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Abstract

It is becoming increasingly important to understand the vulnerability of

machine learning models to adversarial attacks. One of the fundamental prob-

lems in adversarial machine learning is to quantify how much training data is

needed in the presence of so-called evasion attacks, where data is corrupted

at test time. In this thesis, we work with the exact-in-the-ball notion of ro-

bustness and study the feasibility of adversarially robust learning from the

perspective of learning theory, considering sample complexity.

We start with two negative results. We show that no non-trivial con-

cept class can be robustly learned in the distribution-free setting against an

adversary who can perturb just a single input bit. We then exhibit a sample-

complexity lower bound: the class of monotone conjunctions and any super-

class on the boolean hypercube has sample complexity at least exponential in

the adversary’s budget (that is, the maximum number of bits it can perturb

on each input). This implies, in particular, that these classes cannot be ro-

bustly learned under the uniform distribution against an adversary who can

perturb ω(log n) bits of the input.

As a first route to obtaining robust learning guarantees, we consider re-

stricting the class of distributions over which training and testing data are

drawn. We focus on learning problems with probability distributions on the

input data that satisfy a Lipschitz condition: nearby points have similar prob-

ability. We show that, if the adversary is restricted to perturbing O(log n)

bits, then one can robustly learn the class of monotone conjunctions with

respect to the class of log-Lipschitz distributions. We then extend this re-

sult to show the learnability of 1-decision lists, 2-decision lists and monotone

k-decision lists in the same distributional and adversarial setting. We finish

by showing that for every fixed k the class of k-decision lists has polynomial

sample complexity against a log(n)-bounded adversary. The advantage of

considering intermediate subclasses of k-decision lists is that we are able to

obtain improved sample complexity bounds for these cases.

As a second route, we study learning models where the learner is given

more power through the use of local queries. The first learning model we

consider uses local membership queries (LMQ), where the learner can query

the label of points near the training sample. We show that, under the uni-

form distribution, the exponential dependence on the adversary’s budget to
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robustly learn conjunctions and any superclass remains inevitable even when

the learner is given access to LMQs in addition to random examples. Faced

with this negative result, we introduce a local equivalence query oracle, which

returns whether the hypothesis and target concept agree in a given region

around a point in the training sample, as well as a counterexample if it exists.

We show a separation result: on the one hand, if the query radius λ is strictly

smaller than the adversary’s perturbation budget ρ, then distribution-free ro-

bust learning is impossible for a wide variety of concept classes; on the other

hand, the setting λ = ρ allows us to develop robust empirical risk minimiza-

tion algorithms in the distribution-free setting. We then bound the query

complexity of these algorithms based on online learning guarantees and fur-

ther improve these bounds for the special case of conjunctions. We follow by

giving a robust learning algorithm for halfspaces on {0, 1}n. Finally, since

the query complexity for halfspaces on Rn is unbounded, we instead consider

adversaries with bounded precision and give query complexity upper bounds

in this setting as well.
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Chapter 1

Introduction

In the standard theoretical analysis of machine learning, the learning process uses

and is evaluated on clean, unperturbed examples. Moreover, many machine learning

tasks are evaluated according to predictive accuracy alone, e.g., maximizing the

accuracy of a classifier with respect to the ground truth which labels the data.

Though there remain existing knowledge gaps in the literature (e.g., explaining

the success of deep neural networks), machine learning theory has generally been

successful at designing algorithms and deriving guarantees to explain generalization

in this framework, even in the presence of noise.

It is natural to ask whether similar results can be derived when the learning

objectives go beyond standard accuracy. This could be when the learning process

allows for the presence of a malicious adversary–which is more powerful than sim-

ply adding random noise to the data– and thus requires robustness. The study

of robustness in machine learning falls under the more general umbrella of trust-

worthiness of machine learning models, where other considerations such as privacy,

interpretability or fairness come into play, see, e.g., (Dwork, 2008; Doshi-Velez and

Kim, 2017; Kleinberg et al., 2017). The trustworthiness of machine learning models

is of utmost importance, especially considering the speed at which new technology

is currently deployed. Crucially, learning theory can provide us with valuable tools

to explain, evaluate and guarantee the behaviour of safety-critical machine-learning

applications.

The focus of this thesis is on the robustness of machine learning algorithms to

evasion attacks, which happen at test time after a model is trained (without the

1
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presence of an adversary). This is in contrast to poisoning attacks, which happen

at training time with the goal of reducing the test-time accuracy of a machine

learning algorithm. The distinction between these two settings was proposed by

Biggio et al. (2013), who independently observed the phenomenon of adversarial

examples presented by Szegedy et al. (2013), who coined the latter term.

One of the main challenges in the theory of adversarial machine learning is

to analyse the intrinsic difficulty of learning in the presence of an adversary that

can modify the data. The present work studies various assumptions in a learn-

ing problem, such as properties of the distribution underlying the data, how the

learner obtains data, limitations of the adversary, etc., and determines whether ro-

bust learning is feasible with a reasonable amount of data. Here, reasonable means

that the sample complexity of a robust learning algorithm, i.e., the amount of data

needed to enable guarantees, is polynomial in the input space dimension and the

learning parameters (e.g., an algorithm’s confidence and the desired robust accuracy

of a hypothesis output by the learning algorithm).

1.1 Main Contributions

This thesis focuses on the existence of adversarial examples in classification tasks.

An adversarial example is obtained from a natural example at test time by adding

a perturbation, in the malicious goal of causing a misclassification. We work un-

der the exact-in-the-ball notion of robustness,1 which relies on the existence of a

ground truth function (i.e., there exists a concept that labels the data correctly).

A misclassification occurs when the hypothesis returned by the learning algorithm

and the ground truth disagree in the perturbation region. This is in contrast to the

constant-in-the-ball notion of robustness2 which requires that the unperturbed point

be labelled correctly, and that the hypothesis remain constant in the perturbation

region. Guarantees derived for the constant-in-the-ball notion of robustness imply

that the hypothesis returned has a certain stability (perhaps at the cost of accuracy

in certain cases, as demonstrated in Tsipras et al. (2019)), as an optimal algorithm

would return a hypothesis that limits the probability of a label change in the per-

turbation region. On the other hand, guarantees derived for the exact-in-the-ball

1Also known as error region risk in Diochnos et al. (2018).
2Also known as corrupted input robustness from the work of Feige et al. (2015).



1.1. MAIN CONTRIBUTIONS 3

notion of robustness usually give stronger accuracy, as we want to be correct with

respect to the ground truth in the perturbation region. Deciding which notion of

robustness to use depends on the learning problem at hand, and what kind of guar-

antees one wishes to ensure. We gave in (Gourdeau et al., 2019, 2021) a thorough

comparison between these two notions of robustness, and remarked that the exact-

in-the-ball notion of robustness is much less studied than the constant-in-the-ball

one.

Our motivation in this thesis is to study the intrinsic robustness of learning

algorithms from a learning theory perspective in the probably approximately correct

(PAC) learning model of Valiant (1984). We investigate how different learning

settings enable robust learning guarantees, or, to the contrary, give rise to hardness

results. In this sense, our main aim is to delineate the frontier of robust learnability

in various learning models. We conceptually divide our contributions based on the

learning models we have studied.

Random examples. In this model, as in the PAC framework, the learner has

access to a random-example oracle which samples a point from an underlying distri-

bution, and returns the point along with its label. We exhibit an impossibility result

(Gourdeau et al., 2019), stating that the distribution-free guarantees for (standard)

PAC learning cannot be achieved for robust learning under the exact-in-the-ball

definition of robustness, highlighting a key obstacle in adversarial machine learning

compared to its standard counterpart. Here, distribution-free means that the learn-

ing guarantees hold for any distribution that generates the data, provided that the

training and testing data are both drawn independently from the same distribution.

The above impossibility result is obtained by choosing a badly-behaved, and

quite unnatural distribution on the data. But we show that, even when looking at

natural distributions and simple concept classes, robust learning can have high sam-

ple complexity. Indeed, we prove that there is no efficient robust learning algorithm

that learns monotone conjunctions under the uniform distribution if the adversary

can perturb ρ = ω(log n) bits of a test point in {0, 1}n; the maximum number ρ

of bits the adversary is allowed to perturb at test time is called the perturbation

budget. This is particularly striking as the class of monotone conjunctions is one

the simplest non-trivial concept classes on the boolean hypercube. We extend this

result to establish a general sample complexity lower bound of Ω(2ρ) (Gourdeau
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et al., 2022a), highlighting an exponential dependence on the adversary’s budget ρ

in the sample complexity of robust learning. Since linear classifiers and decision lists

subsume this class of functions, the lower bound holds for them as well. To comple-

ment these results, we show that, under distributional assumptions and against a

logarithmically-bounded adversary (i.e., with budget ρ = O(log n)), efficient robust

learning is possible for various concept classes. We require that the underlying dis-

tribution be log-Lipschitz ; this notion encapsulates the idea that nearby instances

should have similar probability masses and includes as particular instances product

distributions with bounded means. We show the above-mentioned result for con-

junctions (Gourdeau et al., 2019), monotone decision lists (Gourdeau et al., 2021),

and non-monotone decision lists (Gourdeau et al., 2022a). We define the term ro-

bustness threshold to mean a function f(n) of the input dimension n for which it

is possible to efficiently robustly learn against an adversary with budget f(n), but

impossible if the adversary’s budget is ω(f(n)) (with respect to a given distribu-

tion family). The robustness threshold of these concept classes is thus log(n) under

log-Lipschitz distributions.

In general, the above-mentioned results rely on a proof of independent interest:

an upper bound on the log(n)-expansion of subsets of the hypercube defined by

k-CNF formulas. This result relies on concentration bounds for martingales, as well

as properties of the resolution proof system. In all the cases above, as well as for

decision trees (Gourdeau et al., 2021), the error region between a hypothesis and a

target3 can be expressed as a union of k-CNF formulas. By controlling the standard

risk, we can bound the robust risk and, as a result, use PAC learning algorithms as

black boxes for robust learning.

Local membership queries. In this model, introduced by Awasthi et al. (2013),

the learner has access to the random-example oracle and can query the label of

points that are near the randomly-drawn training sample. We show that at least

Ω(2ρ) local membership queries are needed for robustly learning conjunctions under

the uniform distribution against an adversary that can perturb ρ bits of the input

(Gourdeau et al., 2022b). We thus have the same exponential dependence in the

adversary’s budget as with random examples only, implying that adding local mem-

3That is, for target c and hypothesis h on input space X , the set of points x ∈ X such that
c(x) ̸= h(x).
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bership queries cannot, in general, improve the robustness threshold of this concept

class (and any superclass)., e.g. linear classifiers and decision lists.

Local equivalence queries. Faced with the lower bound for robust learning with

a local membership query oracle, we introduce a learning model where the learner

is allowed to query whether the hypothesis is correct in a specific region of the

space and get a counterexample if not, which we call local equivalence queries in

(Gourdeau et al., 2022b), following the work of Angluin (1987).

We first establish that, when the query budget is strictly smaller than the per-

turbation budget (hence the adversary can access regions of the instance space that

the learner cannot), distribution-free robust learning with random examples and lo-

cal equivalence queries is in general impossible for monotone conjunctions and any

superclass thereof. However, when the query and perturbation budgets coincide,

a query to the local equivalence query oracle is equivalent to querying the robust

loss and getting a counterexample if it exists. As a result, the local equivalence

query oracle becomes the exact-in-the-ball analogue of the Perfect Attack Oracle

of Montasser et al. (2021). In this case, efficient distribution-free robust learning

becomes possible for a wide variety of concept classes. Indeed, we show random-

example and local-equivalence-query upper bounds, which we refer to as sample and

query complexity, respectively. We demonstrate that the query complexity depends

on mistake bounds from online learning, and the sample complexity on the VC di-

mension of the robust loss of a concept class, a notion of complexity that we have

adapted from Cullina et al. (2018) to the exact-in-the-ball notion of robustness. We

also show that the local equivalence query bound can be improved in the special

case of conjunctions. We moreover establish that the VC dimension of the robust

loss between linear classifiers on Rn is O(n3).

Since the query complexity of linear classifiers is in general unbounded, we study

the setting in which we restrict the adversary’s precision (e.g., the number of bits

needed to express an adversarial example). We use and adapt tools and techniques

from Ben-David et al. (2009), which pertain to the study of margin-based classifiers

in the context of online learning, for our purposes and exhibit finite query complexity

bounds. We then exhibit expected local equivalence query lower bounds that are

linear in the restricted Littlestone dimension of a concept class (we require that

a set of potential counterexamples be in a specific region of the instance space),
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and show that, for a wide variety of concept classes, they coincide asymptotically

with the local equivalence query upper bounds derived in Gourdeau et al. (2022b).

Finally, we offer a more nuanced discussion of the local membership and equivalence

query oracles. In particular, we show that the local equivalence query and its global

counterpart, the equivalence query, are in general incomparable.

1.2 Thesis Structure

Chapter 2

This chapter consists of the literature review. We first review foundational work on

classification in the learning theory literature. We then turn our attention to the

more recent related work on adversarial robustness in machine learning, particularly

in the context of evasion attacks. We mainly focus on work that is foundational in

nature, as it is the lens with which we study adversarial robustness.

Chapter 3

We review necessary technical background to the understanding of the technical

contributions of this thesis, which largely focuses on classification in the following

models: the PAC framework of Valiant (1984), the exact learning framework of

Angluin (1987), and the online learning setting. We also review some probability

theory and Fourier analysis.

Chapter 4

We motivate the study of adversarial robustness for classification tasks under the

exact-in-the-ball notion of robustness. We rigorously discuss the different notions

of robust risk and their significance, particularly the impossibility of obtaining

distribution-free guarantees in our setting. We initiate our study of efficient robust

learnability (from a sample-complexity point of view) with monotone conjunctions.

We show a sample complexity lower bound that is exponential in the adversary’s

budget under the uniform distribution, ruling out the existence of efficient robust

learning algorithms against adversaries with a budget super-logarithmic in the input

dimension in this setting. We show, however, that it is possible to robustly learn
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monotone conjunctions under log-Lipschitz distributions against a logarithmically-

bounded adversary.

The material in this chapter is based on the following papers:

• Pascale Gourdeau, Varun Kanade, Marta Kwiatkowska, and James Wor-

rell, “On the hardness of robust classification,” in 33rd Conference on Neural

Information Processing Systems (NeurIPS), 2019.

• Pascale Gourdeau, Varun Kanade, Marta Kwiatkowska, and James Worrell,

“Sample complexity bounds for robustly learning decision lists against evasion

attacks,” in International Joint Conference on Artificial Intelligence (IJCAI),

2022.

Chapter 5

In this chapter, we study the robustness thresholds of various concept classes un-

der distributional assumptions. We show the exact learning of parities under log-

Lipschitz distributions and of majority functions under the uniform distribution,

giving a robustness threshold of n for these classes. We then show a robustness

threshold of log(n) for the class of k-decision lists, which is parametrized by the

size k of a conjunction at each node in the list. Since our aim is to bound the

sample complexity of robustly learning, we study various restrictions of decision

lists: 1-decision lists, 2-decision lists, monotone k-decision lists and finally (non-

monotone) k-decision lists. The proofs not only rely on different technical tools, but

they more importantly yield much better sample complexity bounds for the simpler

subclasses. We finish by relating the standard and robust errors of decision trees

under log-Lipschitz distributions.

This chapter is based on the following two papers, the first one being the journal

version of the NeurIPS 2019 paper presented in the previous chapter:

• Pascale Gourdeau, Varun Kanade, Marta Kwiatkowska, and James Worrell,

“On the hardness of robust classification,” in Journal of Machine Learning

Research (JMLR), 2021.

• Pascale Gourdeau, Varun Kanade, Marta Kwiatkowska, and James Worrell,

“Sample complexity bounds for robustly learning decision lists against evasion
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attacks,” in International Joint Conference on Artificial Intelligence (IJCAI),

2022.

Chapter 6

We consider learning models in which the learner has access to local queries in

addition to random examples. We first show that local membership queries do not

increase the robustness threshold of conjunctions under the uniform distribution.

We then study local equivalence queries, and show that distribution-free robust

learning is impossible for a wide variety of concept classes if the query budget is

strictly smaller than the adversarial budget. We demonstrate, however, that when

the two coincide, distribution-free robust learning becomes possible. We exhibit

general sample and query complexity upper bounds as well as tighter bounds in the

special case of conjunctions. We also give explicit bounds for linear classifiers on

the boolean hypercube. We then study linear classifiers in the continuous case and

establish a general sample complexity upper bound, as well as a query complexity

upper bound when we limit the adversary’s precision. We complement the upper

bounds by showing general lower bounds on the expected number of queries to the

local equivalence query oracle and instantiate them for specific concept classes. We

finish by comparing the local membership and equivalence query oracles, as well as

how they compare with the membership and equivalence query oracles.

Sections 6.1, 6.2 and 6.3 are based on the following publication:

• Pascale Gourdeau, Varun Kanade, Marta Kwiatkowska, and James Worrell,

“When are local queries useful for robust learning?” in 36th Conference on

Neural Information Processing Systems (NeurIPS), 2022.

Sections 6.4, 6.5 and 6.6 are based on work that we are currently preparing for

submission.

Chapter 7

We conclude by summarizing our contributions and drawing a picture of robust

learnability in the learning models we have studied. Finally, we outline various

avenues for future work.
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1.3 Statement of Contribution

The publications mentioned in the previous section have largely been my own

work, with direction from my supervisors James Worrell, Varun Kanade and Marta

Kwiatkowska. While NeurIPS 2019/JMLR 2021 papers addressed research ques-

tions posed by my supervisors, I lead the research – including the technical aspect

by deriving the proofs, and wrote most of the paper. For the IJCAI 2022 paper, I

continued to lead in the technical development and writing up of the manuscript. In

addition to this, I played a major role in formulating the research questions and po-

sitioning the work in a wider context. For the NeurIPS 2022 paper and subsequent

ongoing work, I did most of the work on my own – from finding and defining the

research problem and learning model, providing insights on the problem at hand,

deriving the proofs and writing the whole paper. I was of course supported by my

supervisors: they referred me to a paper and suggested a way to prove a particular

bound, they strengthened the paper by providing helpful feedback through nuanced

discussions, and reviewed many iterations of the draft.





Chapter 2

Literature Review

This chapter gives an overview of the literature relevant to this thesis. We start

by reviewing classical learning theory results, focusing on classification. We finish

with a review of adversarial machine learning. While we mention work pertaining

to other views on robustness, our focus is the study of robustness to evasion attacks,

particularly from a foundational viewpoint.

The results in this chapter are presented at a high level. However, readers who

are not familiar with learning theory may find it beneficial to refer to Chapter 3,

which gives a thorough technical introduction to various frameworks and complexity

measures discussed in this chapter.

2.1 The Learning Theory Landscape

We start with an overview of the established literature in classification in the proba-

bly approximately correct and online learning frameworks, and then move to learning

with access to membership and equivalence queries.

2.1.1 Classification

The probably approximately correct (PAC) learning model of Valiant (1984) is one of

the most well-studied classification models in learning theory. In this framework, the

learner has access to the example oracle, which returns a point x ∼ D sampled from

an underlying distribution and its label c(x), where c is the target concept (ground

truth). The goal is to output a hypothesis h from a hypothesis class H such that h

11
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has low error with high probability.1 Remarkably, there exists a complexity measure,

namely the VC dimension of Vapnik and Chervonenkis (1971), that characterizes the

learnability of a hypothesis class. Indeed, it is possible to get both upper and lower

bounds for the number of samples needed for learning (i.e., the sample complexity)

that are linear in the VC dimension. The upper bound is due to Vapnik (1982);

Blumer et al. (1989), and the lower bounds to Blumer et al. (1989); Ehrenfeucht

et al. (1989). These bounds are tight up to a log
(
1
ϵ

)
factor, where ϵ is the parameter

controlling the accuracy of the hypothesis output by the learning algorithm.

The one-inclusion graph of Haussler et al. (1994), which also enjoys an upper

bound that is linear in the VC dimension, was conjectured to be optimal (in the

sense that the upper and lower bounds on sample complexity are tight) by Warmuth

(2004) until the recent work of Aden-Ali et al. (2023) showing that this is not the

case. However, the breakthrough work of Hanneke (2016) showed it is in general

possible to get rid of the log
(
1
ϵ

)
factor with a majority-vote classifier, following

important advances made by Simon (2015).

Another popular learning setting is that of online learning, introduced in the sem-

inal work of Littlestone (1988) and in which a learning algorithm competes against

an adversary. At each iteration, the learner is presented with an instance to predict,

and afterwards the adversary reveals the true label of the instance. The goal is to

make as few mistakes as possible. Littlestone (1988) studied the realizable setting,

where there always is a function that makes zero mistakes on the learning sequence,

and showed that a notion of complexity (the Littlestone dimension) characterizes

online learnability in this framework. The algorithm achieving this is called the

standard optimal algorithm (SOA), which was later adapted by Ben-David et al.

(2009) to the agnostic setting, where there need not exist a function that makes zero

mistakes; the algorithm’s performance is instead compared with the best hypothesis

a posteriori. There is a vast literature on online learning, and we refer the reader to

the book of Cesa-Bianchi and Lugosi (2006) for a technical overview and references

therein.

1In the realizable setting, where it is possible to achieve zero risk, we want the risk to be as
close as possible to zero. In the agnostic setting, we compare the risk of the hypothesis output by
an algorithm to the risk of the optimal function from the hypothesis class.
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2.1.2 Learning with Queries

The works mentioned in the previous section studied classification when the learner

has access to random examples. Active learning is another learning framework in

which the learner is given more power, often through the use of membership and

equivalence queries. Membership queries allow the learner to query the label of

any point in the input space X , namely, if the target concept is c, the membership

query (MQ) oracle returns c(x) when queried with x ∈ X . On the other hand, the

equivalence query (EQ) oracle takes as input a hypothesis h and returns whether

h = c, and provides a counterexample z such that h(z) ̸= c(z) otherwise. The goal

in the MQ+ EQ model is usually to learn the target c exactly, which is in contrast

to the PAC setting which requires to learn with high confidence a hypothesis with

low error.

The seminal work of Angluin (1987) showed that deterministic finite automata

(DFA) are exactly learnable with a polynomial number of queries to MQ and EQ

in the size of the DFA. Follow-up work generalized these results. E.g., Bshouty

(1993) showed that poly-size decision trees are efficiently learnable in this setting

as well; Angluin (1988) later investigated other types of queries and also showed

that k-CNFs and k-DNFs are exactly learnable with access to membership queries;

Jackson (1997) showed that, in the PAC + MQ setting, the class of DNF formu-

las is learnable under the uniform distribution. But even these powerful learning

models have limitations: learning DFAs only with EQ is hard (Angluin, 1990) and,

under cryptographic assumptions, DFAs are also hard to learn solely with the MQ

oracle (Angluin and Kharitonov, 1995).

On a more applied note, the MQ+EQ model has recently been used for recurrent

and binarized neural networks (Weiss et al., 2018, 2019; Okudono et al., 2020; Shih

et al., 2019), and interpretability (Camacho and McIlraith, 2019). It is also worth

noting that the MQ learning model has been criticized by the applied machine

learning community, as labels can be queried in the whole input space, irrespective

of the distribution that generates the data. In particular, Baum and Lang (1992)

observed that query points generated by a learning algorithm on the handwritten

characters often appeared meaningless to human labellers. Awasthi et al. (2013) thus

offered an alternative learning model to Valiant’s original model, the PAC and local

membership query (EX+LMQ) model, where the learning algorithm is only allowed
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Figure 2.1: A school bus is classified as an ostrich after a small perturbation is
applied to the original image (Szegedy et al., 2013).

to query the label of points that are close to examples from the training sample.

Bary-Weisberg et al. (2020) later showed that many concept classes, including DFAs,

remain hard to learn in the EX+ LMQ model.

2.2 Adversarial Machine Learning

There has been considerable interest in adversarial machine learning since the semi-

nal work of Szegedy et al. (2013), who coined the term adversarial example to denote

the result of applying a carefully chosen perturbation that causes a classification er-

ror to a previously correctly classified datum. This work was largely experimental

in nature and presented a striking instability of deep neural networks, where for

example a correctly-classified image of a school bus was labelled as an ostrich af-

ter a perturbation (imperceptible to the human eye) was applied, as in Figure 2.1.

Biggio et al. (2013) independently observed this phenomenon with experiments on

the MNIST (LeCun, 1998) dataset. However, as pointed out by Biggio and Roli

(2018), adversarial machine learning has been considered much earlier in the con-

text of spam filtering (Dalvi et al. (2004); Lowd and Meek (2005a,b); Barreno et al.

(2006)). Their survey also distinguished two settings: evasion attacks, where an

adversary modifies data at test time, and poisoning attacks, where the adversary

modifies the training data. For an in-depth review and definitions of different types

of attacks, the reader may refer to (Biggio and Roli, 2018; Dreossi et al., 2019).

For an introduction to adversarial defences in practice, see, e.g., (Goodfellow et al.,

2015; Zhang et al., 2019).

As our work pertains to the robustness of machine learning algorithms to evasion
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attacks in classification tasks from a learning theory perspective, our review of

related work will mainly concern this topic (Section 2.2.1). Before discussing this

body of work, we will briefly mention other views on robustness.

Many works have studied the robustness of learning algorithms to poisoning

attacks, in which an adversary can modify the training data in order to increase the

(standard) error at test time, one of the earliest being that of Kearns and Li (1988).

Various types of poisoning attacks have been put forward since then, especially as

the study of robustness has garnered interest in recent years. Clean-label attacks,

proposed by Shafahi et al. (2018), are a distinct form of poisoning attacks where

the poisoned examples are labelled correctly, i.e., by the target function, and not

adversarially. For a learning-theoretic approach and results on this problem, see

(Mahloujifar and Mahmoody, 2017, 2019; Mahloujifar et al., 2018, 2019; Etesami

et al., 2020; Blum et al., 2021) (non-exhaustive). In case there is no restriction on

the label of poisoned data, see, e.g., the works of (Barreno et al., 2006; Biggio et al.,

2012; Papernot et al., 2016; Steinhardt et al., 2017) (non-exhaustive). Finally, for

work on defences against poisoning attacks, we refer the reader to (Goldblum et al.,

2022).

Another view on robustness is out-of-distribution detection, where the goal is

to identify outliers at test time. We refer the reader to the textbook (Quinonero-

Candela et al., 2008) for an introduction on dataset shifts, and to (Fang et al., 2022)

for a study on out-of-distribution detection from a PAC-learning perspective, as well

as references therein for the empirical work on the matter. A more general view

on distributional discrepancies at test-time is that of distribution shift. See (Wiles

et al., 2022) for a taxonomy on various distribution shifts and a review of important

work in the area (mostly from an empirical perspective).

2.2.1 Evasion Attacks

We now turn our attention to the focus of this thesis: robustness to evasion attacks.

For ease of reading, we have thematically split the related work in this section.

Defining Robustness. The majority of the guarantees and impossibility results

for evasion attacks are based on the existence of adversarial examples. However,

what is considered to be an adversarial example has been defined in different, and
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in some respects contradictory, ways in the literature. What we refer to as the

exact-in-the-ball notion of robustness in this work (also known as error region risk

in (Diochnos et al., 2018)) requires that the hypothesis and the ground truth agree

in the perturbation region around each test point; the ground truth must thus be

specified on all input points in the perturbation region. On the other hand, what

we refer to as the constant-in-the-ball notion of robustness (which is also known as

corrupted input robustness from the work of Feige et al. (2015)) requires that the

unperturbed point be correctly classified and that the points in the perturbation

region share its label, meaning that we only need access to the test point labels; the

works Diochnos et al. (2018); Dreossi et al. (2019); Pydi and Jog (2021) offer thor-

ough discussions on the subject and also compare robustness definitions. Moreover,

Chowdhury and Urner (2022) have studied settings where a model’s change of label

is justified by looking at robust-Bayes classifiers and their standard counterparts.

We note that Suggala et al. (2019) proposed an alternative definition of ro-

bustness, where a perturbation is deemed adversarial if it causes a label change in

the hypothesis while the target classifier’s label remains constant. The existence

of a ground truth is thus explicitly assumed (which is not in general necessary for

constant-in-the-ball robustness).

Rather than studying the existence of a misclassification in the perturbation

region, Pang et al. (2022) define robustness using the Kullback-Leibler (KL) diver-

gence. The robust loss at a given unperturbed point x is the maximal KL divergence

over perturbations z between the underlying labelling function (Pr (y | z)) of z and

the hypothesis’ label for z (which could also be non-deterministic). The authors

proposed this definition of robustness in an effort to avoid the trade-off between

accuracy and robustness observed in prior work, e.g., (Tsipras et al., 2019).

In the remainder of this section, whenever the robust risk is not explicitly men-

tioned, the results will hold for the constant-in-the-ball notion of robustness, as it

is the most widely used in the literature.

Existence of Adversarial Examples. There is a considerable body of work that

studies the inevitability of adversarial examples, e.g., (Fawzi et al., 2016, 2018a,b;

Gilmer et al., 2018; Shafahi et al., 2019; Tsipras et al., 2019). These papers charac-

terize robustness in the sense that a classifier’s output on a point should not change

if a perturbation of a certain magnitude is applied to it. These works also study
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geometrical characteristics of classifiers and statistical characteristics of classifica-

tion data that lead to adversarial vulnerability. It has been shown that, in many

instances, the vulnerability of learning models to adversarial examples is inevitable

due to the nature of the learning problem. Notably, Bhagoji et al. (2019) study ro-

bustness to evasion attacks from an optimal transport perspective, obtaining lower

bounds on the robust error. Moreover, many works exhibit a trade-off between stan-

dard accuracy and robustness in this setting, e.g., (Tsipras et al., 2019; Dobriban

et al., 2020).

As for the exact-in-the-ball definition of robustness, Diochnos et al. (2018) con-

sider the robustness of monotone conjunctions under the uniform distribution. Their

results concern the ability of an adversary to magnify the missclassification error

of any hypothesis with respect to any target function by perturbing the input.2

Mahloujifar et al. (2019) generalized the above-mentioned result to Normal Lévy

families and a class of well-behaved classification problems (i.e., ones where the

error regions are measurable and average distances exist).

Computational Complexity of Robust Learning. The computational com-

plexity of robust learning is an active research area. Bubeck et al. (2018) and

Degwekar et al. (2019) have shown that there are concept classes that are hard

to robustly learn under cryptographic assumptions, even when robust learning is

information-theoretically feasible. (Bubeck et al., 2019) established super-polynomial

lower bounds for robust learning in the statistical query framework. Diakonikolas

et al. (2019) study the more specific problem of (standard) proper learning of halfs-

paces with noise and large ℓ2 margins in the agnostic PAC setting, focussing on the

computational complexity of this learning problem. They remark that these guar-

antees can apply to robust learning. In follow-up work (Diakonikolas et al., 2020),

they explicitly study robustness to ℓ2 perturbations and generalize their previous

results. In particular, they obtain computationally-efficient algorithms using an on-

line learning reduction, and building on a hardness result in (Diakonikolas et al.,

2019), and provide tight running time lower bounds. Finally, Awasthi et al. (2019)

draw connections between robustness to evasion attacks and polynomial optimiza-

tion problems, obtaining a computational hardness result. On the other hand, they

2We will draw an explicit comparison with the work of Diochnos et al. (2018) in Section 4.3.
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exhibit computationally efficient robust learning algorithms for linear and quadratic

threshold functions in the realizable case.

Sample Complexity of Robust Learning. Despite being a relatively recent re-

search area, there already exists a vast literature on the sample complexity of robust

learning to evasion attacks. One of the earlier works is that of Cullina et al. (2018),

who define the notion of adversarial VC dimension to derive sample complexity up-

per bounds for robust empirical risk minimization (ERM) algorithms, with respect

to the constant-in-the-ball robust risk. They also study the special case of halfspaces

under ℓp perturbations and show the adversarial VC dimension is in general incom-

parable with its standard counterpart. Shortly after, Attias et al. (2019) adopted a

game-theoretic framework to study robust learnability for classification and regres-

sion in a setting where the adversary is limited to a fixed number k of perturbations

per input. They obtain sample complexity bounds that are linear in both k and

the VC dimension of a hypothesis class. The work of Montasser et al. (2019) later

provided a more complete picture of robust learnability. The authors show sample

complexity upper bounds for robust ERM algorithms that are polynomial in the

VC and dual VC dimensions of concept classes, giving general upper bounds that

are exponential in the VC dimension. They also exhibit sample complexity lower

bounds linear in the robust shattering dimension, a notion of complexity introduced

therein. The gap between the upper and lower bounds was closed in their later work

(Montasser et al., 2022), where they fully characterize the sample complexity of ro-

bust learning with arbitrary perturbation functions. The robust learning algorithm

achieving the upper bound is a generalization of the one-inclusion graph algorithm of

Haussler et al. (1994). Their robust variant of the one-inclusion graph is defined for

the constant-in-the-ball realizable setting,3 but the agnostic-to-realizable reduction

from previous work (Montasser et al., 2019) can be applied. The (random-example)

sample complexity characterizing robust learnability is a notion of dimension de-

fined through the edges on the graph structure.

The above bounds consider the supervised setting, where the learner has access

to labelled examples. Since the cost of obtaining data is at times largely due to its

labelling,4 studying semi-supervised learning, where the learner has access to both

3I.e., there exists a hypothesis that has zero constant-in-the-ball robust loss.
4Think for example of obtaining images vs needing humans to label them.
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unlabelled as well as labelled examples, is of general interest. Ashtiani et al. (2020)

build on the work of Montasser et al. (2019) (who showed that proper robust learn-

ing, where the learner is required to output a hypothesis from the same class as the

potential target concept, is sometimes impossible) and delineate when proper robust

learning is possible. They moreover draw a more nuanced picture of proper robust

learnability with access to unlabelled random examples. Attias et al. (2022) also

study the sample complexity of robust learning in the semi-supervised framework.

Notably, in the realizable setting, their labelled sample complexity bounds are linear

in a variant of the VC dimension where, for a shattered set, the perturbation region

around a given point must share the same label.5 The unlabelled sample complexity

is linear in the sample complexity of supervised learning. The authors also extend

their results to the agnostic setting.

While it is worthwhile to study robust learnability for arbitrary perturbation

regions, focussing on specific perturbation functions that are more faithful to real-

world problems is of high interest, especially if this can provide better guarantees

or a clearer picture of robustness in this setting. In this vein, Shao et al. (2022)

study the robustness to evasion attacks under transformation invariances. This ter-

minology comes from group theory: the transformations applied to instances form

a group, and an invariant hypothesis will give the same label to points in the orbit

of every instance in the support of the distribution generating the data.6 As a char-

acterization of robust learnability in these settings, they propose two combinatorial

measures that are variants of the VC dimension that take into account the orbits of

points in the shattered set, and prove nearly-matching upper and lower bounds.

All the works mentioned above study sample complexity through the VC dimen-

sion of a concept class, or variants adapted to robust learnability. On the other

hand, Khim et al. (2019); Yin et al. (2019); Awasthi et al. (2020) instead use the

adversarial Rademacher complexity to study robust learning. These works give

results for ERM on linear classifiers and neural networks.

As for the exact-in-the-ball definition of robustness, Diochnos et al. (2020)

study sample complexity lower bounds. They show that, for a wide family of con-

5This complexity measure is always upper bounded by the VC dimension, and the gap can be
arbitrarily large.

6E.g., rotating an image of a cat will still result in an image of a cat, while rotating an image
of a six can result in an image of nine. Transformation invariances are thus problem specific.
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cept classes, any learning algorithm that is robust against all attacks with budget

ρ = o(n) must have a sample complexity that is at least exponential in the input

dimension n. They also show a superpolynomial lower bound in case ρ = Θ(
√
n).

This, along with the previously-mentioned works of Diochnos et al. (2018); Mahlou-

jifar et al. (2019) are to our knowledge the only other works apart from ours that

consider the sample complexity of exact-in-the-ball robust learning from a theoret-

ical perspective.

Relaxing Robustness Requirements. Most adversarial learning guarantees

and impossibility results in the literature have focused on all-powerful adversaries.

Recent works have studied learning problems where the adversary’s power is cur-

tailed. One way to do this is to consider computationally-bounded adversaries. E.g,

Mahloujifar and Mahmoody (2019) and Garg et al. (2020) study the robustness of

classifiers to polynomial-time attacks. They show that, for product distributions, an

initial constant error implies the existence of a (black-box) polynomial-time attack

for adversarial examples that are O(
√
n) bits away from the test instances. However,

Garg et al. (2020) show a separation result for a learning problem where a classifier

can be successfully attacked by a computationally-unbounded adversary, but not by

a polynomial-time bounded adversary subject to standard cryptographic hardness

assumptions.

It is also possible to relax the optimality condition when evaluating a hypothesis.

Ashtiani et al. (2023) and Bhattacharjee et al. (2023) both study tolerant robust

learning, where the learner is evaluated relative to the hypothesis with the best

robust risk under a slightly larger perturbation region. Ashtiani et al. (2023) show

that this setting enables better sample complexity bounds that the standard robust

setting for metric spaces (X , d) in case the perturbation region is a ball with respect

to the metric d. Bhattacharjee et al. (2023) build on their work and instead consider

problems with a geometric niceness property called regularity to get more general

perturbation regions. They obtain matching sample complexity bounds to (Ashtiani

et al., 2023) as well as propose a variant of robust ERM as a simpler robust learning

algorithm for this problem.

Another relaxation of the robust learning objective is a probabilistic variant of

robust learning. Viallard et al. (2021) derive PAC-Bayesian generalization bounds

(where the output is a posterior distribution over hypotheses after seeing the data)
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for the averaged risk on the perturbations, rather than working in a worst-case

scenario. (Robey et al., 2022) also consider probabilistic robustness, where the aim

is to output a hypothesis that is robust to most perturbations.

Increasing the Learner’s Power. To improve robustness guarantees, it is also

possible to give the learner access to more powerful oracles than the random-example

one. Montasser et al. (2020, 2021) study robust learning with access to a (constant-

in-the-ball) robust loss oracle, which they call the Perfect Attack Oracle (PAO). For

a perturbation type U : X → 2X , hypothesis h and labelled point (x, y), the PAO

returns the constant-in-the-ball robust loss of h in the perturbation region U(x) and
a counterexample z ∈ U(x) where h(z) ̸= y if it exists. In the constant-in-the-

ball realizable setting, the authors use online learning results to show sample and

query complexity bounds that are linear and quadratic in the Littlestone dimension

of concept classes, respectively (Montasser et al., 2020). Montasser et al. (2021)

moreover use the algorithm from (Montasser et al., 2019) to get sample and query

complexity upper bounds that respectively have a linear and exponential dependence

on the VC and dual VC dimensions of the hypothesis class at hand. Finally, they

extend their results to the agnostic setting and derive lower bounds.





Chapter 3

Background

In this chapter, we introduce the necessary background and notation for the main

contributions of this thesis. We start by reviewing standard learning theory concepts

in Section 3.1, before moving to probability theory in Section 3.2. We finish with

an overview of Fourier analysis in Section 3.3.

Notation. Throughout this text, we will use [n] to denote the set {1, . . . , n}.
The symbol ∆ will represent the symmetric difference between two sets: I∆J =

{x | x ∈ I \ J or x ∈ J \ I}. We will use the asymptotic notation (o,O, ω,Ω,Θ),

with the convention that the symbol ˜ (e.g., Õ) omits the logarithmic factors. Given

a metric space (X , d) and λ ∈ R, we denote by Bλ(x) the ball {z ∈ X | d(x, z) ≤ λ}
of radius λ centred at x. We will use the symbol 1[·] for the indicator function.

Finally, for a given formula φ and instance x, we denote by x |= φ the event that x

satisfies φ.

3.1 Learning Theory: Classification

Learning theory offers an elegant abstract framework to analyse the behaviour of

machine learning algorithms, as well as to provide performance and correctness

guarantees or show impossibility results. There exist various learning settings, de-

pending on assumptions on how the data is obtained and on the learning objectives.

This thesis is primarily concerned with binary classification, where, given an input

space X , the goal is to output a function h : X → {0, 1} called a hypothesis, which

23



24 CHAPTER 3. BACKGROUND

upon being given an instance x ∈ X outputs a label h(x) ∈ {0, 1}. The more general

task of learning a function X → Y is called multiclass classification when Y is a

discrete finite set, and regression when Y = R.
In this section, we give an overview of three learning settings for binary clas-

sification: learning with random examples in the Probably Approximately Correct

(PAC) framework, the mistake-bound model of online learning, and learning with

membership and equivalence queries. For each setting, we discuss various notions

of complexity that control the amount of data needed to learn, i.e., the sample

complexity. In all cases, we will be using the terms learning algorithm, learner and

learning process interchangeably to denote a process of data acquisition and analysis

resulting in outputting a hypothesis h as above. For a more in-depth introduction

to the concepts presented in this section, we refer the reader to Mohri et al. (2012)

and Shalev-Shwartz and Ben-David (2014), both excellent introductory textbooks

on learning theory.

3.1.1 The PAC Framework

The Probably Approximately Correct (PAC) framework of Valiant (1984), depicted

in Figure 3.1, formalises the desired behaviour of a learning algorithm. In this

learning setting, a learning algorithm has access to random examples drawn in an

i.i.d. fashion from an underlying distribution D, and we wish to output a hypothesis

that has small error with high confidence. The error errD(h, c) of a hypothesis

with respect to D is measured against a ground truth function or target concept

c : X → {0, 1} which labels the data, and is defined as

errD(h, c) = Pr
x∼D

(c(x) ̸= h(x)) .

The set of points x ∈ X such that c(x) ̸= h(x) is often referred to as the error region.

We sometimes model the sampling process by having access to the random example

oracle EX(c,D). The “probably” part of the PAC learning framework speaks to the

confidence of the learning algorithm, and allows for the possibility that a sample

S ∼ Dm of size m drawn from the underlying distribution D is not representative

of D. The “approximately” part of PAC learning refers to the requirement that the

hypothesis have sufficiently high accuracy, a relaxation from learning exactly. Both
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Probably Approximately Correct Learning

ASc ∼ Dm

m = poly(n, 1ε ,
1
δ )

h ∈ H
s.t. errD(h, c) ≤ ε

w.p. > 1− δ

Figure 3.1: A visual representation of sample-efficient PAC learning. Sc means that
the sample S has been labelled with the ground truth c.

the confidence and accuracy parameters are inputs to the learning algorithm, and

are learning parameters.

Another important parameter that affects the sample complexity is how large

the instance size is, e.g., the larger the number of pixels for image classification is,

the larger the amount of data needed to learn could be. This is usually controlled

by the dimension n of the input space, in reference to {0, 1}n and Rn. To this end

we consider a collection of pairs of input space and concepts classes Xn and Cn for

each dimension n, where Cn is a set of functions c : Xn → {0, 1}.
We are now ready to formally define the PAC learning setting.

Definition 3.1 (PAC Learning, Realizable Setting). For all n ∈ N, let Cn be a

concept class over Xn and let C =
⋃

n∈N Cn. We say that C is PAC learnable us-

ing hypothesis class H and sample complexity function m(·, ·, ·, ·) if there exists an

algorithm A that satisfies the following: for all n ∈ N, for every c ∈ Cn, for every

D over Xn, for every 0 < ϵ < 1/2 and 0 < δ < 1/2, if whenever A is given access

to m ≥ m(n, 1/ϵ, 1/δ, size(c)) examples drawn i.i.d. from D and labeled with c, A
outputs an h ∈ H such that with probability at least 1− δ,

errD(h, c) = Pr
x∼D

(c(x) ̸= h(x)) ≤ ϵ .

We say that C is statistically efficiently PAC learnable if m is polynomial in n, 1/ϵ,

1/δ and size(c), and computationally efficiently PAC learnable if A runs in polyno-

mial time in n, 1/ϵ, 1/δ and size(c) and h is polynomially evaluatable.
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Size(c) and polynomial evaluatability. Two additional requirements from ac-

curacy and confidence are introduced in the above definition: these are a sample

complexity function dependent on the size size(c) of the target concept c, and, if

one requires computational efficiency, the fact that h is polynomially evaluatable.

The size of a concept is defined through a representation scheme. Essentially, there

could exist several representations of a function, e.g., a function can be computed

by many different boolean circuits. Assuming that there exists a function measuring

the size of a representation, the size of a concept c is the minimal size of a repre-

sentation of c. The second requirement is natural: if the hypothesis is not required

to be polynomially evaluatable, then the learner could simply “offload” the learning

process at test time (there is nothing to do at training, so it would be considered

“efficient”), and overall require arbitrarily high computational complexity.

Proper vs improper learning. The setting where C = H is called proper learn-

ing, and improper learning if C ⊆ H. While requiring proper learning does not

affect the sample complexity of learning very much,1 it can affect its computational

efficiency. Indeed, unless RP = NP, which is widely believed not to be the case, it is

impossible to computationally efficiently properly learn the class of 3-term formulas

in disjunctive normal form (DNF), i.e., formulas of the form T1 ∨ T2 ∨ T3 where

the Ti’s are conjunctions of arbitrary lengths. However, it is possible to compu-

tationally efficiently PAC learn 3-CNF formulas properly (formulas in conjunctive

normal form where each term is a disjunction of at most 3 literals), and this class

subsumes 3-term DNFs. Hence, one can use the PAC-learning algorithm for 3-CNF

to (improperly) PAC learn 3-term DNFs in a computationally efficient manner.

The distribution-free assumption. PAC learning is distribution-free, in the

sense that no assumptions are made about the distribution from which the data is

generated. As long as the training data is sampled i.i.d. from a given distribution

D, and that the algorithm is tested on independent examples drawn from D, the

learning guarantees hold. Of course, this is sometimes not a sensible assumption to

make in practice. Many lines of work consider learning settings that allow for this

1It is possible to get rid of the log 1/ϵ factor of Theorem 3.8 as shown by the recent breakthrough
of Hanneke (2016) with an improper learner, but, aside from this, the sample complexity bounds
in Theorems 3.8 and 3.9 are tight for any consistent learner.
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and provide a more realistic learning framework, e.g., when noise is added to the

data, or when the training and testing distributions differ (i.e., distribution shift),

as outlined in Chapter 2.

Realizable vs agnostic learning. The realizability assumption of Definition 3.1,

where there always exists a concept with zero error, does not always hold. In

the presence of noise, or more generally in the absence of a deterministic labelling

function c representing the ground truth (e.g., there is a joint distribution on X×Y),
we instead work in the agnostic setting. In this setting, the goal is rather to learn a

hypothesis that does well compared to the best concept in the concept class:

Definition 3.2 (PAC Learning, Agnostic Setting). Let Cn be a concept class over

Xn and let C =
⋃

n∈N Cn. We say that C is agnostically PAC learnable using H with

sample complexity function m(·, ·, ·, ·) if there exists an algorithm A that satisfies

the following: for all n ∈ N, for every D over Xn × {0, 1}, for every 0 < ϵ < 1/2

and 0 < δ < 1/2, if whenever A is given access to m ≥ m(n, 1/ϵ, 1/δ, s) labelled

examples drawn i.i.d. from D, where s = sup
c∈Cn

size(c), A outputs an h ∈ H such

that with probability at least 1− δ,

errD(h) ≤ inf
c∈Cn

errD(c) + ϵ ,

where errD(h) = Pr
(x,y)∼D

(h(x) ̸= y). We say that H is statistically efficiently ag-

nostically learnable if m is polynomial in n, 1/ϵ, 1/δ and s, and computationally

efficiently agnostically learnable if A runs in polynomial time in n, 1/ϵ, 1/δ and s,

and h is polynomially evaluatable.

The definition above allows for improper learning (C is usually called the “touch-

stone” class), but we can recover proper learning by setting C = H. In this work,

unless otherwise stated, we will assume the realizability of a learning problem, and

the sample complexity bounds will be derived for this setting. Note that there exist

PAC guarantees for classes of finite VC dimension in the agnostic setting as well,

at the cost of a multiplicative factor of 1/ϵ in the sample complexity. See (Kearns

et al., 1994; Haussler, 1992) for original work on the matter and the textbook (Mohri

et al., 2012) for an introduction on the topic.
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3.1.2 Complexity Measures

While it is possible to derive sample complexity bounds for specific hypothesis

classes, one can take a more general approach with the use of complexity mea-

sures. Indeed, a complexity measure assigns to each hypothesis class H a function

(w.r.t. the size n of the instance space) quantifying its richness. Intuitively, as the

complexity measure increases, more data should be needed to identify a candidate

hypothesis that would generalize well on unseen data. We briefly note that the

standard theory outlined in this chapter has failed to explain the recent success of

overparametrised deep neural networks in practice which in many ways remains an

open problem in the learning theory literature.

The first complexity measure we will study is perhaps the simplest one: the size

of H. Similarly to C, the class H is defined as the union
⋃

n∈NHn, and the size

of H is a function of n. The theorem below, known as Occam’s razor, gives an

upper bound on the sample complexity of learning with finite hypothesis classes,

given access to a consistent learner. A consistent learner is a learning algorithm

that outputs a hypothesis that has zero empirical loss on the training sample, i.e.,

a hypothesis that correctly classifies all the points in the training sample.

Theorem 3.3 (Occam’s Razor (Blumer et al., 1987)). Let C and H be a concept

and hypothesis classes, respectively. Let A be a consistent learner for C using H.
Then, for all n ∈ N, for every c ∈ Cn, for every D over Xn, for every 0 < ϵ < 1/2

and 0 < δ < 1/2, if whenever A is given access to m ≥ 1
ϵ
(log(|Hn|) + log(1/δ))

examples drawn i.i.d. from D and labeled with c, then A is guaranteed to output

an h ∈ Hn such that errD(h, c) < ϵ with probability at least 1 − δ. Furthermore, if

log(|Hn|) is polynomial in n and size(c), and h is polynomially evaluatable, then C
is statistically efficiently PAC-learnable using H.

While the theorem above can be useful if Hn is finite for all n, it does not tell

us much when H is infinite. To this end, one would want to consider complexity

measures that are meaningful for infinite concept classes as well. In the PAC set-

ting, a useful complexity measure is the Vapnik Chervonenkis (VC) dimension of a

hypothesis class, from the work of Vapnik and Chervonenkis (1971). It turns out

that this measure fully characterizes the learnability of a concept class, in the sense
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Figure 3.2: A set X of three points in R2 that is shattered by linear classifiers.
Subfigures (a)-(d) represent different dichotomies on X; note that (b) and (c) are
not the only labellings with one and two positively labelled points, respectively, but
the other cases are symmetric.

that one can obtain upper and lower bounds on the sample complexity that are

both linear in the VC dimension of H.
In order to define the VC dimension of a concept class, we must first define

the notion of shattering of a set. In Figure 3.2, we give an example of a set being

shattered by linear classifiers in R2.

Definition 3.4 (Shattering). Given a class of functions F from input space X to

{0, 1}, we say that a set S ⊆ X is shattered by F if all the possible dichotomies

of S (i.e., all the possible ways of labelling the points in S) can be realized by some

f ∈ F .

We are now ready to define the VC dimension of a class.

Definition 3.5 (VC Dimension). The VC dimension of a hypothesis class H, de-
noted VC(H), is the size d of the largest set that can be shattered by H. If no such

d exists then VC(H) =∞.

Figure 3.3 illustrates the argument that no set in R2 of size 4 can be shattered

by linear classifiers.

An important property of the VC dimension is that it is upper bounded by

log |H|. Indeed, a shattered set S of size m needs 2m distinct functions to achieve

all its possible labellings.

It also is possible to define the VC dimension through the growth function of a

concept class. For some finite set of instances S, we denote by ΠC(S) = {c|S | c ∈ C}
the set of distinct restrictions of concepts in C on the set S, which is referred to

as the set of all possible dichotomies on S induced by C. Then a shattered set S
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Figure 3.3: Any set of four points cannot be shattered by linear classifiers. Indeed,
we distinguish two cases: either (a) one point is strictly in the convex hull of the
three other points, and is the only point of its label (or all points are on the same
line, which gives a similar argument) or (b) all points are on the boundary of the
convex hull, in which case labelling opposite points with the same label gives an un-
achievable labelling. This argument is a special case for R2 which can be generalized
to Rn using Radon’s theorem.

satisfies |ΠC(S)| = 2|S|, and the VC dimension is thus the largest set satisfying this

relationship.

Definition 3.6 (Growth Function). For any natural number m ∈ N, the growth

function is defined as ΠC(m) = max {|ΠC(S)| | |S| = m}.

Denote by Φd(m) the summation
∑d

i=0

(
m
i

)
. The growth function of a concept

class C can be bounded as follows, as a function of m and the VC dimension d.

Lemma 3.7 (Sauer-Shelah). Let C be a concept class of VC dimension d. Then

ΠC(m) ≤ Φd(m) ≤
(em

d

)d
.

As previously mentioned, the VC dimension characterizes PAC learnability. We

start with a sample complexity upper bound that is linear in the VC dimension,

due to Vapnik (1982) and Blumer et al. (1989).

Theorem 3.8 (VC Dimension Sample Complexity Upper Bound). Let C be a con-

cept class. Let A be a consistent learner for C using a hypothesis class H of VC

dimension VC(H) = d. Then A is a PAC-learning algorithm for C using H provided

it is given an i.i.d. sample S ∼ Dm drawn from some D and labelled with some

c ∈ C, where

m ≥ κ0 ·
1

ϵ

(
d log

1

ϵ
+ log

1

δ

)
,
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for some universal constant κ0.

We now have a sample complexity lower bound that is also linear in the VC

dimension, due to Blumer et al. (1989) and Ehrenfeucht et al. (1989). The proofs

of both Theorems 3.8 and 3.9 appear in reference textbooks such as (Mohri et al.,

2012) and (Shalev-Shwartz and Ben-David, 2014).

Theorem 3.9 (VC Dimension Sample Complexity Lower Bound). Let C be a con-

cept class with VC dimension d. Then any PAC-learning algorithm for C requires

Ω
(
d
ϵ
+ 1

ϵ
log 1

δ

)
examples.

While the bounds of Theorems 3.8 and 3.9 are tight up to a log 1
ϵ
, the break-

through work of Hanneke (2016) recently showed the existence of a specific learning

algorithm that is optimal in the sense that its sample complexity matches that of

Theorem 3.9 up to constant factors, and thus avoids the log 1
ϵ
dependence.

3.1.3 Some Concept Classes and PAC Learning Algorithms

In this section, we introduce various concept classes that have been studied in the

learning theory literature, along with PAC learning algorithms. All the algorithms

outlined below are consistent on a given training sample, given we are working in the

realizable setting. A bound on the VC dimension of these concept classes directly

gives sample complexity upper bounds as per Theorem 3.8. We start with concept

classes defined on the boolean hypercube X = {0, 1}n.

Singletons. For an input space X , the class of singletons is the class of functions
{x 7→ 1[x = x∗] | x∗ ∈ X}.

Dictators. The class of dictators on {0, 1}n is the class of functions determined by

a single bit, i.e., functions of the form h(x) = xi or h(x) = x̄i for i ∈ [n]. Dictators

are subsumed by conjunctions. Monotone dictators are dictators where negations

are not allowed, i.e., functions of the form h(x) = xi.

Conjunctions. Conjunctions, which we denote CONJUNCTIONS, are perhaps one

of the simplest non-trivial concept classes one can study on the boolean hypercube.

A conjunction c over {0, 1}n is a logical formula over a set of literals l1, . . . , lk from
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{x1, x̄1, . . . , xn, x̄n}, where, for x ∈ Xn, c(x) =
∧k

i=1 li. The length of a conjunction

c is the number of literals in c.2 For example, c(x) = x1∧ x̄2∧x5 is a conjunction of

length 3. Monotone conjunctions are the subclass of conjunctions where negations

are not allowed, i.e., all literals are of the form li = xj for some j ∈ [n]. Note that

this implies that monotone conjunctions do not include the constant function 0.

Algorithm 1 PAC-learning algorithm for conjunctions

Input: Sc ∼ Dm

L← {x1, x̄1, . . . , xn, x̄n}
h(x) =

∧
l∈L l ▷ h = 0

for (x, c(x)) ∈ S do
if c(x) ̸= h(x) then ▷ Only happens if c(x) = 1

L← L \ {l ∈ L | l(x) = 0}
end if

end for

The standard PAC learning algorithm to learn conjunctions is as outlined in

Algorithm 1. We start with the constant hypothesis h(x) =
∧

i∈Ih(xi ∧ x̄i) ≡ 0,

where Ih = [n]. To ensure consistency, for each example x in the training sample, we

remove a literal l from h if c(x) = 1 and l(x) = 0, as if l is in the conjunction, h must

evaluate to 0 on x. After seeing all the examples in the training set S, the resulting

hypothesis will thus be consistent on S. Note that VC(CONJUNCTIONSn) = n

(Natschläger and Schmitt, 1996). Finally, Algorithm 1 can also be used for monotone

conjunctions, but where the initial hypothesis is h(x) =
∧

i∈[n] xi.

CNF and DNF formulas. A formula φ in the conjunctive normal form (CNF)

is a conjunction of clauses, where each clause is itself a disjunction of literals. A

k-CNF formula is a CNF formula where each clause contains at most k literals. For

example, φ = (x1∨x2)∧(x̄3∨x4)∧x̄5 is a 2-CNF. On the other hand, a DNF formula

is a disjunction of clauses, where each clause is itself a conjunction of literals. A

k-DNF is defined analogously to a k-CNF.

Decision lists. Given a positive integer k, a k-decision list f ∈ k-DL is a list

(K1, v1), . . . , (Kr, vr) of pairs where Kj is a term in the set of all conjunctions of

size at most k with literals drawn from {x1, x̄1, . . . , xn, x̄n}, vj is a value in {0, 1},
2We use the term length for conjunctions that are not equivalent to the constant function 0.
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and Kr is true. The output f(x) of f on x ∈ {0, 1}n is vj, where j is the least

index such that the conjunction Kj evaluates to true on x. Decision lists subsume

conjunctions. Indeed, a conjunction c(x) =
∧k

i=1 li can be expressed as the following

1-decision list: (¬l1, 0), . . . , (¬lk, 0), (true, 1).
The PAC-learning algorithm for decision lists, introduced by Rivest (1987), is

outlined in Algorithm 2. The sample size m is given by Theorem 3.8 and an ob-

servation that the size of the class is O
(
3|Cn,k| |Cn,k|!

)
, where Cn,k is the set of

conjunctions of length at most k on n variables, giving a VC dimension bound of

O(nk log n). Note that, as we consider k to be a fixed constant, the sample com-

plexity bound is polynomial in n and the learning parameters.

Algorithm 2 PAC-learning algorithm for 1-decision lists from Rivest (1987)

Input: S ∼ Dm

L := {xi, x̄i}ni=1 ▷ Set of all literals
h = ∅ ▷ Empty decision list
while S ̸= ∅ do

if ∃b ∈ {0, 1} s.t. ∀(x, y) ∈ S, y = b then
S ← ∅
append (true, b) to h

else
for l ∈ L s.t. ∃(x, y) ∈ S s.t. l(x) = 1 do ▷ l is true for some x

if ∃b ∈ {0, 1} s.t. ∀(x, y) ∈ S (l(x) = 1⇒ y = b) then
append (l, b) to h
S ← S \ {(x, y) ∈ S | l(x) = 1}

end if
end for

end if
end while

Note that, while the algorithm above is for 1-decision lists, it is sufficient to

only consider this case. Indeed, if we are dealing with k-decision lists, we can draw

our attention to the set Cn,k of conjunctions of length at most k on n variables by

defining the following injective map:

Φ : {0, 1}n → {0, 1}Cn,k , (3.1)

where Φ(x)ci = 1[x |= ci] for ci ∈ Cn,k, i.e. whether x satisfies clause ci. Now,

any distribution D on {0, 1}n induces a well-defined distribution D′ on {0, 1}Cn,k .
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Moreover, since |Cn,k| = O(nk), an input x ∈ {0, 1}n and a 1-decision h on {0, 1}n

can respectively be transformed into Φ(x) ∈ {0, 1}Cn,k and a k-decision list h′ on

{0, 1}Cn,k in polynomial time, for a fixed k, and vice-versa in the case of going from

h′ to h. It also follows that errD(h, c) = errD′(h′, c′), where c′ is the k-decision list

on {0, 1}Cn,k induced by c. Hence, an efficient learning algorithm for 1-decision lists

can be used as a black box to efficiently learn k-decision lists.

Finally, the class of k-decision lists subsume k-CNF and k-DNF (Rivest, 1987).

Decision trees. A decision tree T is a binary tree whose nodes are positive literals

in {x1, . . . , xn}. For a given node with variable xi, the edge to its left child node

is labelled with 0 and the edge to its right child node is labelled as 1, representing

the value of the xi for a given instance x ∈ {0, 1}n. The leaves take label in {0, 1};
a given x ∈ {0, 1}n induces a path from the root to a leaf in T , which will give the

label T (x). Decision trees generalize 1-decision lists: a 1-decision list is a decision

tree with each node having at most one child. Note that it is currently unknown

whether polynomial-sized decision trees are PAC learnable.

Parities. Parities are defined with respect to a subset I ⊆ [n] of indices as fI(x) =(∑
i∈I xi

)
mod 2, i.e. the output is whether adding the bits at indices in S results

in an odd or even sum. Learning parities amounts to learning the set S. Given a

set of examples (X, Y ) ⊆ {0, 1}n × {0, 1}, where each (x, y) ∈ (X, Y ) is a labelled

example, finding this set is equivalent to finding a solution a ∈ {0, 1}n to the system

of linear equations Xa = Y in the finite field F2. The set J := {j ∈ [n] | aj = 1}
gives a hypothesis fJ(x) =

(∑
j∈J xj

)
mod 2 consistent with the data. This can

be done using Gaussian elimination, provided a solution exists (this is guaranteed

by the realizability assumption). See (Helmbold et al., 1992; Goldberg, 2006) for

details.

Note that, when working in {−1, 1}n instead of {0, 1}n, we can define the parity

function as fI(x) =
∏

i∈I xi instead. This representation will be especially relevant

in Section 3.3 when we introduce Fourier analysis concepts.

Majorities. Similarly to parities, majorities are defined with respect to a set I of

indices, as follows: majI(x) = 1
[∑

i∈I xi ≥ |I| /2
]
. Again, when working in {−1, 1}n

instead of {0, 1}n, majority functions are defined as majI(x) = sgn
(∑

i∈I xi

)
. Clearly,
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from the representations above, majorities are subsumed by linear classifiers, which

are defined further below.

Linear classifiers. The class of linear classifiers (also known as halfspaces and

linear threshold functions) on input spaces X = {0, 1}n or X = Rn are defined as

{x 7→ sgn (w · x+ b) | w ∈ Rn, b ∈ R}, where the wi ∈ w are the weights and b is

the bias. When the instance space is the reals, we will denote the class as LTFRn .

Moreover, we will denote by LTFW
{0,1}n the class of linear threshold functions on

{0, 1}n with integer weights such that the sum of the absolute values of the weights

and the bias is bounded above byW , andW+ when the weights are positive. Finally,

when the weights and the bias are binary, i.e., wi, b ∈ {0, 1} for all i, the class is

called boolean threshold functions.

The VC dimension of halfspaces is n + 1. The upper bound of n + 1 can be

shown by using Radon’s theorem (any set of size n + 2 in Rn can be partitioned

into two subsets whose convex hulls intersect), and the lower bound can be obtained

by showing that the set {ei}ni=1 ∪ 0 can be shattered. The support vector machine

(SVM) algorithm, or solving a system of linear inequalities with linear programming,

can be used as a consistent learner for this concept class. Finally, the class of

conjunctions is subsumed by linear classifiers: a conjunction f(x) =
∧k

i=1 li can

be represented as the linear classifier g(x) = sgn
(∑

i∈I+ xi −
∑

i∈I− xi − |I|+ 1
)
,

where I+ = {j ∈ [n] | ∃i . li = xj} and I− = {j ∈ [n] | ∃i . li = x̄i}.

3.1.4 Online Learning: The Mistake-Bound Model

In online learning, the learner is given access to examples sequentially. At each

time step t, the learner receives an example xt, predicts its label ŷt using a given

hypothesis classH, receives the true label yt and can update its hypothesis, typically

when ŷt ̸= yt. A fundamental distinction between the PAC- and online-learning

models is that, in the latter, there are usually no distributional assumptions on the

data.3 Thus, we need to evaluate the learner’s performance with different benchmark

than the error errD(h) from the (offline) PAC setting.

3Some lines of work in online learning look at mild distributional assumptions in the learning
problem in order to get better guarantees, but the basic mistake-bound online learning set-up
assumes that examples (or more generally losses in the regret framework) can be given in an
adversarial and adaptive manner.
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In the mistake-bound model, examples and their labels can be given in an ad-

versarial fashion. The performance of the learner is evaluated with respect to the

number of mistakes it makes compared to the ground truth; we again assume the

realizability of the learning problem, meaning that there is a target concept c ∈ C
such that c(xt) = yt for all t. Crucially, the target concept need not be chosen a

priori: the only requirement is that, at every time t, there exists a concept c ∈ C
that is consistent on the past sequence of points (x1, y1), . . . , (xt, yt). The goal of

the learner is to learn the target exactly.

We now formally define the mistake-bound model of online learning.

Definition 3.10 (Mistake Bound). For a given hypothesis class C and instance

space X =
⋃

nXn, we say that an algorithm A learns C with mistake bound M if

A makes at most M mistakes on any sequence of samples consistent with a concept

c ∈ C.

In the mistake bound model, we usually require that M be polynomial in n

and size(c). A good example where this holds is the online learning algorithm for

conjunctions, outlined in Algorithm 3, which is immediately adapted from its PAC-

learning counterpart. Indeed, Algorithm 1 only changes its hypothesis whenever it

sees a positive example (x, 1) such that h(x) = 0, and works through the sample

sequentially.

Algorithm 3 PAC-learning algorithm for conjunctions, online version

L← {x1, x̄1, . . . , xn, x̄n}
h(x) =

∧
l∈L l ▷ h = 0

for t = 1, 2, . . . do
Receive xt

Predict h(xt)
Receive true label yt
if h(xt) ̸= yt then ▷ Only happens if y = 1

L← L \ {l ∈ L | l(x) = 0}
end if

end for

Unlike with conjunctions, the vast majority of PAC-learning algorithms cannot

be so straightforwardly tailored to online learning, resulting in a rich literature on

algorithms, benchmarks and guarantees specific to this setting.
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One of the simplest general-purpose algorithms for online learning in the realiz-

able mistake-bound model is the halving algorithm, outlined in Algorithm 4.

Algorithm 4 Halving algorithm

Input: A hypothesis class H
for t = 1, 2, . . . do

Receive example xt

V
(b)
t ← {h ∈ Vt | h(xt) = b}

ŷt = argmaxb

∣∣∣V (b)
t

∣∣∣ ▷ Predict label acc. to a majority vote

Receive true label yt
Vt+1 ← V

(yt)
t

end for

At each time step, the learner predicts the label of a new point according to the

majority vote of the hypotheses consistent with the sequence of data seen so far,

which is denoted as Vt. It is easy to see that the halving algorithm will make at most

log |H| mistakes: every time the learner makes a mistake on (xt, yt), at least half of

the hypotheses are not consistent with (xt, yt), and are thus eliminated. There are

two significant disadvantages to this learning algorithm: (i) its computational com-

plexity, with a runtime Ω(|H|), as it requires iterating through the whole hypothesis

class to get a majority vote and (ii) it can only be used on finite concept classes.

Note that these drawbacks can be addressed by instead drawing a hypothesis at

random from the version space, as argued in (Maass, 1991). We will now address

the second drawback and turn our attention to potentially infinite concept classes.

We have seen that, in PAC learning, the VC dimension of a concept class charac-

terizes its learnability, enabling learning guarantees for infinite concept classes that

have finite VC dimension. One may wonder whether there exists an analogous com-

plexity measure to the VC dimension when working in the mistake-bound model.

It turns out that such a measure exists in this setting: the Littlestone dimension,

defined and proved to characterize online learnability in (Littlestone, 1988). In order

to define the Littlestone dimension, we must first define Littlestone trees.

Definition 3.11 (Littlestone Tree). A Littlestone tree for a hypothesis class H on

X is a complete binary tree T of depth d whose internal nodes are instances x ∈ X .
Each edge is labeled with 0 or 1 and corresponds to the potential labels of the parent

node. Each path from the root to a leaf must be consistent with some h ∈ H, i.e. if
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x1, . . . , xd with labelings y1, . . . , yd is a path in T , there must exist h ∈ H such that

h(xi) = yi for all i.

We are now ready to define the Littlestone dimension.

Definition 3.12 (Littlestone Dimension). The Littlestone dimension of a hypothesis

class H, denoted Lit(H), is the largest depth d of a Littlestone tree for H. If no such

d exists then Lit(H) =∞.

Relationship to other complexity measures. Before showing that the Little-

stone dimension characterizes online learnability in this setting, we will study some

of its properties. First, the Littlestone dimension is an upper bound on the VC

dimension. Indeed, it is possible to convert any shattered set X = {x1, . . . , xd} of
size d into a Littlestone tree of depth d, where the nodes at depth i are all xi and

every path from the root to a leaf corresponds to a dichotomy on X.

Moreover, from the definition of Littlestone trees, since each path from the root

to a leaf of a tree is achievable by a distinct function h ∈ H, the Littlestone dimension

is bounded above by the logarithm of the size of H. We then have the following

inequality for all H
VC(H) ≤ Lit(H) ≤ log(|H|) . (3.2)

It can be shown that the gaps between the terms in Equation 3.2 can be ar-

bitrarily large. To show the gap between VC(H) and Lit(H), consider the set

THRESHOLDS =
⋃

a∈R 1[x ≥ a] of threshold functions on R. The VC dimension of

THRESHOLDS is 1, as a set of one point can be shattered, but a set of two points

x1 < x2 ∈ R cannot achieve the labelling (1, 0). However, its Littlestone dimension

is infinite: consider the interval [0, 1]. At each depth i of the Littlestone tree, the

set of nodes from left to right is
{

j+1
2i

}2i−1

j=0
, and the labelling of all the left edges

is 1 and 0 for right edges. For a given depth i, a path p from the root to node

xi,j := j+1
2i

for some j ∈ {0, 1, . . . , 2i−1} (including xi,j’s label) is thus consistent

with the threshold function 1[x ≥ x∗] where x∗ is the deepest node in p (inclusive

of xi,j) that is positively labelled. This infinite gap between the VC and Littlestone

dimensions clearly illustrates that online and offline (PAC) learnability are funda-

mentally different from each other, as some concept classes are PAC learnable but

not online learnable. To show the other arbitrary large gap between Lit(H) and
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log(|H|), consider the singletons on R, i.e. the class of functions
⋃

a∈R 1[x = a].

While the class is infinite, any Littlestone tree, which must be complete, has depth

1, as each hypothesis in the class labels a unique point (the target a) positively.

Thus Lit(H) = 1.

We now show that the Littlestone dimension lower bounds the number of mis-

takes any online learning makes.

Theorem 3.13. (Littlestone, 1988) Any online learning algorithm for C has mistake

bound M ≥ Lit(C).

Proof. Let A be any online learning algorithm for C. Let T be a Littlestone tree of

depth Lit(C) for C. Clearly, an adversary can force A to make Lit(C) mistakes by

sequentially and adaptively choosing a path in T in function of A’s predictions.

As previously suggested, the Littlestone dimension can also upper bound the

number of mistakes made by an online learning algorithm. This bound is achieved for

arbitrary concept classes with finite Littlestone dimension by the Standard Optimal

Algorithm from Littlestone (1988), outlined in Algorithm 5.

Algorithm 5 Standard Optimal Algorithm from Littlestone (1988)

Input: A hypothesis class C
for t = 1, 2, . . . do

Receive example xt

V
(b)
t ← {h ∈ Vt | h(xt) = b}

ŷt = argmaxb Lit(V
(b)
t )

Receive true label yt
Vt+1 ← V

(yt)
t

end for

The SOA works in a similar fashion as the halving algorithm, only considering

at time t the version space Vt of hypotheses that are consistent with the sequence of

examples so far. However, instead of taking the majority vote, the algorithm predicts

the label ŷt of a new point according to the subclass (w.r.t. a label prediction

b ∈ {0, 1}) with larger Littlestone dimension. The theorem below completes the

proof that the Littlestone dimension characterizes online learnability.

Theorem 3.14. The Standard Optimal Algorithm from Littlestone (1988) makes

at most Lit(C) mistakes in the mistake-bound model.
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Proof. We will show that, at every mistake, the Littlestone dimension of the subclass

Vt decreases by at least 1 after receiving the true label yt.

Suppose that, at time t, yt = argminb Lit(V
(b)
t ). Note that Vt+1 = V

(yt)
t . Now,

consider any two Littlestone trees Tyt and Tŷt of maximal depths for V
(yt)
t and V

(ŷ)
t ,

respectively. By definition, neither tree can contain xt, so it is possible to construct a

Littlestone tree T for Vt of depth minb Lit(V
(b)
t )+1 (recall that T must be complete).

Then Lit(Vt) ≥ Lit(V
(yt)
t ) + 1 = Lit(Vt+1) + 1, as required.4

While the SOA has an optimal mistake bound and is defined for arbitrary con-

cept classes, it remains highly inefficient in general, as computing the Littlestone

dimension of the concept subclasses could be very costly. For the remainder of this

section, we will consider online learning algorithms for specific concept classes in

order to circumvent some of these issues.5

The first algorithm we will look at is Winnow, which is for linear threshold

functions with bounded weights in the boolean hypercube. This algorithm and its

analysis are due to Littlestone (1988).

We now recall the mistake upper bound for Winnow in the special case of

LTFW+
{0,1}n , where the weights are positive integers.6

Theorem 3.15 (Winnow Mistake Bound). The Winnow algorithm for learning the

class LTFW+
{0,1}n makes at most O(W 2 log(n)) mistakes.

We now look at the perceptron algorithm, which first appeared in Rosenblatt

(1958), and whose first proofs of convergence were shown in Block (1962) and

Novikoff (1963).

While it is not possible to have a mistake bound for linear classifiers in Rn, as

the Littlestone dimension is infinite, requiring a margin on the data ensures a finite

mistake bound with the perceptron algorithm, as stated below.

Theorem 3.16 (Mistake Bound for Perceptron, Margin Condition; Theorem 7.8 in

Mohri et al. (2012)). Let x1, . . . ,xT ∈ Rn be a sequence of T points with ∥xt∥ ≤ r

for all 1 ≤ t ≤ T for some r > 0. Assume that there exists γ > 0 and v ∈ Rn

4Note that the Littlestone dimension does not necessarily decrease when yt = ŷt, as we could
have Vt = V

yy

t .
5We will discuss the algorithms and their mistake bounds here, but we refer the reader to the

references for the algorithms themselves and their analysis.
6See https://www.cs.utexas.edu/~klivans/05f7.pdf for a full derivation.

https://www.cs.utexas.edu/~klivans/05f7.pdf
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such that for all 1 ≤ t ≤ T , γ ≤ yt(v·xt)
∥v∥ . Then, the number of updates made by the

Perceptron algorithm when processing x1, . . . ,xT is bounded by r2/γ2.

3.1.5 Learning with Membership and Equivalence Queries

So far, we have studied models where the learner does not have any control over

the data it gets: in the PAC setting, labelled instances are received i.i.d. from

the random example oracle, and in the online setting, the new points can be given

adversarially. In this sense the learner is quite passive during the learning process.

We will now turn our attention towards learning models where the learner is more

active, and, in addition to receiving random examples, can make queries to an oracle,

also sometimes referred to as teacher.

For simplicity, we will for now assume that there is no distribution underlying

the data. Hence, similarly to the mistake-bound model of online learning, the goal is

to learn the target concept exactly on the instance space. We will start by defining

two different types of queries: membership and equivalence queries.

Definition 3.17. A membership oracle MQ(c) defined for a concept c ∈ C returns

the value c(x) when queried with an instance x ∈ X .

The terminology refers to the fact that C is a class of boolean functions, which

can be interpreted as a subsets of X . Then, a membership query returns whether

an instance x is in the target subset of X . In the case of real-valued functions, a

value oracle might be a more appropriate term.

Definition 3.18. An equivalence query oracle EQ(c) defined for a target concept

c ∈ C takes as input a representation of a hypothesis h and returns whether or not

h agrees with c on the input space X . If h ̸= c on X , EQ(c) also returns an instance

x ∈ X , called a counterexample, such that h(x) ̸= c(x).

With these two types of queries, we will now present the exact learning model

for concept classes in this setting, where the goal is to learn a hypothesis h such

that for all x ∈ X , h(x) = c(x). We formally define this model below, where we will

assume that the learning algorithm is deterministic.

Definition 3.19. A concept class C is efficiently exactly learnable using membership

and equivalence queries if there exists a polynomially-evaluatable hypothesis class
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H, a learning algorithm A and a polynomial p(·, ·) such that for all n ≥ 1, c ∈
C, whenever A is given access to the MQ(c) and EQ(c) oracles, it halts in time

p(n, size(c)) and outputs some h ∈ Hn such that h(x) = c(x) for all instances x ∈ X .
Furthermore, every query made to EQ(c) by A must made with some h ∈ Hn.

The exact learning model with access to MQ and EQ has a long history, partic-

ularly in automata theory, where the seminal work of Angluin (1987) presented an

exact learning algorithm, called L∗, to exactly learn deterministic finite automata.

Before going further, a few remarks are in order. First, the efficiency in this

definition is with respect to the computational complexity of the problem. This

entails requiring statistical efficiency as well, in the sense that the number of queries

to the MQ and EQ oracles be also polynomial in n and size(c).

Second, it may seem that having access to an equivalence oracle is an impractical

requirement. After all, while it makes sense to consider membership oracles, as they

can often be simulated by human “experts” (e.g., captioning done by internet users),

it could perhaps be unrealistic to expect humans or automated systems to simulate

the equivalence oracle in practice. However, the following result shows that, if

the exact learning requirement can be relaxed to PAC learning, i.e., allowing for

accuracy and confidence parameters, then one can simply work in the EX + MQ

learning model, and forgo equivalence queries.

Theorem 3.20. Let C be exactly efficiently learnable using membership and equiv-

alence queries. Then C is efficiently PAC-learnable using random examples and

membership queries.

The proof, omitted for brevity, relies on the fact that it is possible to simulate

(with sufficient accuracy) the EQ oracle with access to random examples.

Third, we have assumed that the learning algorithm is deterministic. It would

be possible to accommodate randomized learning algorithms with the addition of a

confidence parameter δ as in PAC learning. In this case, the probability of failure

would not come from the randomness in sampling the data, but rather from the fact

that we are working with an algorithm with internal randomization, which could

result in computational gains.

Now, note that it is possible to efficiently exactly learn conjunctions in the

MQ + EQ model (just by using the EQ oracle). We simply need to use the online
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learning version of the algorithm (Algorithm 3) and, instead of receiving an instance

and predicting its label, the learner gives the hypothesis h to EQ(c) and receives

a counterexample if h ̸= c. The number of calls to EQ is upper bounded by the

mistake bound (the reasoning is the same as in the online setting).

A more interesting class of functions to study is the class MONOTONE-DNF,

i.e., functions of the form T1 ∨ · · · ∨ Tr where each Ti is a monotone conjunction∧
j∈Si

xj. It is not known whether MONOTONE-DNF is PAC learnable. However, it

can be shown that this class can be exactly learned in the MQ+EQ model (and thus

is PAC learnable when the learner has additional access to MQ by Theorem 3.20).

We finish this section by formally introducing local membership queries (LMQ),

which were mentioned in Chapter 2. They were introduced by Awasthi et al. (2013)

and shown to circumvent some impossibility results in the standard PAC setting (or

impossibility conjectures). Here, given a sample S drawn from the example oracle

EX(c,D), a membership query for a point x is λ-local if there exists x′ ∈ S such that

x ∈ Bλ(x
′), i.e., an algorithm can only query the label of points within distance λ

of the training sample.

Definition 3.21 (PAC Learning with λ-LMQ ). Let X be the instance space equipped

with a metric d, C a concept class over X , and D a class of distributions over X .
We say that C is ρ-robustly learnable using λ-local membership queries with respect

to D if there exists a learning algorithm A such that for every ϵ > 0, δ > 0, for

every distribution D ∈ D and every target concept c ∈ C, the following hold:

1. A draws a sample S of size m = poly(n, 1/δ, 1/ϵ, size(c)) using the example

oracle EX(c,D)

2. Each query x′ made by A to the LMQ oracle is λ-local with respect to some

example x ∈ S

3. A outputs a hypothesis h that satisfies errD(h, c) ≤ ϵ with probability at least

1− δ

4. The running time of A (hence also the number of oracle accesses) is polynomial

in n, 1/ϵ, 1/δ, size(c) and the output hypothesis h is polynomially evaluable.

We conclude this section by remarking that learnability in the above setting is

with respect to a family D of distributions, rather than the distribution-free setting
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of PAC learning. This is because LMQs have mostly been used in the literature for

learning problems which require distributional assumptions.

3.2 Probability Theory

In this section, we first present log-Lipschitz distributions, a family of distributions

that will be studied throughout the text. We then introduce martingales, which are

sequences of random variables satisfying certain properties. They can be used to give

concentration bounds for random variables which are not necessarily independent,

such as bits in instances from {0, 1}n sampled from log-Lipschitz distributions.

3.2.1 Log-Lipschitz Distributions

While it is natural to consider product distributions on the input space {0, 1}n, such
as the uniform distribution, independence among the values of the bits of an input

is seldom a reasonable assumption to make in practice (e.g., two features may be

correlated). By working with log-Lipschitz distributions, we can still operate in a

regime where some distributional assumptions hold, but where the requirements are

less stringent than for product distributions. A distribution is log-Lipschitz if the

logarithm of the density function is log(α)-Lipschitz with respect to the Hamming

distance:

Definition 3.22. A distribution D on {0, 1}n is said to be α-log-Lipschitz if for all

input points x, x′ ∈ {0, 1}n, if dH(x, x′) = 1, then | log(D(x))− log(D(x′))| ≤ log(α).

The intuition behind log-Lipschitz distributions is that points that are close to

each other must not have frequencies that greatly differ from each other. From the

definition, it is straightforward to see that if two points x, x′ differ only by one bit,

then D(x)/D(x′) ≤ α. Thus, neighbouring points in {0, 1}n have probability masses

that differ by at most a multiplicative factor of α. This implies that the decay of

probability mass along a chain of neighbouring points is at most exponential. Not

having sharp changes to the underlying distribution is a very natural assumption,

and weaker than many other distributional assumptions in the literature. Again

note that features are allowed a small dependency between each other and, by

construction, log-Lipschitz distributions are supported on the whole input space.
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Log-Lipschitz distributions have been studied in Awasthi et al. (2013), and their

variants in Feldman and Schulman (2012); Koltun and Papadimitriou (2007).

Examples of log-Lipschitz distributions. The uniform distribution is log-

Lipschitz with parameter α = 1. Another example of log-Lipschitz distributions

is the class of product distributions where the probability of drawing a 0 (or equiv-

alently a 1) at index i is in the interval
[

1
1+α

, α
1+α

]
. For an example where some

of the bits are not independent, let η ∈ (1/2, 1) and let the input space be {0, 1}n

again. We first draw x1 uniformly at random (u.a.r.), and then let x2 be x1 with

probability η and x̄1 with probability 1 − η. The remaining bits are drawn u.a.r.

Then, this distributions is η
1−η

-log-Lipschitz.

Properties. Log-Lipschitz distributions have the following useful properties, which

we will often refer to in our proofs.

Lemma 3.23. Let D be an α-log-Lipschitz distribution over {0, 1}n. Then the

following hold:

1. For b ∈ {0, 1}, 1
1+α
≤ Pr

x∼D
(xi = b) ≤ α

1+α
.

2. For any S ⊆ [n], the marginal distribution DS̄ is α-log-Lipschitz, where

DS̄(y) =
∑

y′∈{0,1}S D(yy′).

3. For any S ⊆ [n] and for any property πS that only depends on variables xS,

the marginal with respect to S̄ of the conditional distribution (D|πS)S̄ is α-log-

Lipschitz.

4. For any S ⊆ [n] and bS ∈ {0, 1}S, we have that
(

1
1+α

)|S| ≤ Pr
x∼D

(xi = b) ≤(
α

1+α

)|S|
.

Proof. To prove (1), fix i ∈ [n] and b ∈ {0, 1} and denote by x⊕i the result of flipping

the i-th bit of x. Note that
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Pr
x∼D

(xi = b) =
∑

z∈{0,1}n:
zi=b

D(z)

=
∑

z∈{0,1}n:
zi=b

D(z)

D(z⊕i)
D(z⊕i)

≤ α
∑

z∈{0,1}n:
zi=b

D(z⊕i)

= α Pr
x∼D

(xi ̸= b) .

The result follows from solving for Pr
x∼D

(xi = b).

Without loss of generality, let S̄ = {1, . . . , k} for some k ≤ n. Let x, x′ ∈ {0, 1}S̄

with dH(x, x
′) = 1.

To prove (2), let DS̄ be the marginal distribution. Then,

DS̄(x) =
∑

y∈{0,1}S
D(xy) =

∑
y∈{0,1}S

D(xy)

D(x′y)
D(x′y) ≤ α

∑
y∈{0,1}S

D(x′y) = αDS̄(x
′) .

To prove (3), denote by XπS
the set of points in {0, 1}S satisfying property πS,

and by xXπS
the set of inputs of the form xy, where y ∈ XπS

. By a slight abuse of

notation, let D(XπS
) be the probability of drawing a point in {0, 1}n that satisfies

πS. Then,

D(xXπS
) =

∑
y∈XπS

D(xy) =
∑

y∈XπS

D(xy)

D(x′y)
D(x′y) ≤ α

∑
y∈XπS

D(x′y) = αD(x′XπS
) .

We can use the above to show that

(D|πS)S̄(x) =
D(xXπS

)

D(x′XπS
)

D(x′XπS
)

D(XπS
)
≤ α(D|πS)S̄(x

′) .

Finally, (4) is a corollary of (1)–(3).

3.2.2 Concentration Bounds and Martingales

Let us start with some notation and probability theory basics. A random variable

X on a sample space Ω, which represents the set of all possible outcomes, is a real-

valued measurable function X : Ω → R. Turning our attention to discrete random
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variables, the conditional probability of X given a random variable Y is defined as

Pr (X = x | Y = y) =
Pr (X = x ∧ Y = y)

Pr (Y = y)
.

We can now use this to define the conditional expectation as E [X | Y = y] =∑
x Pr (X = x | Y = y) , where Pr (Y = y) is assumed to be non-zero. While these

are defined for discrete random variables, they can be extended to continuous ran-

dom variables. Moreover, note that the conditional expectation E [X | Y ] is itself a

random variable.

Useful facts. The law of total expectation, which in full generality states that

E [X] = E
[
E [X | Y ]

]
, can also be formulated as

E [X] =
∑
y

Pr (Y = y)E [X | Y = y] .

Moreover, the linearity of expectation also holds under conditioning, i.e.,

E [X + Z | Y ] = E [X | Y ] + E [Z | Y ] .

Concentration inequalities and tail bounds are key tools to provide guarantees

in machine learning. Among the most commonly used and well-known bounds are

the Hoeffding inequality and the Chernoff bound, stated below.

Theorem 3.24 (Hoeffding (1963)). Let X1, . . . , Xn be n independent random vari-

ables such that Xi : Ω → [0, 1]. Denote by X̄ = 1
n

∑n
i=1 Xi their arithmetic mean

and let µ = E
[
X̄
]
. Then, for every t ≥ 0,

Pr
(∣∣X̄ − µ

∣∣ ≥ t
)
≤ 2 exp

(
−2mt2

)
. (3.3)

The Chernoff bound is the multiplicative form of Hoeffding’s inequality.

Theorem 3.25 (Chernoff (1952)). Let X1, . . . , Xn be n independent random vari-

ables such that Xi : Ω → {0, 1}. Denote their sum by X̄ =
∑n

i=1Xi and let

µ = E
[
X̄
]
. Then, for every 0 ≤ δ ≤ 1,

Pr
(
X̄ ≤ (1− δ)µ

)
≤ exp

(
−δ2µ/2

)
,

Pr
(
X̄ ≥ (1 + δ)µ

)
≤ exp

(
−δ2µ/3

)
.
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Both results rely on the independence of the random variables, which is not

always a reasonable assumption to make. Which tools are available to us when

independence cannot be guaranteed?

Martingales offer us the opportunity to weaken assumptions on the random vari-

ables, which are allowed to depend on each other. To this end, we consider a se-

quence of random variables, where the value of a given random variable is a function

of the preceding ones. Additional requirements on their expectation and conditional

expectation are given in order to get meaningful mathematical objects to study.

Definition 3.26. A martingale is a sequence of random variables X0, X1, . . . of

bounded expectation, i.e., E [|Xi|] < ∞, for all i, such that, for every i ≥ 0,

E [Xi+1 | X0, . . . , Xi] = Xi. More generally, a sequence of random variables Z0, Z1, . . .

is a martingale with respect to the sequence X0, X1, . . . if for all n ≥ 0

(i) Zn is a function of X0, . . . , Xn,

(ii) E [|Zn|] <∞,

(iii) E [Zn+1 | X0, . . . , Xn] = Zn.

When E [Zn+1 | X0, . . . , Xn] ≤ Zn the sequence is a supermartingale, and when

E [Zn+1 | X0, . . . , Xn] ≥ Zn, the sequence is a submartingale.

Example 3.27 (Gambler’s fortune.). Suppose a gambler plays a sequence of fair

games, meaning that E [Xi | X0, . . . , Xi−1] = 0, where Xi is the gains (or losses)

incurred at every game i. We are interested in the cumulative gains Zn =
∑n

i=0Xi,

the gambler’s total gains at the end of the n-th game. If E [|Xi|] <∞ for all games

i, then E [|Zn|] <∞ as well. Moreover,

E [Zn+1 | X0, . . . , Xn] = E [Xn+1 | X0, . . . , Xn] + E [Zn | X0, . . . , Xn] = Zn ,

together implying that the sequence Z0, Z1, . . . . is a martingale. Note that the as-

sumptions are quite permissive: the gambler’s strategy can fully depend on the history

of the previous games.

Now, when bounding the difference between two consecutive random variables,

one can obtain a powerful concentration bound, known as the Azuma-Hoeffding

inequality.
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Theorem 3.28 (Azuma-Hoeffding Inequality). Let X0, . . . , Xn be (super)martingales

such that |Xi −Xi+1| ≤ ci. Then for any λ > 0:

Pr (Xn −X0 ≥ λ) ≤ exp

(
− λ2

2
∑n

i=1 c
2
i

)
,

Pr (Xn −X0 ≤ −λ) ≤ exp

(
− λ2

2
∑n

i=1 c
2
i

)
.

Note that this inequality is similar in form to the Chernoff bounds, though the

gain in generality results in a weaker bound.

As previously mentioned, martingales and the Azuma-Hoeffding inequality will

be valuable when considering log-Lipschitz distributions, where the values of the

bits in an instance are not assumed to be independent.

3.3 Fourier Analysis

In this section, we introduce basic Fourier analysis concepts for boolean functions,

i.e., functions of the form f : {0, 1}n → {0, 1}, which comprise a large part of

the functions studied in this thesis. As previously mentioned, it is also possible

to look at functions of the form f : {−1, 1}n → {−1, 1}. In fact, this is what

we will do in this section as it eases analyses and notation. For various reasons,

the encoding φ : {0, 1} → {−1, 1} satisfying φ(0) = 1 and φ(1) = −1 for both

the input and output spaces is usually preferred. In general, one can also consider

real-valued functions f : {−1, 1}n → R. The type of functions for a given theorem

will be featured in the theorem statements, unless it is clear from the context. A

thorough introduction to the Fourier analysis of boolean functions, as well as the

proofs omitted in this section, can be found in the textbook by O’Donnell (2014).

Fourier analysis relies on considering functions’ Fourier expansion: their rep-

resentation as real multilinear polynomials. We start with some notation. For a

subset S ⊆ [n], we denote by χS(x) the monomial
∏

i∈S xi (with χS(∅) = 1 by

convention) corresponding to the set S. As stated below, the Fourier expansion of

a given function is unique.

Theorem 3.29 (Fourier Expansion Theorem). Every function f : {−1, 1}n → R
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can be uniquely expressed as the following multilinear polynomial

f(x) =
∑
S⊆[n]

f̂(S)χS(x) , (3.4)

which is called the Fourier expansion of f . A term f̂(S) ∈ R is called the Fourier

coefficient of f on S, and the collection of the Fourier coefficients is called the

Fourier spectrum of f .

Note that each χS(x) is a parity function defined for a subset S of indices, which,

together with the theorem above, imply that any function can be represented as a

linear combination of parity functions. In fact, the set of all such parity functions

forms an orthonormal basis for the set of all functions f : {−1, 1}n → R, and the

Fourier coefficients of f are given by

f̂(S) = ⟨f, χS⟩ := E
x∼{−1,1}n

[f(x)χS(x)] =
1

2n

∑
S⊆[n]

f(x)χS(x) , (3.5)

where x ∼ {−1, 1}n means that x is chosen u.a.r. from {−1, 1}n.
We now give a few more properties of boolean functions and results that will be

used later in Chapter 5. We start by defining the influence of a coordinate.

Definition 3.30. The influence of coordinate i ∈ [n] on f : {−1, 1}n → {−1, 1} is
defined as

Inf i[f ] = Pr
x∼{−1,1}n

(
f(x) ̸= f(x⊕i)

)
, (3.6)

where x⊕i denotes the result of flipping the i-th bit of x. For x ∈ {−1, 1}n, we say

that i is pivotal on x if f(x) ̸= (x⊕i).

We have the following statement giving an explicit formula for the influence of

a bit as a function of the Fourier spectrum.

Theorem 3.31. For f : {−1, 1}n → R and i ∈ [n], Inf i[f ] =
∑

S∋i f̂(S)
2.

We will later study majority functions. These functions have an important

property: monotonicity, which is defined below.

Definition 3.32. We say that f : {−1, 1}n → {−1, 1} is monotone if f(x) ≤ f(x′)

for all x ≤ x′ (coordinate-wise).
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Finally, the following proposition states that the influence of a bit i on a mono-

tone function is equal to the Fourier coefficient of the singleton i.

Proposition 3.33. If f : {−1, 1}n → {−1, 1} is monotone, then Inf i[f ] = f̂(i).





Chapter 4

Robustness: a Monotone

Conjunction Case Study

In this chapter, we first review and study the implications of two different notions of

robustness to evasion attacks from a learning-theory point of view. We then settle

on a particular notion of robustness, which speaks to the fidelity of the hypothesis to

the target concept, and show a separation between the standard and robust learning

settings. We finally study monotone conjunctions under distributional assumptions,

and show that the sample complexity of robust learning in this setting is controlled

by the adversary’s perturbation budget at test time.

4.1 Defining Robust Learnability

In this thesis, we study the problem of robust classification with respect to evasion

attacks, where an adversary can perturb data at test time. This is a generalization of

standard classification tasks, outlined in Section 3.1, which are defined on an input

space Xn of dimension n and a finite output space Y . Common examples of input

spaces are {0, 1}n, [0, 1]n, and Rn. We focus on binary classification, namely where

Y = {0, 1}, and on the realizable setting. Recall that, in the standard (non-robust)

setting, this means that there exists a target concept, also sometimes referred to

as a ground truth function. Thus whenever we get access to a randomly drawn

labelled sample S from an unknown underlying distribution D, there exists a target

concept c : X → Y such that y = c(x) for all the labelled points (x, y) ∈ S. In the

53
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PAC-learning framework of Valiant (1984), which will form the basis of our study of

robust classification, the goal is to find a function h that approximates c with high

probability over the training sample. We point the reader towards Section 3.1.1 for

a PAC-learning overview.

Note that PAC learning is distribution-free, in the sense that no assumptions are

made about the distribution from which the data comes from.

4.1.1 Two Notions of Robustness

The notion of robustness can be accommodated within the basic set-up of PAC

learning by adapting the definition of the risk function. In this section we review

two of the main definitions of robust risk to evasion attacks that have been used in

the literature. For concreteness and simplicity we consider the boolean hypercube

{0, 1}n as the input space, with metric d : X×X → N, where d(x, y) is the Hamming

distance of x, y ∈ X . Given x ∈ X , we write Bρ(x) for the ball {y ∈ X : d(x, y) ≤ ρ}
with center x and radius ρ ≥ 0. We recall the works of (Diochnos et al., 2018;

Dreossi et al., 2019; Pydi and Jog, 2021; Chowdhury and Urner, 2022), mentioned

in Chapter 2.2.1, which also offer thorough discussions on the choice of robust risk.

The first definition of robust risk we will consider asks that the hypothesis be

exactly equal to the target concept in the ball Bρ(x) of radius ρ around a test point

x ∈ X . We also note that it is possible to consider arbitrary perturbation functions

U : X → 2X , but that the guarantees and impossibility results obtained in this

chapter are derived for the specific case U(x) = Bρ(x). The robustness parameter

ρ, which is referred to as the adversary’s budget, features explicitly in many of the

bounds. The exact-in-the-ball notion of robustness is the one will work with in this

thesis:

Definition 4.1 (Exact-in-the-ball Robustness). Given respective hypothesis and tar-

get functions h, c : X → {0, 1}, distribution D on X , and robustness parameter

ρ ≥ 0, we define the exact-in-the-ball robust risk of h with respect to c to be

RE
ρ (h, c) = Pr

x∼D
(∃z ∈ Bρ(x) : h(z) ̸= c(z)) . (4.1)

While this definition captures a natural notion of robustness, an obvious dis-

advantage is that evaluating the empirical loss requires the learner to have knowl-

edge of the target function outside of the training set, e.g., through membership
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Figure 4.1: The natural point x has robust loss of 1 with respect to both notions
of robustness: z1 is a counterexample for exact-in-the-ball robustness (as c(z1) ̸=
h(z1)), and z2 for constant-in-the-ball robustness (as c(x) ̸= h(z2)).

queries. Nonetheless, by considering a learner who has oracle access to the pred-

icate ∃z ∈ Bρ(x) : h(z) ̸= c(z), we can use the exact-in-the-ball framework to ana-

lyze sample complexity of robust learning, which will be addressed in Chapter 6.

Moreover, even if one cannot evaluate the empirical loss on a training sample, the

guarantees obtained in this chapter and in Chapter 5 do not rely on an algorithm’s

capacity to compute or estimate the robust risk.

A popular alternative to the exact-in-the-ball risk function in Definition 4.1 is

the following constant-in-the-ball risk function:

Definition 4.2 (Constant-in-the-ball Robustness). Given respective hypothesis and

target functions h, c : X → {0, 1}, distribution D on X , and robustness parameter

ρ ≥ 0, we define the constant-in-the-ball robust risk of h with respect to c as

RC
ρ (h, c) = Pr

x∼D
(∃z ∈ Bρ(x) : h(z) ̸= c(x)) . (4.2)

Figure 4.1 highlights an example where the two notions of robustness differ.

An obvious advantage of the constant-in-the-ball risk over the exact-in-the-ball

version is that, in the former, evaluating the loss at point x ∈ X requires only

knowledge of the correct label of x and the hypothesis h. In particular, this def-

inition can also be carried over to the non-realizable setting,1 in which there is

1A note on terminology: realizability in this thesis refers to the existence of a ground truth c
and the requirement C ⊆ H. Then there will always be a h ∈ H such that errD(c, h) = RE

ρ (c, h) = 0.

As explained later, it can be that RC
ρ (c, c) > 0. In the literature, realizability with respect to the

constant-in-the-ball notion of robustness is in reference to a family of distributions on X × Y for
which there exists h ∈ H such that Pr

(x,y)∼D
(∃z ∈ Bρ(x) : h(z) ̸= y) = 0. We will make it explicit

whenever we work with the latter type of realizability.
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(a) (b) (c)

Figure 4.2: In all the examples above, the circles represent the support of the
distribution, and the shaded region, its ρ-expansion (i.e., the points at a distance
at most ρ from points in the support of the distribution). (a) The support of the
distribution is such that RC

ρ (h, c) = 0 can only be achieved if c is constant. (b) The
ρ-expansion of the support of the distribution and target c admit hypotheses h such
that RC

ρ (h, c) = 0 (i.e., any h that does not cross the shaded regions). (c) An example
where RC

ρ and RE
ρ differ. The red concept, which crosses the shaded regions, is the

target; the blue one is the hypothesis. The diamonds represent perturbed inputs
which cause RE

ρ (c, h) > 0, while RC
ρ (h, c) = 0.

no target, but rather a joint distribution on X × Y . Then Equation 4.2 becomes

Pr
(x,y)∼D

(∃z ∈ Bρ(x) : h(z) ̸= y).

Despite the advantages of the constant-in-the-ball risk, from a foundational point

of view this notion of risk has some drawbacks: under this definition, it is possible

to have strictly positive, and even sometimes constant, robust risk in the case that

h = c. In fact, this view of robustness can in some circumstances be in conflict

with accuracy in the traditional sense as pointed out by (Tsipras et al. (2019)).

More in line with our work, Chowdhury and Urner (2022) argue for robustness to

be considered as a locally adaptive measure, where sometimes a label change is

justified.

Example 4.3. Under the uniform distribution, for c ∈ MON-CONJ of constant

length k, RC
1 (c, c) ≥ Pr

x∼D
(∃!i ∈ [n] . c(x) ̸= c(x⊕i)) = k+1

2k
, and in the case of decision

lists, any list c of the form ((xi, 0), (xj, 1), . . . ) satisfies RC
1 (c, c) ≥ Pr

x∼D
(xj = 1) =

1/2. In the case of parity functions, it suffices to flip one bit of the index set to

switch the label, so under any distribution RC
ρ (c, c) = 1 for any ρ ≥ 1.

Let us note in passing that the risk functions RC
ρ and RE

ρ are in general incom-

parable. Figure 4.2c gives an example in which RC
ρ = 0 and RE

ρ > 0. Additionally,
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Property RC
ρ : constant-in-the-ball RE

ρ : exact-in-the-ball

Rρ(c, c) = 0? ✗ ✓

c = argminh Rρ(c, h)? ✗ ✓

S enough to evaluate R̂ρ? ✓ ✗

Behaviour of h as ρ→ n h = constant h = c (exact)

Table 4.1: The pros and cons of the two robust risk functions. The last line refers to
the behaviour of hypotheses minimizing the robust risk as the perturbation region
increases. At the extreme case, when the perturbation region is the whole space, the
robust risk minimizer for the constant-in-the-ball risk is a constant function, while
it is the target for the exact-in-the-ball risk (as we require exact learning).

when we work in the hypercube, or a bounded input space, as ρ becomes larger,

we eventually require the function to be constant in the whole space. Essentially,

to ρ-robustly learn in the constant-in-the-ball realizable setting, we require concept

and distribution pairs to be represented as two sets D+ and D− whose ρ-expansions

don’t intersect, as illustrated in Figures 4.2a and 4.2b.

We finish by pointing out that, in some cases in the (standard) realizable setting,

the target c is not the robust risk minimizer for ρ = 1: the constant concept is! This

is easy to see for parity functions, as RC
1 (c, 0) = RC

1 (c, 1) = 1/2 under the uniform

distribution while RC
1 (c, c) = 1. A similar result holds for monotone conjunctions:

Proposition 4.4. Under the uniform distribution, for any non-constant concept

c ∈ MON-CONJ, we have that RC
1 (c, c) > RC

1 (c, 0).

Proof. Let X = {0, 1}n and D be the uniform distribution on X . Let c(x) =

x1 ∧ · · · ∧ xk for some k ∈ [n]. Then,

RC
1 (c, c) = Pr

x∼D
(∃z ∈ Bρ(x) . c(z) ̸= c(x))

= Pr
x∼D

(c(x) = 1) + Pr
x∼D

(∃!i ∈ [k] . xi = 0)

= RC
1 (c, 0) + Pr

x∼D
(∃!i ∈ [k] . xi = 0)

> RC
1 (c, 0) .

The discussion above, which pertains to the boolean hypercube, makes apparent

the fact that the exact-in-the-ball and constant-in-the-ball definitions of robust risk
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Figure 4.3: Images from the CIFAR-10 (above) and MNIST (below) datasets, re-
spectively from (Krizhevsky and Hinton, 2009) and (LeCun, 1998). While the mar-
gin assumption generally holds for CIFAR (e.g., the “boat” and “dog” classes are
well-separated), this is not necessarily the case for MNIST (the three above could
easily be transformed into an eight, and the left-hand side picture could be a one or
a seven).

both rely on different distributional and concept class assumptions. The constant-

in-the-ball notion of robust risk relies on a strong distributional assumption (for

e.g., a margin condition) and/or on the stability of functions in the concept class.

The exact-in-the-ball is more relevant in cases where we cannot assume that the

probability mass near the boundary is small, and wish to be correct with respect

to the target function. Table 4.1 summarizes the advantages and disadvantages of

both robust risks. Figure 4.3 shows real-life examples where such assumptions can

come into play.

Overall, choosing a robust risk function should depend on the learning problem

at hand, and it is possible that other robustness frameworks could bring more nuance

and faithfulness to practical robustness considerations. For the moment, to lay the

foundations of robust learnability, we will work with the exact-in-the-ball notion of

robustness in the PAC framework. Our choice of robust risk comes from the fact

that the constant-in-ball risk is much better understood than for the exact-in-the-

ball one (most papers we have mentioned in Chapter 2 have used the former).

Having settled on a risk function, we now formulate the definition of robust

learning. For our purposes a concept class is a family C = {Cn}n∈N, with Cn a
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class of functions from {0, 1}n to {0, 1}. Likewise, a distribution class is a family

D = {Dn}n∈N, with Dn a set of distributions on {0, 1}n. Finally, a robustness

function is a function ρ : N→ N, which is fixed a priori.

Definition 4.5. Fix a function ρ : N→ N. We say that an algorithm A efficiently

ρ-robustly learns a concept class C with respect to distribution class D if there exists

a polynomial poly(·, ·, ·, ·) such that for all n ∈ N, all target concepts c ∈ Cn, all

distributions D ∈ Dn, and all accuracy and confidence parameters ϵ, δ > 0, if m ≥
poly(n, 1/ϵ, 1/δ, size(c)), whenever A is given access to a sample S ∼ Dm labelled

according to c, it outputs a polynomially evaluatable function h : {0, 1}n → {0, 1}
such that Pr

S∼Dm

(
RE
ρ(n)(h, c) < ϵ

)
> 1− δ.

Note that our definition of robust learnability requires polynomial sample com-

plexity and allows improper learning (the hypothesis h need not belong to the con-

cept class Cn).

4.1.2 A Separation between PAC and Robust Learning

In the standard PAC framework, a hypothesis h is considered to have zero risk with

respect to a target concept c when Pr
x∼D

(h(x) ̸= c(x)) = 0. We have remarked that

exact learnability (in the sense that c = h on all of X , not just the support of the

distribution) implies robust learnability; next we give an example of a concept class

C and distribution D such that C is PAC learnable under D with zero risk and yet

cannot be robustly learned under D (regardless of the sample complexity).

Lemma 4.6. The class of dictators is not 1-robustly learnable (and thus not robustly

learnable for any ρ ≥ 1) with respect to the robust risk of Definition 4.1 in the

distribution-free setting.

Proof. Let c1 and c2 be the dictators on variables x1 and x2, respectively. Let D be

such that Pr
x∼D

(x1 = x2) = 1 and Pr
x∼D

(xk = 1) = 1
2
for k ≥ 3. Draw a sample S ∼ Dm

and label it according to c ∼ U(c1, c2). By the choice of D, the elements of S will

have the same label regardless of whether c1 or c2 was picked. However, for x ∼ D, it

suffices to flip any of the first two bits to cause c1 and c2 to disagree on the perturbed

input. We can easily show that, for any h ∈ {0, 1}X , RE
1 (h, c1) + RE

1 (h, c2) ≥
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RE
1 (c1, c2) = 1. Then

E
c∼U(c1,c2)

E
S∼Dm

[
RE
1 (h, c)

]
≥ 1/2 .

We conclude that one of c1 or c2 has robust risk at least 1/2.

Note that a PAC learning algorithm with error probability threshold ε = 1/3

will either output c1 or c2 and will hence have standard risk zero.

The result above highlights an important distinction between standard and ro-

bust learning. We will further study this separation in the next section.

4.2 The Distribution-Free Assumption

In this section, we show that no non-trivial concept class is efficiently 1-robustly

learnable in the boolean hypercube, implying that such a class is also not efficiently

ρ-robustly learnable for any ρ ≥ 1. As a consequence, there exists a fundamental

separation between the standard PAC learning setting and its robust counterpart.

Indeed, (efficient) robust learnability in the distribution-free setting would require

access to a more powerful learning model or distributional assumptions when con-

sidering a learner who only has access to the random example oracle EX(c,D).

We start by defining trivial concept classes.

Definition 4.7. Let Cn be a concept class on {0, 1}n, and define C =
⋃

n≥1 Cn.
We say that a class of functions is trivial if Cn has at most two functions, which

moreover differ on every point.

A simple example of a trivial concept class is the set of constant functions {0, 1}.
More generally, once a function in C is fixed, there is only one (uniquely defined)

function that can be added to C and preserve its triviality. We show below that

these are the only classes that are distribution-free robustly learnable.

Theorem 4.8. For any concept class C, C is efficiently distribution-free robustly

learnable iff it is trivial.

Note that this is in stark contrast with the work of Montasser et al. (2019), which

gives distribution-free robust learning guarantees for the constant-in-the-ball notion
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of robustness. This approach relies on an improper learner and a sample inflation2

made possible by the realizability of the learning problem under the constant-in-

the-ball robust risk. The agnostic case follows from a non-trivial reduction from

the agnostic to the realizable setting. This highlights a fundamental difference be-

tween the constant-in-the-ball and exact-in-the-ball robustness guarantees. Indeed,

to perform such a sample inflation technique in our setting, one would need to have

knowledge outside the training sample; this is addressed in Chapter 6.

The idea behind the proof of Theorem 4.8 is a generalization of the proof of

Lemma 4.6 that dictators are not robustly learnable. However, note that we con-

struct a distribution whose support is all of X . It is possible to find two hypotheses

c1 and c2 and create a distribution such that c1 and c2 will with high probability look

identical on samples of size polynomial in n but have robust risk Ω(1) with respect

to one another. Since any hypothesis h in {0, 1}X will disagree either with c1 or c2

on a given point x if c1(x) ̸= c2(x), by choosing the target hypothesis c at random

from c1 and c2, we can guarantee that h won’t be robust against c with positive

probability. This shows that efficient robust learnability is in general impossible.

However, the same argument as in Lemma 4.6 can be made to show that, even with

infinite sample complexity, non-trivial classes are not robustly learnable. Finally,

note that an analogous argument can be made for a more general setting (e.g., for

the input space Rn).

The proof of Theorem 4.8 relies on the following lemma, which states that the

robust risk satisfies the triangle inequality:

Lemma 4.9. Let c1, c2 ∈ {0, 1}X and fix a distribution on X . Then for all h :

{0, 1}n → {0, 1}
RE
ρ (c1, c2) ≤ RE

ρ (h, c1) + RE
ρ (h, c2) .

Proof. Let x ∈ {0, 1}n be arbitrary, and suppose that c1 and c2 differ on some

z ∈ Bρ(x). Then either h(z) ̸= c1(z) or h(z) ̸= c2(z). The result follows.

We are now ready to prove Theorem 4.8.

Proof of Theorem 4.8. First, if C is trivial, we need at most one example to identify

the target function.

2For a given perturbation function U : X → 2X and training sample S = {(xi, yi)}mi=1, the
inflated sample is SU = {(U(xi), yi)}mi=1.
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For the other direction, suppose that C is non-trivial, and for a given c ∈ C,
denote by Ic ⊆ [n] the index set of relevant variables in the function c.3 We first

start by fixing any learning algorithm and polynomial sample complexity function

m. Let η = 1
2ω(logn) , 0 < δ < 1

2
, and note that for any constant a > 0,

lim
n→∞

na log(1− η)−1 = 0 ,

and so any polynomial in n is o
(
(log(1/(1− η)))−1). Then it is possible to choose

n0 such that for all n ≥ n0,

m ≤ log(1/δ)

2n log(1− η)−1
. (4.3)

Since C is non-trivial, we can choose concepts c1, c2 ∈ Cn and points x, x′ ∈
{0, 1}n such that c1 and c2 agree on x but disagree on x′. This implies that there

exists a point z ∈ {0, 1}n such that (i) c1(z) = c2(z) and (ii) it suffices to change

only one bit in I := Ic1 ∪ Ic2 to cause c1 to disagree on z and its perturbation. Let

D be a product distribution such that

Pr
x∼D

(xi = zi) =

1− η if i ∈ I

1
2

otherwise
.

Draw a sample S ∼ Dm and label it according to c ∼ U(c1, c2). Then,

Pr
S∼Dm

(∀x ∈ S c1(x) = c2(x)) ≥ (1− η)m|I| . (4.4)

Bounding the RHS below by δ > 0, we get that, as long as

m ≤ log(1/δ)

|I| log(1− η)−1
,

Equation 4.4 holds with probability at least δ. This is enabled by the requirement

from Equation 4.3.

However, if x = z, then it suffices to flip one bit of x to get x′ such that c1(x
′) ̸=

c2(x
′). Then,

RE
ρ (c1, c2) ≥ Pr

x∼D
(xI = zI) = (1− η)|I| . (4.5)

3This means that if i ∈ Ic there exists x ∈ {0, 1}n such that c(x⊕i), the output of c on flipping
the i-th bit of x, differs from c(x).
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The constraints on η and the fact that |I| ≤ n are sufficient to guarantee that the

RHS is Ω(1). Let α > 0 be a constant such that RE
ρ (c1, c2) ≥ α.

We can use the same reasoning as in Lemma 4.9 to argue that, for any h ∈
{0, 1}X ,

RE
1 (c1, h) + RE

1 (c2, h) ≥ RE
1 (c1, c2) .

Finally, we can show that

E
c∼U(c1,c2)

E
S∼Dm

[
RR
1 (h, c)

]
≥ αδ/2,

hence there exists a target c with expected robust risk bounded below by a constant.

In the next section, we will show that, even when looking at problems with dis-

tributional assumptions, robust learning can be hard from an information-theoretic

point of view.

4.3 An Adversarial Sample Complexity Lower

Bound

In this section, we will show that any robust learning algorithm for monotone

conjunctions under the uniform distribution must have an exponential sample-

complexity dependence on the adversary’s budget ρ. This result extends to any

superclass of monotone conjunctions, such as CNF formulas, decision lists and linear

classifiers. It is a generalization of Theorem 13 in Gourdeau et al. (2021), an earlier

version of the work presented in this thesis, which shows that no sample-efficient

robust learning algorithm exists for monotone conjunctions against adversaries that

can perturb ω(log(n)) bits of the input under the uniform distribution.

Monotone conjunctions are perhaps the simplest class of functions to study in

learning theory. Recall that a conjunction c over {0, 1}n can be represented by a set

of literals l1, . . . , lk, where, for x ∈ Xn, c(x) =
∧k

i=1 li. Monotone conjunctions are

the subclass of conjunctions where negations are not allowed, i.e. all literals are of

the form li = xj for some j ∈ [n]. The standard PAC learning algorithm to learn

conjunctions is outlined in Algorithm 1 in Section 3.1.3, and can straightforwardly
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be adapted for monotone conjunctions, with the slight distinction that the initial

hypothesis is
∧

i∈[n] xi.

Theorem 4.10. Fix a positive increasing robustness function ρ : N → N. If ρ is

a function of the input dimension n, then for κ < 2 and sufficiently large n, any

ρ(n)-robust learning algorithm for MON-CONJ has a sample complexity lower bound

of 2κρ(n) under the uniform distribution. Otherwise, the same lower bound holds

whenever ρ is a sufficient large constant (with respect to κ).

The idea behind the proof is to show that, for any κ < 2, there exists a suf-

ficiently large input dimension (that depends on κ and the function ρ) such that

a sample of size 2κρ from the uniform distribution will not be able to distinguish

between two disjoint conjunctions of length 2ρ. However, the robust risk between

these two conjunctions can be lower bounded by a constant. Hence, there does not

exist a robust learning algorithm with sample complexity 2κρ that works for the

uniform distribution, and arbitrary input dimension and confidence and accuracy

parameters.

Recall that the sample complexity of PAC learning conjunctions is Θ(n) in the

non-adversarial setting. On the other hand, our adversarial lower bound in terms of

the robust parameter is superlinear in n as soon as the adversary can perturb more

than log(
√
n) bits of the input.

The proof of Theorem 4.10 relies on the lemmas below, as well as Lemma 4.9.

Lemma 4.11 lower bounds the robust risk between two disjoint monotone conjunc-

tions as a function of the adversarial budget ρ, while Lemma 4.12 lower bounds the

probability that these two concepts are indistinguishable on a polynomially-sized

sample.

Lemma 4.11. Under the uniform distribution, for any n ∈ N, disjoint c1, c2 ∈
MON-CONJ of even length 3 ≤ l ≤ n/2 on {0, 1}n and robustness parameter ρ = l/2,

we have that Rρ(c1, c2) is bounded below by a constant that can be made arbitrarily

close to 1
2
as l (and thus ρ) increases.

Proof. For a hypothesis c ∈ MON-CONJ, let Ic be the set of variables in c. Let

c1, c2 ∈ C be as in the statement of the lemma. Then the robust risk Rρ(c1, c2) is

bounded below by

Pr
x∼D

(c1(x) = 0 ∧ x has at least ρ 1’s in Ic2) ≥ (1− 2−2ρ)/2 .
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Now, the following lemma shows that, for sufficiently large input dimensions, a

sample of size 2κρ from the uniform distribution will look constant with probability

1/2 if labelled by two disjoint monotone conjunctions of length 2ρ.

Lemma 4.12. For any constant κ < 2, for any robustness parameter ρ ≤ n/4, for

any disjoint monotone conjunctions c1, c2 of length 2ρ, there exists n0 such that for

all n ≥ n0, a sample S of size 2κρ sampled i.i.d. from D will have that c1(x) =

c2(x) = 0 for all x ∈ S with probability at least 1/2.

Proof. We begin by bounding the probability that c1 and c2 agree on an i.i.d. sample

of size m. We have

Pr
S∼Dm

(∀x ∈ S · c1(x) = c2(x) = 0) =

(
1− 1

22ρ

)2m

. (4.6)

In particular, if

m ≤ log(2)

2 log(22ρ/(22ρ − 1))
, (4.7)

then the RHS of Equation 4.6 is at least 1/2.

Now, let us consider the following limit, where ρ is a function of the input

parameter n:

lim
n→∞

2κρ log

(
22ρ

22ρ − 1

)
=
− log(4)

κ log(2)
lim
n→∞

2κρ

1− 22ρ

=
− log(4)

κ log(2)

κ log(2)

−2 log(2)
lim
n→∞

2κρ

22ρ

= lim
n→∞

2(κ−2)ρ

=


0 if κ < 2

1 if κ = 2

∞ if κ > 2

,

where the first two equalities follow from l’Hôpital’s rule.

Thus if κ < 2 then 2κρ is o

((
log
(

22ρ

22ρ−1

))−1
)
.
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Remark 4.13. Note that for a given κ < 2, the lower bound 2κρ holds only for

sufficiently large ρ(n). By looking at Equation 4.6, and letting m = 2ρ, we get

that ρ(n) ≥ 2 is a sufficient condition for it to hold. If we want a lower bound for

robust learning that is larger than that of standard learning (where the dependence

is Θ(n)) for a log(n) adversary, setting m = 21.7ρ and requiring ρ(n) ≥ 6, for e.g.,

would be sufficient.

We are now ready to prove Theorem 4.10.

Proof of Theorem 4.10. Fix any algorithm A for learning MON-CONJ. We will show

that the expected robust risk between a randomly chosen target function and any

hypothesis returned by A is bounded below by a constant.

Let δ = 1/2, and fix a positive increasing adversarial-budget function ρ(n) ≤
n/4 (n is not yet fixed). Let m(n) = 2κρ(n) for an arbitrary κ < 0. Let n0 be

as in Lemma 4.12, where m(n) is the fixed sample complexity function. Then

Equation (4.7) in the proof of Lemma 4.12 holds for all n ≥ n0.

Now, let D be the uniform distribution on {0, 1}n for n ≥ max(n0, 3), and choose

c1, c2 as in Lemma 4.11. Note that Rρ(c1, c2) > 5
12

by the choice of n. Pick the

target function c uniformly at random between c1 and c2, and label S ∼ Dm(n) with

c. By Lemma 4.12, c1 and c2 agree with the labeling of S (which implies that all

the points have label 0) with probability at least 1
2
over the choice of S.

Define the following three events for S ∼ Dm:

E : c1|S = c2|S , Ec1 : c = c1 , Ec2 : c = c2 .

Then,

E
c,S

[Rρ(A(S), c)] ≥ Pr
c,S

(E) E
c,S

[Rρ(A(S), c) | E ]

>
1

2
(Pr
c,S

(Ec1)E
S
[Rρ(A(S), c) | E ∩ Ec1 ] + Pr

c,S
(Ec2)E

S
[Rρ(A(S), c) | E ∩ Ec2 ])

=
1

4
E
S
[Rρ(A(S), c1) + Rρ(A(S), c2) | E ]

≥ 1

4
E
S
[Rρ(c2, c1)]

=
5

48
,
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where the first inequality is due to the Law of Total Expectation. The strict in-

equality comes from Lemma 4.12, the last inequality from Lemma 4.9, and the last

equality from Lemma 4.11.

Comparison with Diochnos et al. (2018, 2020) First, Diochnos et al. (2018)

considers the robustness of monotone conjunctions under the uniform distribution

on the boolean hypercube for the exact-in-the-ball notion of risk. However, Diochnos

et al. (2018) does not address the sample and computational complexity of learning:

their results rather concern the ability of an adversary to magnify the missclassi-

fication error of any hypothesis with respect to any target function by perturbing

the input. For example, they show that an adversary who can perturb Θ(
√
n) bits

can increase the missclassification probability from 0.01 to 1/2. The main tool used

in Diochnos et al. (2018) is the isoperimetric inequality for the boolean hypercube,

which gives lower bounds on the volume of the expansions of arbitrary subsets.

On the other hand, we use the probabilistic method to establish the existence of

a single hard-to-robustly-learn target concept for any given algorithm with sample

complexity exponential in ρ.

The work of Diochnos et al. (2020) shows an exponential lower bound on the

sample complexity of robust PAC learning of a wide family of concept classes, which

are called α-close, meaning that there must exist two concepts in the class that have

(standard) error α. These bounds hold under Normal Lévy distributions (which

include product distributions under the Hamming distance in {0, 1}n) against all

adversaries that can perturb up to o(n) bits. Closer to our results of this section, they

also show a superpolynomial lower bound in sample complexity against adversaries

that can perturb Θ̃(
√
n) bits. This thesis obtains the same result against a weaker

adversary in the special case of the uniform distribution: we show that a weaker

adversary, who can perturb only ω(log n) bits, renders it impossible to robustly learn

monotone conjunctions (and any superclass) with polynomial sample complexity. In

fact, we will show in Section 4.4 that Θ(log n) is indeed the threshold for the efficient

robust PAC learning of this class under log-Lipschitz distributions, which include

the uniform distribution.
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4.4 Robust Learnability Against a

Logarithmically-Bounded Adversary

In the previous section, we exhibited an exponential dependence on the adversary’s

budget to robustly learn monotone conjunctions under the uniform distribution. We

now turn our attention to a wider family of distributions, log-Lipschitz distributions,

and show that robust learnability can be guaranteed in this setting whenever the ad-

versary is logarithmically bounded. These results show that the sample complexity

of robust learning in our setting is controlled by the adversary’s budget.

4.4.1 Log-Lipschitz Distributions

A thorough introduction to log-Lipschitz distributions can be found in Section 3.2,

but we will recall the formal definition here.

Definition 3.22. A distribution D on {0, 1}n is said to be α-log-Lipschitz if for

all input points x, x′ ∈ {0, 1}n, if dH(x, x′) = 1, then | log(D(x)) − log(D(x′))| ≤
log(α).

While it may be tempting to work under product distributions over the instance

space {0, 1}n, as many concentration bounds and Fourier analysis tools are readily

available for this setting, independence between features is usually not a reasonable

assumption to make in practice. Indeed, it often happens that some features are

correlated, e.g., a person’s height and weight. By loosening the product distribu-

tion requirement to a log-Lipschitz one, we allow for some dependence between the

features. However, from a robustness point of view, it is sensible to ensure that

features are not too dependent on each other (which is also encapsulated by log-

Lipschitzness). Taking this to the extreme, suppose a feature has been duplicated,

i.e., there exist indices i, j in [n] such that xi = xj for all points in the support of the

distribution. Then, an instance such that xi = x̄j does not represent a meaningful

instance of the problem to be learned, and perhaps it would be unfair to require

an algorithm to perform well in such cases. Moreover, it is unclear how one would

measure robustness performance in this scenario.

In a sense, log-Lipschitz distributions encapsulate a natural desideratum when

considering both robustness guarantees and realistic assumptions on the data, and

furthermore provide a sound abstract framework to study robust learnability.
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4.4.2 A Robustness Guarantee

We now look at robustly learning monotone conjunctions on {0, 1}n under log-

Lipschitz distributions when the adversary can flip log(n) bits of the input at test

time. We remark that, when one has access to membership queries, one can easily

exactly learn monotone conjunctions over the whole input space: we start with the

instance where all bits are 1 (which is always a positive example, as the constant

function 0 does not belong to this class), and we can test whether each variable is in

the target conjunction by setting the corresponding bit to 0 and requesting the label.

However, robustly learning monotone conjunctions with access to random examples

only is not so straightforward, as positive examples, which are more informative

than negative ones, could be difficult to come by under the underlying distribution.

We now formally state the main result of this section.

Theorem 4.14. Let D = {Dn}n∈N, where Dn is a set of α-log-Lipschitz distributions

on {0, 1}n for all n ∈ N. Then the class of monotone conjunctions is ρ-robustly

learnable with respect to D for robustness function ρ(n) = O(log n).

This theorem combined with Theorem 4.10 shows that ρ(n) = log(n) is essen-

tially the threshold for the efficient robust learnability of the class MON-CONJ. Note

that here, and in all future results, we consider the constant α that parametrises

the log-Lipschitz distribution to be fixed, and it appears explicitly in the sample

complexity.

The main idea to prove Theorem 4.14 is that, on the one hand, it is possible to

efficiently exactly learn the target conjunction if its length is logarithmic in the input

dimension. On the other hand, we can otherwise efficiently ρ-robustly learn (but

not necessarily exactly learn) longer conjunctions as the robustness parameter is

logarithmic in the input dimension, and thus the adversary’s budget is insufficiently

large to cause a label change (with high probability). This is a simple example that

shows that robust learning does not necessarily imply exact learning.

Proof of Theorem 4.14. We show that the algorithm A for PAC-learning monotone

conjunctions (see Algorithm 1 in Chapter 3) is a robust learner for an appropriate

choice of sample size. We start with the hypothesis h(x) =
∧

i∈Ih xi, where Ih = [n].

For each example x in S, we remove i from Ih if c(x) = 1 and xi = 0.
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Let D be a class of α-log-Lipschitz distributions. Let n ∈ N and D ∈ Dn.

Suppose moreover that the target concept c is a conjunction of l variables. Fix

ε, δ > 0. Let η = 1
1+α

, and note that by Lemma 3.23, for any S ⊆ [n] and bS ∈
{0, 1}S, we have that η|S| ≤ Pr

x∼D
(xi = b) ≤ (1− η)|S|.

Claim 1. If m ≥
⌈
logn−log δ

ηl+1

⌉
then given a sample S ∼ Dm, algorithm A outputs

c with probability at least 1− δ.

Proof of Claim 1. Fix i ∈ {1, . . . , n}. Algorithm A eliminates i from the output

hypothesis just in case there exists x ∈ S with xi = 0 and c(x) = 1. Now we have

Pr
x∼D

(xi = 0 ∧ c(x) = 1) ≥ ηl+1 and hence

Pr
S∼D

(∀x ∈ S · i remains in Ih) ≤ (1− ηl+1)m ≤ e−mηl+1

=
δ

n
.

The claim now follows from union bound over i ∈ {1, . . . , n}.

Claim 2. If l ≥ 8
η2
log(1

ε
) and ρ ≤ ηl

2
then Pr

x∼D
(∃z ∈ Bρ(x) · c(z) = 1) ≤ ε.

Proof of Claim 2. Define a random variable Y =
∑

i∈Ic I(xi = 1). We simulate Y

by the following process. Let X1, . . . , Xl be random variables taking value in {0, 1},
and which may be dependent. LetDi be the marginal distribution onXi conditioned

onX1, . . . , Xi−1. This distribution is also α-log-Lipschitz by Lemma 3.23, and hence,

Pr
Xi∼Di

(Xi = 1) ≤ 1− η . (4.8)

Since we are interested in the random variable Y representing the number of 1’s

in X1, . . . , Xl, we define the random variables Z1, . . . , Zl as follows:

Zk =

(
k∑

i=1

Xi

)
− k(1− η) ,

with the convention that Z0 = 0. The sequence Z0, Z1, . . . , Zl is a supermartingale

with respect to X1, . . . , Xl:

E [Zk+1 | X1, . . . , Xk] = E
[
Zk +X ′

k+1 − (1− η) | X ′
1, . . . , X

′
k

]
= Zk + Pr

(
X ′

k+1 = 1 | X ′
1, . . . , X

′
k

)
− (1− η)

≤ Zk . (by (A.1))
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Now, note that all Zk’s satisfy |Zk+1 − Zk| ≤ 1, and that Zl = Y − l(1 − η). We

can thus apply the Azuma-Hoeffding (A.H.) inequality (see Section 3.2 for details)

to get

Pr (Y ≥ l − ρ) ≤ Pr
(
Y ≥ l(1− η) +

√
2 ln(1/ε)l

)
= Pr

(
Zl − Z0 ≥

√
2 ln(1/ε)l

)
≤ exp

(
−
√

2 ln(1/ε)l
2

2l

)
(A.H.)

= ε ,

where the first inequality holds from the given bounds on l and ρ:

l − ρ = (1− η)l +
ηl

2
+

ηl

2
− ρ

≥ (1− η)l +
ηl

2
(since ρ ≤ ηl

2
)

≥ (1− η)l +
√

2 log(1/ε)l . (since l ≥ 8
η2
log(1

ε
))

This completes the proof of Claim 2.

We now combine Claims 1 and 2 to prove the theorem. Define l0 := max( 2
η
log n, 8

η2
log(1

ε
)).

Define m :=
⌈
logn−log δ

ηl0+1

⌉
. Note that m is polynomial in n, δ, ε.

Let h denote the output of algorithm A given a sample S ∼ Dm. We consider

two cases. If l ≤ l0 then, by Claim 1, h = c (and hence the robust risk is 0) with

probability at least 1− δ. If l0 ≤ l then, since ρ = log n, we have l ≥ 8
η2
log(1

ε
) and

ρ ≤ ηl
2
and so we can apply Claim 2. By Claim 2 we have

RE
ρ (h, c) ≤ Pr

x∼D
(∃z ∈ Bρ(x) · c(z) = 1) ≤ ε

Now that we have shown robust learnability against logarithmically-bounded

adversaries, we define robustness thresholds, a term that will be used throughout

this thesis.

Definition 4.15 (Robustness Threshold). A robustness threshold for concept class

C and distribution family D is an adversarial budget function ρ : N→ R of the input

dimension n such that, if the adversary is allowed perturbations of magnitude ρ(n),
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then there exists a sample-efficient ρ(n)-robust learning algorithm for C under D,
and if the adversary’s budget is ω(ρ(n)), then such an algorithm does not exist.

As a consequence of Theorems 4.10 and 4.14, we get the following result.

Theorem 4.16. The robustness threshold for MON-CONJ under log-Lipschitz dis-

tributions is ρ(n) = log(n).

As we will discuss further in the next chapter, we finish by remarking that the

method employed to show efficient robust learnability in this section is to use a

(proper) PAC-learning algorithm as a black box and control the accuracy parameter

to ensure robustness to evasion attacks.

4.5 Summary

This chapter offered a thorough discussion on the choice of robust risk for eva-

sion attacks. Settling on the exact-in-the-ball robust risk, we then showed that

the standard PAC and robust learning settings are fundamentally different in that,

contrary to the former, the latter requires distributional assumptions to ensure (effi-

cient) learnability. But even when considering the natural uniform distribution, we

showed that the efficient robust learning of monotone conjunctions, a very simple

concept class, cannot be guaranteed against an adversary that has a superlogarith-

mic perturbation budget. However, we showed that this result is tight: guarantees

can be obtained for logarithmically-bounded adversaries under log-Lipschitz distri-

butions. Overall, these results show that the adversarial budget is a fundamental

quantity in determining the sample complexity of robust learning under these dis-

tributional assumptions. This motivates the term robustness threshold, adversarial

budget functions characterizing efficient robust learnability for a given distribution

family. The next chapter will study the robustness thresholds of various concept

classes under smoothness assumptions.



Chapter 5

Robustness Thresholds with

Random Examples

In this chapter, we further explore the robustness thresholds (Definition 4.15) of

various concept classes under distributional assumptions, again with respect to the

exact-in-the-ball notion of robustness. In Section 5.1, we start by showing that exact

(and thus robust) learning is possible for parities under log-Lipschitz distributions

and majority functions under the uniform distribution. We then turn our attention

to decision lists, where we show a robustness threshold of log n under log-Lipschitz

distributions in Section 5.2. Section 5.3 concludes the technical contributions of this

chapter by relating the standard and robust errors of decision trees.

In Section 5.2, we demonstrate the robust learnability of k-decision lists by first

looking at the case where k = 1, which forms the foundation of the generalization to

k-DL. This simpler case provides a substantial intuition behind the reasoning for the

more complex case of k > 1, while also giving better sample complexity bounds in

the specific case k = 1. We then distinguish two set-ups for the case k > 1: (i) 2-DL

and monotone k-DL, and (ii) non-monotone k-DL. While the second case is more

general, the first one results in better sample complexity upper bounds. Indeed,

the dependence on k, which we consider to be a fixed constant, in the degree of the

former is poly(k), while it is 2poly(k) for the latter.

This chapter concludes with Section 5.4, which summarizes the results of this

chapter. As explained in more detail in that section, the methods in this chap-

ter can be viewed as relating the mass of the error region between the target and

73
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hypothesis and the ρ-expansion of the error region, where ρ is the adversarial bud-

get. Indeed, the general, unifying approach in proving robustness thresholds in this

work is to express the discrepancy between two functions (i.e., instances where they

disagree) as a logical formula φ. We then relate the size of the set of satisfying

assignments of φ to the size of its expansion. This means that we can control the

robust risk by controlling the standard risk, thus allowing the use of standard PAC-

learning algorithms as black boxes for robust learning, provided the adversary is

logarithmically-bounded.

5.1 Exact Learning

In the previous chapter, monotone conjunctions of sufficiently large length satisfied

a certain form of stability, ensuring that one could obtain robust learning guarantees

without the need to exactly learn them. In this section, we turn our attention to

unstable concept classes, where one in general cannot ensure robustness without

having learned the target exactly.

5.1.1 Parity Functions

In this section, we show that the concept class PARITIES of parity functions are

efficiently exactly learnable under log-Lipschitz distributions. As these distributions

have support on the whole input space, it follows that this implies efficient robust

learning of parities.

Recall that parity functions are of the form fI(x) =
∑

i∈I xi mod 2, where I ⊆
[n]. Note that exact learning is necessary under our notion of robustness: if I is

non-empty, then every instance is on the decision boundary, as it suffices to flip a

single bit in I to cause fI to change label. The idea to show robust learnability of

parity functions is to show that, for a class of α-log-Lipschitz distributions, a proper

PAC-learning algorithm can be used as a black box for exact learning.

Theorem 5.1. PARITIES is exactly learnable under α-log-Lipschitz distributions.

Proof. Consider a proper PAC-learning algorithm A with sample complexity poly(·)
for PARITIES (see e.g., Goldberg (2006)). Let D be a family of α-log-Lipschitz

distributions and letD ∈ D be arbitrary. Let ϵ, δ > 0 be the accuracy and confidence
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parameters, n be the input dimension, and c(x) =
∑

i∈Ic xi mod 2 be the target

concept. For any h(x) =
∑

i∈Ih xi mod 2, letting I∆ = {i ∈ [n] | i ∈ Ic∆Ih} be the

symmetric difference between the sets Ic and Ih, we have that if I∆ is non-empty,

Pr
x∼D

(h(x) ̸= c(x)) = Pr
x∼D

(∑
i∈I∆

xi mod 2 = 1

)
≥ 1

1 + α
.

This follows from Lemma 3.23(ii): for some i ∈ I, the marginal of xi conditioned

on the points {xj | j ∈ I \ {i}} is also α-log-Lipschitz. Then no matter what value

the points in {xj | j ∈ I \ i} take, we know that the probability that xi causes a

mismatch in parity is bounded below by 1/(1 + α) by Lemma 3.23(i). Then, any

proper PAC-learning algorithm1 with accuracy parameter ϵ < 1/(1 + α) will return

c with probability at least 1− δ.

We then have the following corollary.

Corollary 5.2. PARITIES is ρ-robustly learnable under α-log-Lipschitz distributions

for any ρ.

5.1.2 Majority Functions

We will now work in the input space X = {−1, 1}n and with majority functions.

For I ⊆ [n], define majI : X → {−1, 1} as majI(x) = sgn
(∑

i∈I xi

)
. For simplicity,

we will suppose that |I| is odd. We will show that we can exactly learn majority

functions, and thus robustly learn them, with the use of Fourier analysis. We give an

overview of Fourier analysis in the boolean hypercube in Section 3.3. For a function

f , denote by f̂(S) its Fourier coefficient on subset S ⊆ [n]. If S is a singleton {i},
we simply write f̂(i).

The idea is to show that we can exactly learn the Fourier coefficients m̂ajI(i)

of singleton sets {i} for 1 ≤ i ≤ n of any majority function with arbitrarily high

confidence. We note that some of the results below are already known, but have

not been applied to robustness. We have included proofs for completeness.

Theorem 5.3. Let majI : X → {−1, 1} be a majority function. Then for i ∈ [n],

we have that m̂ajI(i) ≥
√

2/πn if i ∈ I and 0 otherwise.
1E.g., performing Gaussian elimination on the matrix X of examples and label vector y and

returning a possible solution vector z ∈ {0, 1}n (i.e., Xz = y), where ai = 1 if and only if zi = 1,
would be a proper learning algorithm.
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This result, which is part of the Fourier analysis folklore and whose proof is

included below for completeness, gives us a simple algorithm to learn majority func-

tions. Indeed, Theorem 5.3 states that the Fourier coefficient of a bit in the majority

is sufficiently large (bounded away from 0) to distinguish it from bits that are not

in the majority function.

Proof of Theorem 5.3. Since majorities are monotone functions, for i ∈ [n], we have

that

m̂ajI({i}) = Infi[majI ] ,

where Infi[f ] is the influence of the i-th bit on the function f , defined as

Pr
x∼{−1,1}n

(
f(x) ̸= f(x⊕i)

)
,

and x⊕i is the vector resulting in flipping the i-th bit of x. This result follows

from that fact that, for a monotone function, the Fourier coefficient of a singleton

{i} is simply the influence of bit i (see Proposition 3.33). Clearly, if i ̸∈ I, then

m̂ajI({i}) = 0. Otherwise, we need to compute the probability that exactly half of

the bits in I \ {i} are 1. Letting X =
∑

j∈I\{i} 1[xj = 1] and k = |I| − 1,

Pr
x∼{−1,1}n

(X = k/2) =

(
k

k/2

)(
1

2

)k

. (5.1)

Using the inequality
√
2πn

(
n
e

)n ≤ n! ≤
√
2πn

(
n
e

)n
e

1
12n (Robbins, 1955), we can

derive a lower bound for Equation (5.1) and show that

Pr
x∼{−1,1}n

(X = k/2) ≥
√

2

πk
≥
√

2

πn
, (5.2)

whenever i ∈ I.

It is possible to estimate the Fourier coefficients of a function to a high accuracy,

provided one has enough data (see Chapter 3 in O’Donnell (2014) for more details).

The theorem below shows that we only need to look at the Fourier coefficients of

singletons in order to identify the target majority under the uniform distribution.

Theorem 5.4. MAJORITIES is exactly learnable under the uniform distribution.
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Proof. Suppose we have a sample {(x(j), y(j))}mj=1 where the x(j)’s are taken i.i.d.

from the uniform distribution. We can use the Fourier coefficient’s empirical esti-

mates m̃ajS(i) = 1
m

∑m
j=1 y

(j)x
(j)
i to construct an estimate S̃ of S as follows. For

accuracy parameter ϵ = 1
2
√
πn
, if m̃ajS({i}) ≥ 1√

πn
− ϵ, then i ∈ S̃, and otherwise

i ̸∈ S̃. We output the function majS̃.

What is the probability that S̃ ̸= S? By a standard application of the Chernoff

bound, we can get an estimate of m̃ajS(i) with accuracy ±ϵ and confidence 1 − δ

with O( 1
ϵ2
log(1

δ
)) samples. For a given index i, we choose accuracy ϵ = 1/(2

√
πn)

and confidence δ/n, and by a union bound over all indices, we know that O(n log(n
δ
))

samples are sufficient to guarantee that S̃△S ̸= ∅ with probability at most δ, and

we are done.

Remark 5.5. We can easily extend the reasoning used for majority functions to

linear threshold functions with weights in {−1, 0, 1}. It suffices to notice that linear

functions are unate in all directions, meaning that for all i, either f(x(i→−1)) ≤
f(x(i→1)) for all x (i.e., f is monotone in the i-th direction) or if f(x(i→−1)) ≥
f(x(i→1)) for all x (i.e., f is antimonotone in the i-th direction), and use the following

theorem:

Proposition 5.6. For i ∈ [n] and f : {−1, 1}n → {−1, 1},

|f̂(i)| ≤ Inf i[f ] ,

with equality if and only if f is unate in the i-th direction.

Proof of Proposition 5.6. Let f be unate in all directions, and for a fixed i let Ai =

{x | f(x) ̸= f(x⊕i)}.

f̂(i) =
1

2n

∑
x

f(x)xi

=
1

2n

∑
x∈Ai:xi=1

f(x)−
∑

x∈Ai:xi=−1

f(x)

=
±|Ai|
2n

= ±Inf i[f ] .
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Then we can use the same reasoning as in the majority case to argue that for

f(x) = sgn (
∑

i aixi), the Fourier coefficient of i for ai ̸= 0 will be at least Θ(1/
√
n)

away from 0 and that sgn(ai) = sgn(f̂(i)), implying that we can exactly learn this

class of functions.

5.2 Decision Lists

From a robust learnability point of view, the concept classes from the previous sec-

tion are not very interesting, since we simply learn them exactly, and thus robustly,

for any robustness parameter. In this section, we study the class of decision lists,

which is much more expressive than (monotone) conjunctions. Decision lists were

introduced in Rivest (1987), where they were shown to be efficiently PAC learn-

able. We denote by k-DL the class of decision lists with conjunctive clauses of size

at most k at each decision node. Decision lists generalize formulas in disjunctive

normal form (DNF) and conjunctive normal form (CNF): k-DNF ∪ k-CNF ⊂ k-DL,

where k refers to the number of literals in each clause. Formally, a decision list is a

list L of pairs

(K1, v1), . . . , (Kr, vr) ,

where Kj is a term in the set of all conjunctions of size at most k with literals drawn

from {x1, x̄1, . . . , xn, x̄n}, vj is a value in {0, 1}, and Kr is true. The output f(x)

of f on x ∈ {0, 1}n is vj, where j is the least index such that the conjunction Kj

evaluates to true on x. For more details on decision lists and their PAC-learning

algorithm, see Section 3.1.3.

Showing the efficient robust learnability of decision lists against logarithmically-

bounded adversaries relies on first getting guarantees for simpler cases: 1-decision

lists, 2-decision lists andmonotone k-decision lists. As we will discuss later, reducing

the robust learnability of k-DL to the robust learnability of 1-DL apparently cannot

be done in the same way as in the standard PAC setting. Robustly learning k-

decision lists for k ≥ 2 requires a totally new argument based on the hypergraph

structure of k-CNF formulas. Our first approach to show robust learnability (which

yields better sample complexity bounds) can only be applied to 2-decision lists and

monotone k-DL. Proving the robust learnability of non-monotone k-DL requires a

different approach relying on a combinatorial argument and induction.
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5.2.1 1-Decision Lists

In this section, we show that 1-decision lists are robustly (but not necessarily ex-

actly) efficiently learnable for robustness parameter ρ = O(log n) under log-Lipschitz

distributions. At the heart of the result lies a similar argument to the one from the

previous chapter showing the robust learnability of monotone conjunctions against a

logarithmically-bounded adversary. Indeed, the discrepancy between two 1-decision

lists can be represented as a conjunction, and the argument from Chapter 4 can

easily be extended to this setting. Note that, as in Chapter 4, the log-Lipschitz

parameter α is considered as a constant and appears explicitly in the sample com-

plexity upper bounds.

This section will be dedicated to proving the following theorem.

Theorem 5.7. The class 1-DL is efficiently ρ-robustly learnable, i.e. with polyno-

mial sample complexity, under the class of α-log-Lipschitz distributions with robust-

ness threshold ρ = Θ(log n).

Recall that we have already shown in Chapter 4 that an adversary with a per-

turbation budget ω(log n) renders efficient robust learning impossible for monotone

conjunctions under the uniform distribution. Since monotone conjunctions are sub-

sumed by 1-decision lists, the lower bound of Theorem 4.10 extends to 1-DL.

We now state the main result of this section.

Theorem 5.8. Let D = {Dn}n∈N, where Dn is a set of α-log-Lipschitz distributions

on {0, 1}n for all n ∈ N. Then the class of 1-decision lists is ρ-robustly learnable

with respect to D for robustness function ρ(n) = log n.

As previously mentioned, Theorem 5.7 follows from Theorem 5.8 combined with

Theorem 4.10. Note that, while the result is stated for ρ = log n, it can straight-

forwardly be extended to ρ = C log n for some constant C, at the cost of a larger

polynomial degree for the sample complexity upper bound. To prove the above

result, we first need the following definitions and lemmas.

Definition 5.9. Given a 1-decision list c = ((l1, v1), . . . , (lr, vr)) and x ∈ X , we say

that x activates node i ∈ {1, . . . , r} in c if x |= li and x ̸|= lj for all j such that

1 ≤ j < i.
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The following definition will play a role in our analysis of 1-decision lists.

Definition 5.10. Let c and h be decision lists. Given d ∈ N, we say that h is

consistent with c up to depth d, denoted c =d h, if c(x) = h(x) for all x ∈ X such

that the nodes in c and h respectively activated by x have level at most d.

Note that, given a 1-decision list f = ((l1, v1), . . . , (lr, vr)), we can assume with-

out loss of generality that f is in a minimal representation, namely that

(i) A literal l only appears once in the list (otherwise we can remove all occur-

rences of l except the first one without changing the output of the list),

(ii) There does not exist 1 ≤ i < j ≤ d such that li = l̄j, as otherwise it is

impossible to go past lj in the list (note that if there exists 1 ≤ i < d such

that ld = l̄i, we can simply set ld to true).

We will henceforth assume that all decision lists are in their minimal representation.

Now, under log-Lipschitz distributions, if two 1-decision lists have an error below

a certain threshold, they must be consistent up to a certain depth.

Lemma 5.11. Let h, c ∈ 1-DL and let D be an α-log-Lipschitz distribution. If

Pr
x∼D

(h(x) ̸= c(x)) < (1 + α)−2d, then c =d h.

Proof. We will show the contrapositive. Let c = ((l1, v1), . . . , (lr, vr)) and h =

((l′1, v
′
1), . . . , (l

′
s, v

′
s)) be 1-decision lists. Let c ̸=d h, meaning that there exists x ∈ X

such that x activates node i0 in c and node i1 in h such that i0, i1 ≤ d and vi0 ̸= v′i1 .

In particular, the following must hold

x |= ¬li 1 ≤ i < i0 ,

x |= ¬l′i 1 ≤ i < i1 ,

x |= li0 ∧ li1 .

By Lemma 3.23, the probability of drawing such an x is at least (1 + α)−i0−i1 ≥
(1 + α)−2d.

The next step in the argument is to derive an upper bound on the robust loss

RE
ρ (c, h) under the condition that c =d h. To this end, the key technical lemma,

which pertains to the ρ-expansion of the set of satisfying assignments of a conjunc-

tion on {0, 1}n, is as follows:
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Lemma 5.12. Let D be an α-log-Lipschitz distribution on the n-dimensional boolean

hypercube and let φ be a conjunction of d literals. Set η = 1
1+α

. Then for all

0 < ε < 1/2, if d ≥ max
{

4
η2
log
(
1
ε

)
, 2ρ

η

}
, then Pr

x∼D
((∃y ∈ Bρ(x) · y |= φ)) ≤ ε.

The proof of the above lemma, which is in essence nearly identical to the proof

of Claim 2 in Theorem 4.14, is included in Appendix A.1 for completeness.

We are now ready to prove that 1-DL is efficiently ρ-robustly learnable for

ρ = log n.

Proof of Theorem 5.8. Let A be the (proper) PAC-learning algorithm for 1-DL as

in Rivest (1987), with sample complexity poly(·). Fix the input dimension n, target

concept c and distribution D ∈ Dn, and let ρ = log n. Fix the accuracy parameter

0 < ε < 1/2 and confidence parameter 0 < δ < 1/2 and let η = 1/(1 + α). Let

d0 = max
{

2
η
log n, 4

η2
log 2

ε

}
and let m = ⌈poly(n, 1/δ, η−2d0)⌉, and note that this is

polynomial in n, 1/δ and 1/ε.

Let S ∼ Dm and h = A(S). Then Pr
x∼D

(h(x) ̸= c(x)) < η2d0 with probability at

least 1−δ. But, by Lemma 5.11, Pr
x∼D

(h(x) ̸= c(x)) < η2d0 implies that then c =d0 h.

Hence c =d0 h with probability at least 1− δ. Then, to cause an error, an adversary

must activate a node at depth greater than d0 in either h or c.

We now apply Lemma 5.12 to show that the probability to activate a node at

depth greater than d0 in c is at most ε/2 (and symmetrically for h), which suffices

to conclude that RE
ρ (c, h) < ε with probability at least 1 − δ. Indeed, writing

c = ((l1, v1), . . . , (lr, vr)) and φ := ¬l1 ∧ · · · ∧ ¬ld0 , observe that

Pr
x∼D

((∃z ∈ Bρ(x) · z |= φ)) (5.3)

is precisely the probability for the adversary to be able to activate a node at depth

> d0 in c. Now to apply Lemma 5.12 we note that by definition of d0 we have

d0 ≥ 4
η2
log 2

ε
, and, since ρ = log n, we furthermore have d0 ≥ 2ρ

η
; thus the lemma

implies that Equation 5.3 is at most ε/2, as we require.

5.2.2 Generalizing from 1-DL to 2-DL and Monotone k-DL

This section is concerned with robust learning for k-DL. In the non-adversarial

setting, learnability of k-DL can be reduced to learnability of 1-DL (see Section 3.1.3
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for details). We start by observing that it is not straightforward to apply this

reduction in the presence of an adversary.

The classical reduction of learning k-DL to 1-DL involves an embedding Φ :

Xn → Xn′ , for n′ := O(nk), that maps valuations of a collection of n propositional

variables to valuations of the collection of k-clauses over these variables. Then, for

any function c : Xn → {0, 1} computed by a k-decision list, there is a function

c′ : Xn′ → {0, 1} computed by a 1-decision list such that c′ ◦ Φ = c. The image

under Φ of an α-log-Lipschitz distribution D on Xn remains log-Lipschitz on Xn′ ,

albeit with a slightly larger constant (see Lemma 5.21). The problem is that the

map Φ is not Lipschitz with respect to the Hamming metric – indeed the image

under Φ of two points with Hamming distance log n in Xn can have distance Ω(n)

in Xn′ , which is not logarithmic in the dimension n′ = O(nk).

We therefore take a direct approach to establishing robust learnability of k-DL

in this section. The argument follows a similar pattern to the previous section, in

particular involving a suitable generalization of Lemma 5.12. There are new ingre-

dients relating to the hypergraph structure of propositional formulas in conjunctive

normal form. The argument for the consistency over a given depth from 1-DL will be

generalized to consistency over covers of a certain size. Establishing this result can

be done in the case of 2-DL and monotone k-DL, through a resolution closure argu-

ment that cannot be generalized to non-monotone k-DL, which will be explained in

more details below. However, we later show that we can use similar tools, together

with an induction argument to extend the result to non-monotone k-DL, at the cost

of a larger (but still polynomial) sample complexity.

We start with some background on propositional logic. We regard a formula φ

in conjunctive normal form (CNF) as being a set of clauses, with each clause being

a set of literals. A k-CNF is a CNF formula where all clauses contain at most k

literals. For two disjunctive clauses K1 := a1∨· · ·∨am∨c and K2 := b1∨· · ·∨bn∨ c̄,
the resolution rule implies the disjunctive clause K := a1 ∨ · · · ∨ am ∨ b1 ∨ · · · ∨ bn.

K is called the resolvent of clauses K1 and K2.

Definition 5.13 (Resolution Closure). We say that φ is closed under resolution if,

for any two clauses in φ, their resolvent also belongs to φ. The resolution closure

of CNF formula φ, denoted Res∗(φ), is the smallest resolution-closed set of clauses

that contains φ.
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We can consider a CNF formula as a hypergraph whose vertices are literals and

whose hyperedges are clauses. Recall that a hypergraph G is a set V (G) of vertices

and a set E(G) of hyperedges, where a hyperedge is a set {v1, . . . , vl} of vertices

in V (G). With this identification in mind, define a cover of a CNF formula φ as

a set of literals C such that every clause in φ contains a literal from C (i.e., a set

of vertices in V (G) such that every edge contains a vertex in C). Note that if all

the literals in a given cover are true (which in general may not be possible), this

represents a satisfying assignment of φ. Define also a matching of φ to be a set

M of clauses such that no two clauses in M contain the same literal (i.e., a set of

edges from E(G) such that no two edges share a vertex). By a well known result

for hypergraphs, for a minimal cover C and maximal matching M we have that

|C| ≤ k|M |, where k is the maximum number of literals in any clause of φ (Füredi,

1988). Assume now that φ is closed under resolution. We claim that a minimal

cover is satisfiable as a set of literals.

Claim 5.14. Let φ be a CNF formula that is closed under resolution. Then a

minimal cover C in φ is satisfiable as a set of literals.

Proof. Suppose for a contradiction that C is a minimal cover that is not satisfiable,

i.e., such that p,¬p ∈ C for some variable p. By minimality of C, φ contains clauses

{p}∪f and {¬p}∪f ′ such that C intersects neither f nor f ′. But then the resolvent

f∪f ′ is also a clause of φ, and since C is a cover we must have that C meets f∪f ′—a

contradiction. The claim is established.

Now, for given depths i, j in the target and hypothesis decision lists, we define

a formula expressing exits at depths i and j, respectively.

Definition 5.15. Fix c, h ∈ k-DL, where c = ((K1, v1), . . . , (Kr, vr)) and h =

((K ′
1, v

′
1), . . . , (K

′
s, v

′
s)) and the clauses Ki, K

′
i are conjunctions of k literals. Given

i ∈ {1, . . . , r} and j ∈ {1, . . . , s}, define a CNF formula φ
(c,h)
i,j by writing

φ
(c,h)
i,j := Res∗((¬K1 ∧ · · · ∧ ¬Ki−1 ∧Ki) ∧ (¬K ′

1 ∧ · · · ∧ ¬K ′
j−1 ∧K ′

j)) .

Notice that the formula φ
(c,h)
i,j represents the set of inputs x ∈ X that respectively

activate vertex i in c and vertex j in h.

Our reliance on the following proposition is the reason that the results in this

section apply only to the classes 2-DL and monotone k-DL,
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Proposition 5.16. Let c, h ∈ k-DL. Then φ
(c,h)
i,j is a k-CNF formula for all i and

j in case either k = 2 or c and h are both monotone.

Proof. If k = 2 then φ
(c,h)
i,j is the resolution closure of a 2-CNF formula, which

remains a 2-CNF formula. Similarly, if c and h are monotone then φ
(c,h)
i,j is the

resolution closure of a k-CNF in which positive literals only appear in singleton

clauses. It is clear that the latter is again a k-CNF formula.

Remark 5.17. It is easy to construct an example of a non-monotone k-CNF whose

resolution closure is not a k-CNF: the 3-CNF φ := (x1 ∨ x2 ∨ x3) ∧ (¬x1 ∨ x4 ∨ x5)

has resolvent (x2 ∨ x3 ∨ x4 ∨ x5), so Res∗(φ) is a 4-CNF.

We now have the following definition, in the spirit of consistency over a given

depth for 1-DL (Definition 5.10).

Definition 5.18. Given s ∈ N, we say that c, h ∈ k-DL are equivalent to cover-size

s, denoted c ≡s h, if c(x) = h(x) for all x ∈ X and for all nodes i, j such that φ
(c,h)
i,j

has a cover of size at most s and x |= φ
(c,h)
i,j .

Next we argue that if the discrepancy between c and h is sufficiently small then

they are equivalent to a suitably large cover size.

Lemma 5.19. Let D be an α-log-Lipschitz distribution and let c and h be decision

lists. If Pr
x∼D

(h(x) ̸= c(x)) < (1 + α)−s then c ≡s h.

Proof. We prove the contrapositive. Suppose c ̸≡s h. By definition, there exist i, j

such that φ
(c,h)
i,j has a minimum satisfiable cover C of size at most s and vi ̸= v′j.

In particular, we have that c(x) ̸= h(x) for all x ∈ X that satisfy φ
(c,h)
i,j . But the

probability that x ∼ D satisfies φ
(c,h)
i,j is at least the probability that x satisfies

C. Since C is minimal it does not contain complementary literals. Hence, the

probability that x ∼ D satisfies C is at least (1 + α)−s by Lemma 3.23.

The following is a generalization of Lemma 5.12.

Lemma 5.20. Let φ be a k-CNF formula that has no cover of size s. Let D be an

α-log-Lipschitz distribution on valuations for φ. Let 0 < ε < 1/2 be arbitrary and set

η :=
(

1
1+α

)k
. If s

k(k+1)
≥ max

{
4
η2
log
(
1
ε

)
, 2ρ

η

}
then Pr

x∼D
(∃z ∈ Bρ(x) · z |= φ) ≤ ε.
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To prove Lemma 5.20, we will need the following result, which states that log-

Lipschitzness is preserved (albeit with a different constant) when encoding the truth

values of a given variable-disjoint matching of φ.

Lemma 5.21. Let Φ : Xn → Xd be the embedding encoding the truth values of (dis-

junctive) clauses in a variable-disjoint matching M of size d under an assignment

x ∈ Xn. Let D be an α-log-Lipschitz distribution on Xn and define D′ on Xd as

follows:

D′(y) :=
∑

x∈Φ−1(y)

D(x) ,

where y ∈ Xd. Then D′ is α′-log-Lipschitz for α′ = (α + 1)k − 1.

Proof. Let y, y′ ∈ Xd be such that dH(y, y
′) = 1, i.e. y and y′ disagree on exactly one

clause in M . We want to upper bound the quantity D(y)/D(y′) by α′ = (α+1)k−1.
To this end, and without loss of generality, let y1 ̸= y′1 and let the clause K1 in M

where y and y′ disagree be a function of the first k bits in Xn. Because M is variable

disjoint, and since K1 is a disjunction of literals, if we fix the bits xk+1, . . . , xn,

then there exists a unique assignment of x1, . . . , xk such that Φ(x)1 = 0 (where

x = x1 . . . xn), and thus the remaining 2k − 1 are such that K1 evaluates to 1.

Hence, to upper bound D(y)/D(y′), we will assume that y1 = 1 and y′1 = 0.

Now, we can partition the preimage Φ−1(y) into {Px′}x′∈Φ−1(y′), where each x ∈
Px′ disagrees with x′ on at least one of the first k bits and is the same on the

remaining n− k bits. Thus

D′(y)

D′(y′)
=

∑
x′∈Φ−1(y′)

∑
x∈Px′

D(x)∑
x′∈Φ−1(y′) D(x′)

≤
∑

x′∈Φ−1(y′) D(x′)
∑

x∈Px′
αdH(x,x′)∑

x′∈Φ−1(y′) D(x′)
(by log-Lipschitzness of D)

=

(
(α + 1)k − 1

)∑
x′∈Φ−1(y′) D(x′)∑

x′∈Φ−1(y′) D(x′)

= (α + 1)k − 1 ,

where we used the fact (α + 1)k =
∑k

i=0

(
k
i

)
αi for the third step.

We are now ready to prove Lemma 5.20.



86 CHAPTER 5. ROBUSTNESS THRESHOLDS: RANDOM EXAMPLES

Proof. Proof of Lemma 5.20 Since φ has no cover of size s, it has a matching M

such that |M | ≥ s
k
. By definition, each literal appears in at most one clause in

M , hence, by removing at most a fraction k
k+1

of the clauses in M , we can assume

without loss of generality that each variable occurs in at most one clause of M and

M has cardinality d := s
k(k+1)

.

Consider the map Φ : Xn → Xd, where Φ(x) encodes the truth values of the

clauses in M under the assignment x. Since the clauses in M are variable-disjoint,

Φ is non-expansive under the respective Hamming metrics on Xn and Xd, meaning

that dH(Φ(x),Φ(y)) ≤ dH(x, y) for all x, y ∈ Xn. Thus for all x ∈ Xn,

∃y ∈ Bρ(x) · y |= φ =⇒ 1 ∈ Bρ(Φ(x)) .

It will suffice to show that the probability over x ∼ D that the right-hand side

condition of the above implication holds true is at most ε.

Define a distribution D′ on Xd by D′(y) :=
∑

x∈Φ−1(y) D(x). By Lemma 5.21,

we have that D′ is α′-log-Lipschitz for α′ := (α + 1)k − 1. We wish to upper-

bound the probability over x′ ∼ D′ that 1 ∈ Bρ(x
′). For this, we will apply

Lemma 5.12 over the space Xd with distribution D′. Indeed, our assumptions on η

and s entail that η = 1
1+α′ and d ≥ max

{
4
η2
log
(
1
ε

)
, 2ρ

η

}
. Thus Lemma 5.12 gives

that Pr
x′∼D′

(1 ∈ Bρ(Φ(x
′))) ≤ ε. This concludes the proof.

We are now ready to prove the main result of the section.

Theorem 5.22. Let D = {Dn}n∈N, where Dn is a set of α-log-Lipschitz distribu-

tions on {0, 1}n for all n ∈ N. Then the classes of 2-decision lists and monotone

k-decision lists (for every fixed k) are ρ-robustly learnable with respect to D for

robustness function ρ(n) = log n.

Proof. Let A be the (proper) PAC-learning algorithm for k-DL as in Rivest (1987),

with sample complexity poly(·). Fix the input dimension n, target concept c and

distribution D ∈ Dn, and let ρ = log n. Fix the accuracy parameter 0 < ε < 1/2

and confidence parameter 0 < δ < 1/2 and let η = 1/(1 + α). Let s0 = k(k +

1)max
{

4
η2
log
(

e4n2k+2

16ε

)
, 2ρ

η

}
, write m = ⌈poly(n, 1/δ, η−s0)⌉, and note that m is

polynomial in n, 1/δ and 1/ε.

Let S ∼ Dm and h = A(S). Then Pr
x∼D

(h(x) ̸= c(x)) < η−s0 with probability at

least 1− δ. But, by Lemma 5.19, Pr
x∼D

(h(x) ̸= c(x)) < ηs0 implies that then c ≡s0 h.

Hence c ≡s0 h with probability at least 1− δ.
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In case c ≡s0 h, an input x ∈ X only leads to a classification error if it activates

nodes i and j in c and h respectively such that the formula φ
(c,h)
i,j has no cover of

cardinality s0. Fix i and j such that φ
(c,h)
i,j has no cover of cardinality s0. Now φ

(c,d)
i,j

is a k-CNF formula by Proposition 5.16. Hence the probability that a ρ-bounded

adversary can make φ
(c,d)
i,j true is at most 16ε

e4n2k+2 by Lemma 5.20. Taking a union

bound over all possible choices of i and j (there are
∑k

i=1

(
n
k

)
≤ k

(
en
k

)k
possible

clauses in k-decision lists, which gives us a crude estimate of k2
(
en
k

)2k ≤ e4n2k+2

16

choices of i and j) we conclude that RE
ρ (h, c) < ε.

5.2.3 Non-Monotone Decision Lists

In this section, we extend the reasoning from the previous section to non-monotone

k-DL, thus showing the efficient robust learnability of this concept class under log-

Lipschitz distributions. This is done by the following result of independent interest:

under log-Lipschitz distributions, the probability mass of the log(n)-expansion of

the set of satisfying assignments of a k-CNF formula can be bounded above by an

arbitrary constant ε > 0, given an upper bound on the probability of a satisfying

assignment. The latter bound is polynomial in ε and 1/n. Given two decision lists

c, h ∈ k-DL, the set of inputs in which c and h differ can be written as a disjunction of

polynomially many (in the combined length of c and h) k-CNF formulas. The log(n)-

expansion of this set is then the set of inputs where a log(n)-bounded adversary can

force an error at test time. The combinatorial approach, below, differs from the

approach of Section 5.2.2 in the special case of monotone k-DL, which relied on

facts about propositional logic.

Before going further, let us outline where the reasoning from Section 5.2.2 fails

when the monotonicity assumption does not hold. The idea behind the proof of

Lemma 5.20 was ultimately to show the existence of a sufficiently large matching in

the hypergraph structure of a k-CNF formula to guarantee that an adversary could

not cause a misclassification. We obtained a maximal matching and transformed it

into a variable-disjoint one (crucial for the adversarial argument) through a minimal

cover, which we can guarantee is satisfiable by the resolution closure property. It

is crucial that the latter be satisfiable in order to show that bounding the error

results in consistency over covers (Lemma 5.19). When considering non-monotone
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k-CNF formulas, the resolution closure could result in a k′-CNF formula where k′

depends on the number of variables n. As the value k′ would appear in the degree

of the polynomial upper bounding the sample complexity, we would not be able to

guarantee efficient robust learnability. Our reasoning below still makes use of the

maximal matching idea, but we directly relate the standard and robust risks.

Now, for a given formula φ on variables in {0, 1}n, we will denote by SATρ the

set {x ∈ {0, 1}n | ∃z ∈ Bρ(x) . z |= φ} of instances in {0, 1}n that are at most ρ bits

away from a satisfying assignment of φ. Setting ρ = 0, we recover the set of satisfying

assignments of φ. Note that if φ is a formula expressing the discrepancy between

two functions c and h, then SAT0(φ) represents the instances in {0, 1}n contributing

to the standard loss (hence the probability measure of the set SAT0(φ) is the error

between the two functions under a given distribution). Similarly, SATρ(φ) represents

the set of instances contributing to the ρ-robust loss, and its probability measure is

the robust risk between the two functions c and h.

Theorem 5.23. Suppose that φ ∈ k-CNF and let D be an α-log-Lipschitz distri-

bution on the valuations of φ. Then there exist constants C1, C2, C3, C4 ≥ 0 that

depend on α and k such that if the probability of a satisfying assignment SAT0(φ)

satisfies Pr
x∼D

(x ∈ SAT0(φ)) < C1ε
C2 min

{
εC3 , n−C4

}
, then the log(n)-expansion of

the set of satisfying assignments has probability mass bounded above by ε.

Corollary 5.24. The class of k-decision lists is efficiently log(n)-robustly learnable

under log-Lipschitz distributions.

Given Theorem 5.23, the proof of Corollary 5.24 is similar to Theorem 5.22, and

is included in Appendix A.2 for completeness. We note that it is imperative that

the constants Ci do not depend on the learning parameters or the input dimension,

as the quantity C1ε
C2 min

{
εC3 , n−C4

}
is directly used as the accuracy parameter in

the (proper) PAC learning algorithm for decision lists, which is used as a black box.

To prove Theorem 5.23, we will need several lemmas from the previous section.

Some of these have been adapted to this setting, and are outlined below for ease of

reading. The proofs of these lemmas are (nearly) identical to those in the previous

section, and hence are omitted avoid redundancy. The first is an adaptation of

Lemma 5.11 for conjunctions, which was originally stated for decision lists:
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Lemma 5.25. Let φ be a conjunction and let D be an α-log-Lipschitz distribution.

If Pr
x∼D

(x |= φ) < (1 + α)−d, then φ is a conjunction on at least d variables.

Finally, we will use the following lemma, which will be used in the inductive step

of the induction proof. It is nearly identical to Lemma 5.20, which was stated for

covers instead.

Lemma 5.26. Let φ be a k-CNF formula that has a set of variable-disjoint clauses

of size M . Let D be an α-log-Lipschitz distribution on valuations for φ. Let 0 <

ε < 1/2 be arbitrary and set η := (1 + α)−k. If M ≥ max
{

4
η2
log
(
1
ε

)
, 2ρ

η

}
then

Pr
x∼D

(∃z ∈ Bρ(x) · z |= φ) ≤ ε.

We are now ready to prove Theorem 5.23. The main idea behind the proof is to

consider a given k-CNF formula φ and distinguish two cases: (i) either φ contains a

sufficiently-large set of variable-disjoint clauses, in which case the adversary is not

powerful enough to make φ satisfied by Lemma 5.26; or (ii) we can rewrite φ as the

disjunction of a sufficiently small number of (k− 1)-CNF formulas, which allows us

to use the induction hypothesis to get the desired result. The final step of the proof

is to derive the constants mentioned in the statement of Theorem 5.23.

Proof of Theorem 5.23. We will use the lemmas above and restrictions on φ to show

the following.

Induction hypothesis: Suppose that φ is a (k − 1)-CNF formula and let D be

an α-log-Lipschitz distribution on the valuations of φ. Then there exist constants

C1, C2, C3, C4 ≥ 0 that depend on α and k and satisfy C3 ≥ η
2
C4 such that if

Pr
x∼D

(x ∈ SAT0(φ)) < C1ε
C2 min

{
εC3 , n−C4

}
, then Pr

x∼D

(
x ∈ SATlog(n)(φ)

)
≤ ε.

Base case: This follows from Lemmas 5.25 and 5.12. Set η to (1 + α)−1, and

C1 = 1, C2 = 0, C3 =
4
η2

and C4 =
2
η
. Note that C3 ≥ η

2
C4.

Inductive step: Suppose φ ∈ k-CNF and let D be an α-log-Lipschitz distribution

on the valuations of φ. Set η = (1 + α)−k. Let C ′
1, C

′
2, C

′
3, C

′
4 be the constants in
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the induction hypothesis for φ′ ∈ (k − 1)-CNF. Set the following constants:

C1 = C ′
12

−k(C′
2+C′

3)

C2 = C ′
2 + C ′

3

C3 =
8

η2
max {C ′

2, C
′
3}

C4 =
2

η
max {C ′

2, C
′
3} ,

and note that these are all constants that depend on k and α by the induction

hypothesis, and that C3 ≥ η
2
C4.

Let Pr
x∼D

(x ∈ SAT0(φ)) < C1ε
C2 min

{
εC3 , n−C4

}
. Let M be a maximal set of

clauses of φ such that no two clauses contain the same variable. Denote by IM the

indices of the variables inM and let M = max
{

4
η2
log 1

ε
, 2
η
log n

}
.

We distinguish two cases:

(i) |M| ≥M : Then

Pr
x∼D

(x |= φ) ≤ Pr
x∼D

(
x |=

∧
i

Ci

)
≤ (1− ηk)|M| ≤ exp(−ηk|M|) ,

We can then invoke Lemma 5.26 to guarantee that Pr
x∼D

(
x ∈ SATlog(n)

)
≤ ε, and we

get the required result.

(ii) |M| < M :

Then let AM be the set of assignments of variables in M, i.e. a ∈ AM is a

function a : IM → {0, 1}, which represents a partial assignment of variables in φ.

We can thus rewrite φ as follows:

φ ≡
∨

a∈AM

(
φa ∧

∧
i∈IM

li

)
,

where φa is the restriction of φ under assignment a and li is xi in case a(i) = 1 and

x̄i otherwise. For short, denote by φ′
a the formula φa ∧

∧
i∈IM li. By the maximality

of M every clause in φ mentions some variable in M, and hence φ′
a is (k − 1)-

CNF. Moreover, the formulas φ′
a are disjoint, in the sense that if some assignment

x satisfies φ′
a, it will not satisfy another φ′

b for a distinct index b. Note also that

An,ε := |AM| ≤ 2k max

{(
1

ε

)4/η2

, n2/η

}
.



5.2. DECISION LISTS 91

Thus,

Pr
x∼D

(x ∈ SAT0(φ)) =
∑

a∈AM

Pr
x∼D

(x |= φ′
a) =

∑
a∈AM

Pr
x∼D

(x ∈ SAT0(φ
′
a)) . (5.4)

By the induction hypothesis, we can guarantee that if

Pr
x∼D

(x ∈ SAT0(φ
′
a)) < C ′

1

(
ε

An,ε

)C′
2

min

{(
ε

An,ε

)C′
3

, n−C′
4

}
(5.5)

for all φ′
a then the log(n)-expansion SATlog(n)(φ) can be bounded as follows:

Pr
x∼D

(
x ∈ SATlog(n)(φ)

)
= Pr

x∼D
(∃z ∈ Blogn(x) . z |= φ)

=
∑

a∈AM

Pr
x∼D

(∃z ∈ Blogn(x) . z |= φ′
a)

≤
∑

a∈AM

ε

An,ε

(I.H.)

= ε .

By Equation 5.4, the upper bound Pr
x∼D

(x ∈ SAT0(φ)) < C1ε
C2 min

{
εC3 , n−C4

}
implies an upper bound Pr

x∼D
(x ∈ SAT0(φ

′
a)) < C1ε

C2 min
{
εC3 , n−C4

}
on the prob-

ability of the restrictions φ′
a. Thus it only remains to show that the condition on

SAT0(φ) implies that Equation 5.5 holds.

Let us rewrite the RHS of Equation 5.5 as follows, where each of the equations

is a stricter condition on SAT0(φ
′
a) than its predecessor:

C ′
1

(
ε

An,ε

)C′
2

min

{(
ε

An,ε

)C′
3

, n−C′
4

}

≥ C ′
1

( ε

2k

)C′
2

min
{
ε4C

′
2/η

2

, n−2C′
2/η
}
min


(
ε1+4/η2

2k

)C′
3

,

(
εn−2/η

2k

)C′
3

, n−C′
4


= C ′

1

( ε

2k

)C′
2

min
{
ε4C

′
2/η

2

, n−2C′
2/η
}
min


(
ε1+4/η2

2k

)C′
3

,

(
εn−2/η

2k

)C′
3


= C ′

12
−k(C′

2+C′
3)εC

′
2+C′

3 min
{
ε4C

′
2/η

2

, n−2C′
2/η
}
min

{
ε4C

′
3/η

2

, n−2C′
3/η
}

≥ C ′
12

−k(C′
2+C′

3)εC
′
2+C′

3 min
{
ε8C

′
2/η

2

, n−4C′
2/η, ε8C

′
3/η

2

, n−4C′
3/η
}

= C ′
12

−k(C′
2+C′

3)εC
′
2+C′

3 min
{
ε8max{C′

2,C
′
3}/η2 , n−4max{C′

2,C
′
3}/η

}
= C1ε

C2 min
{
εC3 , n−C4

}
,
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where the first step is by definition of An,ε, the second from the induction hypoth-

esis, which guarantees C ′
3 ≥

η
2
C ′

4, and the fourth from the property min {a, b} ·
min {c, d} ≥ min {a2, b2, c2, d2}. Finally, the last equality follows by the definition

of the Ci’s.

Note that we set η = (1+α)−k to be able to apply Lemma 5.26 in the first part

of the inductive step. Then, An,ϵ is a function of η = (1 + α)−k. When we consider

the distribution on the valuations of the restriction φ′
a, we still operate with an

α-log-Lipschitz distribution on its valuations, by Lemma 3.23.

Constants. We want to get explicit constants C1, C2, C3 and C4 as a function of

k and η. Note that η = (1 + α)−k is dependent on k. Let us recall the recurrence

system from the inductive step:

C
(k)
1 = C

(k−1)
1 2−k(C

(k−1)
2 +C

(k−1)
3 )

C
(k)
2 = C

(k−1)
2 + C

(k−1)
3

C
(k)
3 =

8

η2
max

{
C

(k−1)
2 , C

(k−1)
3

}
C

(k)
4 =

2

η
max

{
C

(k−1)
2 , C

(k−1)
3

}
.

It is easy to see that C
(k)
3 ≥ C

(k)
2 for all k ∈ N. If we fix η = (1 + α)−k at each

level of the recurrence, we can now consider the following recurrence system, which

dominates the previous one:

C
(k)
1 = C

(k−1)
1 2−2kC

(k−1)
3

C
(k)
2 = 2C

(k−1)
3

C
(k)
3 =

8

η2
C

(k−1)
3

C
(k)
4 =

2

η
C

(k−1)
3 .

We can now see that

C
(k)
2 = 2

(
8

η2

)k−1

= 2(8(1 + α)2k)k−1

C
(k)
3 =

(
8

η2

)k

= (8(1 + α)2k)k

C
(k)
4 =

2

η

(
8

η2

)k−1

= 2(1 + α)k(8(1 + α)2k)k−1 .
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Finally, we can get a lower bound on the value of C
(k)
1 as follows:

C
(k)
1 =

k∏
i=2

2−2iC
(i−1)
3

= 2
−2

∑k
i=2 i·

(
8
η2

)(i−1)

≥ 2
−2k2

(
8
η2

)(k−1)

= 2−2k2(8(1+α)2k)k−1

,

which concludes the proof.

Comparing the sample complexity of monotone and non-monotone k-DL.

Earlier in this chapter, we stated that directly using the non-monotone analysis

could result in higher sample complexity in case we are working with monotone

k-DL. Indeed, observe that the maximum degree of the 1
ϵ
term in the polynomial

for monotone decision lists in Theorem 5.22 is O(k2(1 + α)2) and the maximum

degree of the n term is O(k3(1 + α)2), while the maximum degrees of the 1
ϵ
and n

terms are O(8k(1+α)2k
2
) and O(k · 8k(1+α)2k

2
) for non-monotone decision lists in

Corollary 5.24, respectively. Thus, for both the 1
ϵ
and n terms, using the general k-

decision list bound comes at the cost of a polynomial degree that has an exponential

dependence in k.

5.3 Decision Trees

In this section, we show that, under α-log-Lipschitz distributions, for any two de-

cision trees and perturbation budget ρ(n) = O(log n), the ρ-robust risk is bounded

above by a polynomial in the number n of propositional variables, the combined size

m of the trees, and their standard risk. This result makes explicit the relationship

between both notions of risk.

Despite the fact that it is not known whether the class of decision trees is PAC-

learnable, relating the standard and robust risks for this class is still of interest if we

can show that a small enough standard risk only incurs a polynomial blowup in the

robust risk. This could be particularly compelling in the local membership query

model of Awasthi et al. (2013), where an algorithm can request labels for points that
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are O(log(n)) bits away from a point in the training sample. The authors showed

that, in this framework, the class of polynomial-sized decision trees is learnable

(in polynomial time) under product distributions using O(log(n))-local membership

queries. Moreover, O’Donnell and Servedio (2007) show that monotone decision

trees are PAC learnable under the uniform distribution, so our result holds in this

setting as well.

Terminology. A decision tree c over n propositional variables is a finite binary

tree whose internal nodes are labeled by elements of the set {1, . . . , n} and whose

leaves are labeled either 0 or 1. The depth of a leaf is the number of internal

nodes of the tree in the (unique) path from the root to the given leaf. An input

x ∈ X = {0, 1}n determines a path through such a tree, starting at the root, as

follows: at an internal node with label i descend to the left child if xi = 0 and

descend to the right child if xi = 1. We say that x ∈ X activates a given leaf node

if the path determined by x leads to the given leaf. In this way a decision tree c

determines a function c : X → {0, 1}, where c(x) is the label of the leaf activated

by x.

Given two decision trees c, h, both over n propositional variables, and given

d ∈ N, we say that c and h are consistent up to depth d, denoted c =d h, if for all

x ∈ X such that x activates leaves of depth at most d in both c and h, we have

c(x) = h(x). In the same vein as Lemma 5.11, given d ∈ N we have that c =d h

provided that Pr
x∼D

(h(x) ̸= c(x)) is sufficiently small:

Lemma 5.27. Let D be a α-log-Lipschitz distribution. If Pr
x∼D

(h(x) ̸= c(x)) < (1 +

α)−2d then c =d h.

We omit the proof of Lemma 5.27, which follows that of Lemma 5.11 mutatis

mutandis.

We can now bound the robust risk between decision trees as a polynomial in the

of the number of propositional variables, the log-Lipschitz constant, their combined

size, and their standard risk.

Theorem 5.28. Let c and h be two decision trees on n propositional variables with

at most m nodes in total for both trees. Let D be an α-log-Lipschitz distribution on
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Concept Class Distributional Assumption Robustness Threshold
Non-trivial None (distribution-free) 0
Mon. Conjunctions log-Lipschitz Θ(log(n))
Parities log-Lipschitz n (exact)
Majorities Uniform n (exact)
Mon. Decision Lists log-Lipschitz Θ(log(n))
Non-Mon. DL log-Lipschitz Θ(log(n))
Halfspaces log-Lipschitz Θ(log(n))?
PAC classes Uniform ?

Table 5.1: The robustness thresholds of concept classes from Chapters 4 and 5, and
open problems.

Xn and ρ = log n. There is a fixed polynomial poly(·, ·, ·) such that for all 0 < ε < 1
2
,

if Pr
x∼D

(h(x) ̸= c(x)) < poly( 1
m
, 1
n
, ε), then RE

ρ (c, h) < ε.

Proof. Write d := max
{

4
η2
log
(
m
ε

)
, 2ρ

η

}
and define poly( 1

m
, 1
n
, ε) := (1 + α)−2d.

The assumption that Pr
x∼D

(h(x) ̸= c(x)) < (1 + α)−2d implies that c and h are

consistent to depth d by Lemma 5.27. This means that c(x) ̸= h(x) only on those

inputs x ∈ X that activate some leaf node of depth strictly greater than d, either

in c or h. By Lemma 5.12, for each such node the probability that a ρ-bounded

adversary can activate the node by perturbing the bits of a randomly generated

input x ∼ D is at most ε
m
. Taking a union bound over the nodes of depth > d

(there are at most m of them), we conclude that RE
ρ (h, c) ≤ ε.

5.4 Summary of Results and Open Problems

In this chapter, we showed the efficient robust learnability of various concept classes

under distributional assumptions, as outlined in Table 5.1. We finish this chapter

by commenting on the general techniques used throughout this text and discussing

avenues for future work.

The techniques from this chapter can be viewed as bounding the expansion of

sets in the boolean hypercube. These sets represent supersets of the error region

between the target concept and hypothesis, and their expansions, the instances an

adversary could perturb to cause a misclassification. In general, we consider the
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SAT(φ)

SATρ(φ)

ρ

Figure 5.1: A unifying result. When ρ = log(n), SATρ(φ), the ρ-expansion of the
error region, is not too large compared to the set SAT(φ).

measure of these sets, but, when working under the uniform distribution, we can

simply consider their size.

As the target and hypothesis come from the same concept class in all the results

presented in this chapter, the standard proper PAC-learning algorithms can be used

as black boxes for efficient robust learning. Indeed, by controlling the measure of the

error region (by some polynomial p(·, ·) in ϵ and 1/n), we can control the measure

of its ρ-expansion and bound it above by the desired robust accuracy ϵ. In some

cases (parities, majorities, conjunctions that are logarithmically-bounded in length,

shallow decision lists), the standard error is always sufficiently large to allow exact

learning (i.e., if the standard error is strictly smaller than p(ϵ, 1/n), it must be zero).

However, in general, exact learning is not a prerequisite for robust learning.

In all the cases where we showed robust, but not exact, robust learning, we

expressed the error region as a disjunction φ of k-CNF formulas. The set SAT(φ) of

satisfiable assignments of φ thus represents the indicator set of whether an instance

x ∈ {0, 1}n belongs to the error region. Likewise, SATρ(φ), the set of points at

distance at most ρ from SAT(φ), represents the set of points incurring a robust loss

against a ρ-bounded adversary. This argument is illustrated in Figure 5.1.

A compelling avenue for future work would be to derive sample complexity lower

bounds for k-DL which have an explicit dependence on k as well as the adversar-

ial budget, as the lower bound Ω(2ρ) on the sample complexity was derived for

monotone conjunctions.

Another clear direction forward is to generalize the results obtained in this chap-

ter to a wider variety of concept classes. An immediate candidate for this is the class

of linear classifiers, which are the building blocks of more expressive concept classes
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such as neural networks. Since linear classifiers subsume monotone conjunctions,

the exponential dependence on the adversarial budget under the uniform distribu-

tion shown in Chapter 4 extends to this concept class as well. It must then be

that the robustness threshold of linear classifiers under log-Lipschitz distributions

is O(log n). Moreover, note that we showed in Section 5.1.2 that majority functions

can be exactly and thus robustly learned under the uniform distribution. Since

majorities are subsumed by linear classifiers and that their robustness threshold is

n, there is no evidence yet on linear classifiers having a robustness threshold that is

o(log n) under the uniform distribution.

Were the robustness threshold of linear classifiers to also be log n, an interesting

open problem would be whether this extends to concept classes with polynomially-

bounded VC dimension.

Open Problem:

Let A be a sample-efficient PAC-learning algorithm for concept class C on {0, 1}n.
Is A also a sample-efficient log(n)-robust learning algorithm for C under the

uniform distribution?

A positive result could be based on properties of log(n) expansions of “nice”

subsets of {0, 1}n, e.g., through the use of isoperimetric inequalities. In any case,

characterizing the efficient robust learnability of concept classes under the uniform

distribution with a complexity measure akin to the VC dimension in PAC learning

is a compelling avenue for future work.

To solve this open problem, one may be tempted to extend the following result

to robust learning, which relates the error between two functions f and g and

their respective Fourier spectra, f̂(S), ĝ(S) for S ⊆ [n]. To apply this result to

learning theory, one of the two functions would be the target f , and the other g, an

approximation of f through Fourier coefficient estimates:

Theorem 5.29 (Linial et al. (1993)). Let g : {0, 1}n → R be a real-valued function

and D be the uniform distribution on {0, 1}n. For any f : {0, 1}n → {−1, 1},

Pr
x∼D

(f(x) ̸= sgn(g(x))) ≤
∑
S⊆[n]

(
f̂(S)− ĝ(S)

)2
. (5.6)

The proof is reproduced below.
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Proof. First note that since the image of f is {−1, 1},

1[f(x) ̸= sgn(g(x))] ≤ |f(x)− g(x)| . (5.7)

Squaring both sides, and taking the expectation, we get:

Pr
x∼D

(f(x) ̸= sgn(g(x))) ≤ E
x∼D

[
(f(x)− g(x))2

]
(5.8)

=
∑
S⊆[n]

(
f̂ − g(S)

)2
(5.9)

≤
∑
S⊆[n]

(f̂(S)− ĝ(S))2 , (5.10)

where Equation 5.9 follows from Parseval’s formula, and Equation 5.10 from the

identity f̂ ± g ≤ f̂(S)± ĝ(S).

Where does the reasoning break when considering the robust risk?

If we look at Equation 5.7, its robust counterpart would be:

1[∃z ∈ Bρ(x) . f(x) ̸= sgn(g(x))] ≤ max
z∈Bρ(x)

|f(z)− g(z)| . (5.11)

Now, squaring both sides and taking the expectation, we get

Pr
x∼D

(∃z ∈ Bρ(x) . f(x) ̸= sgn(g(x))) ≤ E
x∼D

[
max

z∈Bρ(x)
|f(z)− g(z)|2

]
. (5.12)

Note that we cannot take the max out of the expectation, as it is defined with respect

to x (and, less importantly, this function is not convex, implying that Jensen’s

inequality cannot be applied). It is then apparent that relating the robust risk and

the Fourier spectrum, if it is possible, would require a more complex argument than

in the standard classification case.



Chapter 6

Robust Learning with Local

Queries

The previous chapters of this thesis considered a learning model in which the learner

only has access to random examples. This is rather restrictive for the learner, es-

pecially considering the adversary’s power: the study of the existence of adversarial

examples in our setting assumes that the adversary has full knowledge of the target

and no computational limitations. In the face of the impossibility or hardness of

robustly learning certain concept classes from the previous chapters, it is natural

to study whether these issues can be circumvented and robust learning guarantees

obtained by giving more power to the learner – a line of thinking echoed in prac-

tice. For example, adversarial training (Goodfellow et al., 2015; Madry et al., 2018)

and data augmentation are common procedures in applied machine learning. In the

latter, data is moderately altered1 and added to the dataset, usually with the goal

of improving accuracy. In the former, the goal is to improve robust accuracy; the

training dataset is augmented with adversarial examples, which are usually found

for a specific model after training.

This chapter investigates the power of local queries in robust learning. Local

queries allow the learner to obtain information in the vicinity of the training sample.

This setting sits between the PAC-learning framework of Valiant (1984) and the

membership and equivalence query model of Angluin (1987), in which there is no

distribution, and where the learner can obtain information on the whole instance

1E.g., images are slightly rotated or translated, which does not change their label.
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space (see Section 3.1.5 for more background on the topic).

We now outline our contributions. Section 6.1 recalls the local membership query

(LMQ) model of Awasthi et al. (2013), and introduces local equivalence queries. In

Section 6.2, we show that local membership queries do not improve the robustness

threshold of conjunctions under the uniform distribution: giving the learner access

to both the EX and LMQ oracles still results in a joint sample and query complexity

that is exponential in the adversarial budget. This justifies studying the more pow-

erful local equivalence query model in our setting. In Section 6.3, we first show that

distribution-free robust learning remains impossible for a wide variety of concept

classes in the case in which the region covered by local equivalence queries is a strict

subset of the adversary’s perturbation region. However, when the two regions coin-

cide,2 we do get distribution-free robust learning guarantees. In particular, we give

general sample and query complexity upper bounds, as well as bounds for specific

concept classes. However, the query complexity can be unbounded in case the Lit-

tlestone dimension of a concept class is infinite. We address this potential issue in

Section 6.4, where we limit the adversary’s precision and give upper bounds on the

query complexity in this setting with techniques and tools adapted from the online

learning of margin-based hypothesis classes (Ben-David et al., 2009). In Section 6.5,

we give general local equivalence query lower bounds and instantiate them to par-

ticular concept classes. We finish the technical contributions of this chapter with

a more nuanced comparison between the local membership and equivalence query

oracles, and between the local and global oracles in Section 6.6. We conclude this

chapter with Section 6.7, which outlines avenues for future work.

6.1 Two Local Query Models

In this section, we present two query models in which the learner can gather infor-

mation local to the training sample, in the spirit of membership and equivalence

queries (Angluin, 1987) (Section 3.1.5). The main distinction is that, given a sam-

ple S drawn from the example oracle, a query for a point x is λ-local if there exists

x′ ∈ S such that their distance is at most λ. We first present the λ-local membership

query (λ-LMQ) set-up of Awasthi et al. (2013), which allows the learner to query

2This is the equivalent of querying the robust loss on a point and obtaining a counterexample,
if it exists.



6.1. TWO LOCAL QUERY MODELS 101

the label of points that are at distance at most λ from a sample S drawn randomly

from D. In the formal definition of the LMQ model below, we have changed the

standard risk to the robust risk for our purposes (the model was initially developed

in the context of standard binary classification).

Definition 6.1 (λ-LMQ Robust Learning). Let Xn be the instance space together

with a metric d, Cn a concept class over Xn, and Dn a class of distributions over

Xn. We say that Cn is ρ-robustly learnable using λ-local membership queries with

respect to Dn if there exists a learning algorithm A such that for every ϵ > 0, δ > 0,

for every distribution D ∈ Dn and every target concept c ∈ Cn, the following hold:

1. A draws a sample S of size m = poly(n, 1/δ, 1/ϵ, size(c)) using the example

oracle EX(c,D);

2. Each query x′ made by A to the LMQ oracle is λ-local with respect to some

example x ∈ S, i.e., x′ ∈ Bλ(x);

3. A outputs a hypothesis h that satisfies RD
ρ (h, c) ≤ ϵ with probability at least

1− δ;

4. The running time of A (hence also the number of oracle accesses) is polynomial

in n, 1/ϵ, 1/δ and the output hypothesis h is polynomially evaluable.

Note that, similarly to ρ, we implicitly consider λ to be a function of the in-

put dimension n. Moreover, we implicitly assume that a concept c ∈ Cn can be

represented in size polynomial in n, where n is the input dimension; otherwise a

parameter size(c) can be introduced in the sample and query complexity require-

ments. A similar assumption will apply to the local equivalence query model below.

Finally, note that, in both cases, it is also possible to extend this definition to an

arbitrary neighbourhood function U : X → 2X (similarly to how the adversarial

perturbation function can be generalized in the same fashion).

Inspired by the λ-LMQ learning model, we define the λ-local equivalence query

(λ-LEQ) model where, for a point x in a sample S drawn from the underlying

distribution D and for a given h ∈ H, the learner is allowed to query with (h, x)

an oracle that returns whether h agrees with the ground truth c in the ball Bλ(x)

of radius λ around x. If they disagree, a counterexample in Bλ(x) is returned as

well. Clearly, by setting λ = n, we recover the equivalence query (EQ) oracle. Note,



102 CHAPTER 6. ROBUST LEARNING WITH LOCAL QUERIES

moreover, that when λ = ρ, this is equivalent to querying the (exact-in-the-ball)

robust loss around a point.

Definition 6.2 (λ-LEQ Robust Learning). Let Xn be the instance space together

with a metric d, C a concept class over Xn, and D a class of distributions over Xn.

We say that C is ρ-robustly learnable using λ-local equivalence queries with respect

to distribution class, D, if there exists a learning algorithm, A, such that for every

ϵ > 0, δ > 0, for every distribution D ∈ D and every target concept c ∈ C, the

following hold:

1. A draws a sample S of size m = poly(n, 1/δ, 1/ϵ) using the example oracle

EX(c,D);

2. Each query made by A at x ∈ S and for a candidate hypothesis h to λ-LEQ

either confirms that c and h coincide on Bλ(x) or returns z ∈ Bλ(x) such that

c(z) ̸= h(z). A is allowed to update h after seeing a counterexample;

3. A outputs a hypothesis h that satisfies RD
ρ (h, c) ≤ ϵ with probability at least

1− δ;

4. The running time of A (hence also the number of oracle accesses) is polynomial

in n, 1/ϵ, 1/δ and the output hypothesis h is polynomially evaluable.

Partial queries. We remark that both the LMQ and LEQ oracles are specific

instances of the partial equivalence queries of Maass and Turán (1992). In their

set-up, the learner can give as input to the EQ oracle a partial function h : X →
{0, 1, ∗}. The oracle only evaluates the correctness of h on the restricted domain

{x ∈ X | h(x) ̸= ∗}.
A (local) membership query on x∗ ∈ X is equivalent to the partial equivalence

query for the function

h(x) =

0 x = x∗

∗ otherwise
.

Indeed, if EQ returns “correct”, we know that h(x) = 0. Alternatively, the only

possible counterexample is x with h(x) = 1.
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Likewise, a λ-local equivalence query (h, x∗) is equivalent to a partial equivalence

query of the form

h′(x) =

h(x) x ∈ Bλ(x
∗)

∗ otherwise
.

However, in our set-up, contrary to (Maass and Turán, 1992), the learner is

restricted to a set of specific partial queries rather than having access to any partial

query, and is evaluated in the robust PAC-learning framework rather than in the

online learning one.

Comparison with online learning. We remark that the LEQ model evokes the

online learning setting, where the learner receives counterexamples after making

a prediction, but with a few key differences. Contrary to the online setting (and

the exact learning framework with MQ and EQ), there is an underlying distribu-

tion with which the performance of the hypothesis is evaluated in both the LMQ

and LEQ models. Moreover, in the mistake-bound model of online learning, when

receiving a counterexample, the only requirement is that there be a concept that

correctly classifies all the data given to the learner up until that point, and so the

counterexamples can be given in an adversarial fashion, in order to maximize the

regret. However, both the LMQ and LEQ models require that a target concept be

chosen a priori, so as to have a well-defined EX(c,D) oracle. This is closer to the

variant of the online learning setting in which an adversary must fix an instance’s

label before the learner makes a prediction (Littlestone, 1988).

6.2 Robust Learning with Local Membership

Queries

In this section, we study the power of local membership queries in robust learning.

We will focus on whether giving access to a λ-LMQ oracle can improve the robustness

thresholds from Chapter 5.

We show a negative result: the amount of data needed to ρ-robustly learn con-

junctions under the uniform distribution has an exponential dependence on the

adversary’s budget ρ even when the learner has access to the LMQ oracle (in ad-

dition to the EX oracle). Here, the lower bound on the sample drawn from the
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example oracle is 2ρ, which is the same as the lower bound for monotone conjunc-

tions derived in Theorem 4.10, and the local membership query lower bound is 2ρ−1.

The result relies on showing that there there exists a family of conjunctions that

remain indistinguishable from each other on any sample of size 2ρ and any sequence

of 2ρ−1 LMQs with constant probability.

Theorem 6.3. Fix a monotone increasing robustness function ρ : N→ N satisfying

2 ≤ ρ(n) ≤ n/4 for all n. Then, for any query radius λ, any ρ(n)-robust learning

algorithm for the class CONJUNCTIONS with access to the EX and λ-LMQ oracles

has joint sample and query complexity lower bounds of 2ρ and 2ρ−1 under the uniform

distribution.

Proof. Let D be the uniform distribution and, without loss of generality, let ρ ≥ 2.

Fix two disjoint sets I1 and I2 of 2ρ indices in [n] (i.e., |I1| = |I2| = 2ρ), which

will be the set of variables appearing in potential target conjunctions c1 and c2,

respectively (i.e., their support). We have 24ρ possible pairs of such conjunctions,

as each variable can appear as a positive or negative literal.

Let us consider a randomly drawn sample S of size 2ρ. We will first consider

what happens when all the examples in S and the queried inputs S ′ are negatively

labelled. Each negative example x ∈ S allows us to remove at most 22ρ+1 pairs from

the possible set of pairs of conjunctions, as each component xI1 and xI2 removes at

most one conjunction from the possible targets. By the same reasoning, each LMQ

that returns a negative example can remove at most 22ρ+1 pairs of conjunctions.

Note that the parameter λ is irrelevant in this setting as each LMQ can only test

one concept pair. Thus, after seeing any random sample of size 2ρ and querying any

2ρ−1 points, there remains

24ρ − 23ρ+1 − 23ρ

24ρ
≥ 1/4 (6.1)

of the initial conjunction pairs that label all points in S and S ′ negatively. Then,

choosing a pair (c1, c2) of possible target conjunctions uniformly at random and

then choosing c uniformly at random gives at least a 1/4 chance that S and S ′ only

contain negative examples (both conjunctions are consistent with this).

Moreover, note that any two conjunctions in a pair will have a robust risk

lower bounded by 15/32 against each other under the uniform distribution (see
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Lemma 4.11). Thus, any learning algorithm A with LMQ query budget m′ = 2ρ−1

and strategy σ : ({0, 1}n×{0, 1})m → ({0, 1}n×{0, 1})m′
(note that the queries can

be adaptive) can do no better than to guess which of c1 or c2 is the target if they

are both consistent on the augmented sample S ∪ σ(S), giving an expected robust

risk lower bounded by a constant. Letting E be the event that all points in both S

and σ(S) are labelled zero, we get

E
c,S

[
RD
ρ (A(S ∪ σ(S)), c)

]
≥ Pr

c,S
(E) E

c,S

[
RD
ρ (A(S ∪ σ(S)), c) | E

]
(Total Expectation)

≥ 1

4
E
c,S

[
RD
ρ (A(S ∪ σ(S)), c) | E

]
(Equation 6.1)

=
1

4
· 1
2
E
S

[
RD
ρ (A(S ∪ σ(S)), c1) + RD

ρ (A(S ∪ σ(S)), c2) | E
]

(Random choice of c)

≥ 1

8
E
S

[
RD
ρ (c1, c2) | E

]
(Lemma 4.9)

>
1

8
· 15
32

(Lemma 4.11)

=
15

256
,

which completes the proof.

Now, since the local membership query lower bound above has an exponential

dependence on ρ, any perturbation budget ω(log n) will require a sample and query

complexity that is superpolynomial in n, giving the following corollary.

Corollary 6.4. The robustness threshold of the class CONJUNCTIONS under the

uniform distribution with access to EX and an LMQ oracle is Θ(log(n)).

Observe that the robustness threshold above is the same as when only using the

EX oracle in Theorem 4.10, and that, as decision lists and halfspaces both subsume

conjunctions, the lower bound of Theorem 6.3 also holds for these classes. Since we

cannot improve the robustness threshold of conjunctions and superclasses under the

uniform distribution with access to the LMQ oracle, we will turn our attention to a

more powerful oracle in the next section.
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6.3 Robust Learning with Local Equivalence

Queries

In this section, we investigate the power of a local equivalence query oracle in the

distribution-free robust learning setting. We start with a negative result which shows

that for a wide variety of concept classes, if λ < ρ, then distribution-free robust

learnability is impossible in the EX+λ-LEQ model – regardless of how many queries

are allowed. This strengthens the impossibility result presented in Theorem 4.8.

However, the regime λ = ρ, which implies giving similar power to the learner as the

adversary, enables robust learnability guarantees. Indeed, Section 6.3.2 exhibits up-

per bounds on sample sizes that will guarantee robust generalization. These bounds

are logarithmic in the size of the hypothesis class (finite case) and linear in the VC

dimension of the robust loss of a concept class (infinite case). Section 6.3.3 draws

a comparison between our framework and the online learning setting, and exhibits

robustly consistent learners. It furthermore studies conjunctions and presents a ro-

bust learning algorithm that is both statistically and computationally efficient. It

concludes by looking at linear classifiers in the discrete and continuous cases. We

adapt the Winnow algorithm in the former setting. In the latter, we exhibit a sample

complexity upper bound while outlining key obstacles to derive query complexity

upper bounds, which will be addressed in Section 6.4.

6.3.1 Impossibility of Distribution-Free Robust Learning

for λ < ρ

We start with a negative result, saying that whenever the local query radius is

strictly smaller than the adversary’s budget, monotone conjunctions are not distribution-

free robustly learnable. Note that this result goes beyond efficiency: no query can

distinguish between two potential targets. Choosing the target uniformly at random

lower bounds the expected robust risk, and hence renders robust learning impossible

in this setting.

Theorem 6.5. For locality and robustness parameters λ, ρ ∈ N with λ < ρ, mono-

tone conjunctions (and any superclass) are not distribution-free ρ-robustly learnable

with access to a λ-LEQ oracle.
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The proof is similar in spirit to the earlier distribution-free impossibility results

from Chapter 4.

Proof. Fix λ, ρ ∈ N such that λ < ρ, and consider the following monotone conjunc-

tions: c1(x) =
∧

1≤i≤ρ xi and c2(x) =
∧

1≤i≤ρ+1 xi. Let D be the distribution on

{0, 1}n which puts all the mass on 0. Then, the target concept is drawn at random

between c1 and c2. Now, c1 and c2 will both give all points in Bλ(0) the label 0,

so the learner has to choose a hypothesis that is consistent with both c1 and c2

(otherwise the robust risk is 1 and we are done). However, the learner has no way

of distinguishing which of c1 or c2 is the target concept, while these two functions

have a ρ-robust risk of 1 against each other under D. Formally,

RD
ρ (c1, c2) = Pr

x∼D
(∃z ∈ Bρ(x) . c1(z) ̸= c2(z))

= 1[∃z ∈ Bρ(0) . c1(z) ̸= c2(z)]

= 1 , (6.2)

where such z = 1ρ0n−ρ. To lower bound the expected robust risk, letting A be any

learning algorithm and E be the event that all points in a randomly drawn sample

S are all labeled 0, we have

E
c,S

[
RD
ρ (A(S), c)

]
= E

c,S

[
RD
ρ (A(S), c) | E

]
(By construction of D)

=
1

2
E
S

[
RD
ρ (A(S), c1) + RD

ρ (A(S), c2) | E
]

(Random choice of c)

≥ 1

2
E
S

[
RD
ρ (c1, c2) | E

]
(Lemma 4.9)

=
1

2
. (Equation 6.2)

The result holds for monotone conjunctions and all superclasses (e.g., decision

lists and halfspaces), but, in fact, we can generalize this reasoning to any concept

class that has a certain form of stability: if we can find concepts c1 and c2 in C
and points x, x′ ∈ X such that c1 and c2 agree on Bλ(x) but disagree on x′, then if

λ < ρ, the concept class C is not distribution-free ρ-robustly learnable with access

to a λ-LEQ oracle. It suffices to “move” the center of the ball x until we find a point

in the set Bρ(x) \ Bλ(x) where c1 and c2 disagree, which is guaranteed to happen
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by the existence of x′. As hinted earlier, this is not possible for parities, as any two

parity functions fI and fJ with index sets I and J , respectively, will disagree on

B1(x) for any x ∈ {0, 1}n, as it suffices to flip a bit in the symmetric difference I∆J

to cause them to disagree.

6.3.2 Sample Complexity Upper Bounds

In this section, we show that we can derive sample complexity upper bounds for

robustly consistent learners, i.e., learning algorithms that return a hypothesis with

a robust loss of zero on a training sample. Note that, crucially, the exact-in-the-ball

notion of robustness and its realizability imply that any robust ERM algorithm will

achieve zero empirical robust loss on a given training sample. As we will see in the

next sections, the challenge is to find a robustly consistent learning algorithm that

uses queries to ρ-LEQ. The first bound is for finite classes, where the dependency

is logarithmic in the size of the hypothesis class. The proof is a simple application

of Occam’s razor and is included in Appendix B.1 for completeness. The argument

is similar to Bubeck et al. (2019).

Lemma 6.6. Let C be a concept class and H a hypothesis class. Any ρ-robust ERM

algorithm using H ⊇ C on a sample of size m ≥ 1
ϵ

(
log |Hn|+ log 1

δ

)
is a ρ-robust

learner for C.

For the infinite case, we cannot immediately use the VC dimension as a tool for

bounding the sample complexity of robust learning. To this end, we use the VC

dimension of the robust loss between two concepts, which is the VC dimension of

the class of functions representing the ρ-expansion of the error region between any

possible target and hypothesis. This is analogous to the adversarial VC dimension

defined by Cullina et al. (2018) for the constant-in-the-ball definition of robustness.

Definition 6.7 (VC dimension of the exact-in-the-ball robust loss). Given a tar-

get concept class C, a hypothesis class H and a robustness parameter ρ, the VC

dimension of the robust loss between C and H is defined as VC(Lρ(C,H)), where

Lρ(C,H) = {ℓρ(c, h) : x 7→ 1[∃z ∈ Bρ(x) . c(z) ̸= h(z)] | c ∈ C, h ∈ H}. Whenever

C = H, we simply write VC(Lρ(C)).
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We now show that we can use the VC dimension of the robust loss to upper

bound the sample complexity of robustly-consistent learning algorithms. We will

use this result in Section 6.3.5 when dealing with an infinite concept class: halfspaces

on Rn.

Lemma 6.8. Let C be a concept class and H a hypothesis class. Any ρ-robust ERM

algorithm using H on a sample of size m ≥ κ
ϵ

(
VC(Lρ(C,H)) log(1/ϵ) + log 1

δ

)
for

sufficiently large constant κ is a ρ-robust learner for C.

Proof Sketch of Lemma 6.8. The proof is very similar to the VC dimension upper

bound in PAC learning. The main distinction is that, instead of looking at the error

region of the target and any function in H, we look at its ρ-expansion. Namely, let

the target c ∈ C be fixed and, for h ∈ H, consider the function ℓρ(c, h) : x 7→ 1[∃z ∈
Bρ(x) . c(z) ̸= h(z)] and define a new concept class ∆c,ρ(H) = {ℓρ(c, h) | h ∈ H}. It
is easy to show that VC(∆c,ρ(H)) ≤ VC(Lρ(C,H)), as any sign pattern achieved on

the LHS can be achieved on the RHS. The rest of the proof follows from the definition

of an ϵ-net and the bound on the growth function of ∆c,ρ(H); see Appendix B.2 for

details.

Remark 6.9. Note that, for X = {0, 1}n and the Hamming distance, as ρ(n)/n tends

to 1, we move towards the exact and online learning settings, and the underlying

distribution becomes less important. In this case, the VC dimension of the robust

loss starts to decrease. Indeed, say if ρ = n, then Lρ(C) only contains the con-

stant functions 0 and 1. We thus only need a single example to query the LEQ

oracle (which has become the EQ oracle). However, this comes at a cost: the query

complexity upper bounds presented in the next sections could be tight.

6.3.3 General Query Complexity Upper Bounds

In the previous section, we derived sample complexity upper bounds for robustly

consistent learners. The challenge is thus to create algorithms that perform robust

empirical risk minimization, as we are operating in the realizable setting. We begin

by showing that online learning results can be used to guarantee robust learnability.

We recall the online learning setting in Section 3.1.4. We denote by Lit(C) the

Littlestone dimension of a concept class C, which appears in the query complexity

bound in the theorem below.
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Theorem 6.10. A concept class C is ρ-robustly learnable with the Standard Op-

timal Algorithm (SOA) (Littlestone, 1988) using the EX and ρ-LEQ oracles with

sample complexity m(n, ϵ, δ) = 1
ϵ

(
VC(Lρ(C)) log(1/ϵ) + log 1

δ

)
and query complexity

r(n, ϵ, δ) = m(n, ϵ, δ) · Lit(C). Furthermore, if C is a finite concept class on {0, 1}n,
then C is ρ-robustly learnable with sample complexity m(n, ϵ, δ) = 1

ϵ

(
log(|C|) + log 1

δ

)
and query complexity r(n, ϵ, δ) = m(n, ϵ, δ) · Lit(C).

Proof. The sample complexity bounds come from Lemmas 6.6 and 6.8 and the

fact that the Standard Optimal Algorithm (SOA) is a consistent learner, as it will

be given counterexamples in the perturbation region until a robust loss of zero is

achieved.

For each query to LEQ, a counterexample is returned, or the robust loss is zero.

Then, using the mistake upper bound of SOA, which is Lit(C), we get the query

upper bound.

Of course, some concept classes, e.g., thresholds, have infinite Littlestone di-

mension, so Theorem 6.10 is not useful in these settings. In Section 6.4, we will

study assumptions on the adversary’s precision that give finite query upper bounds

for linear classifiers. But even if the Littlestone dimension is finite, the SOA can

be computationally inefficient, or even untractable. However, if we have access to

an online learning algorithm with a mistake bound, it is possible to obtain robust

learning guarantees. Indeed, the theorem below exhibits a query upper bound for

robustly learning with an online algorithm A with a given mistake upper bound M .

This is moreover particularly useful in case A is computationally efficient (which

is not the case for the Standard Optimal Algorithm in Theorem 6.10) and M is

polynomial in the input dimension.

Lemma 6.11. Let C be a concept class learnable in the online setting with mis-

take bound M(n). Then C is ρ-robustly learnable using the EX and ρ-LEQ oracles

with sample complexity m(n, ϵ, δ) = 1
ϵ

(
VC(Lρ(C,H)) + log 1

δ

)
and query complexity

r(n, ϵ, δ) = m(n, ϵ, δ) ·M(n).

We remark that, implicit in the statement of the above lemma is the assumption

that all potential mistakes must be contained in the potential perturbation region

(Bρ(supp(D)), the ρ-expansion of the support of the distribution). We now proceed

with the proof of the above lemma.
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Proof. The sample complexity bound is obtained from Lemma 6.8 and, for each

point in the sample, a query to LEQ can either return a robust loss of 0 or 1 and

give a counterexample. Since the mistake bound is M , we have a query upper bound

of r = m ·M , as required.

Remark 6.12. In this section, we have assumed that λ = ρ. In Section 6.6.2, where

we compare the power of LEQ and EQ, we will see a robust learning scenario where

λ > ρ dramatically increases the query complexity.

6.3.4 Improved Query Complexity Bounds for

Conjunctions

We now show how to improve the query upper bound from the previous section

in the special case of conjunctions. Moreover, the algorithm used to robustly learn

conjunctions is both statistically and computationally efficient, which is not the case

for the Standard Optimal Algorithm.

Theorem 6.13. The class CONJUNCTIONS is efficiently ρ-robustly learnable in the

distribution-free setting using the EX and ρ-LEQ oracles with at most O
(
1
ϵ

(
n+ log 1

δ

))
random examples and O

(
1
ϵ

(
n+ log 1

δ

))
queries to ρ-LEQ.

The algorithm achieving the above bounds is a straightforward adaptation of

the online learning algorithm for conjunctions in Section 3.1.4.

Proof. Let c be the target conjunction and let D be an arbitrary distribution. We

describe an algorithm A with polynomial sample and query complexity with access

to a ρ-LEQ oracle. By Lemma 6.6, if we can guarantee that A returns a hypoth-

esis with zero robust loss on a i.i.d. sample of size m = O
(
1
ϵ

(
n+ log 1

δ

))
with a

polynomial number of queries to the ρ-LEQ oracle, we are done.

The algorithm is similar to the standard PAC learning algorithm, in that it only

learns from positive examples. Indeed, the original hypothesis h is a conjunction of

all 2n literals. After seeing a positive example x, A removes from h the literals x̄i

for i = 1, . . . , n, as they cannot be in c. Note that, by construction, any hypothesis

h returned by A always satisfies c ⊆ h.3 Thus, any counter example returned by

3We overload c, h to mean both the functions and the set of literals in the conjunction, as it
will be unambiguous to distinguish them from context.
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the LEQ oracle will have that c(z) = 1 and h(z) = 0. This allows us to remove at

least one literal from the hypothesis set for every counterexample. Now, it is easy

to see that, for c ⊆ h′ ⊆ h, if the robust loss 1[∃z ∈ Bλ(x) . c(z) ̸= h(z)] on x w.r.t.

h is zero, so will be the robust loss on x w.r.t. the updated hypothesis h′. Hence,

A makes at most m+ 2n queries to the LEQ oracle.

Note that the query upper bound that we get is of the form m+M , as opposed

to m ·M from Lemma 6.8 (where m is the sample complexity and M the mistake

bound). Indeed, any update to the hypothesis will not affect the consistency of

previously queried points with robust loss of zero. Thus, once zero robust loss is

achieved on a point, it does not need to be queried again.

6.3.5 Bounds for Linear Classifiers

In this section, we first derive sample and query complexity upper bounds for linear

classifiers on {0, 1}n with bounded weights. We then derive sample complexity

bounds for linear classifiers on Rn and outline obstacles for query complexity upper

bounds. Note that the robustness threshold of linear classifiers on {0, 1}n without

access to the LEQ oracle remains an open problem, as pointed out in Chapter 5.

Let LTFW
{0,1}n be the class of linear threshold functions on {0, 1}n with integer

weights such that the sum of the absolute values of the weights and the bias is

bounded above by W . We have the following theorem, whose proof relies on bound-

ing the size of LTFW
{0,1}n and using the mistake bound for Winnow (Littlestone,

1988).

Theorem 6.14. The class LTFW
{0,1}n is ρ-robustly learnable with access to the EX

and ρ-LEQ oracles using the Winnow algorithm with sample complexity m(n, ϵ, δ) =

O
(
1
ϵ

(
n+min {n,W} log(W + n) + log 1

δ

))
and local equivalence query complexity

r(n, ϵ, δ) = O(m(n, ϵ, δ) ·W 2 log(n)).

Proof. The sample complexity bound uses Lemma 6.6. Note the class LTFW
{0,1}n has

size O(2n(n+W )min{n,W}). This is a simple application of the stars and bars identity,

where W is the number of stars and n+1 the number of bars (as we are considering

the bias term as well):
(
n+W
W

)
= O((n+W )min{n,W}). The 2n term comes from the

fact that each weight can be positive or negative. The query complexity uses the

fact that the mistake bound for Winnow for LTFW
{0,1}n is O(W 2 log(n)) in the case
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of positive weights (the full statement can be found in Section 3.1.4). Littlestone

(1988) outlines how to use the Winnow algorithm when the linear classifier’s weights

can vary in sign, at the cost of doubling the input dimension and weight bound (see

Theorem 10 and Example 6 therein).

We now turn our attention to linear classifiers LTFRn on Rn. We first show that,

when considering an adversary with bounded ℓ2-norm perturbations, we can bound

the sample complexity of robust learning for this class through a bound on the

VC dimension of the robust loss. However, the query complexity is infinite in the

general case (we will later prove an infinite lower bound in Corollary 6.34). This is

because the Littlestone dimension of thresholds, and thus halfspaces, is infinite (see

Section 3.1.4 for details). We will address this issue in Section 6.4.

Theorem 6.15. Let the adversary’s budget be measured by the ℓ2 norm. Then

any ρ-robust ERM learning algorithm for LTFRn on Rn has sample complexity m =

O(1
ϵ
(n3 + log(1/δ))).

The proof of this theorem relies on deriving an upper bound on the VC dimension

of the robust loss of halfspaces. This enables us to bound the sample complexity

needed to guarantee robust accuracy. We will need the following theorem from

Goldberg and Jerrum (1995):

Theorem 6.16 (Theorem 2.2 in (Goldberg and Jerrum, 1995)). Let {Ck,n}k,n∈N be

a family of concept classes where concepts in Ck,n and instances are represented by

k and n real values, respectively. Suppose that the membership test for any instance

α in any concept C of Ck,n can be expressed as a boolean formula Φk,n containing

s = s(k, n) distinct atomic predicates, each predicate being a polynomial inequality

or equality over k+n variables (representing C and α) of degree at most d = d(k, n).

Then VC(Ck,n) ≤ 2k log(8eds).

We will now translate the ρ-expansion of the error region (i.e., the robust loss

function) between two halfspaces as a boolean formula. The following result from

Renegar (1992), will be instrumental to obtain our result:

Theorem 6.17 (Theorem 1.2 in Renegar (1992)). Let Ψ be a formula in the first-

order theory of the reals of the form

(Q1x
[1] ∈ Rn1) . . . (Qωx

[ω] ∈ Rnω)P (x[1], . . . , x[nω ], y) ,
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with free variables y = (y1, . . . , yl), quantifiers Qi (∃ or ∀) and quantifier-free

Boolean formula P (x[1], . . . , x[nω ], y) with m atomic predicates consisting of poly-

nomial inequalities of degree at most d. There exists a procedure that constructs an

equivalent quantifier-free formula Φ of the form

I∨
i=1

Ji∧
j=1

(hij(y)∆ij0) ,

where

I ≤ (md)2
O(ω)l

∏
k nk

Ji ≤ (md)2
O(ω)

∏
k nk

deg(hij) ≤ (md)2
O(ω)

∏
k nk

∆ij ∈ {≤,≥,=, ̸=, >,<} .

We are now ready to state the key technical lemma need for the proof of Theo-

rem 6.15.

Lemma 6.18. Let a, b ∈ Rn, a0, b0 ∈ R, and define the map φ : x 7→ 1[∃z ∈
Bρ(x) . sgn(a⊤z + a0) ̸= sgn(b⊤z + b0)]. Then φ can be represented as a boolean

formula Φ with s = 10Cn2
distinct atomic predicates, with each predicate being a

polynomial inequality over 2n+2 variables of degree at most 10C
′n for some constants

C,C ′ > 0.

Proof. First note that the predicate sgn(a⊤z+a0) ̸= sgn(b⊤z+b0) can be represented

as the following formula:(
a⊤z + a0 ≥ 0 ∧ b⊤z + b0 < 0

)
∨
(
a⊤z + a0 < 0 ∧ b⊤z + b0 ≥ 0

)
,

which contains n + (2n + 2) variables and 4 predicates. Moreover, given a pertur-

bation ζ ∈ Rn, the constraint ∥ζ∥2 ≤ ρ on its magnitude is a polynomial inequality

of degree 2: ∑
i

ζ2i ≤ ρ2 .

Now, consider the following formula:

Ψ(x) = ∃ζ ∈ Rn .
(
sgn(a⊤(x+ ζ) + a0) ̸= sgn(b⊤(x+ ζ) + b0) ∧ ∥ζ∥2 ≤ ρ

)
.
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This is a formula of first-order logic over the reals. Using the notation of Theo-

rem 6.17, we have ω = 1 quantifier, and thus
∏

k nk = n, one Boolean formula with

m = 5 polynomial inequalities of degree d at most 2, and l = n. Thus, Ψ(x) can be

expressed as a quantifier-free formula Φ(x) =
∨I

i=1

∧Ji
j=1(hij(y)∆ij0) of size

I max
i

Ji ≤ (md)2
O(ω)l

∏
k nk+2O(ω)

∏
k nk ≤ 10Cn2

for some constant C, where the polynomial inequalities are of degree at most

(md)2
O(ω)

∏
k nk ≤ 10C

′n for some constant C ′.

We thus get the following corollary.

Corollary 6.19. The VC dimension of the robust loss of LTFRn is O(n3).

Proof. We let s = 10Cn2
, k = 2n + 2 and d = 10C

′n from the proof above and use

Definition 6.7 and Theorem 6.16 to get a VC dimension of the robust loss upper

bound of O(k log(sd)) = O(n3).4

Proving Theorem 6.15 is now a straightforward application of the results above.

6.4 Robust Learning Against Precision-Bounded

Adversaries

It is possible to obtain some relatively straightforward robustness guarantees for

classes with infinite Littlestone dimension if there exists a sufficiently large margin

between classes (in which case the exact-in-the-ball and constant-in-the-ball notions

of robustness coincide). However, some of these results have already been derived

in the literature. See, e.g., (Cullina et al., 2018) for the sample complexity of

halfspaces in the constant-in-the-ball realizable setting w.r.t. ℓp-norm adversaries,

which improves on the sample complexity bound of Theorem 6.15 by being linear

– vs cubic – in the input dimension; together with a mistake bound for Perceptron,

we get LEQ bounds.5

4Note that Corollary 2.4 in Goldberg and Jerrum (1995) uses this reasoning.
5In this case, we would need a margin between the sets Bρ(supp(D0)) and Bρ(supp(D1)), as

these are the sets of potential counterexamples – the condition Bρ(supp(D0))∩Bρ(supp(D1)) = ∅
is not sufficient in itself to get guarantees for hypotheses with infinite Littlestone dimension. See
(Montasser et al., 2021) for both upper and lower bounds in this setting.
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Figure 6.1: The dotted line is the hypothesis h, and the solid line, the target c.
The adversary has precision τ . The shaded regions represent the set Bτ (zi). The
counterexample z1 is valid as c and h disagree on all of Bτ (z1) and both functions
are constant in this region, but z2 is not as c and h agree on part of Bτ (z2).

Instead, in this section, we look at robust learning problems in which the decision

boundary can cross the perturbation region, but where the adversary’s precision is

limited. We use ideas from Ben-David et al. (2009) concerning hypotheses with

margins in the online learning framework. Note, however, that here the margin

does not represent sufficient distance between classes, but rather a region of the

instance space that is too costly for the adversary to access (e.g., the number of bits

needed to express an adversarial example is too large).

Examining the proof that the Littlestone dimension of thresholds is infinite (see

Section 3.1.4), the key assumption is that the adversary has infinite precision, which

is perhaps not a reasonable assumption to make in practice. More precisely, in the

construction of the Littlestone tree, each counterexample given requires an addi-

tional bit to be described, as the remainder of the interval [0, 1] is split in two at

each prediction. Our work in this section formally and more generally addresses

this potential issue.

We now define the meaning of bounding an adversary’s precision in the context

of robust learning, which is depicted in Figure 6.1.

Definition 6.20 (Precision-Bounded Adversary). Let (X , d) be a metric space, and

let an adversary A have budget ρ. We say that A is precision-bounded by τ , if for

target c, hypothesis h, and input x, A can only return counterexamples z ∈ Bρ(x)

such that h and c are both constant and disagree on the whole region Bτ (z) and

Bτ (z) ⊆ Bρ(x).
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Comparison with online learning. Note that if we set ρ to be large enough so

that the perturbation region is the whole instance space X for any point x (more

generally, U(x) = X ), we (almost) recover the adversary model in the online learning

setting. The only distinction is that, in online learning, at a given time t the learner is

a point xt to classify (implicitly classifying the whole region Bτ (xt) in our precision-

bounded setting), rather than committing to a hypothesis h on the whole instance

space. The adversary (or “nature” if a target must be chosen a priori) reveals the

true label after a prediction is made.

In the mistake-bound model, the only constraint is that there exists a concept

in H that is consistent with the labelled sequence (x1, y1, ), . . . , (xt, yt) seen so far.

When working with a precision-bounded adversary, we are implicitly asking the

adversary to not give counterexamples too close to the boundary. Then, in the

mistake-bound model, this translates into the adversary giving a point xt to predict

such that there does not exist time steps t′, t′′ where yt′ ̸= yt′′ and Bτ (xt′) and Bτ (xt′′)

both intersect with Bτ (xt), hence a margin. Margin-based complexity measures for

online learning adapted from Ben-David et al. (2009) will be used in this section.

A subtle distinction between the definitions we give below and that of Ben-

David et al. (2009) is that the latter defined margin-based Littlestone trees and

Littlestone dimension for margin-based hypothesis classes. They require that the

hypothesis class H satisfies the following: for all h ∈ H, h is of the form X → R,
and the prediction rule is

ϕ(h(x)) =
sgn(h(x)) + 1

2
, (6.3)

where the magnitude |h(x)| is the confidence in the prediction. The µ-margin-

mistake on an example (x, y) is defined as

|h(x)− y|µ =

0 if ϕ(h(x)) = y ∧ |h(x)| ≥ µ

1 otherwise
. (6.4)

For us, since it is the adversary that is bounded in its precision, we instead con-

sider any hypothesis class where the concepts are boolean functions whose domain

is a metric space (X , d). Rather than having the condition |h(x)| ≥ µ from Equa-

tion 6.4, we encode a margin representing the precision τ by the requirement that

hypotheses must be constant in the τ -expansion around any point in the Littlestone
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trees. This difference is not only stylistic, but also concerns the semantics of the

margin. Our definition moreover implies a uniform margin on the instance space,

while the one from Ben-David et al. (2009) can fluctuate in the instance space based

on the classifier’s confidence. However, the tools and techniques used here don’t dif-

fer much in essence from the ones in Ben-David et al. (2009). The main novelty is

the meaning of the notion of margin and its study in the context of robust learning.

Definition 6.21 (Littlestone Trees of Precision τ). A Littlestone tree of precision

τ for a hypothesis class H on metric space (X , d) is a complete binary tree T of

depth d whose internal nodes are instances x ∈ X . Each edge is labelled with −
or + and corresponds to the potential labels of the parent node x and the region

Bτ (x). Each path from the root to a leaf must be consistent with some h ∈ H, i.e.
if x1, . . . , xd with labellings y1, . . . , yd is a path in T , there must exist h ∈ H such

that h|Bτ (xi) = yi for all i.

While it is possible to have a hypothesis giving different labels to points in the

region Bτ (x) in the standard setting, in the above construction, one must commit

to labelling the whole region Bτ (x) either positively or negatively.

For the remainder of the text, we will identify each leaf in a Littlestone tree

T with a hypothesis h ∈ H that is consistent with the labellings along the path

from the root to this leaf. Note that the choice of labelling y of Bτ (x) of some

x ∈ T implies that, in contrast to the standard Littlestone trees, any h ∈ H with

h(x) = y that is not constant on Bτ (x) cannot be consistent with any path in T .

The set of consistent hypotheses on T thus does not form a partition of H in our

precision-bounded setting.

We now remark that, by definition, no node in the tree has a τ -expansion that

overlaps with the τ -expansion of any of its ancestors.

Proposition 6.22. Let T be a Littlestone tree of precision τ . Then for any node

x ∈ T and ancestor x′ ∈ T of x, Bτ (x) ∩Bτ (x
′) = ∅.

Proof. Take two paths from the root to two distinct leaves, h0 and h1, respectively.

Let the paths branch off at x ∈ T , with hy giving label y to the whole region Bτ (x).

Let x′ be an ancestor of x in T , and note that h0 = h1 = b on Bτ (x
′) for some

b ∈ {0, 1}. Then, since h0 and h1 must disagree on all of Bτ (x), it follows that

Bτ (x) ∩Bτ (x
′) = ∅.
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We can now define the following variant of the Littlestone dimension, which is

analogous to the margin-based Littlestone dimension of Ben-David et al. (2009).

Definition 6.23 (Precision-Bounded Littlestone Dimension). The Littlestone di-

mension of precision τ of a hypothesis class H on metric space (X , d), denoted

Litτ (H), is the depth k of the largest Littlestone tree with bounded precision τ for

H. If no such k exists then Lit(H) =∞.

Note that setting τ = 0, i.e., there are no constraints on the nodes, we recover

the Littlestone tree and Littlestone dimension definitions. As an example, let us

consider the class of threshold functions, which, when τ = 0, have infinite Littlestone

dimension.

Proposition 6.24. Let τ > 0. The class THRESHOLDSB of threshold functions on

[0, B] induce Littlestone trees of precision τ of depth bounded by logB
τ
− 1. Thus

Litτ (THRESHOLDSB) = ⌊log B
τ
− 1⌋.

Proof. Let τ > 0 be arbitrary. Here, the optimal strategy to construct a Littlestone

tree is to divide the interval [0, B] in two equal parts at each round. Given x ∈ [0, B]

and α < α′ ∈ R, in order to have two threshold functions hα(x) = 1[x ≥ α] and

hα′(x) = 1[x ≥ α′] that disagree on the whole range [x − τ, x + τ ], we need both

α < x − τ and α′ ≥ x + τ . Thus, at depth d, we have divided [0, B] into 2d parts

we must have 2τ ≥ B2−d, implying Litτ (THRESHOLDSB) = ⌊log B
τ
− 1⌋.

We now show a lower bound on the number of mistakes of any learner against

an adversary with bounded precision τ . The proof is identical to the regime τ = 0.

Theorem 6.25. Any online learning algorithm for C has mistake bound M ≥ Litτ (C)
against a τ -precision-bounded adversary.

Proof. Let A be any online learning algorithm for C. Let T be a Littlestone tree

of bounded precision τ and depth Litτ (C) for C. Clearly, an adversary can force A
to make Litτ (C) mistakes by sequentially and adaptively choosing a path in T in

function of A’s predictions.

Now, let us consider a version of the SOA where the adversary has precision τ .

The algorithm is identical to the SOA (see Algorithm 5 in Chapter 3), except for



120 CHAPTER 6. ROBUST LEARNING WITH LOCAL QUERIES

the definition of V
(b)
t , which requires that the hypotheses are constant in the region

around the prediction.

Algorithm 6 Precision-Bounded Standard Optimal Algorithm

Input: A hypothesis class H
for t = 1, 2, . . . do

V1 ← H
Receive example xt

V
(b)
t ←

{
h ∈ Vt | h|Bτ (xt) = b

}
ŷt = argmax

b
Litτ

(
V

(b)
t

)
Receive true label yt
Vt+1 ← V

(yt)
t

end for

Below, we show that this slight modification of the SOA is also optimal for cases

in which the adversary is constrained by τ . This is analogous to Theorem 21 in

(Ben-David et al., 2009), who did not include the proof of optimality for brevity.

We have included it in this thesis for completeness.

Theorem 6.26. The precision-bounded Standard Optimal Algorithm makes at most

Litτ (C) mistakes in the mistake-bound model of online learning when the adversary

has precision τ .

Proof. We will show that, at every mistake, the precision-bounded Littlestone di-

mension of the subclass Vt decreases by at least 1 after receiving the true label

yt.

WLOG, assume that there does not exist t′ < t such that xt′ ∈ Bτ (xt), as

otherwise this implies that V
(yt′ )
t = Vt and V

(¬yt′ )
t = ∅, and we cannot make a

mistake (note in particular that we cannot have two differently labelled points in

Bτ (xt) as otherwise this would not be a valid example for the adversary to give).

Suppose that, at time t, yt = argminb Litτ (V
(b)
t ). Note that Vt+1 = V

(yt)
t . Now,

consider any two Littlestone trees Tyt and Tŷt of precision τ and maximal depths

for V
(yt)
t and V

(ŷ)
t , respectively. By Proposition 6.22 and definition of V

(b)
t , neither

tree can contain nodes whose τ -expansions intersect with Bτ (xt). Moreover, all

hypotheses in V
(yt)
t and V

(ŷ)
t are constant on Bτ (xt). Hence it is possible to construct
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a τ -constrained Littlestone tree T for Vt of depth minb Litτ (V
(b)
t ) + 1 (recall that T

must be complete). Then Litτ (Vt) ≥ Litτ (V
(yt)
t )+1 = Litτ (Vt+1)+1, as required.6

Remark 6.27. When considering threshold functions on [0, 1], and given example

xt to predict, the SOA’s strategy is effectively to look at the labelled points in the

history and consider the largest x(0) ∈ [0, 1] with negative label and the smallest

x(1) ∈ [0, 1] with positive label, and predict yt = argmin
b

∣∣xt − x(b)
∣∣.

We now turn our attention to the robust learning of halfspaces in (Rn, d2) against

adversaries of precision τ , where d2 is the metric induced by the ℓ2 norm. As

pointed out by Ben-David et al. (2009), we essentially have the same argument as

the Perceptron algorithm, because, once the hypothesis is sufficiently close to the

target, the adversary cannot return counterexamples near the boundary. Note that

this result can be generalized to ℓp norms. Figure 6.2 depicts the argument of the

proof of Theorem 6.28.

Theorem 6.28. Fix constants B, τ > 0. Let the adversary’s budget ρ be measured

by the ℓ2 norm. Let LTFRn be the class of halfspaces on Rn where the instance

space is restricted to points x ∈ Rn with ∥x∥2 ≤ B−ρ. Then, LTFRn is distribution-

free ρ-robustly learnable against an adversary of precision τ using the EX and ρ-LEQ

oracles with sample complexity m(n, ϵ, δ) = O(1
ϵ
(n3+log(1/δ))) and query complexity

r(n, ϵ, δ) = m(n, ϵ, δ) · B2

τ2
. Note that this is query-efficient if B2

τ2
= poly(n).

Note that the dependence on τ in the mistake bound, and thus the LEQ upper

bound, is 1/τ 2, in contrast to the dependence of log 1/τ for thresholds.

Proof. The sample complexity follows from Theorem 6.15. The query upper bound

follows from Lemma 6.11 and the mistake bound for the Perceptron algorithm (see

Theorem 3.16). To see that the bound for Perceptron can be used, note that the

adversary having precision τ implies that any consistent target function c(x) =

a⊤x+ a0 and any counterexample z will satisfy the conditions (i) ∥z∥2 ≤ B and (ii)

τ ≤ c(z)(a⊤z)
∥z∥2

from Theorem 3.16.

6Note that the Littlestone dimension does not necessarily decrease when yt = ŷt, as we could

have Vt = V
(yt)
t .
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Figure 6.2: A visual representation of the proof of Theorem 6.28. The dotted lines
on either side of the target c represent a margin of τ/2. Any hypothesis within
the dotted lines in the (shaded) perturbation region ensures that an adversary of
bounded precision τ cannot return any counterexamples. Finally, counterexamples
must be labelled according to the target c, and both h and c are not constant on
Bρ(x).

6.5 Lower Bounds on Robust Learning with LEQ

In this section, we derive lower bounds on the expected number of queries of robust

learning algorithms for various concept classes. We start with general lower bounds

and conclude by looking at specific concept classes.

6.5.1 General Query Complexity Lower Bounds

We start by giving a general lower bound on the query complexity of the LEQ oracle

that is linear in the restricted Littlestone dimension of a concept class. This notion,

which restricts the region of the instance space where the nodes in the Littlestone

tree can come from, will be defined below, along with the restricted VC dimension.

We first define the notion of the restricted VC dimension of a concept class.

We note that we can straightforwardly extend the definitions below to an arbitrary

perturbation region U : X → 2X , and obtain analogous results.

Definition 6.29 (ρ-restricted VC Dimension). The ρ-restricted VC dimension of a

concept class C, denoted VC|ρ(C), is the size d of the largest set X ⊆ X shattered by
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C such that there exists x∗ ∈ X where x ∈ Bρ(x
∗) for all x ∈ X.

We now introduce the restricted Littlestone dimension.

Definition 6.30 (ρ-restricted Littlestone Dimension). The ρ-restricted Littlestone

dimension of a hypothesis class H, denoted Lit|ρ(H), is the depth d of the largest

Littlestone tree T for H with root node x∗ such that x ∈ Bρ(x
∗) for all the nodes

x ∈ T .

Remark 6.31. It follows from the upper bound on the (standard) VC dimension by

the Littlestone dimension that VC|ρ(C) ≤ Lit|ρ(H), as we can construct a restricted

Littlestone tree from a witness set of the restricted VC dimension.

We are now ready to state the main theorem of this section.

Theorem 6.32. Let C be a concept class of ρ-restricted Littlestone dimension

Lit|ρ(C) = d. Then there exists a distribution on X such that any ρ-robust learning

algorithm for C has an expected number of queries Ω(d) to the ρ-LEQ oracle.

As a consequence of Remark 6.31, we have the following corollary.

Corollary 6.33. Let C be a concept class of ρ-restricted VC dimension VC|ρ(C) = d.

Then there exists a distribution on X such that any ρ-robust learning algorithm for

C has an expected number of queries Ω(d) to the ρ-LEQ oracle.

The proof of Theorem 6.32 is similar to showing that a mistake lower bound in

online learning can be transformed in an expected mistake lower bound when we

instead require the adversary to choose a label before a (potentially randomized)

prediction is made.

In order to prove Theorem 6.32, we will use Yao’s minimax principle, which

will allow us to give lower bounds for randomized algorithms while only considering

deterministic algorithms in our analysis.

We will start with some notation. Let cost(A, z) represent the real-valued cost

of an algorithm A on an input z for problem P (e.g., running time, number of

queries, etc.). For a distribution D on the set Z of potential inputs to P , the cost of

A on D is defined as cost(A,D) := E
z∼D

[ cost(A, z)]. The distributional complexity

of P is max
D

min
A∈A

cost(A,D) (the cost of the worst distribution on inputs for the

best deterministic algorithm). Now, as we can see a randomized algorithm R as
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a distribution R over all the possible deterministic algorithms, we can define the

cost of a randomized algorithm as cost(R, x) = cost(R, x) = E
A∼R

[ cost(A, x)]. The

randomized complexity of P is defined as min
R

max
x

cost(R, x).

Yao’s minimax principle states that the randomized complexity and distribu-

tional complexity of a problem P are equal, i.e.,

min
R

max
x

cost(R, x) = max
D

min
A∈A

cost(A,D) .

For us, the input to the learning problem will be the target concept, and as such

the distribution D will be over the concept class C. The cost of an algorithm A on c

is the number of queries to the ρ-LEQ oracle, and we are interested in the expected

number of counterexamples returned.

Proof of Theorem 6.32. The idea behind the proof is to choose a distribution in

which all the elements of the Littlestone tree appear in the perturbation region

of its root. We then derive query lower bounds for deterministic algorithms and

a deterministic LEQ. We finally use Yao’s minimax principle to lower bound the

number of queries of any robust learning algorithm to the LEQ oracle.

Distribution on X . Let T be a Littlestone tree of depth d with root x∗ ∈ X such

that all its nodes are contained in Bρ(x
∗). Let D be a distribution on X be such

that D(x∗) = 1. Hence, any query to EX(c,D) will return (x∗, c(x∗)). Moreover, any

learning algorithm must be exact on Bρ(x
∗), as otherwise the existence of a point

z in Bρ(x
∗) such that the target and hypothesis disagree results in the robust risk

being 1.

Let C̃ = {c1, . . . , c2d−1} be the set of concepts appearing as leaves of the subtree

T ′ of T that label x∗ positively. We will pick the target c at random from C̃.
LEQ strategy. Let the ρ-LEQ oracle have access to T as its internal ordering.

Upon being queried with (x∗, h), LEQ returns a counterexample x′ of least depth.

Namely, a target c ∈ C̃ determines a path from x∗ to a leaf, and the LEQ oracle

returns the highest node where h and c disagree.

Deterministic algorithms. In order to use Yao’s minimax principle, we first

consider a set of deterministic algorithms. For any fixed distribution D on the target

concepts, a learning algorithm A achieving min
A∈A

cost(A,D) must be consistent with

the data seen so far. Otherwise, LEQ can simply return a counterexample that has

already been returned, increasing the number of queries to LEQ.



6.5. LOWER BOUNDS ON ROBUST LEARNING WITH LEQ 125

Without loss of generality, we consider the setting where the Littlestone tree

T the LEQ uses to return counterexamples is known to A. This implies that if A

receives (xi, c(xi)) as a counterexample, then there exists a unique path from x∗ to

a node containing xi where parents nodes of xi must have been labelled correctly

by the hypothesis. Any algorithm that does not know this information (or doesn’t

use it) is dominated by an algorithm knowing this information. Then any A achiev-

ing min
A∈A

cost(A,D) in this setting must be consistent on the counterexamples and

(implicitly revealed) correctly labelled points.

Executions paths. Consider a given deterministic algorithm A that is consistent

with the data seen so far. After seeing (x∗,+1), A returns a hypothesis h1, thus

the label h1(x1) is fixed (where x1 is the child of x∗ with a positively labelled edge).

Then, one of the edges coming out of the node x1 will be correct, while the other

will be incorrect. Since each concept in C̃ defines a path in T ′ and A is deterministic,

for each node x in T ′, one of its edges is correct and the other, incorrect. Then, for

each leaf c in T ′, the edges from x1 to c that are marked as incorrect represent the

counterexamples given to A by LEQ if c were the target. It is then easy to see that

choosing the target u.a.r. from the leaves C̃ of T ′, we have an expected number of

counterexamples that is exactly (d− 1)/2. Thus

max
D

min
A∈A

cost(A,D) ≥ min
A∈A

cost(A,U(C̃)) ≥ d− 1

2
,

where U(C̃) is the uniform distribution on C̃. In fact, we can see that the distribution

achieving the maximum on the LHS is the uniform distribution on C̃.
Putting it all together. Now, any learning algorithm in this setting is either

deterministic or randomized. If the algorithm is randomized, it can be expressed

as a distribution on the set of deterministic algorithms. We can thus apply Yao’s

principle and get that there exists a distribution on X such that any robust learning

algorithm for C will have an expected number of queries to LEQ that is linear in the

restricted Littlestone dimension of C.

6.5.2 Bounds on the Restricted VC and Littlestone

Dimensions

In this section, we study bounds on the restricted VC and Littlestone dimensions of

monotone conjunctions, decision lists and linear classifiers. This enables us to use
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Concept Class VC dimension ρ-restricted VC dimension
Conjunctions n 2 (if ρ = 1)

n (if ρ ≥ 2)
Linear Threshold Functions n+ 1 n+ 1

k-Decision Lists Θ̃(nk) Θ̃(nk) (given ρ ≥ k)

Table 6.1: Comparing the VC dimension and the ρ-restricted VC dimension for given
concept classes. The Θ̃ notation hides the logarithmic factors. Unless otherwise
stated, we assume ρ ≥ 1.

Theorem 6.32 to get lower bounds on the expected number of queries to LEQ for

the robust learning of these classes. The VC dimension bounds are (asymptotically)

the same as the standard VC dimension for these classes. We finish by showing this

is not always the case, and exhibiting an example where the VC dimension is not a

lower bound for the expected number of queries to LEQ, hence justifying the use of

alternative complexity measure in our setting.

We summarize our results on the restricted VC dimension in Table 6.1. The

proofs of the bounds appear in Appendix B.3. As corollaries of Theorem 6.32, we

get that the restricted VC dimension lower bounds presented in Table 6.1 are lower

bounds on the expected number of queries to the LEQ oracle.

Now, while linear classifiers in Rn have a (restricted) VC dimension of n + 1,

their ρ-restricted Littlestone dimension is infinite. Indeed, it suffices to consider the

subclass of thresholds (for which the proof of its Littlestone dimension being infinite

can easily be adapted to the restricted setting) giving the lemma below.

Corollary 6.34. Given ρ > 0, there exists a distribution on Rn such that any ρ-

robust learning algorithm for linear classifiers has an infinite expected number of

queries to ρ-LEQ.

We now turn our attention to the relationship between VC dimension and its

restricted counterpart, and their use for LEQ lower bounds.

In general, is VC|ρ(H) = Θ̃(VC(H))? No: we exhibit a concept class H where

VC(H) = d but VC|ρ(H) = 1. This shows that there can be an arbitrary gap between

the restricted VC dimension and its standard counterpart. Let X = {x1, . . . , xd}
be a set of d points on {0, 1}n whose balls of radius ρ don’t coincide (choose ρ and
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d as functions of n such that this is possible). Define the following concept class

C =
⋃

S⊆X {c(x) = 1[x ∈ S]}. Clearly, VC(C) = d, but VC|ρ(C) = 1.

Are there better LEQ lower bounds than VC|ρ? Yes: we can still show an

expected query lower bound of Ω(d) in the example above by constructing a uniform

distribution on some set X∗ = {x∗
1, . . . , x

∗
d} such that X ∩X∗ = ∅ and x∗

i ∈ Bρ(xi)

for all i, implying that c(xi) = 0 for all 1 ≤ i ≤ d and c ∈ C. Thus, to get a

hypothesis with robust risk strictly smaller than 1/d, exact learning is required. We

can show that, by choosing the target at random from C, the expected number of

counterexamples for any algorithm is lower bounded by a function Ω(d) with the

same reasoning as the proof of Theorem 6.32.

Is the VC dimension a general lower bound for LEQ? No: consider the

problem defined above, but with the perturbation region being the identity function

for each x ∈ X. Clearly, it is not possible to construct the distribution in the

previous example. In fact, a random sample of size Θ(d) is sufficient to guarantee

generalization, without the use of queries.

6.6 Further Comparing the Local Query Models

We finish this chapter by drawing a more nuanced picture of the local membership

and equivalence query frameworks, in how they compare with each other (Sec-

tion 6.6.1) and to other active learning set-ups (Section 6.6.2).

6.6.1 Local Membership and Equivalence Queries

We start by showing two results on the efficient robust learnability of singletons.

The first result is a negative one: singletons are not efficiently robustly learnable

in the distribution-free setting in the EX+LMQ model. However, the second result

shows that it is possible to do so in the EX+LEQ model when the perturbation

budget ρ and the locality radius λ are equal. While simple, together these results

highlight the relevance of the LEQ oracle in robust learning. Indeed, they show that,

unlike in the standard PAC model, membership queries cannot, in general, simulate
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equivalence queries in the robust learning setting.7 In robust learning, because of the

existence of the existential quantifier in the robust loss, 1[∃z ∈ Bρ(x) . c(z) ̸= h(z)],

polynomially-many (local) membership queries cannot in general suffice to estimate

the robust loss, as illustrated below. We finish by looking at parities, a concept

class for which local membership and equivalence queries are equally powerful.

We first start by showing that having access to local membership queries does not

ensure the robust learnability of singletons in the distribution-free setting regardless

of the query radius.

Proposition 6.35. If ρ is ω(1), the class of singletons is not efficiently ρ-robustly

learnable in the distribution-free setting when the learner has access to a λ-LMQ

oracle for any λ.

Proof. Fix x ∈ X and consider the distribution D on X such that D(x) = 1. We

distinguish two cases. If λ < ρ, it suffices to choose two singletons in Bρ(x) \
Bλ(x) and draw the target concept uniformly at random between them (the learner

cannot query a positive label, and cannot do better than choosing the right target

at random). The second case is λ ≥ ρ. Note that |Bρ(x)| ≥ (n/ρ)ρ, which is

superpolynomial in n for any budget ρ = ω(1) (as ρ ≤ n). Now, for any LMQ

strategy with a polynomial query upper bound r(n), there exists a sufficiently large

input dimension N such that, after r(N) queries, at least half the points in Bρ(x)

have yet to be queried. Choosing a target uniformly at random in Bρ(x) \ {x},
using Lemma 4.9, and noting that any two singletons in Bρ(x) have robust risk of 1

against each other, suffices to lower bound the expected risk of any hypothesis over

the choice of the target concept by a constant.

We now show that, in contrast, having access to a local equivalence query oracle

enables the robust learnability of singletons in the distribution-free setting.

Proposition 6.36. Singletons are efficiently distribution-free ρ-robustly learnable

given a ρ-LEQ oracle.

Proof. Draw a sufficiently large sample S ∼ Dm to ensure robust generalization, as

in Lemma 6.6 (|S| is polynomial in the input dimension n and learning parameters).

If there exists a positively labelled point x ∈ S, we have learned the target singleton.

7See Theorem 3.20 for details.
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Otherwise, query the LEQ oracle with the constant function 0 on the points in S

until we receive a counterexample (the target singleton) or until it is confirmed that

all points have robust loss of 0. In either case, we have queried at most m points and

the hypothesis is robustly consistent with the training sample, and we are done.

Note that this is in contrast with the fact that, if a concept class is exactly

learnable with access to the MQ and EQ oracles, then it is PAC learnable with

random examples and access to MQ (see Section 3.1.5 for details). Fundamentally,

the existential quantifier in the robust risk definition renders simulating the LEQ

oracle with the LMQ oracle impossible.

Learning parities with LMQ and LEQ. There are cases where the EX+LMQ

and EX+LEQ models are equally powerful. Indeed, it is easy to see that access to

the 1-LMQ or 1-LEQ oracle is sufficient to exactly learn parities with one query to

EX. For the former case, it suffices to flip each bit i of an instance x drawn from

EX and give x ⊕ ei to the LMQ oracle to observe whether i is in the target parity.

For the latter, note that each counterexample (x, y) is linearly independent from the

set of data points already collected, so there must be at most n counterexamples in

B1(x), thus exactly identifying the target parity.

6.6.2 A Two-Way Separation between LEQ and EQ

In this section, we compare local and “global” query oracles. We show that, when

considering robust learning, the EX+LEQ and EX+EQ models are in general incom-

parable. This is in contrast with LMQ and MQ, where a learning algorithm with

access to LMQ can straightforwardly be simulated by an algorithm with access to

MQ.

We first show the existence of a robust learning problem on {0, 1}n such that

the EX+LEQ model requires one sample point from EX and one query to LEQ, while

it requires log n calls to EQ in the EX+EQ model. We then show the existence of

a robust learning problem on {0, 1}n such that the EX+LEQ model requires O(1/ϵ)

sample points from EX and a total of 1/ϵ queries to LEQ in order to have a robust

error bounded by ϵ, while it only requires a single call to EQ in the EX+EQ model.8

8We note that the query complexity of learning with MQ, EQ and partial queries has been
vastly studied, notably by Angluin (1988) and Maass and Turán (1992). In these works however,
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We now formally state the result showing that (perhaps counter-intuitively) 1-

LEQ can sometimes be more powerful than EQ. The idea is to create a learning

problem such that any counterexample in a ball of radius one around a point reveals

full information about the target, but when the oracle is free to choose any point

in the input space, it can (adversarially) reveal partial information. To simplify our

analysis, we will assume that the oracle does not have to commit to any target, as

long as the target is defined on the support of the distribution (in order to have a

well-defined example oracle). The target is not necessarily defined on the rest of

the input space, only restricting the oracle to output a sequence of counterexamples

for which there always exists a consistent concept. As mentioned earlier in this

chapter, choosing a target a priori (i.e., similarly to the online stochastic setting)

simply results in expected bounds of the same order as if the oracle does not have

to commit to a target (i.e., the mistake-bound online setting).

Theorem 6.37. Let C = {x 7→ xi | i ∈ [n]} be the class of monotone dictators.

There exists a distribution D on {0, 1}n and target concept c ∈ C such that 1-

robustly learning (c,D) requires at most one query to 1-LEQ, but, for any learning

algorithm, at least log n queries to EQ.

Proof. Let D be such that D(0) = 1, and note that robustly learning C against an

adversary with budget 1 requires exact learning. Moreover, the labelled instance

(0, 0) gives no information about the target concept.

For the LEQ model, the learner samples the point 0 from EX, and gives the

constant hypothesis 0 to LEQ. Since the oracle must return x ∈ B1(0) such that

c(x) = 1, it must return ei such that c(x) = xi.
9

For the EQ model, the idea is that, for any hypothesis h the learner gives to

EQ, the oracle can always find a counterexample that removes at most half of the

potential targets. Let It = {i ∈ [n] | xi is consistent with the history} be the set of

indices (and thus concepts) that are consistent with the sequence of counterexamples

given up until query t, and note that I1 = [n]. Let h ∈ 2{0,1}
n

be an arbitrary

the learning algorithm is required to be proper and the learning exact. In contrast, we look at the
robust learning framework and allow improper learning.

9Note that this is an improper learner, but we can simply consider the case C′ = C∪{c(x) = 0}
to get an example with proper learning.
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hypothesis and define the following function

#1 : (x, I) 7→
∑
i∈I

xi

that returns the number of 1’s at the indices of I ⊆ [n] in an instance x ∈ {0, 1}n.
Define the following instances:

x∗ := argmin
x:h(x)=1

#1(x, It) ,

x∗ := argmax
x:h(x)=0

#1(x, It) .

We now argue that one of x∗ or x∗ will decrease It by at most half. Recall that

the oracle’s goal is to reveal as little information as possible to the learner at every

query. Note that, given x ∈ {0, 1}n, if h(x) ̸= c(x), then all the bits with value c(x)

are still viable target functions for that counterexample.

Now, if x∗ is a counterexample, then c(x∗) = 1, and there are #1(x, It) concepts

that are still consistent with the counterexample history. Likewise, if if x∗ is a

counterexample, then c(x∗) = 0, and there are |It| − #1(x, It) concepts that are

still consistent with the counterexample history. Thus, if the oracle chooses the

counterexample maximizing the number of consistent concepts with the history, we

have that

|It+1| = max {|It| −#1(x∗, It),#1(x∗, It)} ≥ ⌊|It| /2⌋ ,

which concludes the proof.

Remark 6.38. As a corollary of Theorem 6.37, we get that there exists a robust

learning problem for which distribution-free efficient robust learning is still possible

when λ > ρ, but where the query complexity is much larger than if λ = ρ (set ρ = 1

in the problem above).

Now, we formally show that, for some learning problems, an EQ oracle is more

powerful than an LEQ oracle.

Theorem 6.39. Let C = {x 7→ 1[x = x′] | x′ ∈ {0, 1}n} be the class of singletons.

Then there exists a distribution D on {0, 1}n and target concept c ∈ C such that

robustly learning (c,D) requires at most one query to EQ, but, for any learning

algorithm, at least 1/ϵ queries to λ-LEQ for robust accuracy ϵ.
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Proof. Let k = ⌊1/ϵ⌋. Let X = {x1, . . . , xk} be instances in {0, 1}n whose λ-

expansions don’t intersect (let n be sufficiently large and choose λ as a function

of n and ϵ so that this is possible). Let c(xi) = 0 for all instances xi, and let D

be the uniform distribution on X. Note that, if the target singleton is in any of

the perturbation regions Bρ(xi), then a ρ-robust learning algorithm given robust

accuracy parameter ϵ must identify the target exactly. Without loss of generality,

we let ρ = λ.

For the EQ bound, the learner can clearly query EQ with the constant function

0, and get the singleton target as a counterexample, without any call to EX.

For the λ-LEQ bound, the oracle’s strategy is simply to (adaptively) return that

c = 0 on all queries (xi1 , h1), . . . , (xik−1
, hk−1) until the last query xik , which reveals

the target singleton. This yields a lower bound of k queries to λ-LEQ (the optimal

strategy is to not repeat an instance in the queries and always choose hi = 0)

Remark 6.40. As the mistake-bound of singletons in online learning is 1, the theorem

above also shows that ρ-robust learning with a ρ-LEQ can result in query complexity

lower bounds that are strictly greater than mistake bounds in online learning. Note

though that the optimal algorithm still only makes one mistake, it simply has to

query the LEQ a certain number of times before making it.

6.7 Summary and Open Problems

In this chapter, we have thoroughly studied the powers and limitations of both local

membership and equivalence queries in the context of robust learning. In particular,

we have outlined when access to either oracle is necessary to enable robustness

guarantees, as well as obtained lower bounds on the local query complexity of various

robust learning problems.

6.7.1 Final Remarks on Local Query Oracles

We discuss the implementation of local query oracles, as well as how the LMQ and

LEQ oracles differ when considering the constant-in-the-ball notion of robustness.

Implementing LEQ oracle. In practice, one always has to find a way to ap-

proximately implement oracles studied in theory. A possible way to generate coun-
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terexamples with respect to the exact-in-the-ball notion of robustness is as follows.

Suppose that there is an adversary that can generate points z ∈ Bρ(x) such that

h(z) ̸= c(z). Provided such an adversary can be simulated, there is a way to (im-

perfectly) implement the LEQ oracle in practice. Thus, the use of these oracles can

be viewed as a form of adversarial training.

Local query analogues for the constant-in-the-ball risk. Both the LMQ

and LEQ models are particularly well-suited for the standard and exact-in-the-ball

risks, as they address information-theoretic limitations of learning with random

examples only. On the other hand, while information-theoretic limitations of robust

learning with respect to the constant-in-the-ball notion of robustness arise when the

perturbation function U is unknown to the learner, computational obstacles can also

occur even when the definition of U is available. Indeed, determining whether the

hypothesis changes label in the perturbation region could be intractable. In these

cases, the Perfect Attack Oracle (PAO) of Montasser et al. (2021) can be used to

remedy these limitations for robust learning with respect to the constant-in-the-ball

robust risk. Crucially, in their setting, counterexamples could have a different label

to the ground truth: a counterexample z ∈ U(x) for x is such that h(z) ̸= c(x),

not necessarily h(z) ̸= c(z). A striking example of this is when U(x) = X . In this

case, we only want to know if the hypothesis is constant on the whole input space.

This could compromise the standard accuracy of the hypothesis (see e.g., Tsipras

et al. (2019) for a learning problem where robustness and accuracy are at odds).

Finally, an LMQ analogue for the constant-in-the-ball risk is not needed: the only

information we need for a perturbed point z ∈ Bρ(x) is the label of x (given by the

example oracle) and h(z). Given that one of the requirements of PAC learning is

that the hypothesis is efficiently evaluatable, we can easily compute h(z).

Comparison with (Montasser et al., 2021). Closest to our work in this chap-

ter is that of Montasser et al. (2021), who derive sample and PAO query bounds for

the realizable constant-in-the-ball setting. They use the algorithm from (Montasser

et al., 2019) to get a sample complexity of Õ
(

VC(H)VC∗2(H)+log(1/δ)
ϵ

)
and derive a

query complexity of Õ(2VC(H)2VC∗(H)2 log2(VC∗(H))Lit(H)), where VC∗(H) is the dual

VC dimension of a hypothesis class. They also derive query lower bounds: their

general PAO query complexity lower bound is Ω(log(Tdim(H))), where Tdim(H) is
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the threshold dimension of a hypothesis class. The threshold dimension is bounded

below by the logarithm of the Littlestone dimension, hence giving a general query

lower bound of Ω(log log(Lit(H))). Since threshold functions have a threshold di-

mension exponential in the Littlestone dimension, Montasser et al. (2021) get a PAO

query lower bound of Ω(Lit(H)) in that special cases. In contrast, we get an LEQ

query lower bound linear in the restricted Littlestone dimension (which coincides

with the Littlestone dimension for a wide variety of common concept classes) for

any concept class.

6.7.2 Future Work

We finally outline various avenues for future research.

Local membership query lower bounds. The LMQ lower bound from Sec-

tion 6.2 was derived for conjunctions. The technique does not work for monotone

conjunctions, as, for a given set of indices I, there exists only one monotone con-

junction using all indices in I. Can we get a similar LMQ lower bound where the

dependence on ρ is exponential for monotone conjunctions, or it is possible to ro-

bustly learn them with o(2ρ) local membership queries?

Limiting the power of the adversary. In Section 6.4, we studied robust learn-

ing against a bounded-precision adversary, requiring that it return a point around

which the hypothesis and target disagree everywhere. We could relax this require-

ment and instead let the adversary choose a distribution Dx on the perturbation

region U(x), with constraints on Dx that prevent a Dirac delta distribution on a sin-

gle adversarial example z ∈ U(x). A promising avenue is to consider the smoothed

adversaries of the work of Haghtalab et al. (2022a,b) in online learning, which have

density functions bounded by 1/σ that of the uniform density. Note that a proba-

bilistic approach of robustness has been considered in (Viallard et al., 2021; Robey

et al., 2022) with respect to the constant-in-the-ball notion of robustness.

Sample and query complexity bounds with LEQ. In Section 6.3.2, we derived

sample complexity upper bounds as a function of the VC dimension of the robust

loss. As noted in Remark 6.9, this quantity is 1 when the adversarial budget ρ = n
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(in {0, 1}n) due to the fact that we are essentially working in the online setting and

the underlying distribution has become irrelevant. However, our upper bound for

linear classifiers is O(n3), implying that it is quite loose, especially as ρ increases.

Understanding the behaviour of the VC dimension of the robust loss as a function of

ρ to get concrete sample complexity bounds is a natural avenue for future work. In

Appendix C.1, we take a closer look at this question and show that, in the particular

case of ρ = n − 1, the VC dimension of the robust loss between linear classifiers is

exactly 2.

Another natural direction for future work is to obtain sample complexity lower

bounds. We first note in Appendix C.2 that it is unlikely that the VC dimension of

the robust loss is a good candidate for this complexity measure. Indeed, we explain

why the proof that the VC dimension is a lower bound in the standard setting does

not carry through when considering the robust loss. We are currently investigating

whether the complexity measure based on the one-inclusion graph developed by

Montasser et al. (2022) for the constant-in-the-ball notion of robustness can be

adapted to the exact-in-the-ball setting and thus get a characterization of robust

learnability.

Finally, it would be interesting to give a more fine-grained picture of the sample

and query complexity tradeoff outlined in Remark 6.9, perhaps through joint sample

and query complexity lower bounds.
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Conclusion

This thesis studied the robustness of learning algorithms to evasion attacks from

a learning theory perspective. Our focus was on the existence of misclassified per-

turbed instances, with respect to the exact-in-the-ball notion of robust risk. Our

main consideration was the sample and query complexity of learning problems, with

a particular focus on efficiency, in an information-theoretic sense. We identified as-

sumptions on learning problems that either enable or prevent robustness guarantees.

In particular, we looked at how the distribution that generates the data as well as

the way in which the data is acquired influence the amount of data needed to ensure

robustness to evasion attacks.

We started with a more passive setting in which the learner was restrained to a

randomly drawn sample labelled according to the target concept, which required dis-

tributional assumptions to get reasonable sample complexity bounds. We outlined a

series of combinatorial arguments to show that the log(n)-expansion of error regions

for certain concept classes on the boolean hypercube is not too large compared to

the original set representing the error region.

In order to obtain distribution-free guarantees, we progressively considered more

active and powerful learners which have access to local queries – showing in the pro-

cess that local membership queries were, in general, not going to improve our previ-

ously obtained robustness thresholds. We have furthermore delimited the frontier of

distribution-free robust learning for a wide variety of concept classes. This happens

to be when the learner’s query region and the adversary’s perturbation region ex-

actly coincide. We provided a nuanced discussion of these results and complemented
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them with lower bounds to the local equivalence query oracle.

To conclude, one of the overarching themes of this thesis is the identification

of fundamental trade-offs between the robustness of a learning algorithm and its

training sample size. As outlined below, the notion of tradeoff also informs future

research directions and presents itself as a compelling framework to study guarantees

or lack thereof in learning problems with non-standard objectives.

7.1 Future Work

As hinted throughout this thesis, we are far from having a full picture of robust

learnability with respect to the exact-in-the-ball notion of robustness. Indeed, con-

crete open problems abound, including the following questions posed in previous

chapters. What is the robustness threshold of linear classifiers (and, more generally,

concept classes of polynomially-bounded VC dimension) under log-Lipschitz distri-

butions? Can we derive tighter sample complexity bounds with access to random

examples only? Is there a complexity measure characterizing the robust learnability

of robust ERM algorithms under the exact-in-the-ball notion of robustness?

Broader research questions have also arisen following the work presented in this

thesis. Below we outline more general and perhaps more speculative avenues for

future work.

Agnostic setting. In standard PAC learning, the agnostic setting allows for a

joint distribution on the instance and label spaces. The aim is to output a hypothesis

whose error is as close as possible to the optimal hypothesis in the class. Observe

that the constant-in-the-ball notion of robustness naturally extends to the agnostic

setting: the label of a perturbed instance is compared to the label of its unperturbed

counterpart. In fact, Montasser et al. (2019) exhibit an elegant reduction from the

agnostic to the realizable setting for the constant-in-the-ball notion of robustness.

Hopkins et al. (2022) even show a quite general reduction for a family of general

loss functions, which generalizes the one from (Montasser et al., 2019), at the cost

of a 1/ϵ factor in the sample complexity. However, given the presence of a target

concept in the exact-in-the-ball case, it is not obvious how to extend this definition

to the agnostic setting. The robustness definition of Pang et al. (2022), mentioned

in the literature review, could be a candidate for this. In any case, developing a
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theory of agnostic robust learnability in our setting, and determining whether the

methods of Hopkins et al. (2022) apply, is an exciting future research direction.

Probabilistic Lipschitzness. In this thesis, when looking at robust learning with

random examples only, we have considered learning problems as arbitrary concept

and distribution pairs (c,D) that come from a fixed concept class and distribu-

tion family. However, it would be natural to consider learning problems in which

there is a relationship between the target and the distribution on the data. The

probabilistic Lipschitzness property, proposed by Urner and Ben-David (2013), of-

fers an interesting possible research direction: while a Lipschitzness condition on

a deterministic target function imposes a margin between classes, its probabilistic

counterpart allows the margins to “smoothen out” near the boundary. Allowing

for target functions that satisfy Probabilistic Lipschitz (perhaps in addition to log-

Lipschitzness) has the potential to result in better sample complexity bounds while

still ensuring sufficient probability mass near the boundary in order to justify the

use of the exact-in-the-ball notion of robustness.

Poisoning and evasion attacks. We have so far focused on the study of evasion

attacks. As pointed out in the literature review, there has also been a considerable

body of work focusing on various poisoning attack models. Whether it is possible

to draw connexions between the two settings (e.g., is a learning algorithm that is

robust to evasion attacks also robust to poisoning attacks, and vice-versa, and, if

so, under which conditions?) is an interesting research direction that could bridge

different views of robustness, especially considering the clean-label attack model,

where new training data modified by the adversary must still be consistent with the

target concept.

Multi-objective trustworthy machine learning. One can expand the require-

ments of a learning algorithm for classification beyond its predictive accuracy, and

in ways other than robustness, in the general goal of trustworthiness. For example,

in interpretability and explainable machine learning, we have an additional need

for a model to be able to explain why a certain label has been chosen for a new

unseen example, or more generally how a model uses a specific subset of features

in its predictions, usually by attributing importance to certain features of the data.
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Another important consideration is the fairness of learning algorithms. While there

exist many different notions of fairness (Kleinberg et al., 2017), the overarching goal

is usually to avoid discrimination against a particular subgroup of the data. Fi-

nally, there are a variety of ways in which privacy can be specified. For example,

one may wish to be resilient against membership inference attacks, where the aim

is to infer whether an individual was part of the training set. It is apparent that

such formal guarantees are warranted for any safe learning algorithm that is de-

ployed in practice. Drawing connections between how these requirements relate to

robustness is one of many possible research avenues in trustworthy machine learning.

Indeed, it is possible that these requirements be at odds with each other, naturally

resulting in multi-objective formulations, or, conversely, that they can in fact align

with each other. While there exists work on this topic in the literature, see, e.g.,

(Lecuyer et al., 2019; Pawelczyk et al., 2022; Konstantinov, 2022), knowledge gaps

remain, especially considering the myriad of ways in which robustness, fairness,

interpretability and privacy have been defined.

To conclude, while we have focused on the trade-off between robustness and

sample complexity in this work, the nature of trade-offs in learning problems can

vary: between sample complexity and other learning objectives, between a learning

objective and computational complexity, between learning objectives themselves,

etc. Exploring trade-offs through the lens of learning theory could refine our un-

derstanding of fundamental limitations as well as possibilities of learning with safer

and more realistic objectives.
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Appendix A

Proofs from Chapter 5

A.1 Proof of Lemma 5.12

Lemma 5.12. Let D be an α-log-Lipschitz distribution on the n-dimensional

boolean hypercube and let φ be a conjunction of d literals. Set η = 1
1+α

. Then for

all 0 < ε < 1/2, if d ≥ max
{

4
η2
log
(
1
ε

)
, 2ρ

η

}
, then Pr

x∼D
((∃y ∈ Bρ(x) · y |= φ)) ≤ ε.

Proof. Write φ = ℓ1 ∧ · · · ∧ ℓd. Draw a point x ∼ D from distribution D. Let

X1, . . . , Xd ∈ {0, 1} be indicator random variables, respectively denoting whether x

satisfies literals ℓ1, . . . , ℓd. Note that we do not assume the Xi’s to be independent

from each other. Writing Y :=
∑d

i=1Xi, our goal is to show that Pr
x∼D

(Y + ρ ≥ d) ≤ ε.

Let Di be the marginal distribution of Xi conditioned on X1, . . . , Xi−1. This

distribution is also α-log-Lipschitz by Lemma 3.23, and hence,

Pr
Xi∼Di

(Xi = 1) ≤ 1− η . (A.1)

Since we are interested in the random variable Y representing the number of 1’s

in X1, . . . , Xd, we define the random variables Z1, . . . , Zd as follows:

Zk =

(
k∑

i=1

Xi

)
− k(1− η) ,

with the convention that Z0 = 0. The sequence Z1, . . . , Zd is a supermartingale with
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respect to X1, . . . , Xd:

E [Zk+1 | X1, . . . , Xk] = E [Zk +Xk+1 − (1− η) | X1, . . . , Xk]

= Zk + Pr
(
X ′

k+1 = 1 | X1, . . . , Xk

)
− (1− η)

≤ Zk . (by (A.1))

Now, note that all Zk’s satisfy |Zk+1 − Zk| ≤ 1, and that Zd = Y − d(1 − η). We

can thus apply the Azuma-Hoeffding (A.H.) Inequality to get

Pr (Y ≥ d− ρ) ≤ Pr
(
Y ≥ d(1− η) +

√
2 log(2/ε)d

)
= Pr

(
Zd − Z0 ≥

√
2 log(2/ε)d

)
≤ exp

(
−
√

2 log(1/ε)d
2

2d

)
(A.H.)

= ε ,

where the first inequality holds from the given bounds on d and ρ:

d− ρ = (1− η)d+
ηd

2
+

ηd

2
− ρ

≥ (1− η)d+
ηd

2
(since ρ ≤ ηd

2
)

≥ (1− η)d+
√

2 log(1/ε)d . (since d ≥ 8
η2
log(1

ε
))

A.2 Proof of Corollary 5.24

Corollary 5.24. The class of k-decision lists is efficiently log(n)-robustly learnable

under log-Lipschitz distributions.

Proof of Corollary 5.24. Let A be the (proper) PAC-learning algorithm for k-DL as

in Rivest (1987), with sample complexity poly(·). Fix the input dimension n, target

concept c and distribution D ∈ Dn, and let ρ = log n. Fix the accuracy parameter

0 < ε < 1/2 and confidence parameter 0 < δ < 1/2 and let η = 1/(1 + α)k. Set

ε0 = C1

(
16ε

e4n2k+2

)C2

min

{(
16ε

e4n2k+2

)C3

, n−C4

}
,
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where the constants are the ones derived in Theorem 5.23.

Let m = ⌈poly(n, 1/δ, 1/ε0)⌉, and note that m is polynomial in n, 1/δ and 1/ε.

Let S ∼ Dm and h = A(S). Let the target and hypothesis be defined as the

following decision lists: c = ((K1, v1), . . . , (Kr, vr)) and h = ((K ′
1, v

′
1), . . . , (K

′
s, v

′
s)),

where the clauses Ki are conjunctions of k literals. Given i ∈ {1, . . . , r} and j ∈
{1, . . . , s}, define a k-CNF formula φ

(c,h)
i,j by writing

φ
(c,h)
i,j = ¬K1 ∧ · · · ∧ ¬Ki−1 ∧Ki ∧ ¬K ′

1 ∧ · · · ∧ ¬K ′
j−1 ∧K ′

j .

Notice that the formula φ
(c,h)
i,j represents the set of inputs x ∈ X that respectively

activate vertex i in c and vertex j in h.

Since Pr
x∼D

(h(x) ̸= c(x)) < ε0 with probability at least 1 − δ, any φ
(c,h)
i,j that

leads to a misclassification must have SAT0(φ
(c,h)
i,j ) < ε0. But by Theorem 5.23,

SATlog(n)(φ
(c,h)
i,j ) < 16ε

e4n2k+2 for all φ
(c,h)
i,j with probability at least 1− δ.

Hence the probability that a ρ-bounded adversary can make φ
(c,d)
i,j true is at

most 16ε
e4n2k+2 . Taking a union bound over all possible choices of i and j (there

are
∑k

i=1

(
n
k

)
≤ k

(
en
k

)k
possible clauses in k-decision lists, which gives us a crude

estimate of k2
(
en
k

)2k ≤ e4n2k+2

16
choices of i and j) we conclude that RE

log(h, c) < ε.





Appendix B

Proofs from Chapter 6

B.1 Proof of Lemma 6.6

Lemma 6.6. Let C be a concept class and H a hypothesis class. Any ρ-robust ERM

algorithm using H on a sample of size m ≥ 1
ϵ

(
log |Hn|+ log 1

δ

)
is a ρ-robust learner

for C.

Proof. Fix a target concept c ∈ C and the target distribution D over X . Define a

hypothesis h to be “bad” if RD
ρ (c, h) ≥ ϵ. Note that any robust ERM algorithm will

be robustly consistent on the training sample by the realizability assumption. Let

Eh be the event that m independent examples drawn from EX(c,D) are all robustly

consistent with h. Then, if h is bad, we have that Pr (Eh) ≤ (1− ϵ)m ≤ e−ϵm. Now

consider the event E =
⋃

h∈H Eh. By the union bound, we have

Pr (E) ≤
∑
h∈H

Pr (Eh) ≤ |H| e−ϵm .

Then, bounding the RHS by δ, we have that whenever m ≥ 1
ϵ

(
log |Hn|+ log 1

δ

)
, no

bad hypothesis is robustly consistent withm random examples drawn from EX(c,D).

If a hypothesis is not bad, it has robust risk bounded above by ϵ, as required.

B.2 Proof of Lemma 6.8

Lemma 6.8. Let C be a concept class and H a hypothesis class. Any ρ-robust ERM

algorithm using H on a sample of size m ≥ 1
ϵ

(
VC(Lρ(C,H)) log(1/ϵ) + log 1

δ

)
is a

ρ-robust learner for C.
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Proof. The proof is very similar to the VC dimension upper bound in PAC learning.

The main distinction is that instead of looking at the error region of the target and

any function in H, we must look at its ρ-expansion. Namely, we let the target c ∈ C
be fixed and, for h ∈ H, we consider the function (c⊕h)ρ : x 7→ 1[∃z ∈ Bρ(x) . c(z) ̸=
h(z)] and define a new concept class ∆c,ρ(H) = {(c⊕ h)ρ | h ∈ H}. It is easy to show
that VC(∆c,ρ(H)) ≤ VC(Lρ(C))ρ(C,H), as any sign pattern achieved on the LHS can

be achieved on the RHS.

The rest of the proof follows from the definition of an ϵ-net and the bound on

the growth function of ∆c,ρ(H).
First, define the class ∆c,ρ,ϵ(H) as

{
c̃ ∈ ∆c,ρ(H) | Pr

x∼D
(c̃(x) = 1) ≥ ϵ

}
, i.e., the

set of functions in ∆c,ρ(H) which have a robust risk greater than ϵ. Recall that a

set S is an ϵ-net for ∆c,ρ(H) if for every c̃ ∈ ∆c,ρ,ϵ(H), there exists x ∈ S such that

c̃(x) = 1. We want to bound the probability that a sample S ∼ Dm fails to be an

ϵ-net for the class ∆c,ρ(H), as if S is an ϵ-net, then any robustly consistent h ∈ H on

S will have robust risk bounded above by ϵ. As with the standard VC dimension, a

sample S will be drawn in two phases. First draw a sample S1 ∼ Dm and let E1 be

the event that S1 is not an ϵ-net for ∆c,ρ(H). Now, suppose E1 occurs. This means

there exists c̃ ∈ ∆c,ρ,ϵ(H) such that c̃(x) = 0 for all the points x ∈ S1. Fix such

a c̃ and draw a second sample S2 ∼ Dm. Then, letting X be the random variable

representing the number of points in S2 that are such that c̃(x) = 1, we can use

Chernoff bound to show that

Pr (X < ϵm/2) ≤ 2 exp
(
−ϵm

12

)
, (B.1)

ensuring that whenever ϵm ≥ 24, the probability that at least ϵm/2 points in S2

satisfy c̃(x) = 1 is bounded below by 1/2.

Now, consider the event E2 where a sample S = S1∪S2 of size 2m such that |S1| =
|S2| = m is drawn from EX(c,D) and there exists a concept c̃ ∈ Π∆c,ρ,ϵ(H)(S) such

that | {x ∈ S | c̃(x) = 1| ≥ ϵm/2} and c̃(x) = 0 for all x ∈ S1, where Π∆c,ρ,ϵ(H)(S) is

the set all possible dichotomies on S induced by ∆c,ρ,ϵ(H). Then Pr (E2) ≥ 1
2
Pr (E1)

from Equation B.1. Now, the probability that E2 happens for a fixed c̃ ∈ ∆c,ρ,ϵ(H)
is (

m
ϵm/2

)(
2m
ϵm/2

) ≤ 2−ϵm/2 .
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Finally, letting d = VC(Lρ(C))ρ(C,H) we can bound the probability of E1 using the

union bound:

Pr (E1) ≤ 2Pr (E2)

≤ 2
∣∣Π∆c,ρ,ϵ(H)(S)

∣∣ 2−ϵm/2

≤ 2
∣∣Π∆c,ρ(H)(S)

∣∣ 2−ϵm/2

≤ 2

(
2em

d

)d

2−ϵm/2 . (Sauer’s Lemma)

Thus, there exists a universal constant such that provided m is larger than the

bound given in the statement of the theorem, Pr (E1) < δ, as required.

B.3 Bounds on the Restricted VC dimension

We start with conjunctions.

Lemma B.1. For ρ ≥ 2, the class of conjunctions CONJUNCTIONS has ρ-restricted

VC dimension VC|ρ(CONJUNCTIONSn) = VC(CONJUNCTIONSn) = n. Otherwise,

if ρ = 1, then VC|ρ(CONJUNCTIONSn) = 2.

Proof. Let ρ ≥ 2, and consider the set {ei}ni=1, which is shattered by CONJUNC-

TIONS (if ei has labelling 0, let literal xi be in the conjunction, otherwise do noth-

ing). Note that all points are at most two bits away from e1. Moreover, we have that

VC(CONJUNCTIONS) = n (Natschläger and Schmitt, 1996), which upperbounds its

restricted counterpart.

Now, for ρ = 1, let x∗ ∈ {0, 1}n and consider any subset X ⊆ B1(x
∗) of size at

least 3 such that x∗ ∈ X (without loss of generality, let n ≥ 3; in cases where n = 1

or 2, we have VC|ρ(CONJUNCTIONSn) = n). Consider the labelling c : X → {0, 1}
such that c(x∗) = 0 and c(x) = 1 for all x ∈ X \ {x∗}. We claim that c cannot be

achieved by a conjunction. Indeed, there must be a literal l in c such that l(x∗) = 0.

Let j be the index of the variable in l, i.e., l = xj or xj. Since any x ∈ X is of the

form x∗ ⊕ ei for some i ∈ [n] there exists at most one x ∈ X such that l(x) = 1,

namely x = x∗ ⊕ ej, as required.

We thus get the following corollary.
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Corollary B.2. Given ρ ≥ 2, there exists a distribution on {0, 1}n such that any

ρ-robust learning algorithm for CONJUNCTIONS has an expected number of queries

Ω(n).

We now bound the restricted VC dimension of decision lists.

Lemma B.3. For ρ ≥ k, the class of k-decision lists k-DL has ρ-restricted VC

dimension VC|ρ(k-DL) = Θ̃(VC(k-DL)) = Θ̃(nk).

Proof. Consider the
(
n
k

)
possible conjunctions of size exactly k with only posi-

tive literals, which will represent the possible clauses in a given decision list. Let

K1, K2, . . . , Kd be an ordering of these conjunctions, and note that d = Θ(nk) from

the inequality (n/k)k ≤
(
n
k

)
≤ (en/k)k, where k is considered to be a constant. Let

xKj ∈ {0, 1}n be such that x
Kj

i = 1 if and only if xi ∈ Kj, i.e., a bit i in xKj is the

indicator function of whether the variable xi appears in clause Kj. Note that, by

construction, xKj satisfies Ki if and only if i = j.

We now let X = {0} ∪
{
xKj
}d
j=1

and let b0, b1, . . . , bd be a labelling of points in

X. The decision list

(K1, b1), . . . , (Kd, bd), (true, b0)

is clearly consistent with this labelling, as an input xKj will exit at depth j in the

decision list on the conjunctive clause Kj, and 0 will exit at depth d+ 1 on default

value b0. Finally, note that all points in X are at most k bits away from 0.

We then get the following corollary.

Corollary B.4. Given ρ ≥ k, any ρ-robust learning algorithm for the class of k-

decision lists has Ω(nk) expected number of queries to the ρ-LEQ oracle.

We now turn our attention to linear classifiers.

Lemma B.5. For ρ ≥ 1, the class of linear threshold functions LTF on {0, 1}n has

ρ-restricted VC dimension VC|ρ(LTF) = VC(LTF) = n+ 1.

Proof. It suffices to use the same set of inputs and functions as the standard VC

dimension argument (where the VC dimension is n + 1). Indeed, consider the set

X = {0, e1, . . . , en} and a labelling b0, b1, . . . , bn. Then the linear threshold function

sgn(w0 +
∑n

i=1wixi) with w0 = b0 and wi = bi − b0 is consistent with the labelling

of X. Finally, note that all points in X are at most one bit away from 0.



B.3. BOUNDS ON THE RESTRICTED VC DIMENSION 163

Corollary B.6. The class of linear threshold functions LTFW on {0, 1}n with integer

weights w0, w1, . . . , wn such that
∑

i |wi| ≤ W , where W ≥ 2n + 1 has ρ-restricted

VC dimension VC|ρ(LTF2n+1) = Θ(VC(LTF2n+1)) = Θ(n).

Proof. This is a consequence of the proof of Lemma B.5, where the functions shat-

tering the set of size n+ 1 satisfy
∑

i |wi| ≤ 2n+ 1 ≤ W .

In Theorem 6.14, we had a query upper bound of the form O(W 2 log n). Now

we show that if W ≥ 2n+ 1, we can get the following lower bound.

Corollary B.7. Given ρ ≥ 1, any ρ-robust learning algorithm for the class of

linear threshold functions with integer weights w0, w1, . . . , wn satisfying
∑

i |wi| ≤
W , where W ≥ 2n+ 1 has Ω(n) expected number of queries to the ρ-LEQ oracle.





Appendix C

Discussions from Chapter 6

The discussions below complement the summary and open problems of Section 6.7.

In Section 6.3.2, we derived sample complexity upper bounds for robustly consis-

tent learners, i.e., learning algorithms that return a hypothesis with zero empirical

robust loss (which is what any robust ERM algorithm would do as our notion of

robustness implies realizability). The upper bounds are of the form O(log |C|) and
O(VC(Lρ(C,H)), where VC(Lρ(C,H)) is the VC dimension of the robust loss be-

tween functions from C and H.

C.1 A Closer Look at VC(Lρ(C,H))

We know that the VC dimension of the robust loss for C on {0, 1}n is 1 whenever

ρ = n (or more generally, for any input space when the perturbation region is the

whole instance space, i.e., U(x) = X ). When ρ = 0, we recover the (standard) VC

dimension. In an attempt to understand the behaviour of the complexity measure

VC(Lρ(C,H)) better, we study the case ρ = n− 1 below.

Lemma C.1. The VC dimension of the robust loss of any concept class on X =

{0, 1}n for ρ = n− 1 is at most 2.

Proof. To show that the VC dimension of the robust los sof any concept class C
is at most 2, let an arbitrary set X = {x1, x2, x3} be shattered by C, and consider

functions c1, c2 such that (c1⊕c2)n−1 achieves the labelling (1, 0, 0). Then there must

be a point x∗ in Bn−1(x1)\Bn−1(x2) such that c1(x
∗) ̸= c2(x

∗), while c1 and c2 agree
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on Bn−1(x2). Since X \Bn−1(x) = x̄, where x̄ is x with all its bits flipped, it follows

that x∗ = x̄2. Thus, x̄2 is the unique point in X where c1 and c2 disagree. But x̄2

is both in Bn−1(x1) and Bn−1(x3), giving (c1 ⊕ c2)n−1(x3) = 1, a contradiction.

We now show that is it exactly two in the case of linear classifiers.

Lemma C.2. The VC dimension of the robust loss of linear threshold functions for

ρ = n− 1 is 2.

Proof. By the previous lemma, we only need to show that the VC dimension of the

robust loss for linear threshold functions is at least 2 when ρ = n− 1. Consider the

set X = {0,1} ⊆ {0, 1}n. We will look at functions of the form (c1 ⊕ c2)n−1 for

c1, c2 ∈ LTF, and show that all labellings of X can be achieved. Note that sgn(0) = 1

by convention.

• The labelling (0, 0) can be achieved by any (c ⊕ c)n−1, which is constant on

the whole input space.

• The labelling (1, 1) is achieved with c1 = 0 and c2 = 1.

• The labelling (0, 1) is achieved with c1(x) = sgn(
∑n

i=1 xi − n) and c2(x) = 0,

as the two functions only differ on 1.

• The labelling (1, 0) is achieved with c1(x) = sgn(−
∑n

i=1 xi) and c2(x) = 0, as

the two functions only differ on 0.

C.2 A Lower Bound Based on VC(Lρ(C,H))

Recall that the proof of the sample complexity upper bound of Lemma 6.8, which is

linear in VC(Lρ(C,H)), is identical in essence to the VC dimension upper bound ar-

gument. A first attempt at obtaining a sample complexity lower bound for robustly

consistent learners would be to use a similar technique as the lower bound argument

for the VC dimension. Recall that, when showing the lower bound of Ω(d/ϵ) in the

standard setting, the strategy is to consider a shattered set X = {x1, . . . , xd} and
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put most of the mass on x1 and distribute the rest of the mass uniformly among the

remaining points. The probability of drawing at most half of the points in X \ {x1}
for a sample S of size Ω(d/ϵ) is lower bounded by a constant, while leaving roughly

2d/2 concepts consistent with S. Choosing the target uniformly at random, it is

possible to lower bound the expected risk linearly in ϵ, thus giving the lower bound.

The issue with considering the robust loss is that we are looking at robustly

consistent algorithms, and thus must consider giving all the label information for

each of the sets Bρ(xi)’s. It is thus possible that giving all the information in

Bρ(xi) removes too many potential targets from the set of consistent concepts to

get meaningful lower bounds. At the core of the issue thus seems that we want

sufficiently many concepts that are consistent with any sample drawn from D, while

maintaining a high expected robust risk.
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