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Abstract7

Computing systems are becoming ever more complex, increasingly often incorporating deep learning8

components. Since deep learning is unstable with respect to adversarial perturbations, there is a9

need for rigorous software development methodologies that encompass machine learning. This paper10

describes progress with developing automated verification techniques for deep neural networks to11

ensure safety and robustness of their decisions with respect to input perturbations. This includes12

novel algorithms based on feature-guided search, games, global optimisation and Bayesian methods.13
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1 Introduction22

Computing devices have become ubiquitous and ever present in our lives: smartphones23

help us stay in touch with family and friends, GPS-enabled apps offer directions literally24

at our fingertips, and voice-controlled assistants are now able to execute simple commands.25

Artificial Intelligence is making great strides, promising many more exciting applications26

with an increased level of autonomy, from wearable medical devices to robotic care assistants27

and self-driving cars.28

Deep learning, in particular, is revolutionising AI. Deep neural networks (DNNs) have29

been developed for a variety of tasks, including computer vision, face recognition, malware30

detection, speech recognition and text analysis. While the accuracy of neural networks has31

greatly improved, they are susceptible to adversarial examples [17, 1]. An adversarial example32

is an input which, though initially classified correctly, is misclassified after a minor, perhaps33

imperceptible, perturbation. Figure 1 from [19] shows an image of a traffic light correctly34

classified by a convolutional neural network, which is then misclassified after changing only35

a few pixels. This illustrative example, though somewhat artificial, since in practice the36

controller would rely on additional sensor input when making a decision, highlights the37

need for appropriate mechanisms and frameworks to prevent the occurrence of similar issues38

during deployment.39

Clearly, the excitement surrounding the potential of AI and autonomous computing40

technologies is well placed. Autonomous devices make decisions on their own and on users’41

behalf, powered by software that today often incorporates machine learning components.42

Since autonomous device technologies are increasingly often incorporated within safety-43
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Figure 1 from [19]. Adversarial examples generated on Nexar challenge data (dashboard camera
images). (a) Green light classified as red with confidence 56% after one pixel change. (b) Green
light classified as red with confidence 76% after one pixel change. (c) Red light classified as green
with 90% confidence after one pixel change.

critical applications, they must trustworthy. However, software faults can have disastrous44

consequences, potentially resulting in fatalities. Given the complexity of the scenarios and45

uncertainty in the environment, it is important to ensure that software incorporating machine46

learning components is robust and safe.47

2 Overview of progress in automated verification for neural networks48

Robustness (or resilience) of neural networks to adversarial perturbations is an active topic49

of investigation. Without claiming to be exhaustive, this paper provides a brief overview of50

existing research directions aimed at improving safety and robustness of neural networks.51

Local (also called pointwise) robustness is defined with respect to an input point and52

its neighbourhood as the invariance of the classification over the neighbourhood. Global53

robustness is usually estimated as the expectation of local robustness over the test dataset54

weighted by the input distribution.55

2.1 Heuristic search for adversarial examples56

A number of approaches have been proposed to search for adversarial examples to exhibit57

their lack of robustness, typically by transforming the search into an optimisation problem,58

albeit without providing guarantees that adversarial examples do not exist if not found.59

In [17], search for adversarial examples is performed by minimising the L2 distance between60

the images while maintaining the misclassification. Its improvement, Fast Gradient Sign61

Method (FGSM), uses a cost function to direct the search along the gradient. In [5], the62

optimisation problem proposed in [17] is adapted to attacks based on other norms, such as63

L0 and L∞. Instead of optimisation, JSMA [13] uses a loss function to create a “saliency64

map” of the image, which indicates the importance of each pixel in the classification decision.65

[19] introduces a game-based approach for finding adversarial examples by extracting the66

features of the input image using the SIFT [9] method. Then, working on a mixture of67

Gaussians representation of the image, the two players respectively select a feature and a68

pixel in the feature to search for an adversarial attack. This method is able to find the69
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adversarial example in Figure 1 in a matter of seconds.70

2.2 Automated verification approaches71

In contrast to heuristic search for adversarial examples, verification approaches aim to provide72

formal guarantees on the robustness of DNNs. An early verification approach [14] encodes73

the entire network as a set of constraints and reduces the verification to the satisfiability74

problem. [8] improves on [14] by by extending the approach to work with piecewise linear75

ReLU functions, scaling up to networks with 300 ReLU nodes. [7] develops a verification76

framework that employs discretisation and a layer-by-layer refinement to exhaustively explore77

a finite region of the vector spaces associated with the input layer or the hidden layers, and78

scales to work with larger networks. [15] presents a verification approach based on computing79

the reachable set of outputs using global optimisation. In [12], techniques based on abstract80

interpretation are formulated, whereas [11] employ robust optimisation.81

Several approaches analyse the robustness of neural networks by considering the maximal82

size of the perturbation that will not cause a misclassification. For a given input point, the83

maximal safe radius is defined as the largest radius centred on that point within which no84

adversarial examples exist. Solution methods include encoding as a set of constraints and85

reduction to satisfiability or optimisation [18]. In [20], the game-based approach of [19] is86

extended to anytime computation of upper and lower bounds on the maximum safe radius87

problem, providing a theoretical guarantee that it can reach the exact value. The method88

works by ‘gridding’ the input space based on the Lipschitz constant and checking only the89

‘corners’ of the grid. Lower bound computation employs A? search.90

Since verification for state-of-the-art neural networks is an NP problem, testing methods91

that ensure high levels of coverage have also been developed [16].92

2.3 Towards probabilistic verification for deep neural networks93

All works listed above assume a trained network with fixed weights and therefore yield94

deterministic robustness guarantees. Since neural networks have a natural probabilistic95

interpretation, they lend themselves to frameworks for computing probabilistic guarantees on96

their robustness. Bayesian neural networks (BNNs) are neural networks with distributions97

over their weights, which can capture the uncertainty within the learning model [10]. The98

neural network can thus return an uncertainty estimate (typically computed pointwise, see99

[6]) along with the output, which is important for safety-critical applications.100

In [3], probabilistic robustness is considered for BNNs, using a probabilistic generalisation101

of the usual statement of (deterministic) robustness to adversarial examples [7], namely the102

computation of the probability (induced by the distribution over the BNN weights) of the103

classification being invariant over the neighbourhood around a given input point. Since104

the computation of the posterior probability for a BNN is intractable, the method employs105

statistical model checking [21], based on the observation that each sample taken from the106

(possibly approximate) posterior weight distribution of the BNN induces a deterministic107

neural network. The latter can thus be analysed using existing verification techniques for108

deterministic networks mentioned above (e.g. [7, 8, 15]).109

A related safety and robustness verification approach, which offers formal guarantees, has110

also been developed for Gaussian process (GP) models, for regression [4] and classification [2].111

In contrast to DNNs, where trade offs between robustness and accuracy have been observed112

[11, 3], robustness of GPs increases with training. More research is needed to explore these113

phenomena.114
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3 Conclusion115

The pace of development in Artificial Intelligence has increased sharply, stimulated by the116

advances and wide acceptance of the machine learning technology. Unfortunately, recent117

forays of technology companies into real-world applications have exposed the brittleness118

of deep learning. There is a danger that tacit acceptance of deep learning will lead to119

flawed AIs deployed in critical situations, at a considerable cost. Machine learning plays120

a fundamental role in enabling artificial agents, but developments so far have focused on121

‘narrow’ AI tasks, such as computer vision and speech recognition, which lack the ability122

to reason about interventions, counterfactuals and ‘what if’ scenarios. To achieve ‘strong’123

AI, greater emphasis is necessary on rigorous modelling and verification technologies that124

support such reasoning, as well as development of novel synthesis techniques that guarantee125

the correctness of machine learning components by construction. Importantly, automated126

methods that provide probabilistic guarantees which properly take account of the learning127

process have a role to play and need to be investigated.128
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