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Abstract
Formally verifying that reinforcement learning sys-
tems act safely is increasingly important, but ex-
isting methods only verify over finite time. This
is of limited use for dynamical systems that run
indefinitely. We introduce the first method for
verifying the time-unbounded safety of neural net-
works controlling dynamical systems. We develop a
novel abstract interpretation method which, by con-
structing adaptable template-based polyhedra using
MILP and interval arithmetic, yields sound—safe
and invariant—overapproximations of the reach set.
This provides stronger safety guarantees than previ-
ous time-bounded methods and shows whether the
agent has generalised beyond the length of its train-
ing episodes. Our method supports ReLU activation
functions and systems with linear, piecewise linear
and non-linear dynamics defined with polynomial
and transcendental functions. We demonstrate its
efficacy on a range of benchmark control problems.

1 Introduction
Reinforcement learning (RL) has reached super-human capa-
bilities on many challenging problems and is being increas-
ingly applied to cyber-physical tasks, such as robot control and
autonomous driving [Kendall et al., 2019]. The criterion for
training and evaluating RL agents is traditionally their perfor-
mance, that is, how quickly and efficiently they solve their task.
However, for agents that interact with critical environments,
performance must meet safety: not only is it required that pos-
itive outcomes eventually happen, but also that negative ones
do not [Garcı́a and Fernández, 2015; Fulton and Platzer, 2018;
Luckcuck et al., 2019]. Safety is subtle, because a system is
truly safe only if it avoids danger regardless of how long it is
left running. Determining whether an RL system is safe for
unbounded time addresses both a formal verification question,
providing stronger guarantees of correctness than bounded ver-
ification, and a machine learning question, indicating whether
the learning algorithm has generalised a strategy beyond the
length of the episodes used to train it. Verifying RL requires
reasoning about the dynamics of the environments together
with the learned agents which, in modern RL, are neural net-
works. For the first time, we treat the automated (and sound)

time-unbounded verification of neural networks interacting
with dynamical systems.

Safety analysis for neural networks has been studied be-
fore for bounded settings. One example is classification,
whose well-known vulnerability to adversarial attacks has
been analysed using gradient descent, mixed-integer lin-
ear programming (MILP), and satisfiability modulo theories
(SMT) [Moosavi-Dezfooli et al., 2016; Huang et al., 2017;
Ehlers, 2017; Bunel et al., 2018; Katz et al., 2019]. Search-
based algorithms of this kind are inherently bounded, un-
like abstract interpretation methods. Abstract interpretation
computes a representation of the set of reachable states and
checks whether it avoids a set of bad states. Methods for
the abstract interpretation of neural networks have borrowed
from the analysis of numerical programs, and have been
applied to adversarial attacks [Pulina and Tacchella, 2010;
Singh et al., 2019], output range analysis [Xiang et al., 2018;
Dutta et al., 2018], and time-bounded verification of RL [Tran
et al., 2020; Bacci and Parker, 2020]. Time-unbounded verifi-
cation is more difficult because it requires that the abstraction
is both safe, i.e., disjoint from the bad states, and invariant,
i.e., no other states are reachable from it; none of the available
approaches, as is, have been demonstrated to achieve both
requirements on RL problems.

We present the first technique for verifying whether a neural
network controlling a dynamical system maintains the system
within a safe region for unbounded time. For this purpose, we
overapproximate the reach set using template polyhedra, i.e.,
polyhedra whose shape is determined by a set of directions,
the template [Sankaranarayanan et al., 2005]. Traditional
interval and octagonal abstractions have rigid shapes which
often produce abstractions that are too coarse to be safe or
too tight to be invariant. By contrast—with an appropriate
choice of directions—template polyhedra can be adapted to
the verification problem making the abstraction tight only
where necessary and thus facilitating the identification of safe
invariants [Bogomolov et al., 2017; Frehse et al., 2018].

We formulate the problem of computing template polyhedra
as an optimization problem. For this purpose, we introduce
an MILP encoding for a sound abstraction of neural networks
with ReLU activation functions acting over discrete-time sys-
tems. We support linear, piecewise linear and non-linear sys-
tems defined with polynomial and transcendental functions.
For the latter, we combine MILP with interval arithmetic.



We propose a safety verification workflow where agents
trained with any, possibly model-free, RL technique are ver-
ified against a model of the environment. Every model is
accompanied with user-defined templates which, as we ex-
perimentally demonstrate, suffice to verify multiple agents.
Upon every successful verification result we thus certify that
an agent is safe w.r.t. a model, which determines our safety
specification. Ultimately, we provide formal guarantees that
are equivalent to (or stronger than) those of agents that are
trained or enforced to be safe [Alshiekh et al., 2018; Cheng
et al., 2019; Hasanbeig et al., 2019b; Hasanbeig et al., 2019a;
Li and Bastani, 2020], yet without imposing constraints on the
agent or the RL process.

We demonstrate that our method effectively verifies agents
trained over three benchmark control problems [Jaeger et al.,
2019; Tran et al., 2020; Brockman et al., 2016]. We addi-
tionally show that an alternative time-unbounded verification
approach built upon range analysis fails in all cases.

In summary, we introduce the first method for the formal
time-unbounded safety analysis of RL systems. We have
built a software prototype and demonstrate the efficacy of our
method over a range of benchmarks.

2 Safety Analysis of Reinforcement Learning
A time-invariant controlled dynamical system with discrete
actions and over discrete time consists of an n-dimensional
vector of real-valued state variables x, an m-dimensional vec-
tor of real-valued observable variables y, and a natural number
Σ of input actions available to an external agent. The set A
denotes the set of actions {a ∈ Z : 1 ≤ a ≤ Σ}. The system
dynamics are determined by a difference equation

xt = f(xt−1, at) + ct, ct ∈ C, x0 ∈ X0, (1)

where xt ∈ Rn, at ∈ A, and ct respectively denote state,
input action, and control disturbance at time t. The set C ⊂
Rn is the space of control disturbances, X0 ⊂ Rn is the
space of initial conditions, and f : Rn × A → Rn is the
update function. An observation function g : Rn → Rm and
a space of observation disturbances D ⊂ Rm determine the
observable values at time t from a state:

yt = g(xt) + dt, dt ∈ D. (2)

A trajectory of the system is an infinite sequence of states and
actions in alternation

x0a1x1a2x2 . . . (3)

where every state x1, x2, . . . is determined by Eq. (1); ev-
ery action a1, a2, . . . is determined by an external agent
σ : Rm → A from the observation at the previous step, i.e.,

at = σ(yt−1). (4)

We target the safety verification question for controlled dy-
namical systems. Let B ⊂ Rn be a set of bad states. Verifying
the safety of a system consists of deciding whether, for ev-
ery trajectory x0a1x1a2x2 . . . , we have that xt 6∈ B for all
t = 0, . . . ,∞. Dually, it consists of determinining whether
there exists a finite prefix x0a1x1 . . . akxk such that xk ∈ B.
In the former case we say that the system is safe; in the latter
we say that it is unsafe.

ego lead ego lead
(a) (b)

Figure 1: Adaptive cruise control: a good and a bad state.

Example 1. Adaptive cruise control is a paradigmatic exam-
ple for the safety of an RL system [Desjardins and Chaib-draa,
2011; Tran et al., 2020]. In its simplest form, it consists of
two vehicles, ego and lead, moving in a straight line. An
agent should control ego so that it stays at some close and
safe distance from lead. State variables xv, x′v, and x′′v resp.
determine position, speed, and acceleration of each vehicle
v = ego, lead. The observation function exposes vehicles dis-
tance xlead − xego and speed of ego x′ego; both observables are
subject to a disturbance. Lead proceeds at a constant speed
of 28 m s−1 and, at every step, the agent can either decelerate
(action 1) or accelerate ego by 1 m s−2 (action 2). Update and
observation functions are shown in Sect. 4.2. The agent is safe
only if the distance is positive along every trajectory (Fig. 1a);
every other condition indicates that the vehicles have crashed
(Fig. 1b). The set of bad states is thus defined by the constraint
xlead ≤ xego. Trivially, an agent that always decelerates is
safe; however, safety must coexist with performance, which
rewards the agent for keeping ego close to lead.

For the purpose of training an agent using RL, we augment
the system with the probability distributions λX0

, λC , and
λD for the sets X0, C, and D, respectively. We require that
supp(λX0

) = X0, supp(λC) = C, and supp(λD) = D,
where supp(λ) = {x : λ(x) > 0} is the support of distri-
bution λ. This induces a discrete-time partially observable
Markov decision process (POMDP) with finite actions and
possibly uncountable state space and branching. Precisely, we
let Rn be the state space and Rm be the observation space,
together with the σ-algebras FX and FY of measurable sub-
sets of respectively Rn and Rm. The probability of beginning
from a set X is given by the initial belief µ : FX → [0, 1], i.e.,

µ(X) =

∫
X

λX0
(x) dx. (5)

The set of actions A corresponds to that of the original con-
trolled dynamical system. The transition probability function
T : Rn ×A×FX → [0, 1] is thus

T (x, a, Z) =

∫
Z

λC(z − f(x, a)) dz, (6)

which denotes the probability that, from state x and after
choosing action a, the process jumps to a target set Z. The
observation probability function O : Rn ×FY → [0, 1] is

O(x, Y ) =

∫
Y

λD(y − g(x)) dy, (7)

that is, the probability of observing subset Y from state x.
Finally, a reward function R : Rm → R maps observations to
reward values. We discuss in Sect. 4 how we design rewards
functions for obtaining performant and safe agents using RL.



Agents are given in the form of neural networks. We con-
sider neural networks with ReLU activation functions,m input
neurons, l hidden layers with respectively h1, . . . , hl neurons,
and Σ output neurons. The variable vectors z0, . . . , zl+1 de-
note the values of the neurons at each layer. The input layer z0

is assigned from the system observation y, every hidden layer
is determined according to the equation

zi = ReLU(Wizi−1 + bi), for i = 1, . . . , l, (8)

and the output layer according to zl+1 = Wl+1zl. Each matrix
Wi denotes the weights between any other (i− 1)-th and i-th
layers, and each vector bi denotes the respective biases. The
function ReLU applies max{·, 0} element-wise to its hi-di-
mensional argument. The output action is determined by the
index of the output neuron whose value is the highest; in other
words, the neural network defines the agent

σ(z0) = argmax
j∈A

〈ej , zl+1〉, (9)

where ej is the j-th standard unit vector of RΣ and 〈·, ·〉 de-
notes scalar product. Altogether, the neural network acts as a
classifier from observations to actions.

We train our agents over the POMDP induced by the distri-
butions over initial and disturbance sets. Then, we verify the
safety of the dynamical system controlled by the obtained net-
work. We tackle time-unbounded safety verification; for this
purpose, we introduce a technique for constructing coarse yet
safe abstractions of the reach sets of these neurally controlled
dynamical systems.

3 Template-based Polyhedral Abstractions for
Neurally Controlled Dynamical Systems

We employ abstract interpretation for constructing a sound
overapproximation of the reach set of the system. Specifically,
we compute a sequence of abstract sets of states in Rn

Xt+1 = post(Xt) (10)

for increasing t ≥ 0, where post—the post operator—ensures
that Xt+1 overapproximates the states that are reachable af-
ter one step from Xt. Time-unbounded safety verification
succeeds if our procedure finds a finite k ≥ 1 such that the
sequence up to k is
invariant Xk ⊆ ∪{X0, . . . , Xk−1} and
safe ∪{X0, . . . , Xk} ∩B = ∅.
The procedure computes Xt iteratively for increasing t and
checks both conditions at each step. If both are satisfied the
procedure terminates concluding that the system is safe; if
safety is violated it terminates with an inconclusive answer.
This procedure may, in the worst case, not terminate. We
present a post operator that computes Xt in the form of fi-
nite unions of template polyhedra; as our experiments show
(Sect. 4), this yields safe and invariant abstractions in practice.

We call a finite set of directions ∆ ⊂ Rn a template. A
∆-polyhedron is a polyhedron whose facets are normal to the
directions in ∆. The ∆-polyhedron ofX , whereX is a convex
set in Rn, is the tightest ∆-polyhedron enclosing X:

∩{{x : 〈δ, x〉 ≤ ρX(δ)} : δ ∈ ∆}, (11)

δ1

δ2

δ3

Rectangle Octagon {δ1, δ2, δ3}-polyhedron
(a) (b) (c)

Figure 2: Template polyhedra (hatched areas) of a set (gray area).

where ρX(δ) = sup{〈δ, x〉 : x ∈ X} is the support function
of X . Special cases of template polyhedra are rectangles (i.e.,
intervals) and octagons (Fig. 2a and b), which are determined
by specific templates. In addition, by using fewer, well-chosen
directions, template polyhedra let us construct sufficiently
tight yet unbounded polyhedral abstractions (Fig. 2c).

We compute template polyhedra over a symbolic repre-
sentation of the post. We split the post computation into a
partitioning Pt (a set of sets in Rn) that overapproximates the
state that are reachable after one step from Xt, i.e.,

∪Pt ⊇ {f(x, σ(g(x) + d)) + c : c ∈ C, d ∈ D,x ∈ Xt}.
(12)

As we show below, we build the partitioning from the piece-
wise structure of the system and represent its elements symbol-
ically. Then, for every symbolic representation we construct
a template polyhedron by optimising in the directions of ∆.
Our post is the union of these template polyhedra:

post(Xt) = ∪{∆-polyhedron of convP ′ : P ′ ∈ Pt}, (13)

where convP ′ denotes the convex hull of the members of
P ′ ⊂ Rn. The post produces a union of convex polyhedral
overapproximations.

Neurally controlled dynamical systems often have piece-
wise dynamics. The discrete action space naturally induces a
case split in the update function. Also, some systems may have
dynamics that switch between two or more behaviours accord-
ing to guard conditions over the state (see, e.g., Sect. 4.1).
Formally, each case split is a partial function from a set
F ⊂ (Rn × A → Rn) s.t. f = ∪F and f is total. Like-
wise, this case split and the encoding below also applies to the
observation function g; for simplicity, we only refer to f .

We compute post(Xt) using optimisation. We express an
encoding for every combination of action a ∈ A, case split
f ′ ∈ F of the update function, and convex polyhedron X ′
from the finite union of convex polyhedra Xt; each combina-
tion induces an element P ′ of Pt. For a direction δ ∈ ∆, we
solve the following problem:

maximize 〈δ, p′〉
subject to σ(y) = a,

p′ = f ′(x′, a) + c, x′ ∈ dom(f ′(·, a))
y = g(x′) + d,
c ∈ C, d ∈ D, x′ ∈ X ′,

(14)

over the variables c, x′, p′ ∈ Rn and y, d ∈ Rm. The solution
provides the value of ρconvP ′(δ) which, computed over all
δ ∈ ∆, yields the ∆-polyhedron of P ′ (see Eq. (11)); in turn,
the polyhedron yields an element of the post (see Eq. (13)).
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Figure 3: Abstract reach sets of a neural network for adaptive cruise control using different templates (Ex. 2). Plots are projected onto vehicles
distance (y-axis) and position of lead (x-axis) and constrained within a window, as shown; different colours correspond to different time steps.

The optimisation problem consists of a linear objective
function and constraints for, respectively, the action chosen
by the neural network, update and observation functions, and
disturbance and input sets. We assume that the disturbance
sets C and D are convex polyhedra, and that the initial set
X0 is a union of convex polyhedra similarly to all other Xt

for t ≥ 1. For partial functions f ′(·, a), we assume that the
domains of definition are given as convex polyhedra. Conse-
quently, the constraints for C, D, X ′, and dom(f ′(·, a)) are
expressed with systems of linear inequalities. Our encoding
for the constraint over the neural network σ(y) = a and our
overapproximation of non-linear functions introduce integer
variables, as we show below. The optimisation problem thus
results in an MILP.

The network selects action a when the value of the a-th out-
put neuron is larger than the value of all other output neurons
(Eq. (9)). The constraint for σ(y) = a is thus

〈ej − ea, zl+1〉 ≤ 0 for j = 1, . . . ,Σ, (15)

where zl+1 ∈ RΣ is a variable for the value of the output layer.
For each hidden layer i, we add to the optimisation problem
a real variable zi ∈ Rhi for the values of the neurons in the
layer, plus an integer variable z′i ∈ Zhi for the activation status
of the ReLU function. We encode the ReLU function using
a big-M encoding [Tjeng et al., 2019]. For the hidden layers,
we add constraints

0 ≤ zi −Wizi−1 − bi ≤Mz′i for i = 1, . . . , l,
0 ≤ zi ≤M −Mz′i ′′
0 ≤ z′i ≤ 1 ′′

(16)

For output and input layers, we add zl+1 = Wl+1zl and z0 =
y. Constant M ∈ R is a sufficiently large upper bound for
the values a neuron can take. Notably, this neither imposes
bounds on systems’ states nor on the time horizon.

Linear update (and observation) functions are encoded di-
rectly into the MILP using linear equalities. For non-linear
constraints defined with polynomials or transcendental func-
tions, we introduce an overapproximation based on interval
arithmetic. Constraint p′ = f ′(x′, a) + c is an n-dimensional
system of equalities. We identify the equations within the
the system that are non-linear and let p′N, f ′N, and cN be the

corresponding projection for resp. p′, and f ′, and c. Moreover,
we let x′N be the largest subset of variables in x′ that appear in
these non-linear equations. The non-linear components thus
form the reduced system

p′N = f ′N(x′N, a) + cN. (17)
We encode the remaining linear components exactly, using
linear equalities, whereas we overapproximate Eq. (17). First,
we construct a bounding box of X ′N; note that we ensure
beforehand that X ′N is bounded with an appropriate template
choice (see Sect. 4.3). Then, we partition the bounding box
into a grid of intervals [ξ

1
, ξ̄1], . . . , [ξ

κ
, ξ̄κ]. For every element

i = 1, . . . , κ, we compute using interval arithmetic an output
interval [πi, π̄i] for the image of [ξ

i
, ξ̄i] though f ′N(·, a). As a

result, we obtain a lookup table that associates input intervals
to output intervals. We encode this table by adding to the
MILP the integer variables ζ1, . . . ζκ ∈ Z, each of which
represents an active interval, and the following constraints:∑κ

i=1 ξi − ξi · ζi ≤ x
′
N ≤

∑κ
i=1 ξ̄i − ξ̄i · ζi∑κ

i=1 πi − πi · ζi ≤ p′N − cN ≤
∑κ
i=1 π̄i − π̄i · ζi∑κ

i=1 ζi = κ− 1
0 ≤ ζi ≤ 1 for i = 1, . . . , κ.

(18)

We tune the precision of the overapproximation by fixing a
desired granularity for output intervals, a maximal diameter,
and iteratively split the input intervals until that is attained.
Example 2. We trained a neural network for adaptive cruise
control (Ex. 1) by rewarding the agent for keeping a safety
distance of 10 m; the vehicles start from a range of distances
between 20 and 40 m. We employed our method for analysing
its safety using three different abstraction templates: rectan-
gles, octagons and a custom template designed for this system
(see Sect. 4.2). Rectangles produce an excessively coarse
abstraction which hit distance zero: the bad state (Fig. 3a).
Unlike rectangles, octagons keep track of the vehicle’s dis-
tance and thus avoid the bad state; however, their abstraction
is too tight to identify an invariant, inducing an infinite se-
quence of polyhedra along the vehicle’s position (Fig. 3b).
Our custom template keeps track of vehicles distance, while
abstracting away absolute position; this yields a safe and
invariant abstraction of the reach set (Fig. 3c).



4 Experimental Evaluation
We evaluate our method over multiple agents for 3 benchmark
control problems: a bouncing ball, automated cruise control,
and cart-pole. We selected a range of loss functions and hy-
perparameters and verified, using our method, which setups
produce safe behaviour. We trained RL agents using proxi-
mal policy optimisation (PPO) [Schulman et al., 2017]. We
used standard feed forward architectures with 2 hidden layers
of size 64 (32 for the bouncing ball), and ReLU activation
functions; we used a learning rate of 5e−4.

We built a prototype1 and verified the safety of these net-
works with rectangular and octagonal abstractions and, when
necessary, custom templates2 which we discuss in Sect. 4.2
and 4.3. In addition, we also compared our method with an
alternative approach built upon range analysis (Sect. 4.4).

We ran our experiments on a 4-core 4.2GHz with 64GB
RAM. Results are shown in Tab. 1 and discussed in Sect. 4.4.

4.1 Bouncing Ball
Environment The system consists of a ball, whose height
from the ground is determined by a variable x and whose
vertical velocity is determined by a variable x′ [Jaeger et
al., 2019]. Under normal conditions, position is given by
the equation xt = xt−1 + τ · x′t−1 and velocity is given by
x′t = x′t−1 − τ · g, where g denotes gravitational acceleration
and τ = 0.1 indicates our time step. Every time the ball hits
the ground, i.e., xt−1 ≤ 0, the ball bounces back after losing
10% of its energy, i.e., x′t = −0.9 · x′t−1 − τ · g and xt = 0.
At every timestep, the agent can either hit the ball downward
by adding −4 m s−1 to its velocity, or do nothing. Overall,
this results in a piecewise linear system.

Training The goal is to ensure that the ball keeps bouncing
indefinitely, while using the piston as little as possible. We
reward the agent with value 1 for each time step that the ball’s
absolute velocity is above the minimal velocity of 1 m s−1.
Additionally, we discourage the agent from overactivating the
piston by punishing it with reward -1 every time it is activated.
We trained 11 agents using different initial seeds and with
episodes of at most 1000 steps, after which we forcefully
terminate. We terminate training either when our agent reaches
a mean reward of 900 or after 5M training steps.

Verification As initial condition, we consider the set of ini-
tial ball heights x0 ∈ [7, 10] and initial velocities x′0 ∈ [0, 0.1].
We use traditional rectangular and octagonal abstractions, that
is, for rectangles we use the directions x,−x, x′,−x′ and for
octagons add the extra directions x+x′,−x+x′, x−x′,−x−
x′. Notably, all agents have been successfully verified with
both rectangles and octagons with no notable difference in
performance.

4.2 Adaptive Cruise Control
Environment The problem consists of two vehicles, lead
and ego, whose state is determined by variables xv, x′v and
x′′v , respectively, for position, speed, and acceleration of v =
ego, lead (see Ex. 1). The lead car proceeds at constant speed

1https://github.com/phate09/SafeRL Infinity
2For readability, we present direction δ by displaying 〈δ, x〉.

(28 m s−1), and the agent controls the acceleration (± 1 m s−2)
of ego using either of two actions. Its dynamics are given by

xv,t = xv,t−1 + τ · x′v,t−1 for v = ego, lead, (19)

x′ego,t = xego,t−1 + τ · x′′ego,t−1 x′lead,t = 28, (20)

x′′ego,t =

{
−1 if at−1 = 1,

1 if at−1 = 2.
(21)

The observation function exposes vehicle distance ydis and the
velocity of ego yvel with an additional observation disturbance
of radius ε, determined by the following equations:

ydis,t = xlead,t − xego,t + ddis,t, ddis,t ∈ [−ε,+ε] (22)

yvel,t = x′ego,t + dvel,t, dvel,t ∈ [−ε,+ε]. (23)

We consider a case with ε = 0 and another case with ε = 0.05,
and use τ = 0.1. Altogether, when an action is given this is a
linear system with disturbances.
Training We train our agents using two 2 different reward
functions. A “simple” function only rewards the agent for each
timestep it survives without crashing, that is, R(ydis, yvel) = 1;
a “complex” function additionally punishes the agent from
being away from a predefined distance y?dis, specifically,
R(ydis, yvel) = 1−0.02 · (ydis−y?dis)

2. We cap each episode at
1000 timesteps. From the definition of the simple cost function
above, we can periodically pre-test the safety of the agent by
disabling the exploration and requiring an average score of
1000 before attempting the verification step. For the complex
cost function it is more difficult to estimate what a safe score
should be, so we empirically determined that before attempt-
ing to verify the neural network, the agent needs to reach
an average score of at least -20. As an additional stopping
condition we terminate the training after 20M training steps.
We ran our algorithm over 22 agents trained with different
initialisation seeds and two modes of input perturbation (ε = 0
and ε = 0.05) for up to 300 seconds.
Verification We consider the initial region enclosed within
the constraints xlead,0 ∈ [40, 50], xego,0 ∈ [0, 10], x′ego,0 = 36.
Using standard rectangular or octagonal abstractions that
verification procedure fails by either returning a spurious
counterexamples or timing out. To effectively verify this
systems, we designed a template with the following direc-
tions: x′′ego,−x′′ego, x′lead,−x′lead, (x′lead−x′ego),−(x′lead−x′ego),
(xlead − xego), −(xlead − xego). This allows us to keep track of
the distance between the two vehicles and easily spot if the
agent encounters an unsafe state, while enabling the identi-
fication of an invariant. Agents could be proven to be safe
in most but not all of the cases within our time constraints
(300s), showing a higher degree of difficulty compared to the
previous problem. When testing the agents on the perturbed
environment, only a few of the agents that were proven safe
in the previous experiment retained safety, demonstrating that
the problem the agent had to solve is much harder.

4.3 Cart-pole
Environment The cart-pole problem is a very well known
control problem in the RL literature; for our experiments,
we refer to the OpenAI Gym implementation of CartPole-
v1 [Brockman et al., 2016]. The state variables are angle θ

https://github.com/phate09/SafeRL_Infinity


and angular velocity θ′ of the pole, together with horizontal
position x and velocity x′ of the cart. The agent has two
actions for pushing the cart to either the left or the right which,
together with θ and θ′, internally determine horizontal and
angular accelerations x′′ and θ′′. The values of θ′′ and x′′
are determined according to non-linear equations defined with
transcendental functions and whose arguments are the action
and variables θ and θ′. The update rule for angle θ, position x,
and velocities θ′ and x′ follow a linear Euler integration rule
with timestep τ . All variables x, x′, θ, and θ′ are observable.

Training The objective for an agent is to keep the pole up-
right; we consider the system unsafe whenever θ > 12◦,
according to the OpenAI Gym termination condition. We
train agents using three cost functions. A “simple” version
only rewards the agent for surviving; a “complex” version
discourages it from having high values of θ and θ′, i.e.,
R(x, x′, θ, θ′) = 1 − 0.5 ∗ θ2 − 0.5 ∗ (θ′)2 − 0.1 ∗ (x′)2;
a third one limits the complex cost function to only giving pos-
itive rewards. For every cost function, we trained two agents
using τ = 0.02 and τ = 0.001, thus obtaining 6 agents. We
capped each episode to 8000 timesteps. For all cost functions,
we terminate training when the mean reward of the last 50
episodes reaches 7950 (i.e., sufficiently close to the maximum
of 8000) or after 20M training steps. We use curriculum learn-
ing to improve training: when the mean episode return reaches
6500 the initial states get sampled from bigger intervals with
θ ∈ [−0.2, 0.2] and θ′ ∈ [−0.5, 0.5].

Verification We use the starting region of OpenAI Gym,
i.e., all variables are initialised from the interval [−0.05, 0.05].
However, we remove the constraints imposed on x and let the
cart-pole move freely to any position. Rectangles and octagons
failed to prove safety on all instances. Thus, we designed a
custom template that forms an octagon over θ and θ′ only,
determined by the following directions: θ, −θ, θ′, −θ′, θ+ θ′,
−θ + θ′, θ − θ′, −θ − θ′. This template choice serves two
purposes. First, it ignores position x thus abstracting its values
away. Second, it bounds the space of θ and θ′, which are the
variables appearing in the non-linear equations of the system.
This lets us use interval arithmetic for encoding the non-linear
equations in our MILP (see Sect. 3). We verified our agents
against both versions of the environment, with τ = 0.02 and
with τ = 0.001 to test the how it would affect safety. The
agents that did run on environments at τ = 0.001 during the
evaluation found an invariant quicker and in less timesteps.

4.4 Results
Table 1 reports number of solved instances, average timestep
of invariant detection, number of template polyhedra in the
abstract reach set after pruning redundant ones, and runtime.

The time required to find whether the agent is safe increases
as the number of variables in the problem increases (BB has
2, ACC has 6 and CP has 4) and on the type of abstraction.
Templates enable us to find invariants on problems that would
not converge otherwise (ACC and CP). Once we introduce a
small observation perturbation on ACC such as in adversarial
examples, only a small fraction of the agents remain safe
negatively impacting safety.

From our results, the cost function used does not strongly

Env. Abs. Safe Avg Avg Avg
k poly. runtime

BB Rect 11/11 237 477 40s
BB Oct 11/11 203 411 47s
ACC (ε = 0) Temp 20/22 467 610 171s
ACC (ε = .05) Temp 5/22 226 337 124s
CP (τ = .001) Temp 4/6 27 18 67s
CP (τ = .02) Temp 3/6 100 125 174s

Table 1: Verification results by environment, i.e, bouncing ball (BB),
adaptive cruise control (ACC) and cart-pole (CP), hyperparameters ε
and τ (where they apply), abstraction, i.e., rectangular, octagonal, or
template-based, and number of agents determined to be safe within
300s. For successful outcomes, we report average timestep of fixpoint
detection k, number of final template polyhedra, and runtime.

correlate with the safety of the agent hence it is omitted in
the table. Conversely, shorter timesteps contribute positively
to reducing the time required to verify an agent, promoting a
higher chance to find a safe invariant in early timesteps.

Additionally, we verified our agents using a naive time-
unbounded approach (based on range analysis) that constructs,
from the network in isolation, ranges of observables for which
an action is enabled; then, it uses these ranges as guards for
the dynamical system. This alternative approach failed on
all instances by producing inconclusive answers (unsafe ab-
stractions) or reaching time-out. Notably, existing verification
methods for neural networks are incomparable as they only
support time-bounded problems such as robustness to adver-
sarial attacks or finite-horizon safety analysis of RL [Tran et
al., 2020; Gehr et al., 2018].

5 Conclusion
We presented the first method for verifying the safety of RL
agents up to infinite time. To this end, our method constructs
coarse, yet precise enough, abstractions using template polyhe-
dra. We demonstrated the efficacy of our method over multiple
case studies. Our technique yields stronger formal guarantees
than previous time-bounded methods, and also indicates which
RL setups generalise well beyond the length of their training
episodes. Our result poses the basis for future research, both
in machine learning and formal verification. Our method can
be used to make informed decisions about architectures and
hyperparameters, and also to guide an RL procedure that trains
for safety. Also, our method lends itself to extensions towards
multi-agent systems, systems over continuous time, continu-
ous actions and automated abstraction refinement.
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