
Applied Intelligence manuscript No.
(will be inserted by the editor)

Rational Verification: A Progress Report1

Alessandro Abate · Julian Gutierrez · Lewis2

Hammond · Paul Harrenstein · Marta3

Kwiatkowska · Muhammad Najib · Giuseppe4

Perelli · Thomas Steeples · Michael Wooldridge5

6

Received: DD Month YEAR / Accepted: DD Month YEAR7

Wooldridge, Gutierrez, Harrenstein, and Perelli acknowledge the support of the ERC under grant 291528
(“RACE”). Wooldridge and Harrenstein further acknowledge the support of the Alan Turing Institute, Lon-
don. Kwiatkowska acknowledges the support of the ERC under the grant 834115 (“FUN2MODEL”) and
the EPSRC Programme Grant on Mobile Autonomy (EP/M019918/1). Abate acknowledges the HICLASS
project (113213), a partnership between the Aerospace Technology Institute (ATI), Department for Busi-
ness, Energy & Industrial Strategy (BEIS) and Innovate UK. Hammond acknowledges the support of an
EPSRC Doctoral Training Partnership studentship (Reference: 2218880). Harrenstein was furthermore
supported by the ERC under grant 639945 (“ACCORD”). Perelli was furthermore supported by the ERC
under grant 834228 (”WHITEMECH”) and the EU ICT-48 2020 project TAILOR (No. 952215). Steeples
gratefully acknowledges the support of the EPSRC Centre for Doctoral Training in Autonomous Intelligent
Machines and Systems EP/L015897/1 and the Ian Palmer Memorial Scholarship. Najib acknowledges the
support of the ERC European Union’s Horizon 2020 research and innovation programme (grant 759969).

A. Abate
Department of Computer Science, University of Oxford. E-mail: aabate@cs.ox.ac.uk

J. Gutierrez
Faculty of Information Technology, Monash University. E-mail: julian.gutierrez@monash.edu

L. Hammond
Department of Computer Science / Future of Humanity Institute, University of Oxford. E-mail:
lewis.hammond@cs.ox.ac.uk

P. Harrenstein
Department of Computer Science, University of Oxford. E-mail: paul.harrenstein@cs.ox.ac.uk

M. Kwiatkowska
Department of Computer Science, University of Oxford. E-mail: marta@cs.ox.ac.uk

M. Najib
Department of Computer Science, University of Kaiserslautern. E-mail: najib@cs.uni-kl.de

G. Perelli
Department of Computer, Control, and Management Engineering, Sapienza University of Rome. E-mail:
perelli@diag.uniroma1.it

T. Steeples
Department of Computer Science, University of Oxford. E-mail: thomas.steeples@cs.ox.ac.uk

M. Wooldridge
Department of Computer Science, University of Oxford. E-mail: mjw@cs.ox.ac.uk

2 Alessandro Abate et al.

Abstract We provide a survey of the state of the art of rational verification: the prob-8

lem of checking whether a given temporal logic formula ϕ is satisfied in some or all9

game theoretic equilibrium computations of a multi-agent system – that is, whether10

the system will exhibit the behaviour ϕ represents under the assumption that agents11

within the system act rationally in pursuit of their preferences. After motivating and12

introducing the overall framework of rational verification, we discuss key results ob-13

tained in the past few years as well as relevant related work in logic, AI, and Computer14

Science.15

Keywords automated verification · game theory · multi-agent systems · model16

checking · automated synthesis17

1 Introduction18

The deployment of AI technologies in a wide range of application areas over the past19

decade has brought the problem of verifying such systems into sharp focus. Verifi-20

cation is one of the most important and widely-studied problems in computer sci-21

ence [14]. Verification is the problem of checking program correctness: the key de-22

cision problem relating to verification is that of establishing whether or not a given23

system P satisfies a given specification ϕ . The most successful contemporary approach24

to formal verification is model checking, in which an abstract, finite state model of the25

system of interest is represented as a Kripke structure (a labelled transition system),26

and the specification is represented as a temporal logic formula, the models of which27

are intended to correspond to “correct” behaviours of the system [30]. The verification28

process then reduces to establishing whether the specification formula is satisfied in29

the given Kripke structure, a process that can be efficiently automated in many settings30

of interest [27, 9].31

In the present paper, we will be concerned with multi-agent systems [72, 81].32

Software agents were originally proposed in the late 1980s, but it is only over the33

past decade that the software agent paradigm has been widely adopted. At the time of34

writing, software agents are ubiquitous: we have software agents in our phone (e.g.,35

Siri), processing requests online, automatically trading in global markets, controlling36

complex navigation systems (e.g., those in self-driving cars), and even carrying out37

tasks on our behalf at home (e.g., Alexa). Typically, these agents do not work in38

isolation: they may interact with humans or with other software agents. The field of39

multi-agent systems is concerned with understanding and engineering systems that40

have these characteristics.41

Since agents are typically “owned” by different principals, there is no requirement42

or assumption that the preferences delegated to different agents are aligned in any way.43

It may be that their preferences are compatible, but it may equally be that preferences44

are in opposition. Game theory provides a natural and widely-adopted framework45

through which to understand systems with these properties, where participants pursue46

their preferences rationally and strategically [59], and this observation has prompted47

a huge body of research over the past decade, attempting to apply and adapt game48

theoretic techniques to the analysis of multi-agent systems [62, 72].49

Rational Verification: A Progress Report 3

We are concerned with the question of how we should think about the issues of50

correctness and verification in multi-agent systems. We argue that in a multi-agent51

setting, it is appropriate to ask what behaviours the system will exhibit under the52

assumption that agents act rationally in pursuit of their preferences. We advance53

the paradigm of rational verification for multi-agent systems, as a counterpart to54

classical verification. Rational verification is concerned with establishing whether a55

given temporal logic formula ϕ is satisfied in some or all game theoretic equilibria of a56

multi-agent system – that is, whether the system will exhibit the behaviour represented57

by ϕ under the assumption that agents within the system act rationally in pursuit of58

their preferences/goals.59

We begin by motivating our approach, describing in detail the issue of correctness60

and verification, and the hugely successful model checking paradigm for verification.61

We then discuss the question of what correctness means in the setting of multi-agent62

systems, and this leads us to introduce the paradigm of rational verification and equi-63

librium checking. We then survey a range of semantic models for rational verification,64

summarising the key complexity results known for these models, and then examine65

three key tools for rational verification. We conclude by surveying some active areas66

of current research.67

2 Setting the Scene68

The aim of this section is to explain how the concept of rational verification has69

emerged from various research trends in computer science and artificial intelligence,70

and how it differs from the conventional conception of verification.71

Correctness and Formal Verification: The correctness problem has been one of72

the most widely studied problems in computer science over the past fifty years, and73

remains a topic of fundamental concern to the present day [14]. Broadly speaking,74

the correctness problem is concerned with checking that computer systems behave75

as their designer intends. Probably the most important problem studied within the76

correctness domain is that of formal verification. Formal verification is the problem77

of checking that a given computer program or system P is correct with respect to a78

given formal (i.e., mathematical) specification ϕ . We understand ϕ as a description79

of system behaviours that the designer judges to be acceptable – a program that80

guarantees to generate a behaviour as described in ϕ is deemed to correctly implement81

the specification ϕ .82

A key insight, due to Amir Pnueli, is that temporal logic provides a suitable83

framework within with which to express formal specifications of reactive system be-84

haviour [65]. Pnueli proposed Linear Temporal Logic (LTL) for expressing desirable85

properties of computations. LTL extends classical logic with tense operators X (“in86

the next state. . . ”), F (“eventually. . . ”), G (“always. . . ”), and U (“. . . until. . . ”) [30].87

For example, the requirement that a system never enters a “crash” state can naturally88

be expressed in LTL by a formula G¬crash, where ¬crash denotes the complement89

(negation) of the set of “crash” states (namely states associated with a label crash). If90

we let [[P]] denote the set of all possible computations that may be produced by the91

program P, and let [[ϕ]] denote the set of state sequences that satisfy the LTL formula92

4 Alessandro Abate et al.

Fig. 1 Model checking. A model checker takes as input a model, representing a finite state abstraction of a
system, together with a claim about the system behaviour, expressed in temporal logic. It then determines
whether or not the claim is true of the model or not; most practical model checkers will provide a counter
example if not.

ϕ , then verification of LTL properties reduces to the problem of checking whether93

[[P]]⊆ [[ϕ]]. Another key temporal formalism is Computation Tree Logic (CTL), which94

modifies LTL by prefixing path formulae (which depend on temporal operators) with95

path quantifiers A (“on all paths. . . ”) and E (“on some path. . . ”) [30]. While LTL is96

suited to reasoning about runs or computational histories, CTL is suited to reasoning97

about states of transition systems that encode possible system behaviours.98

Model Checking: The most successful approach to verification using temporal logic99

specifications is model checking [27]. Model checking starts from the idea that the100

behaviour of a finite state program P can be represented as a Kripke structure, or101

transition system KP. Now, Kripke structures can be interpreted as models for temporal102

logic. So, checking whether P satisfies an LTL property ϕ reduces to the problem of103

checking whether ϕ is satisfied on paths through KP. Checking a CTL specification104

ϕ is even simpler: the Kripke structure KP is a CTL model, so we simply need to105

check whether KP |= ϕ , which boils down to performing reachability analysis over106

the states of KP. These checks can be efficiently automated for many cases of interest.107

In the case of CTL, for example, checking whether KP |= ϕ can be solved in time108

O(|KP| · |ϕ|) [26, 30]; for LTL, the problem is more complex (PSPACE-complete [30]),109

but using automata theoretic techniques it can be solved in time O(|KP| ·2|ϕ|) [79], the110

latter result indicating that such an approach is feasible for small specifications. Since111

the model checking paradigm was first proposed in 1981, huge progress has been112

made on extending the range of systems amenable to verification by model checking,113

and to extending the range of properties that might be checked [27].114

Multi-agent systems: We now turn the class of systems that we will be concerned115

with in the present paper. The field of multi-agent systems is concerned with the theory116

and practice of systems containing multiple interacting semi-autonomous AI software117

components known as agents [81, 72]. Multi-agent systems are generally understood118

as distinct from conventional distributed or concurrent systems in several respects, but119

the most important distinction for our purposes is that different agents are assumed to120

Rational Verification: A Progress Report 5

be operating on behalf of different external principals, who delegate their preferences121

or goals to their agent. Because different agents are “owned” by different principals,122

there is no assumption that agents will have preferences that are aligned with each123

other.124

Correctness in Multi-Agent Systems: Now, consider the following question:125

How should we interpret correctness and formal verification in the context of126

multi-agent systems?127

In an uninteresting sense, this question is easily answered: We can certainly think of a128

multi-agent system as nothing more than a collection of interacting non-deterministic129

computer programs, with non-determinism representing the idea that agents have130

choices available to them; we can express such a system using any readily available131

model checking framework, which would then allow us to start reasoning about the132

possible computational behaviours that the system might in principle exhibit. But133

while such an analysis is entirely legitimate, and might well yield important insights,134

it is nevertheless missing a very big part of the story that is relevant in order to un-135

derstand a multi-agent system. This is because it ignores the fact that agents are136

assumed to pursue their preferences rationally and strategically. Thus, certain system137

behaviours that might be possible in principle will never arise in practice because138

they could not arise from rational choices by agents within the system.139

To take a specific example, consider eBay, the online auction house. When users140

create an auction on eBay, they must specify a deadline for bidding in the auction. This141

deadline, coupled with the strategic concerns of bidders, leads to a behaviour known142

as sniping [68]. Roughly, sniping is where bidders try to wait for the last possible143

moment to submit bids. Sniping is strategic behaviour, used by participants to try to144

get the best outcome possible. If we do not take into account preferences and strategic145

behaviour when designing a system like eBay, then we will not be able to predict or146

understand behaviours like sniping.147

The classical formulation of correctness does not naturally match the multi-agent148

system setting because there can be no single specification ϕ , against which the cor-149

rectness of a multi-agent system is judged. Instead, each agent within such a system150

carries its own specification: an agent is judged to be correct if it acts rationally to151

achieve its delegated preferences or goals. So, what should replace the classical notion152

of correctness and verification in the context of multi-agent systems? We posit that153

rational verification and equilibrium checking provide a suitable framework.154

Rational Verification and Equilibrium Checking: As many other researchers [62,155

72] we believe that game theory provides an appropriate formal framework for the156

analysis of multi-agent systems. Originating within economics, game theory is essen-157

tially the theory of strategic interaction between self-interested entities [59]. While158

the mathematical framework of game theory was not developed specifically to study159

computational settings, it nevertheless seems that the toolkit of analytical concepts it160

provides can be adapted and applied to multi-agent settings. A game in the sense of161

game theory is usually understood as an abstract mathematical model of a situation162

in which self-interested players must make decisions. A game specifies the decision-163

makers in the game – the “players” and the choices available to these players (their164

6 Alessandro Abate et al.

strategies). For every combination of possible choices by players, the game also speci-165

fies what outcome will result, and each player has their own preferences over possible166

outcomes.167

A key concern in game theory is to try to understand what the outcomes of a game168

can or should be, under the assumption that the players within it act rationally. To this169

end, a number of solution concepts have been proposed, of which Nash equilibrium170

is the most prominent. A Nash equilibrium is a collection of choices, one for each171

participant in the game, such that no player can benefit by unilaterally deviating from172

this combination of choices. Nash equilibria seem like reasonable candidates for the173

outcome of a game because to move away from a Nash equilibrium would result174

in some player being worse off – which would clearly not be rational. In general,175

it could be the case that a given game has no Nash equilibrium, or multiple Nash176

equilibria. Now, it should be easy to see how this general setup maps to the multi-177

agent systems setting: players map to the agents within the system, and each player’s178

preferences are as defined in their delegated goals; the choices available to each player179

correspond to the possible courses of action that may be taken by each agent in the180

system. Outcomes will correspond to the computations or runs of the system, and181

agents will have preferences over these runs; they act to try and bring about their most182

preferred runs.183

With this in mind, we believe it is natural to think of the following problem as a184

counterpart to model checking and classical verification. We are given a multi-agent185

system, and a temporal logic formula ϕ representing a property of interest. We then186

ask whether ϕ would be satisfied in some run that would arise from a Nash equilibrium187

collection of choices by agents within the system. We call this equilibrium checking,188

and refer to the general paradigm as rational verification.189

3 Models for Rational Verification190

3.1 An Abstract Model191

Let us make our discussion a little more formal with some suggestive notation (we192

present some concrete models in later sections). Let P1, . . . ,Pn be the agents within193

a multi-agent system. For now, we do not impose any specific model for agents Pi:194

we will simply assume that agents are non-deterministic reactive programs. Non-195

determinism captures the idea that agents have choices available to them, while re-196

activity implies that agents are non-terminating. The framework we describe below197

can easily be applied to any number of computational models, including, for example,198

concurrent games [5], event structures [80], interpreted systems [32], or multi-agent199

planning systems [15].200

A strategy for an agent Pi is a rule that defines how the agent makes choices over201

time. Each possible strategy for an agent Pi defines one way that the agent can resolve202

its non-determinism. We can think of a strategy as a function from the history of the203

system to date to the choices available to the agent in the present moment. We denote204

the possible strategies available to agent Pi by Σ(Pi). The basic task of an agent Pi205

is to select an element of Σ(Pi) – we will see later that agents select strategies in an206

Rational Verification: A Progress Report 7

attempt to bring about their preferences. When each agent Pi has selected a strategy,207

we have a profile of strategies ~σ = (σ1, . . . ,σn), one for each agent. This profile of208

strategies will collectively define the behaviour of the overall system. For now, we will209

assume that strategies are themselves deterministic, and that a collection of strategies210

therefore induces a unique run of the system, which we denote by ρ(σ1, . . . ,σn). The211

set R(P1, . . . ,Pn) of all possible runs of P1, . . . ,Pn is:212

R(P1, . . . ,Pn) = {ρ(~σ) : ~σ ∈ Σ(P1)×·· ·×Σ(Pn)}.

Where the strategies that lead to a run do not need to be named, we will denote213

elements of R(P1, . . . ,Pn) by ρ,ρ ′, etc. Returning to our earlier discussion, we typically214

use Linear Temporal Logic as a language for expressing properties of runs: we will215

write ρ |= ϕ to mean that run ρ satisfies temporal formula ϕ .216

Before proceeding, we state a version of the conventional model checking problem217

for our setting:218

M O D E L C H E C K I N G :219

Given: System P1, . . . ,Pn; temporal formula ϕ .220

Question: Is it the case that ∃~σ ∈ Σ(P1)×·· ·×Σ(Pn) : ρ(~σ) |= ϕ?221

This decision problem amounts to asking whether ∃ρ ∈ R(P1, . . . ,Pn) such that ρ |= ϕ ,222

that is, whether there is any possible computation of the system that satisfies ϕ , that223

is, whether the system could in principle exhibit the behaviour ϕ .224

Preferences: So far, we have said nothing about the idea that agents act rationally in225

pursuit of delegated preferences. We assume that agents have preferences over runs226

of the system. Thus, given two possible runs ρ1,ρ2 ∈ R(P1, . . . ,Pn), it may be that227

Pi prefers ρ1 over ρ2, or that it prefers ρ2 over ρ1, or that it is indifferent between228

the two. We represent preferences by assigning to each player Pi a relation �i ⊆229

R(P1, . . . ,Pn)×R(P1, . . . ,Pn), requiring that this relation is complete, reflexive, and230

transitive. Thus ρ1 �i ρ2 means that Pi prefers ρ1 at least as much as ρ2. We denote231

the irreflexive sub-relation of �i by �i, so ρ1 �i ρ2 means that Pi strictly prefers232

ρ1 over ρ2. Indifference (where we have both ρ1 �i ρ2 and ρ2 �i ρ1) is denoted by233

ρ1 ∼i ρ2. We refer to a structure M = (P1, . . . ,Pn,�1, . . . ,�n) as a multi-agent system.234

Alert readers will have noted that, if runs are infinite, then so are preference re-235

lations over such runs. This raises the issue of finite and succinct representations of236

runs. Several approaches to this issue have been suggested. The most obvious is to237

assign each agent Pi a temporal logic formula γi representing its goal. The idea is238

that Pi prefers all runs that satisfy γi over all those that do not, is indifferent between239

all runs that satisfy γi, and is similarly indifferent between runs that do not satisfy γi.240

Formally, the preference relation �i corresponding to a goal γi is defined as follows:241

ρ1 �i ρ2 iff ρ2 |= γi implies ρ1 |= γi.

We discuss alternative preference models in section 5.2.242

Nash equilibrium: With this definition, we can now define the standard game theo-
retic concept of Nash equilibrium for our setting. Let M = (P1, . . . ,Pn,�1, . . . ,�n) be
a multi-agent system, and let ~σ = (σ1, . . . ,σi, . . . ,σn) be a strategy profile. Then we

8 Alessandro Abate et al.

Fig. 2 Equilibrium checking. The key difference to model checking is that we also take as input the
preferences of each of the system components, and the key question asked is whether or not the temporal
property ϕ holds on some/all equilibria of the system.

say ~σ is a Nash equilibrium of M if for all players Pi and for all strategies σ ′i ∈ Σ(Pi),
we have:

ρ(~σ)�i ρ(σ1, . . . ,σ
′
i , . . . ,σn).

Let NE(M) denote the set of all Nash equilibria of M. Of course, many other solution243

concepts have been proposed in the game theory literature [59] – to keep things simple,244

in this paper we will restrict our attention to Nash equilibrium.245

Equilibrium Checking: We are now in a position to introduce equilibrium checking,246

and the associated key decision problems. The basic idea of equilibrium checking is247

that, instead of asking whether a given temporal formula ϕ is satisfied on some possi-248

ble run of the system, we instead ask whether it is satisfied on some run corresponding249

to a Nash equilibrium of the system. Informally, we can understand this as asking250

whether ϕ could be made true as the result of rational choices by agents within the251

system. This idea is captured in the following decision problem (see Figure 2):252

E - N A S H :253

Given: Multi-agent system M; temporal formula ϕ .254

Question: Is it the case that ∃~σ ∈ NE(M) : ρ(~σ) |= ϕ?255

The obvious counterpart of this decision problem is A - N A S H, which asks whether a256

temporal formula ϕ is satisfied on all Nash equilibrium outcomes.257

A - N A S H :258

Given: Multi-agent system M; temporal formula ϕ .259

Question: Is it the case that ∀~σ ∈ NE(M) : ρ(~σ) |= ϕ?260

A higher-level question is simply whether a system has any Nash equilibria:261

N O N - E M P T I N E S S :262

Given: Multi-agent system M.263

Question: Is it the case that NE(M) 6= /0?264

Rational Verification: A Progress Report 9

A system without any Nash equilibria is inherently unstable: whatever collection of265

choices we might consider for the agents within it, some player would have preferred266

to make an alternative choice. Notice that an efficient algorithm for solving E - N A S H267

would imply an efficient algorithm for N O N - E M P T I N E S S.268

Finally, we might consider the question of verifying whether a given strategy269

profile represents a Nash equilibrium:270

I S - N E :271

Given: Multi-agent system M, strategy profile ~σ272

Question: Is it the case that ~σ ∈ NE(M)?273

Recall that, mathematically, strategies are functions that take as input the history of274

the system to date, and give as output a choice for the agent in question. Since the275

computations generated by multi-agent systems will be infinitary objects, to study276

this decision problem we will need a finite representation for strategies. A common277

approach is to use finite state machines with outputs (e.g., Moore machines).278

3.2 Iterated Boolean Games279

A simple and elegant concrete computational model that we have found useful to ex-280

plore questions surrounding rational verification is the framework of iterated Boolean281

games (iBGs) [37]. In an iBG, each agent Pi is defined by associating it with a finite,282

non-empty set of Boolean variables Φi, and preferences for Pi are specified with an283

LTL formula γi. It is assumed that each propositional variable is associated with a284

single agent. The choices available to Pi at any given point in the game then represent285

the set of all possible assignments of truth or falsity to the variables under the control286

of Pi. An iBG is “played” over an infinite sequence of rounds; in each round every287

player independently selects a valuation for their variables, and the infinite run traced288

out in this way thus defines an LTL model, which will either satisfy or fail to satisfy289

each player’s goal. In iBGs, strategies are represented as finite state machines with290

output (Moore machines). This may seem like a limitation, but in fact it is not: in the291

setting of iBGs, finite state machine strategies are all that is required.292

Let us now turn to the decision problems that we identified above, and consider293

their complexity in the iBG case. Before we state the complexity of these problems,294

it is worth recalling a special case of iBGs, which was first studied in the 1980s by295

Pnueli and Rosner [66]. A LTL synthesis problem is a setting defined by two players,296

often denoted A and E, two disjoint sets of propositional variables, ΦE and ΦA, and297

an LTL formula defined over the variables ΦE ∪ΦA. The setting is interpreted as a298

game in the following way: the play continues for an infinite sequence of rounds,299

where in each round the players simultaneously choose a valuation for their respective300

variable set. In this way, the play traces out a word in (ΦE ∪ΦA)
ω , and this word can301

be understood as an LTL valuation. Player E wins if this valuation satisfies ϕ , and302

loses otherwise. The LTL synthesis problem is then as follows:303

LT L S Y N T H E S I S :304

Given: Variables ΦE and ΦA, and LTL formula ϕ .305

Question: Can E force a win in the game induced by ΦE ,ΦA,ϕ? That is, does306

10 Alessandro Abate et al.

there exists a strategy σE for E such that for all strategies σA for A, we have307

ρ(σE ,σA) |= ϕ?308

The LTL synthesis problem was introduced to study the problem of software settings309

in which we want to know whether a particular software component (represented by E310

in this case) can ensure that an overall system objective (ϕ) is satisfied in the presence311

of arbitrary, or adversarial input from the software environment (A). In game theoretic312

terms, LTL synthesis is a two player, strictly competitive win-lose game, and it can be313

seen as a special case of iBGs: we can model LTL synthesis in an iBG by assigning314

player E the goal ϕ and A the goal ¬ϕ . Now, the central result proved by Pnueli and315

Rosner was this:316

Theorem 1 ([66]) The LTL synthesis problem is 2EXPTIME-complete.317

Observe that this is an extremely negative result, considerably worse than (for exam-318

ple) the PSPACE-complete LTL model checking problem [73]. The high complex-319

ity derives from the fact that the LTL synthesis problem requires quantifying over320

strategies for satisfying LTL formulae: checking Nash equilibrium properties of iBGs321

requires similar quantification, and it should therefore come as no surprise that iBGs322

inherit the high complexity of LTL synthesis.323

Theorem 2 ([37]) For iBGs, I S - N E is PSPACE-complete (and hence no easier or324

harder than model checking or satisfiability for LTL). In contrast, N O N - E M P T I N E S S,325

E - N A S H, and A - N A S H are all 2EXPTIME-complete.326

It is not hard to see the close relationship between these problems and LTL synthesis.327

For example, we can immediately see that A - N A S H is 2EXPTIME hard from the fol-328

lowing reduction: given an instance (ΦE ,ΦA,ϕE) of LTL synthesis, construct an iBG329

with players {E,A}, and propositional control sets as in the LTL synthesis instance,330

with goals for the players being ϕE and ¬ϕE respectively. Then ask whether ϕE is331

satisfied on all Nash equilibrium runs of the game. It is straightforward to see that E332

has a winning strategy for ϕE if and only if ϕE is satisfied on all Nash equilibrium333

computations.334

Although it may seem rather abstract, the iBG framework is quite general, and335

more widely applicable than it might at first appear. For example, frameworks in which336

agent programs Pi can be axiomatized in LTL can be expressed in iBGs – see [36] for337

details.338

One fascinating aspect of the development of the theory for iBGs is that, when339

understanding the equilibrium properties of iBGs, we can make use of the Nash folk340

theorems – classic results in game theory which relate to the equilibrium properties341

that can be sustained in iterated games [59]. It is remarkable that a proof technique342

developed in the 1950s to study an abstract class of games turns out to be directly343

applicable to the verification of AI systems 70 years later: see [37] for details.344

3.3 Concurrent Game Structures345

Concurrent Game Structures are a widely-used model for concurrent and multi-agent346

systems [5]. In this model, say M, typically presented in its deterministic form, there347

Rational Verification: A Progress Report 11

are N players who, at each state s, make an independent choice ai, with i ∈ N, which348

jointly define an action profile~a=(a1, . . . ,a|N|) that uniquely determines the next state349

s′, that is, a unique transition (s,~a,s′) in M. Formally, a Concurrent Game Structure350

is given by a tuple:351

M = (N,S,s0,(Ai)i∈N ,δ),

where, N and S are finite, non-empty sets of agents and system states, respectively,352

where s0 ∈ S is an initial state; Ai is a set of actions available to agent i, for each i;353

δ : S×A1×·· ·×A|N|→ S is a transition function. Concurrent games are played as354

follows. The game begins in state s0, and each player i ∈ N simultaneously picks an355

action a0
i ∈ Ai. The game then transitions to a new state, s1 = δ (s0,a0

1, . . . ,a
0
|N|), and356

this process repeats. Thus, the nth state transitioned to is sn = δ (sn−1,an−1
1 , . . . ,an−1

|N|).357

Since the transition function is deterministic, a play of a game will be an infinite358

sequence of states, denoted by π . Such a sequence of states is called a run.359

Thus, to play a game, agents use strategies, which are formally defined as func-
tions from sequences of states to next states. Because Concurrent Game Structures
are deterministic, a profile of strategies for all agents ~f = (f1, . . . , f|N|) determines
a unique run in M, denoted by π(~f). Assuming that agents have a preference rela-
tion ≥i, with i ∈ N, over the set of runs in M, one can immediately define further
game-theoretic concepts, such as the stable outcomes, runs, or profiles of a game. For
instance, in case of Nash equilibrium, we say that a strategy profile ~f = (f1, . . . , f|N|)
is a Nash equilibrium if, for each agent i and every strategy f ′i of i we have:

π(~f)≥i π(f1, . . . , f ′i , . . . , f|N|),

that is, agent i does not prefer the run induced by (f1, . . . , f ′i , . . . , f|N|) over the run360

induced by ~f = (f1, . . . , fi, . . . , f|N|), which we call a Nash equilibrium run.361

3.4 Reactive Module Games362

While concurrent games provide a natural semantic framework for multi-agent sys-363

tems, they are not directly appropriate as a modelling framework to be used by people.364

For this, the framework of Reactive Module Games is more appropriate [39]. Within365

this framework, concurrent games are modelled using the Simple Reactive Modules366

Language (SRML) [77], a simplified version of the Reactive Modules language that367

is widely used within the model checking community [3].368

The basic idea is that each system component (agent/player) in SRML is repre-369

sented as a module, which consists of an interface that defines the name of the module370

and lists a non-empty set of Boolean variables controlled by the module, and a set of371

guarded commands, which define the choices available to the module at each state.372

There are two kinds of guarded commands: init, used for initialising the variables,373

and update, used for updating variables subsequently.374

A guarded command has two parts: a “condition” part (the “guard”) and an “ac-375

tion” part. The “guard” determines whether a guarded command can be executed or376

12 Alessandro Abate et al.

module toggle controls x
init
::>; x′ :=>;
::>; x′ :=⊥;
update
:: ¬x ; x′ :=>;
:: x ; x′ :=⊥;

Fig. 3 Example of module toggle in SRML.

not given the current state, while the “action” part defines how to update the value377

of (some of) the variables controlled by a corresponding module. Intuitively, ϕ ; α378

can be read as “if the condition ϕ is satisfied, then one of the choices available to the379

module is to execute α”. Note that the value of ϕ being true does not guarantee the380

execution of α , but only that it is enabled for execution, and thus may be chosen. If381

no guarded command of a module is enabled in some state, then that module has no382

choice and the values of the variables controlled by it remain unchanged in the next383

state. More formally, a guarded command g over a set of variables Φ is an expression384

g : ϕ ; x′1 := ψ1; . . . ;x′k := ψk

where the guard ϕ is a propositional logic formula over Φ , each xi is a member of385

Φ and ψi is a propositional logic formula over Φ . It is required that no variable xi386

appears on the left hand side of more than one assignment statements in the same387

guarded command, hence no issue on the (potentially) conflicting updates arises.388

Here is a concrete example of a guarded command:389

(p∧q)︸ ︷︷ ︸
guard

; p′ :=>;q′ :=⊥︸ ︷︷ ︸
action

The guard is the propositional logic formula (p∧q), so this guarded command will be390

enabled if both p and q are true. If the guarded command is chosen (to be executed),391

then in the next time-step, variable p will be assigned> and variable q will be assigned392

⊥.393

Formally, an SRML module mi is defined as a triple mi =(Φi, Ii,Ui), where Φi⊆Φ394

is the finite set of Boolean variables controlled by mi, Ii a finite set of init guarded395

commands, and Ui a finite set of update guarded commands. As in iBGs, it is required396

that variables are controlled by exactly one agent.397

Figure 3 shows a module named toggle that controls a single Boolean variable,398

named x. There are two init guarded commands and two update guarded commands.399

The init guarded commands define two choices for the initialisation of variable x:400

true or false. The first update guarded command says that if x has the value of true,401

then the corresponding choice is to assign it to false, while the second command402

says that if x has the value of false, then it can be assigned to true. Intuitively, the403

module would choose (in a non-deterministic manner) an initial value for x, and then404

on subsequent rounds toggles this value. In this particular example, the init commands405

are non-deterministic, while the update commands are deterministic. We refer to [39]406

Rational Verification: A Progress Report 13

for further details on the semantics of SRML. In particular, in Figure 12 of [39], we407

detail how to build a Kripke structure that models the behaviour of an SRML system.408

Module definitions allow us to represent the possible actions of individual agents,409

and the effects of their actions, but do not represent preferences. In RMGs, prefer-410

ences are captured by associating each module with a goal, which is specified as a411

temporal logic formula. Given this, a reactive module game is given by a structure412

G = (N,m1, . . . ,mn,γ1, . . . ,γn), where N = {1, . . . ,n} is the set of agents, mi is the413

module defining the choices available to agent i, as explained above, and γi is the goal414

of player i. In [39], two possibilities were considered for the language of goals γi: LTL415

and CTL. In the case of LTL, strategies σi for individual players are essentially the416

same as in iBGs: deterministic finite state machines with output. At each round of417

the game, a strategy σi chooses one of the enabled guarded commands to be executed.418

Because all strategies are deterministic, upon execution the collective strategies of419

all players will trace out a unique run, which will either satisfy or not satisfy each420

players goal, as in the case of iBGs. In the case of CTL, however, player strategies421

are non-deterministic: instead of selecting a single guarded command for execution,422

a strategy selects a set of guarded commands. The result of executing such strategies423

yields a tree structure, which will then either satisfy or fail to satisfy the CTL goals of424

players.425

When it comes to the complexity of decision problems relating to RMGs, we find426

the following:427

Theorem 3 ([39])428

– For LTL RMGs, I S - N E is PSPACE-complete, while E - N A S H and A - N A S H429

are both 2EXPTIME-complete.430

– For CTL RMGs, I S - N E is EXPTIME-complete, while E - N A S H and A - N A S H431

are both 2EXPTIME-hard.432

The key conclusion relating to these results is that, despite the naturalness and433

expressive power of RMGs, computationally they are no more complex than iBGs. The434

high complexity of the key decision problems relating to RMGs indicates that naive435

algorithms to solve them will be hopelessly impractical: specialised techniques are436

required. In section 4.1, we will describe such techniques, and a system implemented437

based upon them.438

3.5 Markov Games439

Markov Games, also known as Concurrent Stochastic Games (sometimes simply440

Stochastic Games), are a popular representation of (simultaneous) multi-agent decision-441

making scenarios with stochastic dynamics. In this latter respect they differ from442

Concurrent Games, as discussed above, in which environments are assumed to be443

deterministic. They naturally generalise both Markov Decision Processes (a Markov444

Game with one player) and Iterated Normal-Form Games (a Markov Game with one445

state). Such games proceed at each time-step, from some state s, by each agent Pi446

using their strategy σi to select an action ai, leading to a joint action~a = (a1, . . . ,an).447

14 Alessandro Abate et al.

The next state s′ is then drawn from the conditional probability distribution given by448

a Markovian transition function T (s′ | s,~a). The strategy profile ~σ and the transition449

dynamics thus define a Markov Chain over the states S of the game, leading to a450

distribution Pr~σ (ρ) over runs ρ = s0s1s2 . . . through the state space.451

On top of this underlying game structure one may then define different forms of452

objective for each of the agents. Common examples include the expected cumulative453

discounted reward:454

E~σ [
∞

∑
t=0

β
tri

t+1 | s0 = s]I(s)

and the expected mean-payoff reward:455

lim
T→∞

1
T
E~σ [

T

∑
t=0

ri
t+1 | s0 = s]I(s).

Here, β ∈ [0,1) is a discount factor, ri
t+1 ∈ R is the reward given to agent i at time456

t + 1, and I(s) is an initial state distribution. Alternatively, for any set of runs R′ ⊆457

R(P1, . . . ,Pn) we may define an indicator random variable XR′ such that XR′(ρ) = 1458

if ρ ∈ R′ and XR′(ρ) = 0 otherwise. A player’s reward can then be defined as the459

expected value E~σ [XR′] of this variable. For example, we could consider the probability460

of satisfying a temporal logic formula γi by defining R′ as containing all and only those461

runs ρ such that ρ |= γi.462

The introduction of stochastic dynamics also introduces different ‘ways of win-463

ning’ when we have Boolean objectives that are either satisfied or not by a particular464

path [28]. For example, a player may win by satisfying their goal γi surely (with465

certainty), almost surely (with probability one), limit surely (with probability greater466

than 1− ε for every ε > 0), boundedly (with probability bounded away from one),467

positively (with positive probability), or existentially (possibly). Aside from these468

qualitative conditions, players may be interested in simply maximising the probability469

that their goal γi is achieved. Such a perspective can also be carried over to the prob-470

lem of rational verification, in which we may be interested in the sure, almost sure, or471

limit sure satisfaction of a property ϕ , or simply in the probability that ϕ is satisfied.472

4 Tools473

While synthesis problems (such as the LTL synthesis problem, introduced by Pnueli474

and Rosner and discussed above) have been increasingly studied within the verification475

community, rational verification has come to prominence only in the past few years.476

As such, relatively few software tools exist for this problem. Below, we briefly survey477

some of the most widely used.478

4.1 EVE: The Equilibrum Verification Environment479

As we noted above, the high complexity of rational verification for RMGs (see above)480

indicates that naive algorithms for this purpose will be doomed to failure, even for481

Rational Verification: A Progress Report 15

systems of very moderate size. It follows that any practical system will require sophis-482

ticated algorithmic techniques. The Equilibrium Verification Environment is a system483

based on such techniques [43, 45].484

The basic approach embodied by E V E involves reducing rational verification to485

a collection of parity games [31], which are widely used for synthesis and verifica-486

tion problems. A parity game is a two-player zero-sum turn-based game given by a487

labelled finite graph H = (V0,V1,E,α) such that V = V0 ∪V1 is a set of states parti-488

tioned into Player 0 (V0) and Player 1 (V1) states, respectively, E ⊆V ×V is a set of489

edges/transitions, and α : V → N is a labelling priority function. Player 0 wins if the490

smallest priority that occurs infinitely often in the infinite play is even. Otherwise,491

player 1 wins. It is known that solving a parity game (checking which player has492

a winning strategy) is in NP ∩ coNP [49], and can be solved in quasi-polynomial493

time [17] 1.494

The algorithm underpinning E V E uses parity games in the following way. It takes495

as input an RMG M and builds a parity game H whose sets of states and transitions are496

doubly exponential in the size of the input but with priority function only exponential497

in the size of the input game. Using a deterministic Streett automaton on infinite words498

(DSW) [50], we then solve the parity game, leading to a decision procedure that is,499

overall, in 2EXPTIME, and, therefore, given the hardness results we mentioned above,500

essentially optimal. The E V E system can: (i) solve the E - N A S H and A - N A S H501

problems for the given RMG; and (ii) synthesise individual player strategies in the502

game.503

Experimental results show that E V E performs favourably compared with other504

existing tools that support rational verification.505

4.2 PRISM-games506

A separate though closely related thread of research into the verification of multi-agent507

systems has emerged from the probabilistic model-checking community. The most508

prominent example of this in recent years is the expansion of PRISM [52], a pop-509

ular tool for probabilistic model-checking, to handle first Turn-Based [11] and now510

Concurrent Stochastic Games (Markov Games) [53, 54]. Earlier work was limited511

to non-cooperative turn-based or zero-sum concurrent settings. Later efforts consid-512

ering cooperative, concurrent games were initially restricted to those with only two513

coalitions, but this restriction has been partially lifted in the most recent instantiation514

of the work, which supports model-checking of arbitrary numbers of coalitions in515

the special case of stopping games – those in which eventually, with probability one,516

the outcome of each player’s objective becomes fixed [54]. We note further that the517

current version of the tool also supports the use of Probabilistic Timed Automata in518

verifying Turn-Based Markov Games with real-valued clocks [55].519

In PRISM-games, specifications are expressed in rPATL, probabilistic ATL (a gen-520

eralisation of CTL that uses an extra quantifier 〈〈A〉〉ϕ for reasoning about properties521

ϕ that that be ensured by some subset A of the agents [5]) with rewards [24]. The logic522

1 Despite more than 30 years of research, and promising practical performance for algorithms to solve
them, it remains unknown whether parity games can be solved in polynomial time.

16 Alessandro Abate et al.

is then further extended in order to be able to reason about equilibria in the game (in523

particular, subgame-perfect social-welfare optimal Nash equilibria). For example, this524

allows one to answer not only queries such as 〈〈P1〉〉max≥0.5(Pr[ψ]) – is it the case that525

P1 can ensure that ψ holds with at least probability a half? – but also queries such as526

〈〈P1 : P2〉〉max≥2(Pr[ψ]+Pr[χ]) – is it the case that P1 and P2 can coordinate to ensure527

that both of their respective goals, ψ and χ , hold with probability one? – where ψ528

and χ are LTL formulae and similarly for expected rewards. More information can529

be found in [54]. An alternative specification formalism that can express equilibria530

concepts is Probabilistic Strategy Logic [8], but it has no associated implementation.531

From a technical standpoint, PRISM-games also makes use of the Reactive Mod-532

ules language with individual players represented by a set of modules which may then533

choose an enabled command at each time-step. On top of this users can include re-534

ward structures that produce real-valued rewards given a state and joint action as input,535

and define temporal logic properties expressed in the (extended version of) rPATL.536

For zero-sum properties PRISM-games relies on using value iteration to approximate537

values for all states of the game, and then solves a linear program for each state in538

order to compute a minimax strategy. For equilibria-based properties, a combination539

of backwards induction and value iteration are used, which is exact for finite-horizon540

and approximate for infinite-horizon properties, together with a sub-procedure for541

computing optimal Nash equilibria in n-player Normal-Form Games that makes use542

of SMT and non-linear optimisation engines.543

4.3 MCMAS544

MCMAS [56] adopts interpreted systems [32] as the formal language to represent545

systems comprised of multiple entities. In MCMAS, interpreted systems are extended546

to incorporate game theoretic notions such as those provided by ATL modalities [57].547

The formalisation used to model systems in MCMAS can be thought of as a “bottom-548

up” approach, where the global state is defined as a tuple of the local states of the549

agents. In this setting, global states are given as the composition of local states of550

the agents and environment. MCMAS uses a dedicated programming language called551

Interpreted Systems Programming Language (ISPL) to describe the specification of552

IS.553

There are different extensions of MCMAS that handle different specification log-554

ics. However, one particular extension that supports specification language expressive555

enough to reason about Nash equilibrium is MCMAS-SLK [19]. The tool’s spec-556

ification language is Strategy Logic with Knowledge (SLK) [18], an extension of557

the previously introduced Strategy Logic (SL) [60, 61]. Due to the undecidability558

result of the model-checking problem of multi-agent systems under perfect recall and559

incomplete information [4], the tool adopts imperfect recall semantics.560

The problem N O N - E M P T I N E S S can be solved using MCMAS by specifying561

the existence of Nash equilibrium with SLK. Let N = {1, . . . ,n} be the set of players562

in a game, Var be the set of strategy variables, and Γ be the set of goals of players563

in the game. Using SLK, we can express the existence of Nash equilibrium with the564

Rational Verification: A Progress Report 17

formula ϕNE :565

ϕNE = 〈〈x1〉〉(1,x1) . . .〈〈xn〉〉(n,xn)
∧
i∈N

(
¬γi→ [[yi]](i,yi)¬γi

)
where i ∈ N, xi,yi ∈Var, γi ∈ Γ .566

Intuitively, formula ϕNE can be explained as follows: for each player i with its567

chosen strategy xi in the game, if the goal of Player i cannot be achieved using strategy568

xi then for every “alternative” strategy yi, the goal of Player i cannot be achieved. This569

means that, players who do not get their goals achieved cannot benefit from unilaterally570

changing their strategies. Thus, if ϕNE is true in the given game, then there exists a571

Nash equilibrium in the game. The other problems of rational verification, namely572

E - N A S H and A - N A S H, can be reduced to N O N - E M P T I N E S S [36].573

5 Challenges574

In this section, we provide a brief discussion of some current and future research575

challenges for rational verification.576

5.1 Tackling Complexity577

Perhaps the most obvious challenge in making rational verification an industrial-578

strength reality is that of the high computational complexity of the basic decision579

problems. Whilst LTL formulae are expressive and natural [78], and moreover, widely580

used in industry [21, 25, 69, 70], the 2EXPTIME-completeness results leave our prob-581

lems grossly intractable. As such, it is important for us to consider other languages582

which strike a balance of complexity and expressiveness - how can we capture the583

richness of multi-agent systems, whilst still being able to reason about them effec-584

tively?585

Perhaps the most obvious thing to try is to consider fragments of LTL. Various586

restrictions of LTL are very well studied [7, 74] and the decision problems relating to587

them are much more computationally amenable. In [37], the authors consider games588

where all the players have propositional safety goals – that is, LTL goals of the form589

Gϕ , where ϕ is some propositional formula. In this setting, the E - N A S H problem is590

PSPACE-complete. Additionally, in [44], the authors consider GR(1) [12] goals and591

specifications. Here, the E - N A S H problem is PSPACE-complete with GR(1) goals592

and LTL specifications, and lies in FPT (fixed parameter tractable) [29] when both the593

goals and the specifications are in GR(1).594

In addition to considering restricted languages for goals and temporal queries, a595

number of other directions suggest themselves as possible ways in which to reduce596

complexity, although we emphasise that we have no concrete results with these di-597

rections at this time. The first possibility is to consider ways in which games can be598

decomposed into smaller games, while preserving the relevant game theoretic prop-599

erties. Similar techniques have been studied within the model checking community600

(see, e.g., [6]). Another possibility, also inspired by work within model checking, is to601

18 Alessandro Abate et al.

consider abstracting games to their smallest bisimulation-equivalent form. Care must602

be taken in this case, however, because we need to ensure that the precise form of603

bisimulation to be used must preserve Nash equilibria across bisimulation-equivalent604

models, and naive attempts to define bisimulation, which preserve temporal logic prop-605

erties under model checking, do not necessarily preserve Nash equilibria – we refer606

the interested reader to [38] for details.607

5.2 Alternative Preference Models608

So what if we were to set aside temporal logics and consider different preference rela-609

tions altogether? Staying in the qualitative mindset, in [13], the authors consider games610

where the players have ω-regular objectives and look at the N O N - E M P T I N E S S611

problem, obtaining complexity results ranging from P-completeness all the way up612

to EXPTIME membership. Alternatively, one can adopt a quantitative approach and613

consider mean-payoff objectives - one can ask if there exists some Nash equilibrium614

where each player’s payoff lies in a certain interval. As established in [75], this prob-615

lem is NP-complete.616

In order to be able to reason about games in a richer fashion, we can use quantita-617

tive and qualitative constructs in the same breath. If we look at games where the play-618

ers’ preferences are given by mean-payoff objectives, and we ask if there exists a Nash619

equilibrium which models an LTL specification, this problem is PSPACE-complete.620

Moreover, if we restrict our attention to GR(1) specifications, then we retain the NP-621

completeness result of the original mean-payoff N O N - E M P T I N E S S problem.622

However, balancing qualitative and quantitative goals and specifications is not always623

as straightforward as this - for instance, in two-player, zero-sum, mean-payoff parity624

games [23], where the first player gets their mean-payoff if some parity condition is625

satisfied, and −∞ otherwise, this same player may require infinite memory to act opti-626

mally. Thus, given the standard translation from non-deterministic Büchi automata to627

deterministic parity automata [64], this does not bode well for games with combined628

mean-payoff and LTL objectives - many of the techniques in rational verification de-629

pend on the existence of memoryless or finite-memory strategies in the corresponding630

two-player, zero-sum version of the game. Despite this, [42, 41] look at games with631

lexicographic preferences, where the first component is either a Büchi condition or632

an LTL formula, and the second component is some mean-payoff objective. Rather633

than considering the standard N O N - E M P T I N E S S problem, they study a closely634

related analogue - the problem of whether or not there exists some finite-state, strict635

ε-Nash Equilibrium. These additional restrictions are brought about precisely due to636

the necessity of infinite memory in mean-payoff parity games, as mentioned above.637

When the first component is a Büchi condition, then the given decision problem is638

NP-complete, and in the LTL setting, it is 2EXPTIME-complete. Thus, despite the639

relaxation of the solution concept, we sadly do not see any gains in computational640

tractability.641

Finally, some work has been to introduce non-dichotomous, qualitative prefer-642

ences to rational verification. In [51], the authors introduce Objective LTL (OLTL) as643

a goal and specification format. An OLTL formula is simply a tuple of LTL formulae,644

Rational Verification: A Progress Report 19

along with a function with maps 0-1 tuples of the same length to integers. In a given645

execution of a game, some LTL formulae will be satisfied and others will not. Marking646

the ones that are satisfied with 1, and the ones which are not by 0, we can pass the647

resulting tuple into the given function and get an integer - each agent in the game648

wants to maximise this integer. With this preference model, we can look at games649

where there is a set of agents, plus a system player, and ask if there exists some strat-650

egy for the system player, along with a Nash equilibrium for the remaining players651

such that the system player’s payoff is above a certain threshold. This problem is no652

harder than the original rational synthesis problem for LTL [35], being 2EXPTIME-653

complete. Building on this, in [2], the authors study rational verification with LTL[F]654

[1] goals and specifications. In short, LTL[F] generalises LTL by replacing the classi-655

cal Boolean operators with arbitrary functions which map 0-1 tuples into the interval656

[0,1]. Again, the associated decision problem remains 2EXPTIME-complete.657

5.3 Uncertain Environments658

Thus far, the investigation into rational verification has focused largely on settings659

that are deterministic, discrete, fully observable, and fully known. Indeed this is suf-660

ficient for modelling a great many scenarios of interest, such as software processes661

or high-level representations of multi-agent control. Most of the real world, however,662

cannot be captured quite as neatly. This motivates the study of rational verification in663

uncertain environments, where this uncertainty might arise from stochastic dynamics,664

continuous or hybrid state and action spaces, or a structure that is only partially ob-665

servable or partially known. Each of these features (and, moreover, their combination)666

represents an exciting direction for future work, the challenges of which we briefly667

outline here.668

Perhaps the most natural and well-studied form of uncertainty in formal verifi-669

cation is of systems with stochastic dynamics. As noted above in Section 4.2, prob-670

abilistic model-checking techniques have recently been extended to the multi-agent671

setting by way of tools such as PRISM-games [55]. Preliminary work in the (limited)672

context of Markov Games with goals defined by the almost sure satisfaction of LTL673

properties suggests that the complexity classes of the main problems in both non-674

cooperative and cooperative rational verification remain essentially the same as in the675

non-stochastic setting. Further qualitative results for sure or limit sure winning (as676

well as for the quantitative case) are still to be obtained, however, and there remain677

many other interesting, open problems relating to ω-regular objectives in Markov678

Games [22].679

In some situations, especially when considering cyber-physical systems, it is more680

appropriate to model the state space (and possibly the action space) as continuous or681

as hybrid – with some discrete and some continuous elements. Whilst not in itself682

necessarily introducing uncertainty, such representations bring challenges related to683

the concise encoding of system dynamics and agents’ strategies over uncountable684

sets, and the careful definition of temporal logic formulae over paths through the state685

space. As well as modelling state or action spaces as continuous, one may also choose686

to represent time as being continuous, requiring new logics in which to encode speci-687

20 Alessandro Abate et al.

fications, such as Continuous-Time Stochastic Logic (CSL) [10] or Signal Temporal688

Logic (STL) [58].689

When making a real-world decision in order to achieve a goal, it is rare to be690

able to observe all of the information relevant to that decision and goal. This intuition691

can be captured by models in which state space is only partially observable by the692

agents therein; in game-theoretic terms the agents have imperfect information. For693

example, Reactive Module Games in which each player may only observe a subset694

of the environmental variables are undecidable with three or more players, although695

the two-player case is solvable in 2EXPTIME [46]. Related work has explored the696

problem of rational synthesis in turn-based games under imperfect information (which697

is undecidable with three or more players and EXPTIME-complete for two players)698

[33], though the effects of partial observability on the rational verification problem699

remain under-explored.700

Finally, there are scenarios in which larger portions of an environment are un-701

known, such as the transition dynamics, not only to the agents but also to those who702

wish to verify it. Here, traditional model-checking approaches do not apply and some703

form of learning must be introduced. As a result, different forms of guarantees about704

such systems are obtained, relying on assumptions about the structure of the envi-705

ronment and the theoretical characteristics of the learning algorithms used. Verifica-706

tion methods that employ learning have recently been developed by those in both707

the model-checking community [16] and the control and learning community [48],708

though few have considered the multi-agent setting and those that do restrict their709

attention to purely cooperative games [47]. A further complication is raised when710

agents themselves employ learning in unknown environments in order to update their711

strategies over time. With the continuing advance of machine learning, this is likely to712

become an increasingly common occurrence that requires new techniques for rational713

verification.714

5.4 Cooperative Solution Concepts715

Rational verification was first defined for noncooperative games [37, 39, 82]: players716

were assumed to act alone, and binding agreements between players were assumed to717

be impossible. As such, the solution concepts used in previous studies have therefore718

been noncooperative – primarily Nash equilibrium and refinements thereof.719

However, in many real-life situations, these assumptions misrepresent reality. In720

order to address this issue, in [40], such the noncooperative setting for rational verifi-721

cation was extended to include cooperative solution concepts [59, 63]. That is, it was722

assumed, instead, that there is some (exogenous) mechanism through which agents723

in a system can reach binding agreements and form coalitions in order to collectively724

achieve goals. The possibility of binding cooperation and coalition formation elimi-725

nates some undesirable equilibria that arise in the noncooperative settings, and makes726

available a range of outcomes (i.e., computations of the system that can be sustained727

in equilibrium) which cannot be achieved without cooperation.728

In this new cooperative setting, the focus was on the core, arguably one of the729

most relevant solution concepts in the cooperative game theory literature. The basic730

Rational Verification: A Progress Report 21

idea behind the core is that a game outcome is said to be core-stable if no subset731

of agents could benefit by collectively deviating from it; the core of a game is the732

set of core-stable outcomes. Now, in conventional cooperative games (characteristic733

function games with transferable utility [20]), this intuition can be given a simple734

and natural formal definition, and as a consequence the core is probably the most735

widely-studied solution concept for cooperative games. However, the conventional736

definition of the core does not easily map into the rational verification framework737

as originally defined, mainly because coalitions are subject to externalities: whether738

or not a coalition has a beneficial deviation depends not just on the makeup of that739

coalition, but also on the behaviour of the remaining agents in the system.740

Coalition formation with externalities has been extensively studied in the cooper-741

ative game theory literature [34, 76, 83], where different variants of the core can be742

found. For instance, α-core takes the pessimistic approach that requires that all mem-743

bers of a deviating coalition will benefit from the deviation regardless of the behaviour744

of the other coalitions that may be formed. Our main definition of the core precisely745

follows this approach. Even though coalition formation with externalities is common746

in and important for multi-agent systems [71], not much work has done regarding747

the problem of stability, and its properties, in multi-agent coalition formation with748

externalities. Instead, in AI and multi-agent systems, most research has focused on749

the structure formation problem itself [67]. Through our work on rational verification,750

we also address this gap in the literature of verification for AI systems.751

The kinds of questions that are asked in the (rational verification) cooperative752

setting are exactly the same as in the noncooperative framework, only that instead of753

(variants of) Nash equilibrium one refers to outcomes in the core of game theoretic754

representations of multi-agent systems. Such questions, e.g., E - C O R E , A - C O R E,755

etc., bearing the same meaning as their “Nash” counterparts, are all 2EXPTIME-756

complete [40] for games with LTL goals, but have some computationally desirable757

properties: the set of outcomes in the core is never empty, is bisimulation invariant [38],758

and has an elegant formalisation in ATL∗ [5], which makes the automated solution of759

cooperative rational verification problems possible in practice using verification tools760

for multi-agent systems analysis, such as MCMAS or EVE, described before.761

6 Conclusions762

Rational verification is a recent approach to the automated verification of multi-agent763

systems, in which we aim to automatically determine whether given properties of764

a system, expressed as temporal logic formulae, will hold in that system under the765

assumption that system components (agent) behave rationally, by choosing (for ex-766

ample) strategies that form a game theoretic equilibrium. Rational verification can767

be understood as a counterpart to the conventional model checking paradigm for au-768

tomated verification. Although research in this area is at an early stage, the basic769

computational, logical, and algorithmic territory relating to rational verification has770

already been explored, and is described in the present article. An overarching goal771

for the future will be to make tools more practically applicable, and to understand772

the fundamental limitations of the paradigm. We have sketched out some of the key773

22 Alessandro Abate et al.

challenges that must be overcome to make this a reality: chief among them being774

dealing with complexity, broader preference models, richer modelling frameworks,775

and a wider range of game theoretic solution concepts.776

References777

1. Shaull Almagor, Udi Boker, and Orna Kupferman. Formalizing and reasoning778

about quality. In Fedor V. Fomin, Rusins Freivalds, Marta Z. Kwiatkowska, and779

David Peleg, editors, Automata, Languages, and Programming - 40th Interna-780

tional Colloquium, ICALP 2013, Riga, Latvia, July 8-12, 2013, Proceedings, Part781

II, volume 7966 of Lecture Notes in Computer Science, pages 15–27. Springer,782

2013.783

2. Shaull Almagor, Orna Kupferman, and Giuseppe Perelli. Synthesis of control-784

lable nash equilibria in quantitative objective games. In Proceedings of the 27th
785

International Joint Conference on Artificial Intelligence, IJCAI’18, pages 35–41.786

AAAI Press, 2018.787

3. R. Alur and T. A. Henzinger. Reactive modules. Formal Methods in System788

Design, 15(11):7–48, July 1999.789

4. R. Alur, T. A. Henzinger, and O. Kupferman. Alternating-time temporal logic. In790

Proceedings of the 38th IEEE Symposium on Foundations of Computer Science,791

pages 100–109, Florida, October 1997.792

5. R. Alur, T. A. Henzinger, and O. Kupferman. Alternating-time temporal logic.793

Journal of the ACM, 49(5):672–713, September 2002.794

6. R. Alur, T. A. Henzinger, O. Kupferman, and M. Y. Vardi. Alternating refinement795

relations. In Proceedings of the 9th International Conference on Concurrency796

Theory (CONCUR’98), volume 1466 of Lecture Notes in Computer Science, pages797

163–178. Springer-Verlag, Berlin, Germany, 1998.798

7. Rajeev Alur and Salvatore La Torre. Deterministic generators and games for ltl799

fragments. ACM Transactions on Computational Logic (TOCL), 5(1):1–25, 2004.800

8. Benjamin Aminof, Marta Kwiatkowska, Bastien Maubert, Aniello Murano, and801

Sasha Rubin. Probabilistic strategy logic. In In Proc. International Joint Confer-802

ence on Artificial Intelligence (IJCAI-19), 2019.803

9. C. Baier and J.-P. Katoen. Principles of Model Checking. The MIT Press: Cam-804

bridge, MA, 2008.805

10. Christel Baier, Boudewijn Haverkort, Holger Hermanns, and Joost-Pieter Katoen.806

Model checking continuous-time markov chains by transient analysis. In Com-807

puter Aided Verification, pages 358–372. Springer Berlin Heidelberg, 2000.808

11. Nicolas Basset, Marta Kwiatkowska, Ufuk Topcu, and Clemens Wiltsche. Strat-809

egy synthesis for stochastic games with multiple long-run objectives. In Tools810

and Algorithms for the Construction and Analysis of Systems, pages 256–271.811

Springer Berlin Heidelberg, 2015.812

12. Roderick Bloem, Barbara Jobstmann, Nir Piterman, Amir Pnueli, and Yaniv Sa’ar.813

Synthesis of Reactive(1) designs. J. Comput. Syst. Sci., 78(3):911–938, 2012.814

13. P. Bouyer, R. Brenguier, N. Markey, and M. Ummels. Pure Nash equilibria in815

concurrent deterministic games. Logical Methods in Computer Science, 2015.816

Rational Verification: A Progress Report 23

14. R. S. Boyer and J. S. Moore, editors. The Correctness Problem in Computer817

Science. The Academic Press: London, England, 1981.818

15. R. Brafman and C. Domshlak. On the complexity of planning for agent teams819

and its implications for single agent planning. Artificial Intelligence, 198:52–71,820

2013.821

16. Tomáš Brázdil, Krishnendu Chatterjee, Martin Chmelı́k, Vojtěch Forejt, Jan822

Křetı́nský, Marta Kwiatkowska, David Parker, and Mateusz Ujma. Verification of823

markov decision processes using learning algorithms. In Automated Technology824

for Verification and Analysis, pages 98–114. Springer International Publishing,825

2014.826

17. C. S. Calude, S. Jain, B. Khoussainov, W. Li, and Frank Stephan. Deciding parity827

games in quasipolynomial time. In STOC, pages 252–263. ACM, 2017.828

18. Petr Čermák, Alessio Lomuscio, Fabio Mogavero, and Aniello Murano. Mcmas-829

slk: A model checker for the verification of strategy logic specifications. In Armin830

Biere and Roderick Bloem, editors, Computer Aided Verification, pages 525–532,831

Cham, 2014. Springer International Publishing.832

19. Petr Cermák, Alessio Lomuscio, Fabio Mogavero, and Aniello Murano. Practical833

verification of multi-agent systems against slk specifications. Information and834

Computation, 261(Part):588–614, 2018.835

20. G. Chalkiadakis, E. Elkind, and M. Wooldridge. Computational Aspects of Co-836

operative Game Theory. Morgan-Claypool, 2011.837

21. Toong Shoon Chan and Ian Gorton. Formal validation of a high performance error838

control protocol using spin. Software: Practice and Experience, 26(1):105–124,839

1996.840

22. Krishnendu Chatterjee and Thomas A. Henzinger. A survey of stochastic ω-841

regular games. Journal of Computer and System Sciences, 78(2):394–413, 2012.842

23. Krishnendu Chatterjee, Thomas A Henzinger, and Marcin Jurdzinski. Mean-843

payoff parity games. In 20th Annual IEEE Symposium on Logic in Computer844

Science (LICS’05), pages 178–187. IEEE, 2005.845

24. Taolue Chen, Vojtěch Forejt, Marta Kwiatkowska, David Parker, and Aistis846

Simaitis. Automatic verification of competitive stochastic systems. Formal Meth-847

ods in System Design, 43(1):61–92, 2013.848

25. Yunja Choi. From NuSMV to SPIN: Experiences with model checking flight849

guidance systems. Formal Methods in System Design, 30(3):199–216, January850

2007.851

26. E. M. Clarke and E. A. Emerson. Design and synthesis of synchronization skele-852

tons using branching time temporal logic. In Logics of Programs — Proceedings853

1981 (LNCS Volume 131), pages 52–71. Springer-Verlag: Berlin, Germany, 1981.854

27. E. M. Clarke, O. Grumberg, and D. A. Peled. Model Checking. The MIT Press:855

Cambridge, MA, 2000.856

28. Luca de Alfaro and Thomas A. Henzinger. Concurrent omega-regular games. In857

Proceedings of the 15th Annual IEEE Symposium on Logic in Computer Science,858

LICS ’00, page 141, USA, 2000. IEEE Computer Society.859

29. R. G. Downey and M. R. Fellows. Parameterized Complexity. Springer New860

York, 1999.861

24 Alessandro Abate et al.

30. E. A. Emerson. Temporal and modal logic. In Handbook of Theoretical Computer862

Science Volume B: Formal Models and Semantics, pages 996–1072. Elsevier863

Science Publishers B.V.: Amsterdam, The Netherlands, 1990.864

31. E. A. Emerson and C. S. Jutla. Tree automata, mu-calculus and determinacy. In865

FOCS, pages 368–377. IEEE, 1991.866

32. R. Fagin, J. Y. Halpern, Y. Moses, and M. Y. Vardi. Reasoning About Knowledge.867

The MIT Press: Cambridge, MA, 1995.868

33. Emmanuel Filiot, Raffaella Gentilini, and Jean-François Raskin. Rational synthe-869

sis under imperfect information. In Proceedings of the 33rd Annual ACM/IEEE870

Symposium on Logic in Computer Science. ACM, 2018.871

34. Michael Finus and Bianca Rundshagen. A non-cooperative foundation of core-872

stability in positive externality ntu-coalition games. Nota Di Lavoro 31.2003.873

Economics Energy Environment, 2003.874

35. D. Fisman, O. Kupferman, and Y. Lustig. Rational synthesis. In TACAS, volume875

6015 of LNCS, pages 190–204. Springer, 2010.876

36. Tong Gao, Julian Gutierrez, and Michael J. Wooldridge. Iterated boolean games877

for rational verification. In Kate Larson, Michael Winikoff, Sanmay Das, and878

Edmund H. Durfee, editors, Proceedings of the 16th Conference on Autonomous879

Agents and MultiAgent Systems, AAMAS 2017, S∼ao Paulo, Brazil, May 8-12,880

2017, pages 705–713. ACM, 2017.881

37. J. Gutierrez, P. Harrenstein, and M. Wooldridge. Iterated boolean games. Infor-882

mation and Computation, 242:53–79, 2015.883

38. Julian Gutierrez, Paul Harrenstein, Giuseppe Perelli, and Michael J. Wooldridge.884

Nash equilibrium and bisimulation invariance. Log. Methods Comput. Sci., 15(3),885

2019.886

39. Julian Gutierrez, Paul Harrenstein, and Michael J. Wooldridge. From model887

checking to equilibrium checking: Reactive modules for rational verification.888

Artif. Intell., 248:123–157, 2017.889

40. Julian Gutierrez, Sarit Kraus, and Michael J. Wooldridge. Cooperative concurrent890

games. In Edith Elkind, Manuela Veloso, Noa Agmon, and Matthew E. Taylor,891

editors, Proceedings of the 18th International Conference on Autonomous Agents892

and MultiAgent Systems, AAMAS ’19, Montreal, QC, Canada, May 13-17, 2019,893

pages 1198–1206. International Foundation for Autonomous Agents and Multia-894

gent Systems, 2019.895

41. Julian Gutierrez, Aniello Murano, Giuseppe Perelli, Sasha Rubin, Thomas896

Steeples, and Michael Wooldridge. Equilibria for games with combined qualita-897

tive and quantitative objectives. Acta Informatica, pages 1–26, 2020. Publisher:898

Springer.899

42. Julian Gutierrez, Aniello Murano, Giuseppe Perelli, Sasha Rubin, and Michael900

Wooldridge. Nash equilibria in concurrent games with lexicographic preferences.901

2017. Publisher: Association for the Advancement of Artificial Intelligence.902

43. Julian Gutierrez, Muhammad Najib, Giuseppe Perelli, and Michael Wooldridge.903

Eve: A tool for temporal equilibrium analysis. In ATVA, Vol 11138 of LNCS,904

pages 551–557, Cham, 2018. Springer.905

44. Julian Gutierrez, Muhammad Najib, Giuseppe Perelli, and Michael J. Wooldridge.906

On Computational Tractability for Rational Verification. In Sarit Kraus, editor,907

Rational Verification: A Progress Report 25

Proceedings of the Twenty-Eighth International Joint Conference on Artificial908

Intelligence, IJCAI 2019, Macao, China, August 10-16, 2019, pages 329–335.909

ijcai.org, 2019.910

45. Julian Gutierrez, Muhammad Najib, Giuseppe Perelli, and Michael J. Wooldridge.911

Automated temporal equilibrium analysis: Verification and synthesis of multi-912

player games. Artif. Intell., 287:103353, 2020.913

46. Julian Gutierrez, Giuseppe Perelli, and Michael Wooldridge. Imperfect informa-914

tion in reactive modules games. Information and Computation, 261:650 – 675,915

2018. 4th International Workshop on Strategic Reasoning (SR 2016).916

47. Lewis Hammond, Alessandro Abate, Julian Gutierrez, and Michael Wooldridge.917

Multi-agent reinforcement learning with temporal logic specifications. In Pro-918

ceedings of the 20th International Conference on Autonomous Agents and Multi-919

Agent Systems, AAMAS ’21. International Foundation for Autonomous Agents920

and Multiagent Systems, 2021. Forthcoming.921

48. Mohammadhosein Hasanbeig, Alessandro Abate, and Daniel Kroening.922

Logically-constrained reinforcement learning. arXiv:1801.08099, 2018.923

49. M. Jurdzinski. Deciding the winner in parity games is in UP ∩ co-up. Information924

Processing Letters, 68(3):119–124, 1998.925

50. Orna Kupferman. Automata theory and model checking. In Handbook of Model926

Checking, pages 107–151. Springer International Publishing, 2018.927

51. Orna Kupferman, Giuseppe Perelli, and Moshe Y. Vardi. Synthesis with rational928

environments. Ann. Math. Artif. Intell., 78(1):3–20, 2016.929

52. M. Kwiatkowska, G. Norman, and D. Parker. PRISM 4.0: Verification of prob-930

abilistic real-time systems. In G. Gopalakrishnan and S. Qadeer, editors, Proc.931

23rd International Conference on Computer Aided Verification (CAV’11), volume932

6806 of LNCS, pages 585–591. Springer, 2011.933

53. Marta Kwiatkowska, Gethin Norman, David Parker, and Gabriel Santos. Auto-934

mated verification of concurrent stochastic games. In Quantitative Evaluation of935

Systems, pages 223–239. Springer International Publishing, 2018.936

54. Marta Kwiatkowska, Gethin Norman, David Parker, and Gabriel Santos. Auto-937

matic verification of concurrent stochastic systems. Formal Methods in System938

Design, 2020. To appear.939

55. Marta Kwiatkowska, Gethin Norman, David Parker, and Gabriel Santos. PRISM-940

games 3.0: Stochastic game verification with concurrency, equilibria and time. In941

Computer Aided Verification, pages 475–487. Springer International Publishing,942

2020.943

56. A. Lomuscio and F. Raimondi. MCMAS: a tool for verifying multi-agent systems.944

In Proceedings of The Twelfth International Conference on Tools and Algorithms945

for the Construction and Analysis of Systems (TACAS-2006). Springer-Verlag:946

Berlin, Germany, 2006.947

57. Alessio Lomuscio, Hongyang Qu, and Franco Raimondi. MCMAS: an open-948

source model checker for the verification of multi-agent systems. International949

Journal on Software Tools for Technology Transfer, 19(1):9–30, 2017.950

58. Oded Maler and Dejan Nickovic. Monitoring temporal properties of continu-951

ous signals. In Formal Techniques, Modelling and Analysis of Timed and Fault-952

Tolerant Systems, pages 152–166. Springer Berlin Heidelberg, 2004.953

26 Alessandro Abate et al.

59. M. Maschler, E. Solan, and S. Zamir. Game Theory. Cambridge University Press:954

Cambridge, England, 2013.955

60. Fabio Mogavero, Aniello Murano, Giuseppe Perelli, and Moshe Y. Vardi. Rea-956

soning about strategies: On the model-checking problem. ACM Trans. Comput.957

Log., 15(4):34:1–34:47, 2014.958

61. Fabio Mogavero, Aniello Murano, Giuseppe Perelli, and Moshe Y. Vardi. Rea-959

soning about strategies: on the satisfiability problem. Log. Methods Comput. Sci.,960

13(1), 2017.961

62. N. Nisan, T. Roughgarden, E. Tardos, and V. V. Vazirani, editors. Algorithmic962

Game Theory. Cambridge University Press: Cambridge, England, 2007.963

63. M. J. Osborne and A. Rubinstein. A Course in Game Theory. The MIT Press:964

Cambridge, MA, 1994.965

64. Nir Piterman. From nondeterministic büchi and streett automata to deterministic966

parity automata. Log. Methods Comput. Sci., 3(3), 2007.967

65. A. Pnueli. The temporal logic of programs. In Proceedings of the Eighteenth968

IEEE Symposium on the Foundations of Computer Science, pages 46–57, 1977.969

66. A. Pnueli and R. Rosner. On the synthesis of an asynchronous reactive module. In970

Proceedings of the Sixteenth International Colloquium on Automata, Languages,971

and Programs, 1989.972

67. Talal Rahwan, Tomasz Michalak, Michael Wooldridge, and Nicholas R Jennings.973

Anytime coalition structure generation in multi-agent systems with positive or974

negative externalities. Artificial Intelligence, 186:95–122, 2012.975

68. A. Roth and A. Ockenfels. Last-minute bidding and the rules for ending second-976

price auctions: Evidence from eBay and Amazon auctions on the internet. Amer-977

ican Economic Review, 92(4):1093–1103, 2002.978

69. Lawrence M. Ruane. Process synchronization in the UTS kernel. Comput. Syst.,979

3(3):387–421, 1990.980

70. Theo C. Ruys and Rom Langerak. Validation of bosch’ mobile communication981

network architecture with spin. In In Proceedings of SPIN97, the Third Interna-982

tional Workshop on SPIN, University of Twente, 1997.983

71. Onn Shehory and Sarit Kraus. Methods for task allocation via agent coalition984

formation. Artificial intelligence, 101(1):165–200, 1998.985

72. Y. Shoham and K. Leyton-Brown. Multiagent Systems: Algorithmic, Game-986

Theoretic, and Logical Foundations. Cambridge University Press: Cambridge,987

England, 2008.988

73. A. P. Sistla and E. M. Clarke. The complexity of propositional linear temporal989

logics. Journal of the ACM, 32(3):733–749, 1985.990

74. Jan Strejcek. Linear temporal logic: Expressiveness and model checking. PhD991

thesis, PhD thesis, Faculty of Informatics, Masaryk University in Brno, 2004.992

75. Michael Ummels and Dominik Wojtczak. The Complexity of Nash Equilibria in993

Limit-Average Games. CoRR, abs/1109.6220, 2011.994

76. Metin Uyanık. On the nonemptiness of the α-core of discontinuous games:995

Transferable and nontransferable utilities. Journal of Economic Theory, 158:213–996

231, 2015.997

77. W. van der Hoek, A. Lomuscio, and M. Wooldridge. On the complexity of practi-998

cal ATL model checking. In Proceedings of the Fifth International Joint Confer-999

Rational Verification: A Progress Report 27

ence on Autonomous Agents and Multiagent Systems (AAMAS-2006), Hakodate,1000

Japan, 2005.1001

78. M. Y. Vardi. Branching vs. linear time: Final showdown. In T. Margaria and1002

W. Yi, editors, Proceedings of the 2001 Conference on Tools and Algorithms for1003

the Construction and Analysis of Systems, TACAS 2001 (LNCS Volume 2031),1004

pages 1–22. Springer-Verlag: Berlin, Germany, April 2001.1005

79. M. Y. Vardi and P. Wolper. An automata-theoretic approach to automatic program1006

verification. In First Symposium in Logic in Computer Science (LICS), 1986.1007

80. Glynn Winskel. Event structures. In Advances in Petri Nets, 1986.1008

81. M. Wooldridge. An Introduction to Multiagent Systems (Second edition). John1009

Wiley & Sons, 2009.1010

82. Michael J. Wooldridge, Julian Gutierrez, Paul Harrenstein, Enrico Marchioni,1011

Giuseppe Perelli, and Alexis Toumi. Rational verification: From model checking1012

to equilibrium checking. In Dale Schuurmans and Michael P. Wellman, editors,1013

Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence, February1014

12-17, 2016, Phoenix, Arizona, USA, pages 4184–4191. AAAI Press, 2016.1015

83. Sang-Seung Yi. Stable coalition structures with externalities. Games and eco-1016

nomic behavior, 20(2):201–237, 1997.1017

