
FAST: Boosting Uncertainty-based Test Prioritization Methods for
Neural Networks via Feature Selection

Jialuo Chen∗
Zhejiang University
Hangzhou, China

chenjialuo@zju.edu.cn

Jingyi Wang†
Zhejiang University
Hangzhou, China

wangjyee@zju.edu.cn

Xiyue Zhang
University of Oxford

Oxford, United Kingdom
xiyue.zhang@cs.ox.ac.uk

Youcheng Sun
University of Manchester

Manchester, United Kingdom
youcheng.sun@manchester.ac.uk

Marta Kwiatkowska
University of Oxford

Oxford, United Kingdom
marta.kwiatkowska@cs.ox.ac.uk

Jiming Chen
Zhejiang University
Hangzhou, China
cjm@zju.edu.cn

Peng Cheng†
Zhejiang University
Hangzhou, China

lunarheart@zju.edu.cn

Abstract

Due to the vast testing space, the increasing demand for effec-
tive and efficient testing of deep neural networks (DNNs) has led
to the development of various DNN test case prioritization tech-
niques. However, the fact that DNNs can deliver high-confidence
predictions for incorrectly predicted examples, known as the over-
confidence problem, causes these methods to fail to reveal high-
confidence errors. To address this limitation, in this work, we pro-
pose FAST, a method that boosts existing prioritization methods
through guided FeAture SelecTion. FAST is based on the insight
that certain features may introduce noise that affects the model’s
output confidence, thereby contributing to high-confidence errors.
It quantifies the importance of each feature for the model’s correct
predictions, and then dynamically prunes the information from the
noisy features during inference to derive a new probability vector
for the uncertainty estimation. With the help of FAST, the high-
confidence errors and correctly classified examples become more
distinguishable, resulting in higher APFD (Average Percentage of
Fault Detection) values for test prioritization, and higher gener-
alization ability for model enhancement. We conduct extensive
experiments to evaluate FAST across a diverse set of model struc-
tures on multiple benchmark datasets to validate the effectiveness,
efficiency, and scalability of FAST compared to the state-of-the-art
prioritization techniques.

∗Work done while at the University of Oxford.
†Co-corresponding authors.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-1248-7/24/10
https://doi.org/10.1145/3691620.3695472

CCS Concepts

• Software and its engineering→ Software testing and debug-

ging; • Computing methodologies→ Neural networks.

Keywords

Deep Neural Networks, Test Input Prioritization.

ACM Reference Format:

Jialuo Chen, Jingyi Wang, Xiyue Zhang, Youcheng Sun, Marta Kwiatkowska,
Jiming Chen, and Peng Cheng. 2024. FAST: Boosting Uncertainty-based
Test Prioritization Methods for Neural Networks via Feature Selection. In
39th IEEE/ACM International Conference on Automated Software Engineering
(ASE ’24), October 27-November 1, 2024, Sacramento, CA, USA. ACM, New
York, NY, USA, 12 pages. https://doi.org/10.1145/3691620.3695472

1 Introduction

Deep neural networks (DNNs) have demonstrated remarkable per-
formance in diverse safety-critical domains such as self-driving
cars [33] and malware detection [47]. Such domains have a low tol-
erance for mistakes. Compared to traditional code-driven software,
DL-based systems adopt a data-driven programming paradigm,
and thus introduce reliability challenges related to data faults (e.g.,
mispredicted data samples). Therefore, it is essential to conduct a
high-quality test for DNNs to expose the hidden vulnerabilities as
much as possible. However, testing for DNNs generally requires
massive labeled data, while building test oracles by manually label-
ing for a large test set can be costly [2], especially for tasks that
require domain-specific knowledge (e.g., medical images).

To increase the efficiency of DNN testing and reduce the la-
beling cost, it is essential to prioritize the test cases and identify
a set of high-quality examples to reveal the prediction faults. A
variety of test case prioritization methods [7, 28, 37, 43, 48] have
been proposed based on carefully designed testing metrics, such as
neuron coverage (NC) [18, 25, 31], surprise adequacy (SA) [15, 39],
and prediction uncertainty [3, 7, 19]. Recent studies [2, 19, 41]
have validated that the prioritization methods based on uncertainty
achieved dominant results and less overhead. These methods (e.g.,

ar
X

iv
:2

40
9.

09
13

0v
1

 [
cs

.S
E

]
 1

3
Se

p
20

24

https://doi.org/10.1145/3691620.3695472
https://doi.org/10.1145/3691620.3695472

ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA Jialuo Chen, Jingyi Wang, Xiyue Zhang, Youcheng Sun, Marta Kwiatkowska, Jiming Chen, and Peng Cheng

DeepGini [7]) calculate the uncertainty score directly from the
model’s probability output, with the assumption that test cases
with higher uncertainty scores (closer to the decision boundary)
are more likely to be prediction errors. However, DNNs can be very
confident on the wrongly predicted examples [10, 24] (the over-
confidence problem), which causes these errors to be naturally
overlooked by existing uncertainty-based methods. In practical ap-
plications, especially those heavily dependent on high-confidence
decisions, over-confident errors can be more troublesome. Recently,
nearest neighbors smoothing (NNS) [2] has been proposed to help
mitigate this problem by averaging the outputs with a set of closely
matched samples, showing notable improvements. However, its
performance largely depends on the quality of the neighbors and
can be computationally costly due to the search algorithm.

Since DNNs make the final prediction of an input based on the
extracted features (the outputs of neurons), there should be con-
nections between certain characteristics of hidden features and
the prediction results, whether correct or erroneous. Despite con-
siderable efforts within the software engineering community to
characterize the behaviors of neurons, such as neuron activation
coverage metrics [18, 25, 31], several studies [6, 7, 36, 44] have
found that these measurements are not necessarily even negatively
indicative of bug-revealing capabilities. We suppose that existing
metrics focus solely on analyzing output values of intermediate
layers; however, due to the high non-linearity of DNNs, their actual
contribution to final predictions has not yet been clearly examined.
Intuitively, different features are combined together to describe
specific groups of examples (e.g., ‘cat’ or ‘dog’), each contributing
differently to the class prediction. By examining the intermediate
features of the model and empirically measuring each feature’s
contribution, we show that there is a certain portion of ‘redun-
dant’ features having minimal impact on the correctly predicted
examples. On the contrary, such features can undesirably introduce
noisy information aggregated to the model’s final output, thereby
leading to high-confidence errors.

To effectively reveal such high-confidence errors, we propose
a simple yet effective method for test input prioritization, namely
FAST. It prioritizes test inputs by integrating guided feature selec-
tion during inference, so as to remove the potential noise incorpo-
rated in the output mispredictions for uncertainty measure. Specifi-
cally, FAST selectively prunes a subset of ‘noisy’ features from a
given feature layer based on their contribution measurements, then
uses the remaining features to derive the probability vector for un-
certainty estimation. As a result, the original high-confidence errors
will tend to be given a lower confidence score, making them easier
to prioritize based on the calibrated probability vector, as illustrated
in Fig. 1. FAST positions itself as a plug-and-play technique that
can be easily applied with existing uncertainty-based test prioriti-
zation methods. We extensively evaluated FAST on 7 benchmark
datasets (including image, text, and audio data) with 9 different
DNN structures (including both CNN and RNN structures) against
10 prioritization baselines from different types. The results confirm
the effectiveness, efficiency, and scalability of FAST compared to
the state-of-the-art methods. In terms of the overall prioritization
performance, FAST achieves 3.19% higher APFD (Average Percent-
age of Fault Detection) values than uncertainty-based methods and
1.78% higher than recent work (NNS [2]) on average. Specifically,

Figure 1: Illustration of the key limitation of existing

uncertainty-based methods, which focus primarily on the

test cases close to the decision boundary while neglecting

the high-confidence errors. FAST helps to expose such high-

confidence errors by dynamically suppressing their confi-

dence, pulling them towards the low-confidence region.

for small selection budgets, FAST exposes over 13.63% more errors
than uncertainty-based methods and 8.16% more than NNS, respec-
tively. In terms of model enhancement guided by test prioritization,
FAST is effective in enhancing the model performance by rectify-
ing more prediction errors through retraining (with 5% selection
budget), achieving an accuracy improvement of 3.47% on average,
which is 13.36% higher than NNS. Notably, FAST only incurs a slight
additional time cost compared to the uncertainty-based methods,
making it more efficient than most existing methods.

In summary, we make the following contributions.
• We propose and implement a novel prioritization method
FAST through feature selection (noisy feature pruning). With
FAST, more high-confidence errors can be exposed compared
to traditional uncertainty-based methods.

• We extensively evaluate FAST on multiple common bench-
mark datasets with various model structures, validating the
superior performance in prioritizing test cases compared to
previous work. As a lightweight and generic method, FAST
also shows high efficiency and scalability.

• We release FAST at [1] to facilitate future studies in this area.

2 Background

2.1 Deep Neural Networks

We focus on deep neural networks (DNNs) for classification. Typi-
cally, a DNN classifier [9] is a decision function 𝑓 : 𝑋 → 𝑌 mapping
an input 𝒙 ∈ 𝑋 to a label 𝑦 ∈ 𝑌 = {1, 2, · · · ,𝐶}, where 𝐶 is the
number of classes. It comprises of 𝐿 layers: {𝑓 1, 𝑓 2, · · · , 𝑓 𝐿−1, 𝑓 𝐿},
where 𝑓 1 is the input layer, 𝑓 𝐿 is the probability output layer,
and {𝑓 2, · · · , 𝑓 𝐿−1} are the hidden layers. Each layer 𝑓 𝑙 can be
denoted by a collection of neurons: {𝑛𝑙,1, 𝑛𝑙,2, · · · , 𝑛𝑙,𝑁𝑙 }, where
𝑁𝑙 is the total number of neurons at that layer. Each neuron is
a computing unit that computes its output by applying a linear
transformation followed by a nonlinear operation to its input (i.e.,
output from the precedent layer). We use 𝑛𝑙,𝑖 (𝑥) to denote the

FAST: Boosting Uncertainty-based Test Prioritization Methods for Neural Networks via Feature Selection ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA

Figure 2: The feature contribution to the output confidence for the FASHIONmodel (LeNet-5) and the CIFAR-10 model (VGG-16).

The features are sorted in an increasing order based on their average contribution over the correctly classified examples

with high confidence. The key facts are: 1) the most important features at the higher end significantly impact both correctly

and incorrectly classified samples with high confidence, and 2) while the features at the lower end contribute the least to

high-confidence correct classifications, they can still significantly affect high-confidence misclassifications.

function that returns the output of neuron 𝑛𝑙,𝑖 for a given input
𝑥 ∈ 𝑋 . Then, we have the output vector of layer 𝑓 𝑙 (2 ≤ 𝑙 ≤ 𝐿):
𝑓 𝑙 (𝑥) =

〈
𝑛𝑙,1 (𝑥), 𝑛𝑙,2 (𝑥), · · · , 𝑛𝑙,𝑁𝑙 (𝑥)

〉
. Specifically, we use 𝑝 (𝑥)

to denote the output probability vector of the final layer, then, the
predicted label 𝑓 (𝑥) is computed as 𝑓 (𝑥) = argmax𝑝 (𝑥).

2.2 Test Case Prioritization

To improve the DNN testing efficiency and reduce the labeling cost,
a variety of test case prioritization methods have been proposed.
For a given model 𝑓 to test and a test suite 𝑇 , the purpose of test
case prioritization is to prioritize the test cases in 𝑇 in a guided
way, and when the test stops at a certain point, it is expected that
the executed test cases (often selected according to the rank) will
expose as many faults as possible. For a classification model, a test
case 𝑥 ∈ 𝑇 is identified as a fault when the model’s predicted label
𝑓 (𝑥) is inconsistent with its ground-truth label. The core of test case
prioritization is to quantify the possibility of a test case being a fault-
trigger. Based on the required information, existing prioritization
methods can be classified into two classes: 1) internal-based and 2)
prediction-based (or uncertainty-based).

Internal-based Prioritization. As the model prediction is based on
the propagation of layer outputs, it is natural to analyze the model
internal status (i.e., hidden feature outputs) to provide evidence
for judging a potential error. Multiple coverage metrics such as
Neuron Activation Coverage (NAC) [25] and Neuron Boundary
Coverage (NBC) [18] have been proposed to depict the covered
neuron status for guiding the testing procedure. A test case that
achieves a higher coverage is regarded as a more valuable input and
will be prioritized. Another group of metrics utilizing the model
internal is Surprise Adequacy (SA) [15], which measures how sur-
prising an input is, i.e., how far is a given test case from the training
set. Specifically, Likelihood-based Surprise Adequacy (LSA) utilizes
the kernel density estimation (KDE) to obtain a density function
from the training instances, which allows the direct estimation of

the likelihood of a test case being a fault trigger. Distance-based
Surprise Adequacy (DSA) measures the distance between the test
case and the closest example in the training dataset. However, sev-
eral studies have found that all the above coverage-based criteria
are not necessarily or even negatively indicative of fault-revealing
capabilities [4, 6, 7, 44].

Uncertainty-based Prioritization. Instead of utilizing the internal
outputs, uncertainty-based methods solely rely on the model’s final
outputs, i.e., the probability vector 𝑝 (𝑥). The intuition behind is
that, if a DNN model predicts a test instance with nearly equal
probability values on all candidate classes, indicating the model is
uncertain (or confused) on predicting this test case, then it is more
likely to be an incorrect prediction. We briefly introduce represen-
tative uncertainty metrics that are used in uncertainty-based test
prioritization methods. DeepGini [7] quantifies the likelihood of a
test case 𝑥 being incorrectly predicted as:𝐺𝑖𝑛𝑖 (𝑥) = 1−∑𝐶

𝑖=1 𝑝
2
𝑖
(𝑥),

where 𝑝𝑖 (𝑥) is the prediction probability of class 𝑖 . A high Gini index
impurity represents high uncertainty. MaxP [19] directly uses the
highest probability output as:𝑀𝑎𝑥𝑃 (𝑥) = max𝑝𝑖 (𝑥) as the metric.
Margin [27] is another way for quantifying prediction uncertainty,
which is the difference between the highest and the second high-
est prediction probabilities, and a low margin represents a high
uncertainty. After quantifying the uncertainty, the test cases with
high uncertainty (close to the decision boundary) will be prioritized.
Compared to internal-based methods, uncertainty-based methods
are more lightweight and achieve better results [14, 41], as they do
not require recording a heavy profile of neuron activations.

Over-confidence Problem of DNNs. Recent studies [2, 7, 41] have
demonstrated the dominance of simple uncertainty-based methods
in prioritizing the faults of DNNs, However, they can be further im-
proved. Modern DNNmodels could suffer from the over-confidence
problem, in that they tend to give high probability scores to the
wrong predictions, due to model capacity, insufficient training data,
or other factors. In such cases, the uncertainty-based methods will

ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA Jialuo Chen, Jingyi Wang, Xiyue Zhang, Youcheng Sun, Marta Kwiatkowska, Jiming Chen, and Peng Cheng

fall short of exposing and prioritizing these high-confidence faults.
As illustrated in Fig. 1, uncertainty-based methods will only pri-
oritize the test cases close to the decision boundary (in the dotted
low-confidence region), while neglecting the remote errors that
are far away from the decision boundary. In this work, we propose
FAST, a method to improve the uncertainty-based prioritization
methods to uncover more high-confidence errors.

3 Methodology

In this section, we first present the motivation behind and then give
details of each part of our prioritization method FAST.

3.1 Motivation

Considering the fact that the final prediction results are made based
on a group of extracted features, we investigate the over-confidence
problem faced by existing prioritization methods from the perspec-
tive of features. For a given class, different features (representing
different learned patterns) have different levels of ‘contribution’ to
the predictions. Instead of utilizing the numerical output values of
the neurons to quantify the contribution (e.g., activation value [25]
and activation frequency [34]), we measure it in a more intuitive
way, that is, the observable difference on the model’s final output
with and without that feature (we give details in Section 3.4). In
other words, the feature whose removal causes a significant drop
in confidence will be regarded as contributing more, and otherwise
as having minimal influence on the final prediction. Then, for a
selected feature layer of the model, we calculate the feature-wise
contribution for a set of high-confidence correctly and wrongly pre-
dicted examples separately. We use correct predictions and errors
in the following for simplicity.

As in Fig. 2, there are clear gaps between the feature contri-
butions for supporting the model’s correct predictions (indicated
by the blue color), with the lowest-ranked features making the
least contributions. However, these same low-contributing features
could potentially yield a higher contribution towards misleading
the predictions (indicated by the orange color), as they undesirably
bring noisy information that is aggregated to the model’s final out-
put, further causing high-confidence errors. These features also
show higher variance. Note that the magnitude of contribution
can be influenced by the DNN structure, e.g., the VGG network
shows higher sparsity than the smaller one, LeNet, but the patterns
are similar across the models. Motivated by this observation, we
propose a simple yet effective feature selection mechanism, FAST,
to selectively drop the identified noisy features, to avoid them pass-
ing any information to influence the following decision process.
That is, FAST tends to give lower confidence scores to the original
high-confidence errors, while the correct predictions are influenced
more subtly. As a consequence, the high-confidence errors become
more distinguishable from the correct ones, further boosting the
fault-revealing capability of simple uncertainty-based methods.

3.2 Overview of FAST

Figure 3 presents an overview of the proposed FAST approach,
which emphasizes feature selection. Given amodel and an unlabeled
test suite for prioritization, existing uncertainty-based methods
like DeepGini [7] directly calculate the uncertainty score from

Figure 3: An overview of FAST framework. It selectively

drops a set of noisy features during inference to derive the

probability vector for uncertainty estimation.

the output probability vector, as depicted in the dashed blue box.
In contrast, FAST focuses on performing feature selection at an
intermediate layer before calculating the uncertainty score. Only a
part of important features will be passed to the following layers,
and other redundant features will be discarded. Then the purified
feature vector will be passed to the next layer and derive a new
probability vector for the uncertainty calculation, as illustrated in
the orange box. Based on the scores, the unlabeled test suite can be
ranked for prioritization. Specifically, FAST utilizes an output mask
to achieve such a feature selection procedure without the need to
modify the model structure or parameters and can be easily applied
to any intermediate layer as a plug-in. Note that the additional
cost of FAST lies in the propagation of partial layers (usually very
few layers), thus only yielding a slight additional run-time cost
compared to existing prioritization methods such as DSA [15] and
NNS [2] that require massive distance computations.

3.3 Feature Selection

The feature selection will be performed on a specific hidden layer 𝑙
of the given DNN. According to the definitions in the background
(see Section 2), layer 𝑙 encodes the inputs to a feature space with
dimension 𝑁𝑙 . We denote the feature vector of this layer for a given
test input 𝑥 as 𝑓 𝑙 (𝑥), which is then passed to the following layers to
perform the final prediction. For convolutional layers, each kernel
will be considered a basic feature element, while for fully-connected
layers, each neuron is the basic element. For𝐶 classes, we construct
a feature mask 𝑀 = [𝑀1, 𝑀2, · · · , 𝑀𝐶] with 𝑁𝑙 × 𝐶 dimensions,
where 𝐶 is the number of classes and 𝑁𝑙 is the number of features.
𝑀 is a binary matrix (only 0 and 1), and𝑀𝑐 identifies the redundant
features for each class. Specifically, the 𝑖𝑡ℎ element in𝑀𝑐 equal to 0
indicates the 𝑖𝑡ℎ feature in 𝑓 𝑙 is redundant for class 𝑐 and should be
omitted, whereas a value of 1 indicates that the feature is important
and should be preserved.

As illustrated in Fig. 3, based on the originally predicted class
𝑐 = argmax𝑝 (𝑥), the corresponding mask 𝑀𝑐 is then applied to
the feature vector 𝑓 𝑙 (𝑥) to obtain the purified feature vector as:

𝑓 𝑙 (𝑥) = 𝑓 𝑙 (𝑥) ⊙ 𝑀𝑐 (1)

where ⊙ denotes the element-wise multiplication. This operation
effectively prevents information from noisy features, which will
have consistent zero output values, from being passed to subsequent
layers. The modified vector 𝑓 𝑙 (𝑥) is then used to derive the new

FAST: Boosting Uncertainty-based Test Prioritization Methods for Neural Networks via Feature Selection ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA

probability vector 𝑝 (𝑥) through forward propagation by the layers
behind 𝑙 . This feature selection process can be easily applied to
any hidden layer with the use of an output mask, without the
need to modify the model structure. It is noteworthy that different
layers extract different semantic features, where shallow layers
tend to extract more common features while deep layers focus on
more complex features [45]. Based on our empirical studies, we
find that the deep layer is a good choice for the feature selection,
which effectively enlarges the differences between high-confidence
erroneous and correct predictions. We further elaborate on the
influence of layer locations in our experiments.

3.4 Contribution Measurement

To construct the feature mask𝑀 , we need to quantify the impor-
tance (contribution) of each feature for a specific class. The software
engineering community has put a significant effort into devising
a variety of neuron-level metrics to guide the testing procedure
of DNNs in a more targeted way. For instance, DeepInspect [34]
utilizes the neuron activation frequency for measuring how the
neurons interact with the data from different classes. The neuron
that is more frequently activated (larger than the threshold) is
regarded as more important. Moreover, other strategies such as
variance-based [15] and gradient-based [30] are also proposed to
help measure the importance of neurons. These quantifiers can
be naturally used for our purpose. However, due to the highly
non-linear interactions of DNNs, it is still unclear how important
a neuron (feature) is for the model’s final prediction, as a larger
output value or frequency does not mean a greater influence on the
model’s final output.

Instead of relying on existing static internal analyses, we adopt a
direct approach inspired by the Shapley Value [8] from the machine
learning community to examine the feature importance based on
the prediction outcomes. It calculates the overall contribution of
neurons by adding them to every possible subnetwork. However,
applying such a neuron-wise approach is challenging in our set-
ting, due to its significant computational overhead, which leads
to exponential time complexity, making it difficult to meet high-
efficiency requirements. Thus, we conduct the testing procedure in
a one-by-one manner, similarly to elimination in program analysis,
by directly assessing the individual contribution of features to the
original model, thereby achieving linear time complexity. Specifi-
cally, for the 𝑖𝑡ℎ feature 𝑓 𝑙

𝑖
of layer 𝑙 , we empirically calculate its

contribution for a given class 𝑐 by comparing the model’s output
difference with and without feature 𝑓 𝑙

𝑖
as:

𝐶𝑜𝑛𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛(𝑓 𝑙𝑖 , 𝐷𝑐) = 𝐶𝑜𝑛𝑓 (𝑓 , 𝐷𝑐) −𝐶𝑜𝑛𝑓 (𝑓 ∗, 𝐷𝑐) (2)

where 𝑓 is the original model and 𝑓 ∗ is the model variant where the
output of the feature 𝑓 𝑙

𝑖
(𝑥) is consistently set to zero while keeping

the other features unchanged. The function 𝐶𝑜𝑛𝑓 measures the
model’s average confidence scores over a dataset 𝐷𝑐 as:

𝐶𝑜𝑛𝑓 (𝑓 , 𝐷𝑐) =
1

|𝐷𝑐 |
∑︁
𝑥∈𝐷𝑐

𝑝𝑐 (𝑥) (3)

where 𝑝𝑐 is the probability score for class 𝑐 , and 𝐷𝑐 is a clean
dataset consisting of correctly predicted examples with the ground-
truth label being class 𝑐 (we sample from the training dataset).

Algorithm 1: FAST(𝑓 , 𝑓 𝑙 , 𝑟 ,𝑇 , 𝜆)
Input:Model to test 𝑓 , feature layer 𝑓 𝑙 , selection rate 𝑟 ,

unlabeled test suite 𝑇 , uncertainty metric 𝜆
Output: Prioritization order of 𝑇 .

1 Initialize score list 𝑄
// Preparation Step

2 for each class 𝑐 ∈ 𝑌 do

3 Obtain contribution vector 𝑉𝑐 for 𝑓 𝑙

4 Obtain binary mask𝑀𝑐 from 𝑉𝑐 (𝑟% of𝑀𝑐 are set 0)
5 end

// Prioritization Step

6 for 𝑥 ∈ 𝑇 do

7 Get original predict label 𝑐 for 𝑥
8 Get original feature vector 𝑓 𝑙 (𝑥)
9 Get purified feature vector 𝑓 𝑙 (𝑥) = 𝑓 𝑙 (𝑥) ⊙ 𝑀𝑐

10 Get probability vector 𝑝 (𝑥) using 𝑓 𝑙 (𝑥)
11 Get uncertainty score 𝑠 = 𝜆(𝑝 (𝑥))
12 Append 𝑠 to list 𝑄
13 end

14 return 𝐴𝑟𝑔𝑆𝑜𝑟𝑡 (𝑄)

We carefully exclude uncertain examples (with low confidence),
thereby focusing on a clear decision-making process and enabling
a targeted analysis of features important or redundant for accurate
predictions for a class. Specifically, the threshold of 0.9 is set based
on empirical observations with the aim to identify the features
important or irrelevant for correctly predicting each class, as high-
confidence examples are regarded as representative examples of the
class. The intuitive measurement here is that a significant drop in
final confidence (a large contribution), when a feature is removed,
underscores its importance to themodel’s ability to correctly predict
class 𝑐 . Note that FAST is flexible and allows integrating other
candidate importance measurements to obtain the feature mask,
and we elaborate on the impact of different quantification schemes
in our experiments.

After quantifying the contribution of features using Equation 2,
we get a contribution vector 𝑉𝑐 of the features for each class 𝑐 .
To construct the binary mask 𝑀𝑐 , we select the top-k features
with the lowest contribution values as redundant, setting their
corresponding mask values to 0 and marking the remaining, more
crucial features with 1. We define a hyper-parameter 𝑟 = 𝑘

𝑁𝑙
to

denote the percentage of features selected to drop. A low 𝑟 indicates
a smaller fraction of redundant features will be pruned and a larger
fraction of features are preserved. When 𝑟 = 0, the newly derived
output 𝑝 (𝑥) becomes the same as the original one 𝑝 (𝑥). We discuss
the influence of the pruning rate later in experiments.

3.5 FAST for Test Prioritization

The complete procedure of our FAST method for test case prioriti-
zation is detailed in Algorithm 1. FAST is designed to be a generic
tool compatible with all existing uncertainty-based methods such
as DeepGini [7]. Given a selected feature layer 𝑓 𝑙 , we first measure
the importance of features for each class using a specific quantifier

ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA Jialuo Chen, Jingyi Wang, Xiyue Zhang, Youcheng Sun, Marta Kwiatkowska, Jiming Chen, and Peng Cheng

(Line 3), and we then prepare the binary feature mask𝑀𝑐 from 𝑉𝑐 ,
setting 𝑟% of it to 0 (Line 4). During the prioritization process (Line
6-13), for the unlabeled test suite 𝑇 , the objective is to prioritize 𝑇
such that faults appear at the forefront. For each test case 𝑥 ∈ 𝑇 ,
the predicted label 𝑐 is first determined (Line 7). The original fea-
ture vector 𝑓 𝑙 (𝑥) is then taken (Line 8). According to the mask𝑀𝑐 ,
only a part of important features are preserved as 𝑓 𝑙 (𝑥) (Line 9).
Finally, we get a new probability vector 𝑝 (𝑥) based on 𝑓 𝑙 (𝑥), and
we calculate the uncertainty of the test case using the given uncer-
tainty measure 𝜆 as input (Line 11). Finally, the test samples are
ranked by their uncertainty scores (line 14). Compared to traditional
uncertainty-based methods, the additional cost with FAST involves
constructing the critical feature mask𝑀 and executing partial layer
propagation (behind the selected feature layer 𝑓 𝑙). Since the mask
construction is a one-time effort, FAST is considered efficient.

3.6 Comparison with Similar Work

Here, we provide a qualitative comparison between FAST and two
similar approaches, all aiming to obtain a justified probability vector
for distinguishing more prediction faults from the correct ones.
FAST is similar to Monte-Carlo Dropout (MC-Dropout) [40] in its
approach of feature dropping in the hidden space. MC-Dropout
utilizes the dropout functionality (which is often used in model
training) during inference, running the DNN multiple times (e.g., 𝑡
times) while randomly dropping a proportion of neuron activations.
The output probability is then averaged over the 𝑡 runs. In contrast,
FAST is guided by a critical feature mask, which helps to drop noisy
features in a targeted manner without needing multiple runs for a
single test case, thereby achieving much better effectiveness and
efficiency across experiments. More recently, Nearest Neighbor
Smoothing (NNS) [2] has been proposed to improve uncertainty-
based prioritization methods. NNS adjusts the probability vector by
interpolating its original vectorwith those of its neighbors (typically
using K-NN to find the neighbors in the test suite) as:

𝑝 (𝑥) = 𝛼 · 𝑝 (𝑥) + (1 − 𝛼)
𝑘

∑︁
𝑥 ′∈𝑥𝐾𝑁𝑁

𝑝 (𝑥 ′) (4)

where 𝑥 ′ denotes the found neighbors, 𝛼 is the balance factor, 𝑘 is
the number of neighbors, and 𝑝 (𝑥) is the derived new probability
output over the original test case and its 𝑘 neighbors. However,
NNS requires iteratively calculating a heavy distance matrix with
the test suite for the K-NN algorithm, which can be particularly
costly for large models. In contrast, FAST is more efficient. Once the
feature mask is obtained as a one-time effort, it incurs only a slight
computational cost during inference. We provide a quantitative
comparison of FAST with the two methods in experiments.

4 Evaluation

4.1 Experimental Setup

4.1.1 Datasets andModels. Following recent work [2, 41], we apply
FAST to four benchmark datasets commonly used in the literature,
i.e., MNIST [17], FASHION [42], CIFAR-10 [16], and SVHN [23].
For each dataset, we adopt two different DNN model structures
for evaluation, where LeNet [17], ResNet [11], and VGG [29] are
standard and popular structures. Conv-6 and Conv-8 [15] are the
models composed of multiple convolutional layers. Additionally, we

extend our evaluation to include three datasets representing high-
dimensional image, audio, and text data: Imagenette [13], GSCmd
[38], and Imdb [20], respectively.

4.1.2 Test Suite for Prioritization. We prepare both clean and noisy
test suites to evaluate the test prioritization methods. In the clean
setting, we split the original dataset following [2] and then use
the unlabeled clean test samples for evaluation. This is to test how
well a prioritization method works on a test suite with the same
distribution as the training data and whether it can expose faults
earlier. Considering that the data processed by the DNN in a prac-
tical environment can be diverse, we use corrupted datasets that
are manipulated with a range of modifiers inspired by real-world
input corruptions such as noise and blur. As discussed in [2, 41],
corrupted data provides model-independent and realistic data com-
pared to adversarial examples. Specifically, we use MNIST-C [22],
FASHION-C [41], and CIFAR-C [12] as provided in the literature.
For SVHN, since no corrupted datasets existed, we apply multiple
corruption actions following [12] to create an SVHN-C version for
a comprehensive evaluation.

4.1.3 Test Prioritization Baselines. We assess the effectiveness and
efficiency of FAST by comparing it with 10 baselines from four dif-
ferent groups, including three coverage-based methods: NAC [25],
NBC [18], and OBSAN [5], an improved version of NBC by incorpo-
rating class-wise neuron boundary information; two surprise ade-
quacy (SA)-based methods: DSA [15] and LSA [15], which also use
class-wise information for computation; three uncertainty-based
methods: DeepGini [7], MaxP [19], and Margin [27]; and two post-
hoc methods as introduced in Section 3.6: MC-Dropout [40] and
NNS [2] (state-of-the-art). The uncertainty-based and post-hoc
methods are designed to be class-agnostic. We use the same un-
certainty calculation method, DeepGini, for the base of evaluated
post-hoc methods. We configure each baseline according to the
default settings reported in its respective paper. Specifically, for
MC-Dropout, we use 𝑡 = 50, and for NNS, we set 𝛼 = 0.5 and 𝑘 = 10.
We also consider the pure random prioritization baseline.

4.1.4 Evaluation Metrics. We use Average Percentage of Fault De-
tection (APFD) [26] to evaluate the overall performance of a test
case prioritization method as:

𝐴𝑃𝐹𝐷 = 1 −
∑︁ 𝑇𝐹𝑖

𝑛 ∗𝑚 + 1
2 ∗ 𝑛 (5)

where 𝑛 denotes the total number of test cases in the test suite,𝑚
denotes the total number of faults exposed in the DNN under the
test suite, and 𝑇𝐹𝑖 denotes the position of the first test in the test
suite that exposes fault 𝑖 . The value of APFD ranges from 0 to 1,
with higher values representing higher fault detection efficiency.

While APFD is a good measure of the overall performance of test
case prioritizationmethods, it is not suitable for comparing different
methods within a given budget, i.e., test case selection based on the
prioritization results. Therefore, we also use Test Relative Coverage
(TRC) [2] to evaluate the performance of a test case prioritization
method for a given budget as:

𝑇𝑅𝐶 =
#𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑𝐹𝑎𝑢𝑙𝑡𝑠

min(#𝑆𝑒𝑙𝑒𝑐𝑡𝐵𝑢𝑑𝑔𝑒𝑡, #𝑇𝑜𝑡𝑎𝑙𝐹𝑎𝑢𝑙𝑡𝑠) (6)

FAST: Boosting Uncertainty-based Test Prioritization Methods for Neural Networks via Feature Selection ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA

TRC measures how far a prioritization method is from the ideal
case in a given budget. The value of TRC ranges from 0 to 1, where
a higher value represents a higher proportion of faults exposed
within the selection budget.

4.1.5 Experimental Environment. Our experiments were conducted
on a computational server with an Intel(R) Xeon(R) CPU E5-2680
v4 @ 2.40GHz, an NVIDIA GTX 2080Ti GPU, and 256GB of RAM.
The operating system used was Ubuntu 16.04.5 LTS. We conducted
all experiments using Python 3.7.4 and Tensorflow 2.6.0.

4.2 Research Questions

In the following, we evaluate FAST through extensive experiments
and answer five research questions.

4.2.1 RQ1: Is FAST more effective in test case prioritization?

To answer this question, we evaluate the effectiveness of FAST
with representative baselines in prioritizing test cases in the clean
and noisy setting, respectively.
1) Effectiveness on Clean Data. Table 1 displays the APFD values
obtained by each test prioritization method on clean data, with the
highest scores in bold. Across all models tested, FAST achieves the
highest APFD values, averaging 85.42%, which is 3.0% higher than
the uncertainty-based methods (e.g., DeepGini). This improvement
is more than 2.7 times the improvement observed with NNS (about
1.1%). This suggests the superior capability of FAST in prioritizing
misclassifications compared to state-of-the-art methods.

Next, we examine different types of prioritization methods. Gen-
erally, uncertainty-based methods outperform coverage-based and
surprise-adequacy-based methods, a trend consistent with the find-
ings in the replication study [41]. With the APFD values for random
ordering around 50%, two of the three coverage-based methods, i.e.,
NAC and NBC, perform even worse than the random baseline. This
performance can be attributed to the high non-linearity of DNNs,
which limits the connections between neuron output magnitudes
and prediction faults. For the SA-based methods, DSA consistently
achieves higher values than LSA, still performing slightly worse
than DeepGini in 7 out of 8 cases, and about 1.4% worse on average.
LSA shows large fluctuations in performance compared to random,
which we attribute to model complexity and the influence of kernel
density estimation (KDE) used in LSA, which is heavily affected by
the number of features. For instance, in a hidden layer of the VGG
network, which contains thousands of features, the performance of
LSA becomes close to random ordering.

As expected, the three uncertainty-based methods, DeepGini,
MaxP, and Margin, exhibit similar performance, with their aver-
age APFD values all around 83%. Interestingly, the MC-Dropout
method, a post-hoc baseline that averages multiple predictions
through random dropout, causes a slight decline (about 0.75%) com-
pared to the original uncertainty-based methods. This drop is likely
because MC-Dropout occasionally drops some key features, which
can confuse the decision process. In contrast, FAST, by selectively
dropping features guided by contribution measurements, achieves
stable improvements over uncertainty-based methods and consis-
tently outperforms them. Although the improvement of NNS over
DeepGini is noticeable, it is sometimes subtle when compared to
FAST. We hypothesize that NNS tends to select neighboring test

cases with similar feature patterns, resulting in outputs that are
too similar, which minimally influences the averaged probability
outputs, and the difference between errors and correct may not be
significantly enlarged in certain tasks.

While the APFD value serves as an effective overall performance
metric, it does not precisely reveal how many errors can be exposed
within a given selection budget. Fig. 4 shows the TRC scores ob-
tained by each method under various budgets, ranging from 1% to
100% of the test suite. As TRC reaches 100% when the entire test
suite is selected, it becomes less meaningful for detailed compar-
isons. Our focus is therefore on the TRC values at smaller budgets,
where a higher TRC score indicates that more faults can be uncov-
ered at a lower cost. The TRC curves for each method exhibit a
distinctive turning point; before this turning point, differences be-
tween methods are more pronounced but diminish as the selection
budget increases. FAST consistently achieves higher TRC values
than all other baselines across the selection budget levels, indicat-
ing that it can expose more errors with the same budget compared
to other methods. This advantage is particularly notable at small
selection budgets. To quantify this, we calculated the average TRC
values before the turning point for each method. FAST shows sub-
stantial improvements of 12.92%, 14.46%, 9.54%, and 17.58% over
the uncertainty-based methods, and 7.76%, 9.08%, 6.84%, and 8.97%
higher than NNS across the four datasets, respectively. These results
highlight a significant enhancement in the practical application of
FAST for test case selection compared to existing methods.
2) Effectiveness onNoisyData. Table 2 shows a comparison of the
APFD values obtained by each method on noisy data. The overall
trend is similar to what we observe with clean data, though all
evaluated methods show a certain drop in APFD when compared to
their performance on clean data (Table 1), indicating that noisy data
is generally harder for test case prioritization. Nevertheless, FAST
achieves the highest APFD values in 7 out of 8 cases, with the only
exception being the MNIST dataset, where NNS surpasses FAST.
The improvement of FAST over the uncertainty-based methods is
more than 3% on average. Additionally, we note that DSA surpasses
the uncertainty-based methods in 3 cases, and the improvement of
NNS on noisy data is more pronounced than on clean data (about
1.7%), indicating a noticeable advantage when dealing with data
from different distributions.

Answer to RQ1: FAST consistently improves the perfor-
mance of uncertainty-based test case selection methods and
outperforms the state-of-the-art.

4.2.2 RQ2: Is FAST more efficient?

To answer this question, we report the total time cost of each
method for prioritizing the same test suite (10K samples) in Table 3,
inclusive of any necessary preparation time. The time cost for
FAST consists of two parts, the feature mask preparation (𝑆1) and
running FAST during inference for prioritization (𝑆2). We include
the number of features 𝑁𝑙 and split the overall time cost of FAST
into two parts as 𝑆1/𝑆2.

FAST demonstrates marked efficiency in prioritizing test inputs,
requiring less than 2minutes on average across variousmodels. This
efficiency is over 3 times and 9 times greater than that of other post-
hoc methods, NNS and MC-Dropout, respectively. MC-Dropout

ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA Jialuo Chen, Jingyi Wang, Xiyue Zhang, Youcheng Sun, Marta Kwiatkowska, Jiming Chen, and Peng Cheng

Table 1: The APFD values (capability to expose mis-classifications) on clean data. The higher APFD value the better.

Dataset Model Random

Coverage-based SA-based Uncertainty-based Post-Uncertainty

NAC NBC OBSAN DSA LSA DeepGini MaxP Margin MC-Dropout NNS FAST

MNIST
LeNet-5 50.64 51.86 41.62 70.41 92.06 75.97 92.88 92.91 92.78 91.83 93.54 94.23

Conv-6 52.45 40.86 46.84 88.03 93.15 78.55 94.84 94.86 94.89 94.60 95.52 96.37

FASHION
LeNet-5 49.73 36.57 50.03 52.79 79.44 71.33 81.24 81.46 81.49 79.31 82.03 83.36

Conv-8 49.20 39.95 48.89 54.53 82.01 56.26 82.45 82.48 82.42 81.65 82.79 83.85

CIFAR-10
ResNet-18 49.84 47.22 49.76 55.48 71.10 50.26 72.04 72.08 71.93 71.49 72.58 75.11

VGG-16 50.65 44.48 48.69 69.89 71.74 50.01 71.07 71.00 70.92 71.28 72.26 75.34

SVHN
ResNet-34 49.93 34.21 51.06 63.12 82.60 50.75 83.84 83.96 84.04 83.48 85.60 86.84

WRN-28 51.47 41.83 48.32 66.14 82.50 52.16 85.21 85.50 85.66 84.92 86.63 88.30

Average 50.49 42.12 48.15 65.05 81.83 60.66 82.95 83.03 83.02 82.32 83.87 85.43

Figure 4: The TRC values on clean data. The higher TRC value the better.

Table 2: The APFD values (capability to expose mis-classifications) on noisy data. The higher APFD value the better.

Dataset Model Random

Coverage-based SA-based Uncertainty-based Post-Uncertainty

NAC NBC OBSAN DSA LSA DeepGini MaxP Margin MC-Dropout NNS FAST

MNIST
LeNet-5 49.77 54.78 41.65 61.45 83.34 67.87 83.34 83.36 83.13 82.58 86.15 85.88
Conv-6 48.43 39.30 49.64 76.47 89.94 66.02 90.67 90.74 90.70 90.11 92.40 93.24

FASHION
LeNet-5 50.20 52.23 53.74 53.11 57.17 57.24 56.42 56.37 55.99 56.88 58.01 58.49

Conv-8 50.11 48.07 52.52 52.73 57.62 53.67 58.39 58.29 57.84 58.65 59.14 60.56

CIFAR-10
ResNet-18 50.07 47.90 50.96 51.70 60.71 51.59 61.38 61.34 61.17 61.52 61.83 63.85

VGG-16 49.68 45.75 49.02 59.08 63.33 52.79 62.55 62.49 62.35 62.84 63.00 64.83

SVHN
ResNet-34 50.26 40.25 50.39 59.16 77.76 44.12 77.66 77.61 77.47 78.00 78.28 80.57

WRN-28 50.34 45.10 47.36 64.55 77.87 42.09 79.06 79.05 78.97 79.19 80.33 81.44

Average 49.86 46.67 49.41 59.78 70.97 54.42 71.18 71.16 70.95 71.22 72.39 73.61

Table 3: Time cost (seconds) for test cases prioritization (per 10K samples).

Dataset Model

Coverage-based SA-based Uncertainty-based Post-Uncertainty FAST

NAC NBC OBSAN DSA LSA DeepGini MaxP Margin MC-Dropout NNS FAST S1/S2 𝑁𝑙

MNIST
LeNet-5 20.0s 33.5s 34.5s 916.9s 180.6s <5s <5s <5s 872.5s 228.9s 21.6s 16.1s/5.5s 84
Conv-6 21.6s 40.5s 43.8s 1108.0s 166.2s <5s <5s <5s 995.1s 264.3s 82.5s 64.5s/18.0s 256

FASHION
LeNet-5 16.5s 30.6s 31.3s 1015.4s 322.9s <5s <5s <5s 880.4s 244.5s 29.3s 23.1s/6.2s 84
Conv-8 24.9s 43.2s 47.3s 1008.4s 201.2s <5s <5s <5s 916.4s 288.1s 35.0s 26.2s/8.8s 128

CIFAR-10
ResNet-18 33.8s 59.1s 68.4s 1584.2s 365.8s <5s <5s <5s 1133.8s 395.9s 126.2s 99.0s/27.2s 512
VGG-16 65.2s 119.2s 130.7s 1985.1s 620.8s <5s <5s <5s 1833.7s 642.8s 306.1s 273.0s/33.1s 4096

SVHN
ResNet-34 37.5s 55.6s 70.2s 1730.5s 450.7s <5s <5s <5s 1212.6s 422.6s 174.3s 134.6s/39.7s 512
WRN-28 41.4s 67.1s 80.5s 1331.2s 329.7s <5s <5s <5s 1306.3s 455.3s 203.2s 155.7s/47.5s 640
Average 32.6s 56.1s 63.3s 1335.0s 329.7s <5s <5s <5s 1143.9s 367.8s 122.3s 99.0s/23.3s –

FAST: Boosting Uncertainty-based Test Prioritization Methods for Neural Networks via Feature Selection ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA

involves randomly sampling multiple stochastic predictions for the
same test input, while NNS requires computing the heavy distance
matrix between the test sample and the entire dataset to find the
neighbors, both resulting in significantly higher computational
costs compared to FAST. The primary cost for FAST is the feature
contribution estimation step (for obtaining mask𝑀), which varies
depending on the target model structure, taking from 20 seconds
for smaller models to about 5 minutes for larger models such as
VGG-16. Generally, the feature contribution assessment (𝑆1) com-
prises the majority of the overall time cost. It is noteworthy that
the estimation step of FAST is a one-time effort, after which the
additional inference cost for FAST involves merely the information
propagation of few layers (influenced by the layer location). The
time overhead incurred for the contribution assessment mainly
depends on the number of features 𝑁𝑙 of the selected layer. As the
assessment procedure for each feature is independent, it can be
further accelerated using parallel processing.

In comparison across different method types, undoubtedly, pure
uncertainty-based methods emerge as the most efficient, requiring
less than 5 seconds (with GPU acceleration), as they do not require
any preparatory work. The time cost here reflects the actual time
needed for the DNN to make the final predictions. Coverage-based
methods incur considerably higher costs than uncertainty-based
methods, as they need to extract fine-grained information from the
internals and maintain a heavy neuron map, yet their performance
does not justify these costs. SA-based methods take even longer
than coverage-based methods. Specifically, DSA is the most time-
consuming among the evaluated methods as it involves traversing
all training data to identify the closest neighbor sample.

Answer to RQ2: FAST is more efficient than the SA-based
prioritization methods and other post-hoc methods.

4.2.3 RQ3: What factors influence the performance of FAST?.

To understand how FAST performs under different settings, we
conduct an ablation study for FAST on three main influencing
factors: the feature selection strategy, the feature selection (pruning)
rate, and the layer location where FAST is applied.
1) Feature Selection Strategy. The core of our feature selection
procedure is the importance quantification strategy of each fea-
ture regarding the predictions (as detailed in Section 3.4). Here,
we replace the measurement method used in FAST with five rep-
resentative strategies popular in the SE community. The Output
strategy [25] supposes that features with higher output values have
stronger influence on the model decision, and thus will prune the
features with the lowest average output values across the valida-
tion dataset. The Activation Frequency strategy [34] quantifies how
frequently a neuron (feature) is activated (larger than a threshold)
during inference, considering rarely activated features as unimpor-
tant. The Variance strategy [15] assumes that features with lower
variance contain less information, thus contributing less to the pre-
dictions. The Gradient strategy [30] calculates the gradients of the
model predictions with respect to the feature outputs to measure
the contribution. We also consider the Random strategy, where
features will be selected and pruned randomly. For consistency, we
set the same feature pruning rate (𝑟 = 5%) for all methods.

Fig. 5 shows the results of FAST using different feature selec-
tion strategies. Notably, our method (represented by orange bars)
demonstrates significantly higher APFD values compared to all
baseline strategies, indicating the pruned features have stronger
connections with the prediction errors. This distinction allows er-
rors to become more distinguishable from correct predictions after
pruning the identified noisy features. The performance of base-
line methods varies considerably. For instance, the Gradient-based
strategy achieves comparable performance to ours on the MNIST
dataset but performs the worst on the FASHION dataset. In some
cases, other strategies even underperform the random baseline. This
suggests that the features selected by these baseline strategies have
limited influence on the model’s final predictions. We speculate that
these methods quantify the features based on static outputs (except
for the gradient-based, which incorporates the model’s outputs in
its calculation), often assuming that higher activation values or
frequencies indicate greater contributions to final decisions. How-
ever, this may not hold true due to the high non-linearity of DNNs,
which involves complex layer-by-layer propagation. In contrast, our
method adopts a more intuitive approach by dynamically pruning
and directly testing the contribution of each feature with respect to
the observable prediction results, which leads to better performance
in the feature selection step across the tested models. Moreover,
experiments in RQ1 have already validated that metrics based on
output values (e.g., NAC and NBC) have limited or even negative
correlations with DNN faults. The results underline the superiority
of our contribution-based method over static statistical methods
in feature selection for complex DNNs. Although our method re-
quires a higher computational cost than the baselines, it plays an
indispensable role in the effectiveness of FAST.
2) Feature Selection Rate. Next, we vary the feature selection
(pruning) rate and evaluate the corresponding effects of FAST on
the APFD values.We also present the results of baseline uncertainty-
based methods, i.e., DeepGini and NNS, for a better comparison.

Fig. 6 summarizes the trends of FAST with different pruning
rates. We observe that when 𝑟 is relatively small (below 5%), the
APFD score increases steadily as 𝑟 increases across datasets (MNIST
is an exception that achieves optimal performance at an early stage).
This finding aligns with the insights from Fig. 2 that there is a por-
tion of noisy features contributing to the high-confidence errors.
As more of the noisy information is discarded, the separability be-
tween correct and erroneous predictions increases. However, as
𝑟 continues to increase, the APFD values drop significantly, sug-
gesting a trade-off between the selection rate and the effectiveness
of FAST. We suppose that pruning a larger portion of features
will inevitably block some essential information influencing the
decisions on correct examples, leading to decreased confidence in
these classifications and making it harder to distinguish the errors
from correct predictions. Note that the optimal 𝑟 appears to vary
depending on the specific characteristics of the model. Based on the
visualized results, a rate between 3% to 10% is generally suitable for
FAST, consistently yielding higher APFD values than the baselines.
3) Feature Selection Layer. We further explore the impact of
applying FAST to different layer locations within the model, specif-
ically examining the shallow, middle, and deep layers. We divide
the model into three chunks, each consisting of 1/3 of the total

ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA Jialuo Chen, Jingyi Wang, Xiyue Zhang, Youcheng Sun, Marta Kwiatkowska, Jiming Chen, and Peng Cheng

Figure 5: The performance of FAST with different feature selection strategies.

Figure 6: The performance of FAST with different feature selection rates.

Figure 7: The performance of FAST with different layers.

Table 4: The APFD values on clean data.

Dataset Model Random DeepGini NNS FAST

Imdb LSTM-4 49.74 69.65 69.69 70.47

GSCmd LSTM-6 50.53 88.49 88.50 89.40

Imagenette VGG-16 49.82 65.85 66.41 67.53

number of layers, and we select one layer from each block to ap-
ply FAST. Specifically, the selected layer indices are 1/3/5, 1/4/7,
2/8/14, 4/16/32 for the Conv-6, Conv-8, VGG-16, ResNet-34 mod-
els, respectively. We also present the results without FAST (i.e., pure
uncertainty calculation) for a better comparison.

Fig. 7 shows the results. It is evident that applying FAST at the
deep layer consistently achieves the best performance across all
datasets. Conversely, when FAST is applied to the shallower layers,
it sometimes underperforms compared to the baselinewithout using
FAST. This indicates that the feature selection in these layers can
sometimes hurt the model’s normal decision-making process for
correct predictions. This observation aligns with the understanding
that shallow layers tend to extract more abstract features, while

deeper layers encode higher-level, more complex features [45],
which contain richer information for FAST to distinguish the errors
more effectively. Therefore, the deep layer is the preferred location
for applying FAST to optimize performance.

Answer to RQ3: FAST’s performance can be influenced by
several factors. Configuring a suitable setting is important for
FAST to achieve satisfying performance.

4.2.4 RQ4: Is FAST scalable to high-dimensional input and other

data domains?

To investigate the scalability of FAST, we conduct validation
experiments on three additional datasets, the Imagenette dataset,
which comprises high-dimensional images of 224×224×3 pixels; the
GSCmd dataset [38], which includes audio commands such as ‘left’
and ‘right’; and the Imdb dataset [20] containing textual reviews
for sentiment classification. We perform necessary pre-processing
for the audio and text data, and use the RNN model structures
(LSTM [46] and fully-connected layers) for model training. The
results are presented in Table 4.

Compared to the results on image data, the improvements of
NNS and FAST over uncertainty-based methods in the text and
audio domains are relatively subtle. We hypothesize that this is due
to the more abstract and entangled nature of features extracted in
these domains, which affects both NNS and FAST to a certain extent.
Nevertheless, FAST still demonstrates a non-trivial improvement
over the uncertainty-based methods. This further validates the
scalability of FAST to handle complex data and model structures.

Answer to RQ4: FAST is scalable to high-dimensional input
and promising for other data domains. Compared to other
baselines, it still improves APFD values more effectively.

FAST: Boosting Uncertainty-based Test Prioritization Methods for Neural Networks via Feature Selection ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA

Figure 8: The model enhancements guided by test prioritization methods through retraining (with 5% selection budget).

4.2.5 RQ5: Is FAST able to guide the retraining for model enhance-

ment?

Prioritizing the test suite and selecting the valuable part to en-
hance the DNN model performance (e.g., accuracy) by retraining is
an important application scenario in DNN testing. To evaluate the
effectiveness of FAST as well as other prioritization methods, we
select a set of test cases with the same selection budget to retrain
the models. For each model, we use the same training settings.

Fig. 8 shows the performance enhancement results of different
prioritization methods. We can observe that FAST consistently
obtains the highest accuracy improvements across all scenarios.
Compared to the random baseline, most other prioritization meth-
ods also demonstrate certain level of effectiveness, except for the
coverage-basedmethods. For all the retrainedmodels, FAST achieves
3.47% accuracy improvements on average, which is 13.36% higher
than NNS. This indicates that FAST can expose more hidden errors
and rectify them than the baseline methods.

Answer to RQ5: FAST can guide the retraining procedure to
help improve the model performance.

4.3 Discussion

In this work, we proposed FAST, a lightweight test prioritization
designed to enhance the efficiency of DNN testing. The key idea
behind FAST is to selectively drop certain noisy features to obtain
an alternative probability vector for uncertainty measurement. As
a generic method, FAST can be easily applied to various types of
DNN structures and support different uncertainty-based metrics,
not limited to DeepGini. We also examined the sensitivity of FAST
to different hyperparameters through necessary experiments. Some
hyperparameters, such as the threshold used for class-wise analysis,
are currently set based on empirical observations to identify fea-
tures that are important or irrelevant for correctly predicting each
class. We plan to investigate automatic parameter tuning to opti-
mize performance. Additionally, the overconfidence issue explored
in this work can be mitigated to some extent by existing model
calibration methods [21, 32, 35] that involve modifying the model
structure or training process. We believe that FAST, like other test
prioritization methods, is complementary to model calibration tech-
niques. FAST functions as a plug-and-play module, requiring no
modifications to the models themselves.

4.4 Threats to Validity

The external threat to validity primarily arises from the datasets,
model structures, and baselines used in our study. Following recent

replication studies [2, 41], we considered commonly used public
datasets in the literature to ensure a broad evaluation scope. Addi-
tionally, we validated the scalability of FAST to high-dimensional
image data and other data domains including audio and text. To
mitigate threats from DNN models, we employed various well-
known architectures with different capacities to limit the impact of
model dependency to some extent. Since our method is generic and
independent of datasets and model structures, it can be adapted
with minor adjustments for further applications. Regarding the
prioritization baselines, while there are other works with different
approaches [37, 48], we selected multiple representative methods
from different categories and demonstrated the effectiveness and
efficiency of FAST. The internal threat could arise from the im-
plementation of FAST and the baselines used for comparison. To
reduce this threat, we utilized available implementations from the
authors’ released code or re-implemented them according to the
original papers. We carefully checked the correctness of our code.
The construct threat lies in the hyper-parameter settings of the
experiments. For running the baselines, we followed the standard
settings in existing works. Additionally, we conducted necessary
ablation studies to provide guidance on setting hyper-parameters
for optimal performance of FAST.

5 Conclusion

In this paper, we propose a novel and effective DNN test prior-
itization method FAST to improve testing efficiency and reduce
labeling costs. The key idea behind FAST is to prune noisy in-
formation from the irrelevant features which could contribute to
the high-confidence errors, which sharpens the uncertainty es-
timation and improves differentiation between high-confidence
correct and erroneous predictions. Extensive experiments on mul-
tiple benchmark datasets with various model structures validate
the effectiveness, efficiency, and scalability of FAST. Our results
demonstrate that FAST consistently enhances the performance of
existing uncertainty-based test case selection methods and outper-
forms state-of-the-art work. As a plug-and-play technique, FAST
can be easily integrated with different uncertainty measures.

Acknowledgements

This work was supported by the Key R&D Program of Zhejiang
(Grant No. 2022C01018), the National Science Foundation of China
Program (Grant No. 62102359, 62293511, 62088101) and the Program
of China Scholarship Council (Grant No. 202306320425). MK and XZ
received partial support fromELSA: European Lighthouse on Secure
and Safe AI project (Grant No. 101070617 under UK guarantee) and
the ERC under the European Union’s Horizon 2020 research and
innovation program (FUN2MODEL, Grant No. 834115).

ASE ’24, October 27-November 1, 2024, Sacramento, CA, USA Jialuo Chen, Jingyi Wang, Xiyue Zhang, Youcheng Sun, Marta Kwiatkowska, Jiming Chen, and Peng Cheng

References

[1] [n. d.]. https://github.com/Testing4AI/FAST.
[2] Shenglin Bao, Chaofeng Sha, Bihuan Chen, Xin Peng, andWenyun Zhao. 2023. In

defense of simple techniques for neural network test case selection. In Proceedings
of the 32nd ACM SIGSOFT International Symposium on Software Testing and
Analysis. 501–513.

[3] Taejoon Byun, Vaibhav Sharma, Abhishek Vijayakumar, Sanjai Rayadurgam, and
Darren Cofer. 2019. Input prioritization for testing neural networks. In 2019 IEEE
International Conference On Artificial Intelligence Testing (AITest). IEEE, 63–70.

[4] Jialuo Chen, Jingyi Wang, Xingjun Ma, Youcheng Sun, Jun Sun, Peixin Zhang, and
Peng Cheng. 2022. QuoTe: Quality-oriented Testing for Deep Learning Systems.
ACM Transactions on Software Engineering and Methodology (2022).

[5] Yanzuo Chen, Yuanyuan Yuan, and Shuai Wang. 2023. OBSan: An Out-Of-Bound
Sanitizer to Harden DNN Executables.. In NDSS.

[6] Yizhen Dong, Peixin Zhang, Jingyi Wang, Shuang Liu, Jun Sun, Jianye Hao,
Xinyu Wang, Li Wang, Jinsong Dong, and Ting Dai. 2020. An Empirical Study
on Correlation between Coverage and Robustness for Deep Neural Networks. In
2020 25th International Conference on Engineering of Complex Computer Systems
(ICECCS). IEEE, 73–82.

[7] Yang Feng, Qingkai Shi, Xinyu Gao, Jun Wan, Chunrong Fang, and Zhenyu Chen.
2020. DeepGini: Prioritizing Massive Tests to Enhance the Robustness of Deep
Neural Networks. In Proceedings of the 29th ACM SIGSOFT International Sympo-
sium on Software Testing and Analysis (ISSTA 2020). Association for Computing
Machinery, New York, NY, USA, 177–188.

[8] Amirata Ghorbani and James Y Zou. 2020. Neuron shapley: Discovering the
responsible neurons. Advances in Neural Information Processing Systems 33 (2020),
5922–5932.

[9] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. 2016. Deep learning. MIT
press.

[10] Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian QWeinberger. 2017. On calibration of
modern neural networks. In International conference on machine learning. PMLR,
1321–1330.

[11] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual
learning for image recognition. In Proceedings of the IEEE conference on computer
vision and pattern recognition. 770–778.

[12] Dan Hendrycks and Thomas Dietterich. 2019. Benchmarking neural net-
work robustness to common corruptions and perturbations. arXiv preprint
arXiv:1903.12261 (2019).

[13] Jeremy Howard. 2019. The Imagenette dataset.
[14] Qiang Hu, Yuejun Guo, Maxime Cordy, Xiaofei Xie, Wei Ma, Mike Papadakis, and

Yves Le Traon. 2021. Towards exploring the limitations of active learning: An
empirical study. In 2021 36th IEEE/ACM International Conference on Automated
Software Engineering (ASE). IEEE, 917–929.

[15] Jinhan Kim, Robert Feldt, and Shin Yoo. 2019. Guiding deep learning system
testing using surprise adequacy. In 2019 IEEE/ACM 41st International Conference
on Software Engineering (ICSE). IEEE, 1039–1049.

[16] Alex Krizhevsky, Geoffrey Hinton, et al. 2009. Learning multiple layers of features
from tiny images. (2009).

[17] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. 1998. Gradient-
based learning applied to document recognition. Proc. IEEE 86, 11 (1998), 2278–
2324.

[18] Lei Ma, Felix Juefei-Xu, Fuyuan Zhang, Jiyuan Sun, Minhui Xue, Bo Li, Chun-
yang Chen, Ting Su, Li Li, Yang Liu, et al. 2018. Deepgauge: Multi-granularity
testing criteria for deep learning systems. In Proceedings of the 33rd ACM/IEEE
International Conference on Automated Software Engineering. ACM, 120–131.

[19] Wei Ma, Mike Papadakis, Anestis Tsakmalis, Maxime Cordy, and Yves Le Traon.
2021. Test selection for deep learning systems. ACM Transactions on Software
Engineering and Methodology (TOSEM) 30, 2 (2021), 1–22.

[20] Andrew Maas, Raymond E Daly, Peter T Pham, Dan Huang, Andrew Y Ng,
and Christopher Potts. 2011. Learning word vectors for sentiment analysis.
In Proceedings of the 49th annual meeting of the association for computational
linguistics: Human language technologies. 142–150.

[21] Lassi Meronen, Martin Trapp, Andrea Pilzer, Le Yang, and Arno Solin. 2024.
Fixing overconfidence in dynamic neural networks. In Proceedings of the IEEE/CVF
Winter Conference on Applications of Computer Vision. 2680–2690.

[22] Norman Mu and Justin Gilmer. 2019. Mnist-c: A robustness benchmark for
computer vision. arXiv preprint arXiv:1906.02337 (2019).

[23] Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Baolin Wu, An-
drew Y Ng, et al. 2011. Reading digits in natural images with unsupervised feature
learning. In NIPS workshop on deep learning and unsupervised feature learning,
Vol. 2011. Granada, Spain, 7.

[24] AnhNguyen, Jason Yosinski, and Jeff Clune. 2015. Deep neural networks are easily
fooled: High confidence predictions for unrecognizable images. In Proceedings of
the IEEE conference on computer vision and pattern recognition. 427–436.

[25] Kexin Pei, Yinzhi Cao, Junfeng Yang, and Suman Jana. 2017. Deepxplore: Au-
tomated whitebox testing of deep learning systems. In Proceedings of the 26th
Symposium on Operating Systems Principles. ACM, 1–18.

[26] Gregg Rothermel, Roland H. Untch, Chengyun Chu, and Mary Jean Harrold.
2001. Prioritizing test cases for regression testing. IEEE Transactions on software
engineering 27, 10 (2001), 929–948.

[27] Tobias Scheffer, Christian Decomain, and Stefan Wrobel. 2001. Active hidden
markov models for information extraction. In International symposium on intelli-
gent data analysis. Springer, 309–318.

[28] Weijun Shen, Yanhui Li, Lin Chen, Yuanlei Han, Yuming Zhou, and Baowen
Xu. 2020. Multiple-boundary clustering and prioritization to promote neural
network retraining. In Proceedings of the 35th IEEE/ACM International Conference
on Automated Software Engineering. 410–422.

[29] Karen Simonyan and Andrew Zisserman. 2014. Very deep convolutional networks
for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014).

[30] Jeongju Sohn, Sungmin Kang, and Shin Yoo. 2023. Arachne: Search-Based Re-
pair of Deep Neural Networks. ACM Transactions on Software Engineering and
Methodology 32, 4 (2023), 1–26.

[31] Youcheng Sun, Min Wu, Wenjie Ruan, Xiaowei Huang, Marta Kwiatkowska,
and Daniel Kroening. 2018. Concolic Testing for Deep Neural Networks. In
Proceedings of the 33rd ACM/IEEE International Conference on Automated Software
Engineering (ASE 2018). Association for Computing Machinery, New York, NY,
USA, 109–119.

[32] Sunil Thulasidasan, Gopinath Chennupati, Jeff A Bilmes, Tanmoy Bhattacharya,
and SarahMichalak. 2019. Onmixup training: Improved calibration and predictive
uncertainty for deep neural networks. Advances in neural information processing
systems 32 (2019).

[33] Yuchi Tian, Kexin Pei, Suman Jana, and Baishakhi Ray. 2018. Deeptest: Automated
testing of deep-neural-network-driven autonomous cars. In Proceedings of the
40th international conference on software engineering. 303–314.

[34] Yuchi Tian, Ziyuan Zhong, Vicente Ordonez, Gail Kaiser, and Baishakhi Ray.
2020. Testing DNN image classifiers for confusion & bias errors. In Proceedings
of the acm/ieee 42nd international conference on software engineering. 1122–1134.

[35] Deng-Bao Wang, Lei Feng, and Min-Ling Zhang. 2021. Rethinking calibration of
deep neural networks: Do not be afraid of overconfidence. Advances in Neural
Information Processing Systems 34 (2021), 11809–11820.

[36] Jingyi Wang, Jialuo Chen, Youcheng Sun, Xingjun Ma, Dongxia Wang, Jun Sun,
and Peng Cheng. 2021. RobOT: Robustness-oriented testing for deep learning
systems. In 2021 IEEE/ACM 43rd International Conference on Software Engineering
(ICSE). IEEE, 300–311.

[37] Zan Wang, Hanmo You, Junjie Chen, Yingyi Zhang, Xuyuan Dong, and Wenbin
Zhang. 2021. Prioritizing test inputs for deep neural networks via mutation
analysis. In 2021 IEEE/ACM 43rd International Conference on Software Engineering
(ICSE). IEEE, 397–409.

[38] Pete Warden. 2018. Speech commands: A dataset for limited-vocabulary speech
recognition. arXiv preprint arXiv:1804.03209 (2018).

[39] Michael Weiss, Rwiddhi Chakraborty, and Paolo Tonella. 2021. A review and
refinement of surprise adequacy. In 2021 IEEE/ACM Third International Workshop
on Deep Learning for Testing and Testing for Deep Learning (DeepTest). IEEE, 17–24.

[40] Michael Weiss and Paolo Tonella. 2021. Fail-safe execution of deep learning
based systems through uncertainty monitoring. In 2021 14th IEEE conference on
software testing, verification and validation (ICST). IEEE, 24–35.

[41] Michael Weiss and Paolo Tonella. 2022. Simple techniques work surprisingly well
for neural network test prioritization and active learning (replicability study).
In Proceedings of the 31st ACM SIGSOFT International Symposium on Software
Testing and Analysis. 139–150.

[42] Han Xiao, Kashif Rasul, and Roland Vollgraf. 2017. Fashion-mnist: a novel
image dataset for benchmarking machine learning algorithms. arXiv preprint
arXiv:1708.07747 (2017).

[43] Xiaoyuan Xie, Pengbo Yin, and Songqiang Chen. 2022. Boosting the revealing
of detected violations in deep learning testing: A diversity-guided method. In
Proceedings of the 37th IEEE/ACM International Conference on Automated Software
Engineering. 1–13.

[44] Shenao Yan, Guanhong Tao, Xuwei Liu, Juan Zhai, Shiqing Ma, Lei Xu, and
Xiangyu Zhang. 2020. Correlations between deep neural network model coverage
criteria and model quality. In Proceedings of the 28th ACM Joint Meeting on
European Software Engineering Conference and Symposium on the Foundations of
Software Engineering. 775–787.

[45] Jason Yosinski, Jeff Clune, Anh Nguyen, Thomas Fuchs, and Hod Lipson. 2015.
Understanding neural networks through deep visualization. arXiv preprint
arXiv:1506.06579 (2015).

[46] Yong Yu, Xiaosheng Si, Changhua Hu, and Jianxun Zhang. 2019. A review
of recurrent neural networks: LSTM cells and network architectures. Neural
computation 31, 7 (2019), 1235–1270.

[47] Zhenlong Yuan, Yongqiang Lu, Zhaoguo Wang, and Yibo Xue. 2014. Droid-sec:
deep learning in android malware detection. In Proceedings of the 2014 ACM
conference on SIGCOMM. 371–372.

[48] Haibin Zheng, Jinyin Chen, and Haibo Jin. 2023. CertPri: certifiable prioritization
for deep neural networks via movement cost in feature space. In 2023 38th
IEEE/ACM International Conference on Automated Software Engineering (ASE).
IEEE, 1–13.

	Abstract
	1 Introduction
	2 Background
	2.1 Deep Neural Networks
	2.2 Test Case Prioritization

	3 Methodology
	3.1 Motivation
	3.2 Overview of FAST
	3.3 Feature Selection
	3.4 Contribution Measurement
	3.5 FAST for Test Prioritization
	3.6 Comparison with Similar Work

	4 Evaluation
	4.1 Experimental Setup
	4.2 Research Questions
	4.3 Discussion
	4.4 Threats to Validity

	5 Conclusion
	References

