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Abstract
We consider the problem of certifying the individ-
ual fairness (IF) of feed-forward neural networks
(NNs). In particular, we work with the ϵ-δ-IF for-
mulation, which, given a NN and a similarity met-
ric learnt from data, requires that the output differ-
ence between any pair of ϵ-similar individuals is
bounded by a maximum decision tolerance δ ≥ 0.
Working with a range of metrics, including the Ma-
halanobis distance, we propose a method to over-
approximate the resulting optimisation problem us-
ing piecewise-linear functions to lower and upper
bound the NN’s non-linearities globally over the in-
put space. We encode this computation as the solu-
tion of a Mixed-Integer Linear Programming prob-
lem and demonstrate that it can be used to compute
IF guarantees on four datasets widely used for fair-
ness benchmarking. We show how this formulation
can be used to encourage models’ fairness at train-
ing time by modifying the NN loss, and empirically
confirm our approach yields NNs that are orders of
magnitude fairer than state-of-the-art methods.

1 Introduction
Reservations have been raised about the application of neu-
ral networks (NN) in contexts where fairness is of con-
cern [Barocas and Selbst, 2018]. Because of inherent biases
present in real-world data, if unchecked, these models have
been found to discriminate against individuals on the basis of
sensitive features, such as race or sex [Bolukbasi et al., 2016,
Angwin et al., 2016]. Recently, the topic has come under the
spotlight, with technologies being increasingly challenged for
bias [Hardesty, 2018, Kirk et al., 2021, Hern, 2020], leading
to the introduction of a range of definitions and techniques
for capturing the multifaceted properties of fairness.

Fairness approaches are broadly categorised into: group
fairness [Hardt et al., 2016], which inspects the model over
data demographics; and individual fairness (IF) [Dwork et al.,
2012], which considers the behaviour over each individual.
Despite its wider adoption, group fairness is only concerned
with statistical properties of the model so that a situation may
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arise where predictions of a group-fair model can be per-
ceived as unfair by a particular individual. In contrast, IF is
a worst-case measure with guarantees over every possible in-
dividual in the input space. However, while techniques exist
for group fairness of NNs [Albarghouthi et al., 2017, Bastani
et al., 2018], research on IF has thus far been limited to de-
signing training procedures that favour fairness [Yurochkin
et al., 2020, Yeom and Fredrikson, 2020, McNamara et al.,
2017] and verification over specific individuals [Ruoss et al.,
2020]. To the best of our knowledge, there is currently no
work targeted at global certification of IF for NNs.

We develop an anytime algorithm with provable bounds
for the certification of IF on NNs. We build on the ϵ-δ-IF
formalisation employed by John et al. [2020]. That is, given
ϵ, δ ≥ 0 and a distance metric dfair that captures the similar-
ity between individuals, we ask that, for every pair of points
x′ and x′′ in the input space with dfair(x

′, x′′) ≤ ϵ, the NN’s
output does not differ by more than δ. Although related to it,
IF certification on NNs poses a different problem than adver-
sarial robustness [Tjeng et al., 2019], as both x′ and x′′ are
here problem variables, spanning the whole space. Hence,
local approximation techniques developed in the adversarial
literature cannot be employed in the context of IF.

Nevertheless, we show how this global, non-linear require-
ment can be encoded in Mixed-Integer Linear Programming
(MILP) form, by deriving a set of global upper and lower
piecewise-linear (PWL) bounds over each activation function
in the NN over the whole input space, and performing lin-
ear encoding of the (generally non-linear) similarity metric
dfair(x

′, x′′). The formulation of our optimisation as a MILP
allows us to compute an anytime, worst-case bound on IF,
which can thus be computed using standard solvers from the
global optimisation literature [Dantzig, 2016]. Furthermore,
we demonstrate how our approach can be embedded into the
NN training so as to optimise for individual fairness at train-
ing time. We do this by performing gradient descent on a
weighted loss that also accounts for the maximum δ-variation
in dfair-neighborhoods for each training point, similarly to
what is done in adversarial learning [Goodfellow et al., 2014,
Gowal et al., 2018, Wicker et al., 2021].

We apply our method on four benchmarks widely em-
ployed in the fairness literature, namely, the Adult, German,
Credit and Crime datasets [Dua and Graff, 2017], and an ar-
ray of similarity metrics learnt from data that include ℓ∞,



Mahalanobis, and NN embeddings. We empirically demon-
strate how our method is able to provide the first, non-trivial
IF certificates for NNs commonly employed for tasks from
the IF literature, and even larger NNs comprising up to thou-
sands of neurons. Furthermore, we find that our MILP-based
fair training approach consistently outperforms, in terms of
IF guarantees, NNs trained with a competitive state-of-the-
art technique by orders of magnitude, albeit at an increased
computational cost.

The paper makes the following main contributions:1

• We design a MILP-based, anytime verification approach
for the certification of IF as a global property on NNs.

• We demonstrate how our technique can be used to mod-
ify the loss function of a NN to take into account certifi-
cation of IF at training time.

• On four datasets, and an array of metrics, we show how
our techniques obtain non-trivial IF certificates and train
NNs that are significantly fairer than state-of-the-art.

Related Work A number of works have considered IF by
employing techniques from adversarial robustness. Yeom
and Fredrikson [2020] rely on randomized smoothing to find
the highest stable per-feature difference in a model. Their
method, however, provides only (weak) guarantees on model
statistics. Yurochkin et al. [2020] present a method for IF
training that builds on projected gradient descent and optimal
transport. While the method is found to decrease model bias
to state-of-the-art results, no formal guarantees are obtained.
Ruoss et al. [2020] adapted the MILP formulation for adver-
sarial robustness to handle fair metric embeddings. However,
rather than tackling the IF problem globally as introduced by
Dwork et al. [2012], the method only works iteratively on a
finite set of data, hence leaving open the possibility of unfair-
ness in the model. In contrast, the MILP encoding we obtain
through PWL bounding of activations and similarity metrics
allows us to provide guarantees over any possible pair of indi-
viduals. Urban et al. [2020] employ static analysis to certify
causal fairness. While this method yields global guarantees,
it cannot be straightforwardly employed for IF, and it is not
anytime, making exhaustive analysis impractical. John et al.
[2020] present a method for the computation of IF, though
limited to linear and kernel models. MILP and linear relax-
ation have been employed to certify NNs in local adversar-
ial settings [Ehlers, 2017, Tjeng et al., 2019, Wicker et al.,
2020]. However, local approximations cannot be employed
for the global IF problem. While Katz et al. [2017], Leino
et al. [2021] consider global robustness, their methods are re-
stricted to ℓp metrics. Furthermore, they require the knowl-
edge of a Lipschitz constant or are limited to ReLU.

2 Individual Fairness
We focus on regression and binary classification with NNs
with real-valued inputs and one-hot encoded categorical
features.2 Such frameworks are often used in automated

1Proofs and additional details can be found in Appendix of an
extended version of the paper available at http://www.fun2model.
org/bibitem.php?key=BPW+22.

2Multi-class can be tackled with component-wise analyses.

decision-making, e.g. for loan applications [Hardt et al.,
2016]. Formally, given a compact input set X ⊆ Rn and
an output set Y ⊆ R, we consider an L layer fully-connected
NN fw : X → Y , parameterised by a vector of weights
w ∈ Rnw trained on D = {(xi, yi), i ∈ {1, ..., nd}}. For
an input x ∈ X , i = 1, . . . , L and j = 1, . . . , ni, the NN is
defined as:
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where ζ
(0)
j = xj . Here, ni is the number of units in the ith

layer, W (i)
jk and b

(i)
j are its weights and biases, σ(i) is the

activation function, ϕ(i) is the pre-activation and ζ(i) the ac-
tivation. The NN output is the result of these computations,
fw(x) := ζ(L). In regression, fw(x) is the prediction, while
for classification it represents the class probability. In this
paper we focus on fully-connected NNs as widely employed
in the IF literature [Yurochkin et al., 2020, Urban et al., 2020,
Ruoss et al., 2020]. However, we should stress that our frame-
work, being based on MILP, can be easily extended to convo-
lutional, max-pool and batch-norm layers or res-nets by using
embedding techniques from the adversarial robustness litera-
ture (see e.g. [Boopathy et al., 2019].

Individual Fairness Given a NN fw, IF [Dwork et al.,
2012] enforces the property that similar individuals are sim-
ilarly treated. Similarity is defined according to a task-
dependent pseudometric, dfair : X × X 7→ R≥0, provided
by a domain expert (e.g., a Mahalanobis distance correlat-
ing each feature to the sensitive one), whereas similarity of
treatment is expressed via the absolute difference on the NN
output fw(x). We adopt the ϵ-δ-IF formulation of John et al.
[2020] for the formalisation of input-output IF similarity.

Definition 1 (ϵ-δ-IF [John et al., 2020]). Consider ϵ ≥ 0 and
δ ≥ 0. We say that fw is ϵ-δ-individually fair w.r.t. dfair iff

∀x′, x′′ s.t. dfair(x
′, x′′) ≤ ϵ =⇒ |fw(x′)− fw(x′′)| ≤ δ.

Here, ϵ measures similarity between individuals and δ is
the difference in outcomes (class probability for classifica-
tion). We emphasise that individual fairness is a global no-
tion, as the condition in Definition 1 must hold for all pairs
of points in X . We remark that the ϵ-δ-IF formulation of
John et al. [2020] (which is more general than IF formulation
typically used in the literature [Yurochkin et al., 2020, Ruoss
et al., 2020]) is a slight variation on the Lipschitz property
introduced by Dwork et al. [2012]. While introducing greater
flexibility thanks to its parametric form, it makes an IF para-
metric analysis necessary at test time. In Section 4 we analyse
how ϵ-δ-IF of NNs is affected by variations of ϵ and δ. A cru-
cial component of IF is the similarity dfair. The intuition is
that sensitive features, or their sensitive combination, should
not influence the NN output. While a number of metrics has
been discussed in the literature [Ilvento, 2019], we focus on
the following representative set of metrics which can be au-
tomatically learnt from data [John et al., 2020, Ruoss et al.,
2020, Mukherjee et al., 2020, Yurochkin et al., 2020]. Details
on metric learning is given in Appendix B.
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Weighted `p: In this casedfair(x0; x00) is de�ned as a
weighted version of aǹ p metric, i.e. dfair(x0; x00) =
p
p P n

i =1 � i jx0
i � x00

i jp. Intuitively, we set the weights� i re-
lated to sensitive features to zero, so that two individuals are
considered similar if they only differ with respect to those.
The weights� i for the remaining features can be tuned ac-
cording to their degree of correlation to the sensitive features.
Mahalanobis: In this case we havedfair(x0; x00) =p

(x0 � x00)T S(x0 � x00), for a given positive semi-de�nite
(SPD) matrixS. The Mahalanobis distance generalises the`2
metric by taking into account the intra-correlation of features
to capture latent dependencies w.r.t. the sensitive features.
Feature Embedding: The metric is computed on an embed-
ding, so thatdfair(x0; x00) = d̂(' (x0); ' (x00)) , whered̂ is ei-
ther the Mahalanobis or the weighted`p metric, and' is a
feature embedding map. These allow for greater modelling
�exibility, at the cost of reduced interpretability.

2.1 Problem Formulation

We aim at certifying� -� -IF for NNs. To this end we formalise
two problems: computing certi�cates and training for IF.

Problem 1 (Fairness Certi�cation). Given a trained NNf w ,
a similarity dfair and a distance threshold� � 0, compute

� max = max
x 0;x 002 X

dfair (x 0;x 00) � �

jf w (x0) � f w (x00)j:

Problem 1 provides a formulation in terms of optimisation,
seeking to compute the maximum output change� max for any
pair of input points whosedfair distance is no more than� .
One can then compare� max with any threshold� : if � max � �
holds then the modelf w has been certi�ed to be� -� -IF.

While Problem 1 is concerned with an already trained NN,
the methods we develop can also be employed to encourage
IF at training time. Similarly to the approaches for adversarial
learning [Goodfellow et al., 2014], we modify the training
lossL(f w (x); y) to balance between the model �t and IF.

Problem 2(Fairness Training). Consider an NNf w , a train-
ing setD, a similarity metricdfair and a distance threshold
� � 0. Let � 2 [0; 1] be a constant. De�ne the IF-fair loss as

L fair(f w (x i ); yi ; f w (x �
i ); � ) =

�L (f w (x i ); yi ) + (1 � � )jf w (x i ) � f w (x �
i )j;

wherex �
i = arg max x 2 X s:t: d fair (x i ;x ) � � jf w (x i ) � f w (x)j.

The� -IF training problem is de�ned as �ndingwfair s.t.:

wfair = arg min
w

n dX

i =1

L fair(f w (x i ); yi ):

In Problem 2 we seek to train a NN that not only is ac-
curate, but whose predictions are also fair according to Def-
inition 1. Parameter� balances between accuracy and IF. In
particular, for� = 1 we recover the standard training that
does not account for IF, while for� = 0 we only consider IF.

3 A MILP Approach For Individual Fairness
Certi�cation of individual fairness on a NN thus requires us to
solve the following global, non-convex optimisation problem:

max
x 0;x 002 X

j� j

subject to � = f w (x0) � f w (x00) (2)

dfair(x0; x00) � �: (3)

We develop a Mixed-Integer Linear Programming (MILP)
over-approximation (i.e., providing a sound bound) to this
problem. We notice that there are two sources of non-linearity
here, one induced by the NN (Equation (2)), which we refer
to as themodel constraint, and the other by the fairness met-
ric (Equation (3)), which we callfairness constraint. In the
following, we show how these can be modularly bounded by
piecewise-linear functions. In Section 3.3 we bring the results
together to derive a MILP formulation for� -� -IF.

3.1 Model Constraint
We develop a scheme based onpiecewise-linear(PWL) upper
and lower bounding for over-approximating all commonly
used non-linear activation functions. An illustration of the
PWL bound is given in Figure 1. Let� ( i )L

j and� ( i )U
j 2 R be

lower and upper bounds on the pre-activation� ( i )
j .3 We pro-

ceed by building a discretisation grid over the� ( i )
j values on

M grid points: � grid = [ � ( i )
j; 0; : : : ; � ( i )

j;M ], with � ( i )
j; 0 := � ( i )L

j

and � ( i )
j;M := � ( i )U

j , such that, in each partition interval

[� ( i )
j;l ; � ( i )

j;l +1 ], we have that� ( i ) is either convex or concave.
We then compute linear lower and upper bound functions for
� ( i ) in each[� ( i )

j;l ; � ( i )
j;l +1 ] as follows. If � ( i ) is convex (resp.

concave) in[� ( i )
j;l ; � ( i )

j;l +1 ], then an upper (resp. lower) linear
bound is given by the segment connecting the two extremum
points of the interval, and a lower (resp. upper) linear bound
is given by the tangent through the mid-point of the interval.
We then compute the values of each linear bound in each of
its grid points, and select the minimum of the lower bounds
and the maximum of the upper bound values, which we
store in two vectors� PWL;( i ) ;U

j = [ � PWL;( i ) ;U
j; 0 ; : : : ; � PWL;( i ) ;U

j;M ]

and� PWL;( i ) ;L
j = [ � PWL;( i ) ;L

j; 0 ; : : : ; � PWL;( i ) ;L
j;M ]. The following

lemma is a consequence of this construction.

Lemma 1. Let � 2 [� ( i )L
j ; � ( i )U

j ]. Denote withl the index as-
sociated to the partition of� grid in which� falls and consider
� 2 [0; 1] such that� = �� ( i )L

j;l � 1 + (1 � � )� ( i )L
j;l . Then:

� ( i ) (� ) � �� PWL;( i ) ;L
j;l � 1 + (1 � � )� PWL;( i ) ;L

j;l ;

� ( i ) (� ) � �� PWL;( i ) ;U
j;l � 1 + (1 � � )� PWL;( i ) ;U

j;l ;

that is, � PWL;( i ) ;L
j and � PWL;( i ) ;U

j de�ne continuous PWL

lower and upper bounds for� in [� ( i )L
j ; � ( i )U

j ].

3Computed by bound propagation overX [Gowal et al., 2018].
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