work to dis-
courage interference between states in deep RL by fitting
high-frequency components of the value function early
in training while also encouraging flatness in parameter
space. While this may result in more stable learning, as
highlighted in Theorem 4.2, it has the double-edged effect
of reducing the degree to which the network can gener-
alize to novel observations. The following section will
leverage these results to gain insight into deep RL agents
trained in rich-observation environments.
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Figure 4. Update dimension of actor-critic methods in ProcGen. Shading indicates minimum and maximum values over 4 seeds.
We observe that the update dimension of the separate critic architecture in DAAC (the lilac line) consistently has the highest update
rank early in training, while the actors have the lowest rank in the early training stages and only surpass the DAAC critic later in training.

5. Generalization and interference in deep RL
We now explore how TD learning dynamics influence the
representations and learned update structure of deep RL
agents. We begin by presenting a quantitative approach
to measure the degree to which interference is occurring
between states in the agent’s visitation distribution. Armed
with this metric, we evaluate the following hypotheses.
First, that deep neural networks trained with TD updates
will exhibit weaker interference between states as train-
ing progresses compared to their value at initialization
(H1). Second, we conjecture that networks trained with
TD learning will exhibit weaker interference than those
trained with policy gradient objectives (H2).

5.1. Representation evolution in value-based RL

We begin by developing intuition into how the represen-
tations learned by deep RL agents evolve over time. Given a
set of transitions τ1, . . . , τn of the form τi = (xi, ai, ri, x

′
i)

and a value function V with parameters θ, we let θi denote
the network parameters after performing an optimization
step with respect to the transition τi. We then construct
a matrix A entry-wise as follows:

Ai,j = Vθj (xi)− Vθ(xi) . (21)

See Figure 3 for an illustration. The properties of this matrix
will depend on the optimizer used to perform updates, lead-
ing to notable differences from the neural tangent kernel
regime studied elsewhere (Yang et al., 2022) in the case of
non-linear function approximators trained with adaptive
optimizers. At one extreme, the update matrix A for a
tabular value function will have non-zero entries only along
the diagonal and the matrix will have full rank. At the
other, if the value function were represented by a single
parameter θ ∈ R, then every row will be identical and
the matrix will have rank one. Thus, the rank of this ma-
trix can be interpreted as a proxy for whether an agent
tends to generalize updates between states (low rank), or

whether it memorizes the value of each state-action pair inde-
pendently from other states (high rank). In our evaluations,
we use an approximate version of the rank that discards neg-
ligible components of the matrix based on the singular value
decomposition, described in more detail in Appendix B.
We will refer to this quantity as the update rank. An alterna-
tive approach outlined by Daneshmand et al. (2021) involves
computing the Frobenius norm of the difference between the
matrix A and the identity, however this may overestimate
interference in optimizers which use momentum due to
constant terms in the update matrix.

We evaluate H1 by measuring the update rank of deep RL
agents trained on popular benchmarks. We train a stan-
dard deep Q-network (DQN) architecture on environments
from the Atari 2600 suite, and save checkpoints every 10 mil-
lion frames. We begin by visualizing the evolution of agents’
update matrices over the course of training in Figure 3. RL
agents trained in dense-reward environments tend to develop
update matrices which resemble those of tabular value func-
tions. Those trained in the absence of reward, i.e. those for
which the target value function has no high-frequency com-
ponents, maintain low-rank update matrices through training
as our theory would predict. We find that similar results hold
for a range of update rules, including distributional updates
performed in the C51 algorithm (Bellemare et al., 2017). We
include further evaluations in Appendix D.

5.2. Actor-critic methods

Policy gradient methods present an opportunity to avoid
the pathologies discussed previously in temporal difference
targets while still preserving other properties of the RL
problem. While these methods tend to exhibit other patholo-
gies, in particular suffering from high variance, there is
no reason to expect that this variance will discourage inter-
ference in the same way as in TD updates. We investi-
gate H2 using two different algorithms on the ProcGen
suite: PPO (Schulman et al., 2017), which uses a shared
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Figure 5. Performance and robustness to perturbations of different
distillation approaches in games from the Atari suite. Post-training
distillation results in policies that are more consistent under per-
turbations and under interpolation between observations. Axes
indicate the ℓ1 norm between the policy on the original input
batch and on the perturbed input batch.

representation network for both the actor and critic, and
DAAC (Raileanu and Fergus, 2021), where there are no
shared parameters between the actor and the critic. This
setup allows us to study both the effect of the TD loss
on a network’s update dimension, and long-term effect of
TD gradients on the representation. We run our evalua-
tions in the ProcGen environment (Cobbe et al., 2019),
which consists of 16 games with procedurally generated
levels. While the underlying mechanics of each game
remain constant across the different levels, the layout of
the environment may vary. The agent is given access to a
limited subset of the levels during training, in this case
10, and then evaluated on the full distribution.

We evaluate the update dimension of the actor and critic
networks of each method in Figure 4. The critic network in
DAAC, which receives only TD gradients, exhibits markedly
higher update rank in all environments in at least the early
stages of training, and often throughout the entire trajec-
tory, than the other networks which have access to the actor
gradients. Our results suggest that the actor gradients in the
PPO architecture exhibit a strong regularizing effect on
the representation, leading to lower update rank for the
critic than would be obtained by an independent critic archi-
tecture, but in a manner that is highly variable between
environments, highlighting the complexity of representation
learning in deep RL.

6. Post-training distillation and generalization
The previous sections have shown that TD learning dy-
namics discourage interference, and that while this may
have a beneficial effect on stability during training, it can
reduce the ability of the network to generalize to new obser-
vations. This bias towards memorization arises when, during

the network’s crucial early development stage, it is trained to
fit target functions that do not capture the global structure
of the value function. One simple solution to this prob-
lem is to train a freshly initialized network on the final
value function obtained by TD learning. If the learned
value function was able to pick up on the global structure
of the value function, then the freshly initialized network
will be able to benefit from incorporating this structure
into its predictions more systematically than the teacher.
Such approaches have seen success in prior work (Igl et al.,
2019; Nikishin et al., 2022); this section presents a deeper
study of a mechanism driving this success.

6.1. Value distillation

We first consider value distillation as a means of eliminating
the counterproductive bias towards memorization induced
by early TD targets. We leverage a data collection policy
from a pre-trained teacher network qt, and perform dis-
tillation of a freshly initialized network qs on this data.
We follow a similar procedure to that of Ostrovski et al.
(2021) to perform distillation of the function qs on data
collected sampled from the teacher’s replay buffer BT , lever-
aging their insight that distillation on all action values, rather
than only the value of the action taken by the teacher agent,
yields significantly higher performance. We additionally
study the effect of behaviour cloning with entropy regu-
larization, obtaining the objectives

ℓVD(qS, qT) = Es∼BT

[ ∑
a∈A

(qS(a)− qT(a))
2

]
(22)

ℓBC(θ) = Es,a∼BT
[log πθ(s, a) + λH(πθ(s)] (23)

where H(·) denotes the entropy of the policy. We set
λ = 1e − 2 in our evaluations. We show results for value
distillation (22), which regresses on the outputs of the frozen
Q-network, and behaviour cloning (23), which predicts the
action taken by the frozen Q-network. We track three quanti-
ties: the performance of the learned policy, the robustness of
the learned policy to perturbations, and the consistency of
the learned policy when interpolating between observations.
The performance is measured by following an ϵ-greedy
policy in the training environment, with ϵ = 0.01. The
robustness to perturbations is measured by tracking whether
the network takes the same action under a Gaussian perturba-
tion to its input as in the unperturbed observation. Finally,
we investigate the network’s interpolation behaviour by eval-
uating whether, given a convex combination of observations
o1 and o2, the network takes the same action under the
combination as it does in either of the original observations.

Figure 5 shows that the distilled networks are more ro-
bust to perturbations and are more consistent under in-
terpolations between observations. We observe that the
behaviour cloning method matches or nearly matches the
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Figure 6. Effect of policy distillation on generalization in environments from the Procgen suite. We plot the pretrained networks
train environment and test environment performance, along with the performance of the distilled agent on the test environments.
We see significant improvement on test environments in bigfish, caveflyer, chaser, climber, and bossfight.

performance of the pretrained agent in three of the four
environments, while also obtaining the best robustness. Both
behaviour cloning and value distillation improve upon the
teacher network that was trained online. We conclude that
while value distillation can mitigate some of the effect of TD
methods on interference, policy-based methods exhibit bet-
ter robustness properties. This finding motivates the next
section, where we will dig deeper into policy distillation.

6.2. Policy distillation

Thus far, we have studied generalization between states
seen during training. Given the success of policy distillation
to improve robustness, we now explore whether distillation
may also improve generalization to novel environments.
We return to the ProcGen benchmark, with the hypoth-
esis that post-training distillation of PPO agents should
produce policies which improve on the ability of the fi-
nal trained actor to generalize to new levels, provided that
the levels generated for the test set are sufficiently similar to
the training distribution that such generalization is feasible.
We reuse the PPO agents from Figure 4 as teacher net-
works. We train a freshly initialized network (the student)
to minimize the KL divergence with the teacher’s policy
πT on transitions collected by the teacher and stored in
a buffer BT , yielding the following objective:

Es∼BT
[DKL(πS(s)||πT (s)) + λH(πS)] . (24)

We then evaluate the distilled agent’s performance on the test
environments. Results are shown in Figure 6. We find
that post-training distillation consistently meets or improves
upon the generalization gap obtained by the original net-
work, in many environments significantly improving on
the final test set performance of the PPO agent. We at-
tribute this improvement to the absence of TD learning
gradients in the distillation process and the stationarity of the
distillation targets, avoiding the pitfalls of non-stationarity
highlighted by Igl et al. (2021). It is likely that the raw per-

formance obtained by the student could be improved using
lessons from the policy distillation literature (Czarnecki
et al., 2019; Rusu et al., 2016; Teh et al., 2017).

7. Conclusion
Our analysis has shown that temporal difference learning tar-
gets converge along non-smooth components of the value
function first, resulting in a bias towards memorization when
deep neural networks are employed as function approxima-
tors in value-based RL. In the context of prior work demon-
strating that weaker generalization can improve the stability
and convergence of RL algorithms, this phenomenon may be
beneficial to an agent’s stability, but comes at the cost of
observational overfitting. We further show that post-training
distillation improves generalization and robustness, mit-
igating some of the tendency of value-based RL objectives
to encourage overfitting. Our insights may prove useful in a
range of future directions, such as using different archi-
tectures during training and distillation, leveraging larger
neural network function approximators to minimize harmful
interference, and modifying the update rule used in TD learn-
ing to adaptively promote or inhibit interference between
inputs. Further, the role of the optimiser is fundamental
to the phenomena studied in this paper, and RL-specific
optimization approaches may benefit from our findings.
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delin Böhmer, and Shimon Whiteson. Transient non-
stationarity and generalisation in deep reinforcement
learning. Proceedings of the International Conference
on Learning Representations, 2021.

Pavel Izmailov, Dmitrii Podoprikhin, Timur Garipov,
Dmitry Vetrov, and Andrew Gordon Wilson. Averaging
weights leads to wider optima and better generalization.
In Conference on Uncertainty in Artificial Intelligence,
2018.

Arthur Jacot, Franck Gabriel, and Clément Hongler. Neural
tangent kernel: Convergence and generalization in neural
networks. In Advances in Neural Information Processing
Systems, 2018.



Learning Dynamics and Generalization in Reinforcement Learning

Dimitris Kalimeris, Gal Kaplun, Preetum Nakkiran, Ben-
jamin Edelman, Tristan Yang, Boaz Barak, and Haofeng
Zhang. SGD on neural networks learns functions of
increasing complexity. In Advances in Neural Informa-
tion Processing Systems, 2019.

Zachary Kenton, Angelos Filos, Owain Evans, and Yarin
Gal. Generalizing from a few environments in safety-
critical reinforcement learning. arXiv, 2019.

Robert Kirk, Amy Zhang, Edward Grefenstette, and Tim
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Tamara Tošić and Pascal Frossard. Graph-based regulariza-
tion for spherical signal interpolation. In 2010 IEEE
International Conference on Acoustics, Speech and Sig-
nal Processing, pages 878–881. IEEE, 2010.

John N Tsitsiklis and Benjamin Van Roy. An analysis
of temporal-difference learning with function approx-
imation. IEEE transactions on automatic control, 42
(5):674–690, 1997.

Kaixin Wang, Bingyi Kang, Jie Shao, and Jiashi Feng. Im-
proving generalization in reinforcement learning with
mixture regularization. In NeurIPS, 2020.

Christopher J C H Watkins. Learning from delayed rewards.
PhD thesis, Cambridge University, 1989.

Christopher JCH Watkins and Peter Dayan. Q-learning.
Machine learning, 8(3-4):279–292, 1992.

Ge Yang, Anurag Ajay, and Pulkit Agrawal. Overcoming the
spectral bias of neural value approximation. In Interna-
tional Conference on Learning Representations, 2022.

Denis Yarats, Ilya Kostrikov, and Rob Fergus. Image aug-
mentation is all you need: Regularizing deep reinforce-
ment learning from pixels. In International Conference on
Learning Representations, 2020.

Amy Zhang, Clare Lyle, Shagun Sodhani, Angelos Filos,
Marta Kwiatkowska, Joelle Pineau, Yarin Gal, and Doina
Precup. Invariant causal prediction for block MDPs. In
Proceedings of the 37th International Conference on Ma-
chine Learning, pages 11214–11224, 2020.

Chiyuan Zhang, Oriol Vinyals, Remi Munos, and Samy
Bengio. A study on overfitting in deep reinforcement
learning. arXiv, 2018.



Learning Dynamics and Generalization in Reinforcement Learning

A. Proofs
A.1. Characterizing smoothness in MDPs

Throughout the text, many references are made to ’smooth’ functions, without giving a strict definition. While this
is useful to convey a rough idea of the types of functions we are interested in, we provide a more rigorous discussion in this
section. First, we distinguish between smoothness with respect to a notion of distance in the observation space, for
example ℓ2 distance between vectors, and distance with respect to the MDP’s transition dynamics, which measures
how easily the agent can reach one state from another. In most settings of interest, the two definitions will largely
agree, motivating our use of the generic term smoothness in our discussion of neural network function approximation.
In these cases, the inductive bias of the neural network towards smooth functions over the observation space corresponds to an
inductive bias twoards functions that are smooth with respect to the MDP transition dynamics. However, this may not
always be the case. For example, when walking through a door that leads from one level to another in a video game; though the
last frame of the old level and the first frame of the new one may be visually distinct, they will have low distance in the MDP.

The notions of smoothness we refer to in Section 4.1 relates to the variation of the value function between adjacent states in
time. This definition resembles graph total variation (Tošić and Frossard, 2010), which characterizes the degree to
which a node’s value differs from the average of its neighbours. In our case, we treat the transition matrix Pπ as
a weighted directed graph, and will be interested in the quantity |V (x) − EPπ(x′|x)[V (x′)]|. We note trivially that
if V is an eigenvector of Pπ with eigenvalue λ, then∑

x

|V (x)− EPπ(x′|x)V (x′)| =
∑
x

|(1− λ)V (x)| (25)

In other words, the eigenvalue of an eigenvector precisely determines the variation of the eigenvector over the entire
state space. If λ = 1, for example, then the eigenvector must be constant in expectation over the MDP, whereas if
λ = −1, then we have EPπ(x′|x)[V (x′)] = −V (x) and the value fluctuates between extremes when stepping from
one state to another. We obtain an analogous result if, rather than taking the max over states, we take a weighted
average or a sum.

A.2. Proofs of main results

Observation 4.1. Let Pπ be real diagonalizable, with eigenvectors v1, . . . , v|X | corresponding to eigenvalues λ1 >

· · · ≥ λ|X |, and let Vt be defined as in Equation 10. Write Vt =
∑|X |

i=1 α
t
ivi to express the value function at time

t with respect to the eigenbasis {vi}. Then the convergence of Vt to the value function V π =
∑|X |

i=1 α
π
i vi can be

expressed as follows:

αt
i − απ

i = exp(−t(1− γλi))(α
0
i − απ

i ) .

Proof. Recall we assume the following dynamical system

∂tVt = −(I − γPπ)Vt +R

Inducing the trajectory

Vt = exp(−t(I − γPπ))(V0 − V π) + V π

As we assume Pπ is diagonalizable, this implies that (I − γPπ) is also diagonalizable. Let u1, . . . , un denote the
right eigenvectors of Pπ with corresponding eigenvalues λ1 ≥ · · · ≥ λn. Let V0 =

∑
α0
iui.

Vt =
∑

αt
iui

= exp(−t(I − γPπ))(
∑

α0
i − απ

i ui) +
∑

απ
i ui

=
∑

exp(−t(1− γλi))

(∑
(α0

i − απ
i )ui +

∑
απ
i ui

)



Learning Dynamics and Generalization in Reinforcement Learning

Now, we consider the value of Vt−V π along each coordinate. Note that we have not assumed an orthogonal eigenbasis, thus
cannot speak directly to the norm of the projection of this difference onto the eigenspace corresponding to each eigenvector λk.
However, treating the eigendecomposition as a basis, we can discuss how the coordinates αt

i of the value function Vt converge
with respect to this basis.

|Vt − V π|[i] = |αt
i − απ

i | = | exp(−t(1− γλi))(α
0
i − απ

i ) + απ
i − απ

i |
= | exp(−t(1− γλi))(α

0
i − απ

i )| = exp(−t(1− γλi))|(α0
i − απ

i )|

We conclude by noting that for large values of λi, the exponential term exp(−t(1 − γλi)) will decay more slowly as
a function of t than for smaller values of λi. Thus, these coordinates (which correspond to non-smooth functions over the state
space) will converge fastest. When the eigenvectors form an orthogonal basis, as is the case for symmetric Pπ, we can
go further and observe that this convergence will apply to the norm of the projection of the value function into the
corresponding eigenspace. Thus for symmetric Pπ, we obtain the following stronger convergence result, where Uk

denotes the eigenspace corresponding to the eigenvalue λk.

∥ΠUk
(Vt − V π)∥ = exp(−t(1− γλk))∥ΠUk

(V0 − V π)∥ (26)

Theorem 4.1. Let Pπ be real diagonalizable with eigenvalues λ1 > · · · > λn and (vk)
n
k=1 the corresponding (normalized)

eigenvectors. Then for any value function V , the TD error TD(Vt) = ∥Vt − TπVt∥2 can be bounded as as

∥TD(Vt)∥2 = ∥TπVt − Vt∥2 (11)

= ∥
∑

(1− γλi)(α
π
i − αt

i)(vi)∥2 (12)

≤
n∑

i=1

(απ
i − αt

i)
2(1− γλi)

2 (13)

with equality when Pπ has orthogonal eigenvectors.

Let V0 =
∑

αivi. Then, letting Vt be defined as in Equation 10.

TD(Vt) ≤
n∑

i=1

exp(−2t(1− γλi))(α
π
i − α0

i )
2(1− γλi)

2 . (27)

Proof. By our assumption on the diagonalizability of Pπ , we can leverage the previous result on the coordinates of Vt.

Vt − V π =
∑

exp(−t(1− γλi))

(∑
(α0

i − απ
i )ui

)
We then bound the TD error as follows.

∥Vt − γPπVt −R∥2 = ∥Vt − γPπVt + γPπV π − γPπV π −R∥
= ∥Vt − γPπV π −R− γPπ(Vt − V π)∥

Since V π = R+ γPπV π , we obtain the following.

= ∥(I − γPπ)(Vt − V π)∥2

= ∥
∑

(1− γλk)(α
t
i − απ

i )ui∥2

≤
∑

(απ
i − αt

i)
2(1− γλi)

2

The remainder follows a straightforward substitution.

Observation 4.2 (Second-order dynamics). Let θt be defined by the discrete-time system (17) with step size α. Let
f1(θ) be defined as in (19). Let θ̃t denote the trajectory obtained by following the dynamics:

∂tθ̃t = f(θ̃t) +
α

2
f1(θ̃t) . (20)

Then we have θn ≈ θ̃nα +O((nα)3), where θ̃nα denotes the value of θ̃t at time t = nα.
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Proof. While our prior analysis has considered the continuous time system θ̃t, this does not perfectly approximate the discrete
system θt. When a fixed step size is used, the first-order continuous-time approximation accrues error roughly proportional
to αt. We then follow the procedure of Barrett and Dherin (2021) to reduce the order of this error term, applying
a Taylor expansion to the evolution of θ̃t with respect to time. We will use the notation θ̃(t) to denote the explicit
dependence of θ̃ as a function of time.

θ̃(αt) = θ̃(0) +
∑ (αt)n

n!
θ(n)(0) (28)

= θ̃(0) + αtf(θ̃(0)) +
(αt)2

2
∇θf · f(θ̃(0)) +O(α3) (29)

= θ̃(0) + αtf(θ̃(0)) +
(αt)2

2
f1(θ̃(0)) +O(α3) (30)

Relating this back to the discrete system θt

θ1 = θ0 + αf(θ0) = θ̃(0) + αf(θ̃(0)) (31)

θ1 = θ̃(α1)− α2

2
f1(θ̃(0))−O(α3) (32)

Thus, the system ∂tθ̌t = f(θ̌t) +
α2

2 f1(θ̌t) satisfies

θ1 = θ̌(α) +O(α3) (33)

We are therefore interested in obtaining the form of f1 inducing the above approximation θ̌t. We begin by observing
that∇θ∥Vθ−□TπVθ∥2 = (Vθ−TVθ) ·∇θVθ = f(θ). Importantly, while the function f can be expressed as the gradient of
a function in which the target TπVθ is fixed, the target in the dynamical system will still depend on the parameter
θ and so will also evolve over time. This means that the change in the target TπVθ must still be accounted for in
our computation of f1(θ) = ∇θf(θ) · f(θ) – in particular, ∇θf(θ) does not equal the second derivative of the fixed-target
TD error ∥Vθ −□TπVθ∥2, but rather the gradient of f treated simply as a function of θ.

θ = θ0 + αnf(θ0) + (αn)2/2∇θf(θ0) · f(θ0) +O((αn)3) (34)

= θ0 + αnf(θ0) +
(αn)2

2
f1(θ0) +O((nα)3) (35)

We then express f1(θ) as follows.

f1(θ0) = ∇θ[f(θ0)] · [f(θ0)] (36)

= [∇2
θVθ · ((γPπ − I)Vθ + r) +∇θVθ · ((γPπ − I)∇θVθ)][f(θ)] (37)

= [∇2
θVθ · ((γPπ − I)Vθ + r)−∇θVθ · ∇θVθ][f(θ)] + γ[∇θVθP

π∇θVθ][f(θ)] (38)

Noting that the left hand side term is equal to the gradient of the gradient norm penalty for the stop-gradient version of the TD
regression problem, we simplify as follows:

= −1

2
∇θ

∥∥∥∥∇θ
1

2
∥Vθ −□TπVθ∥2

∥∥∥∥2 + γ[∇θVθ · Pπ · ∇θVθ][f(θ)] (39)

We note that, unlike in the stochastic gradient descent setting, f1 does not correspond to a gradient of any function. Instead, it
corresponds to the second-order correction we would get for a frozen target, which corresponds to a gradient norm penalty,
plus a term that measures the alignment of the gradients between each state and its expected successor. Intuitively,
both of these terms minimize the ‘variance’ in the loss induced by noisy, discrete gradient steps, but the right-hand-
side term incorporates the effect of the target’s evolution on the TD error. The flatter loss surfaces induced by the
gradient norm penalty will naturally lead to greater robustness to parameter perturbations. The gradient alignment
term reflects the observation previously that non-smooth functions contribute the most to the TD error, and so encourages the
first-order gradient effects on successive states to move in a similar direction.
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We note that this final observation seems to be at odds with the tendency for TD learning to encourage more tabular
updates. Why would a second-order correction term which promotes flat minima and gradient alignment result in tabular
updates? To answer this, we point to the tendency of TD targets to converge along. the non-smooth components of
the value function first. We are therefore faced with finding a flat region of parameter space to fit a discontinuous
function. A representation which succeeds at this will benefit from minimizing interference between states, as the
gradients for one transition will be on average uncorrelated with even nearby other states. The gradient alignment
penalty suggests that, while the implicit regularization will prefer flat minima, smooth interference patterns which move
other states in a similar direction to the current state will be penalized less than non-smooth directions.

Corollary A.1. The second-order dynamics push features towards precisely the worst direction w.r.t. stability. I.p.
looking at the set of positive definite representations introduced by Ghosh and Bellemare (2020) we see

{v : v⊤Pπv < γ−1∥v∥Ξ} (40)

whereas the optimal gradients for the second order term implicitly solve the following optimization problem

minEx∼η(x)[g(x)
⊤g(x)− γg(x)⊤(Pπg)(x)] (41)

Theorem 4.2. Let K be a kernel and π a fixed policy in an MDP with finite state space X . Let Xtrain ⊂ X be
a subset of states in the support of π, Xtest = X \ Xtrain, and let Vt be a value trajectory obtained by applying
kernel semi-gradient updates on the set Xtrain to some initial value function V0(Xtrain) with kernel K. Let Kall be defined as

Kall = K(Xtrain, Xtrain)⊕K(Xtest, Xtrain) . (15)

Then the trajectory of Vt on the entire state space X will be as follows,

∂tVt(X) = (Kall)[(T
πVt − Vt)(Xtrain)] . (16)

Proof. We leverage the dynamics ∂tVt = K(X,X)∇θVθ ·((γPπ−I)+r) and follow the derivation of Section 5 of Jacot et al.
(2018).

We can develop intuitions for the kernel gradient descent setting by considering the special case of linear function
approximation, where K(x1, x2) = ⟨ϕ(x1), ϕ(x2)⟩ for some feature map ϕ. For the moment, we will define Φ to
be a matrix consisting of features for every state in the state space X (i.e. we update all states in the mdp at once).
We then obtain

∂twt = αΦ⊤(Rπ + γPπΦwt − Φwt) . (42)

We can express the evolution of the value function constructed by multiplication of Φ and w as follows.

∂tVt = (∂wVt)
⊤∂twt = Φ∂twt (43)

= −Φ(Φ⊤(I − γPπ)Φ)w (44)

= −ΦΦ⊤(I − γPπ)Vt (45)
= −K(I − γPπ)Vt (46)

We further consider the dynamics of the value function on inputs outside of the set of states on which the Bellman
updates are computed as follows.

∂tVt(xtest) = (∂wVt(xtest))
⊤∂twt (47)

= −ϕ(xtest)
⊤Φ⊤(I − γPπ)Vt (48)

= −K(xtest, Xtrain)K(Xtrain, Xtrain)
−1∂tVt (49)

We now lift the assumption that all states are updated. In this more general kernel gradient descent setting, we let K be a kernel
as before, with K̃ = K(Xtrain, Xtrain) and κxtest

= K(xtest, Xtrain). We then obtain the following dynamics

∂tVt(xtest) = κxtest
K̃−1∂tVt(Xtrain) (50)
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In particular, this results in the following trajectory.

Vt(xtest) = V0(xtest) + κxtestK̃
−1[Vt(Xtrain)− V0(Xtrain)] (51)

An interesting case study occurs when we consider, e.g., off-policy evaluation where the bootstrap targets used in the TD
updates may not have been visited by the agent during training. This will be the case in many offline RL problems,
where the action that would be selected by the policy we seek to evaluate was not taken by the behaviour policy, and so the
agent leverages bootstrap targets which are not updated directly as part of the training process, but rather only indirectly via the
influence of updates to other states. In such cases, we will decompose the state space as X = Xtrain ⊕Xtest. The dynamics
we get in this case look quite different from standard kernel regression, as the dynamics of the training states will
depend on the predictions on the ‘test’ states. To condense notation, we will use TπVt to refer to an application of
the Bellman operator Vt 7→ γPπVt +Rπ .

∂tVt(Xtrain) = ΦtrainΦ
⊤
train((T

πVt)(Xtrain)− Vt(Xtrain)) (52)

∂tVt(Xtest) = ΦtestΦ
⊤
train((T

πVt)(Xtrain)− Vt(Xtrain)) (53)

We note that (TπVt)(Xtrain) depends on both V (Xtrain) and V (Xtest) due to the application of the Bellman operator
Tπ . We thus end up with the following joint system.

∂tVt(Xtrain ⊕Xtest) = ΦtestΦ
⊤
train((T

πVt)(Xtrain)− Vt(Xtrain))⊕ ΦtrainΦ
⊤
train((T

πVt)(Xtrain)− Vt(Xtrain)) (54)

∂tVt(Xtrain ⊕Xtest) = (Φtest ⊕ Φtrain)Φ
⊤
train((T

πVt)(Xtrain)− Vt(Xtrain)) (55)

Using a non-standard notation of K1 ⊕ K2 := X 7→ K1(X) ⊕ K2(X), we can then rewrite the above in terms of
the dot product kernel K(x, x′) as follows.

∂tVt(Xall) = (K̃ ⊕ κxtest)[(T
πVt − Vt)(Xtrain)] (56)

We emphasize that while this at first looks as though the dynamics are independent of the value Vt(Xtest), this is an artefact of
the Bellman operator notation (TπVt)(Xt), which hides the dependence of the Bellman targets TπVt on Xtest. In
particular, we can write (TπVt)(Xt) = ΠXtrain

[γPπVt(Xtrain ⊕ Xtest) + Rπ], which makes this dependence more
explicit but is less succinct.

B. Experiment details
B.1. Estimation of Update Rank

To estimate the update rank of an agent, we sample k transitions from the agent’s replay buffer and compute the matrix A(θ) as
described in Section 5. We use the agent’s current optimizer state and its current parameters in this computation. We then take
the singular value decomposition of A to obtain k singular values S = {σ1, . . . , σk}. We then threshold using the numerical
approach taken in prior works (Maddox et al., 2020), and compute the size of the set Sϵ = {σ ∈ S : σ > ϵmax(S)}.
This allows us to ignore directions of near-zero variation in the update matrix. In practice, we use ϵ = 0.1.

Because the Q-functions learned by value-based deep RL agents are vector- rather than scalar-valued functions of state, and
our estimator depends on an 2-dimensional update matrix, we must make a choice on how to represent the change
in the state-value function. We considered taking the maximum over actions, the mean over actions, selecting a fixed
action index, and selecting the action taken in the transition on which the update was computed, and found that both
choices produced similar trends. In all evaluations in this paper, Q-functions are reduced using the max operator. We apply the
same approach for distributional agents by taking the expectation over the distribution associated with each state-action pair.

To evaluate the policy-based agents, whose outputs correspond to distributions over actions, we compute the norm
of the difference in the output probability distributions for each state in lieu of taking the difference of output values.
I.e., the entry Ai,j = ∥pθ(xj)− pθi(xj)∥, where the discrete probability distribution pθ is taken as a vector.

B.2. ProcGen

The ProcGen benchmark consists of sixteen procedurally generated environments. Each environment consists of a set
of randomly generated levels, of which a fixed subset are used for training and a disjoint subset are used for evaluation. Levels
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Figure 7. Example levels from the dodgeball environment.

differ superficially in their observations and initial sprite layouts but retain the same underlying structure, as can be seen in
Figure 7. The observation space is a box space with the RGB pixels the agent sees in a numpy array of shape (64, 64, 3).

Our PPO and DAAC agents use the same hyperparameters and implementation as is provided by Raileanu and Fergus
(2021). Our behaviour cloning objective minimizes the KL divergence between the distillation agent the pretrained
agent’s policies, with an entropy bonus equal to that used to train the original PPO agent.

B.3. Atari

We additionally perform evaluations on environments from the Atari benchmarks. Due to computational constraints,
we consider only a subset of the entire benchmark. We obtain a mixture of easy games, such as pong and boxing,
and more challenging games like seaquest, where we measure difficulty by the time it takes for the agent to meet human
performance. For some experiments, we used the sparse-reward environment Montezuma’s Revenge.

In our distillation experiments, we train the original agent for 50M frames using ϵ-greedy exploration with ϵ = 0.1,
and train the distillation agents for a number of updates equivalent to 10M frames of data collected online. We base
our implementation off of the open-source implementations in Ostrovski et al. (2021).

For our behaviour cloning objective, we use the same architecture as is used for DQN, but feed the final layer of actions
into a softmax to obtain a probability distribution over actions, which we denote as Pθ(a|x). Given a state-action pair taken by
the target agent, we implement the following behaviour cloning loss for distillation

ℓ(θ, xi, ai) = − logPθ(ai|xi)− 0.1H(Pθ(·|xi)) (57)

where H denotes the entropy of a distribution. We use a replay capacity of 1e6 and allow the pre-trained agent to
collect additional data during distillation to further increase the training set size of the distilled agents.

C. Additional numerical evaluations
We provide additional numerical evaluations to provide additional insight into the theoretical results of Section 4.

C.1. Fourier analysis

We begin by studying the Fourier decomposition of value and reward functions in popular Atari domains by treating
the value function as a function of time rather than as a function of observations. In this sense, the Fourier decomposition is
measuring the continuity of the value function with respect to time and so is a closer approximation of the notion
of smoothness we focus on in Section 4.1. We show our evaluations in Figure 8.
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Figure 8. Fourier decomposition of Atari value functions when viewed as a function of time. We sample k consecutive states from
the replay buffer and compute the predicted value on each state (fixing an arbitrary action) to get a function V : {1, . . . , k} → R.
We then compute the Fourier decomposition of this function. The top row shows indices k = 0 . . . 50, while the bottom row omits the k = 0
index (the constant function) to better illustrate the rate of decay of the spectrum of each function.

C.2. Kernel gradient descent

We include an illustration of the kernel gradient descent dynamics described in Section 4.2 in Figure 9. We run our
evaluations using a radial basis function (RBF) kernel of varying lengthscale, with shorter lengthscales corresponding
to weaker generalization between states. While the shorter lengthscale corresponds to more stable learning dynamics
and better fitting of the value function on the training set, it also induces greater value approximation error on the
test states. In contrast, the longer lengthscales result in better generalization to novel test states under Monte Carlo
dynamics, but result in divergence for large values of γ.

Additionally, as promised in Section 4.2, we illustrate the role of smooth eigenfunctions in generalization in Figure 10.
To produce this figure, we randomly generate an unweighted graph and then construct an MDP whose dynamics correspond to
a random walk on this graph. We consider the generalization error of a kernel regression process where the kernel KS is of
the form KS(x, y) =

∑
i∈S vλi

(x)vλi
(y) for some S ⊆ spec(Pπ). In the right-hand-side plot of Figure 10, we set

S = {1, . . . , 20}, so that our analysis concentrates on smooth eigenfunctions. We then consider the generalization
error of this smooth kernel when we only regress on a subset of the state space selected uniformly at random1. We
study the effect of varying the size of this set, i.e. the fraction of states in the training set, in Figure 10, in order
to quantify the degree to which additional information about the value function translates to improved generalization. We
consider three regression problems: regression on V π , regression on the projection of V π onto the span of T = {v1, . . . , v20},
and B = {vn−19, . . . , vn}. Unsurprisingly, we see that the smooth kernel is able to improve its generalization performance as
the size of the training set increases when it is set to regress V π or ΠTV

π = V π
T . However, when the kernel regresses only

on the projection of V π onto the non-smooth eigenvectors, we don’t see a benefit of adding additional training points: because
there is no information about the smooth components of the function in the targets, adding additional data points will not
help to improve regression accuracy. The left hand side of the figure shows similarly that fitting local information
in the form of n-step returns for small n also does not provide the kernel with sufficient information for it to be able
to extrapolate and improve its generalization error as the size of the training set increases.

1Because the MDP-generating process is invariant to permutations of the state indices, we sample the indices {1, . . . , ⌊|X | ×
trainingfraction⌋}, and average over randomly generated MDPs.
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Figure 9. Numerical evaluations of kernel gradient descent with an RBF kernel. The MDP in question is a ”circle MDP” whose states
are integers n ∈ {1, . . . , 50}. We assume the agent is ‘trained’ on states 1 to 40, and doesn’t perform value function updates
on the final ten states, use the policy which always takes the agent from state n to n + 1 mod 50, and set a single reward at
state 25. Each row corresponds to a different value of the discount factor γ: the top corresponds to γ = 0.5, and the bottom to
γ = 0.99. Each column corresponds to the lengthscale which parameterizes the kernel, going left to right: 0.01, 1.0, and 100.
The left hand side and right hand side are distinguished by the number of update steps which the TD dynamics are evaluated for.
The LHS runs TD for only 20 steps, while the RHS runs it for 100 steps. MC updates are run for 1500 steps on both figures.
We see that for γ = 0.99, the larger-lengthscale kernel predictions diverge under TD dynamics, though not Monte Carlo. The
Monte Carlo dynamics further nicely illustrate the trade-off between generalizing out of the training set and ability to fit the discontinuities
of the value function on the training set. The larger lengthscale has lower MSE from the value function on the test set, but fails
to fit the discontinuity of the value function at the reward state. Meanwhile, the smaller lengthscales easily fit the value function
on the training set but predict zero for all over states.

Figure 10. Generalization of predicted function under kernel regression using n-step return targets evaluated on a random subset
of states (left), and projecting value function onto top or bottom eigenvectors of Pπ (right). We see a similar trend where for larger
n (corresponding to smoother targets), the kernel regression method generalizes better with increasing dataset sizes. For smaller
n and for the projection of V π onto non-smooth eigenvectors, adding additional data points doesn’t improve generalization performance.
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Figure 11. Results from post-training distillation on a variety of objectives. We note that advantage regression tends to exhibit the
lowest update rank, with the qr agent tending to exhibit the highest update rank and the q-regression objectives falling somewhere
in between. Because the behaviour cloning objective minimizes a cross-entropy loss rather than a regression loss, further investigation is
required to understand how the trajectory of its update dimension differs from those of the regression objectives.

D. Additional empirical results
D.1. Additional value distillation results

We consider three different types of regression to the outputs of the pre-trained network, along with two more traditional
bootstrapping methods for offline RL. Q-regression regresses the outputs of the distilled network to those of the
pre-trained network for every action. qa-regression only does q-value regression on the action taken by the pre-trained
agent. adv-regression regresses on the advantage function (computed as the q-value minus the mean over all
actions) given by the pre-trained agent; qr does quantile regression q-learning on the offline data; double-q performs a
standard double q-learning update on the offline data.

We find that all of these methods obtain an initial update rank significantly below that of the pre-trained network when they
begin training, which increases over time. Regression to the advantages obtains a significantly lower update rank than any
other method, suggesting that the advantage function may be much smoother than the action-value function. With
respect to performance on the original environment, we see that the methods which use all action values at every update
obtain significantly higher performance than those which only update a single action at a time. This improvement
in performance isn’t mediated by an auxiliary task effect or an increase in the network’s ability to distinguish states: the
advantage regression network attains low update rank but high performance, while the qr-regression task provides a
great deal of information to the representation but is not competitive with the q-regression network.

D.2. More detailed update trajectories

We include a more detailed view of the update matrices obtained by DQN and C51 agents during the first 7 million
frames of training, roughly 5% of the training budget, in Figure 12. We see that even early in training, the DQN
and C51 agents both exhibit significant overfitting behaviour. Note that states are sampled uniformly at random from
the replay buffer, and then assigned an index based on the output of a clustering algorithm to improve readability of the figures.
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Figure 12. Update matrices for distributional and DQN agents on four games from the Atari suite, chosen to represent a range of
reward densities and difficulties. Each iteration corresponds to 1e5 training frames.


