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Abstract

Despite the improved accuracy of deep neural networks, the discovery of adver-
sarial examples has raised serious safety concerns. In this paper, we study two
variants of pointwise robustness, the maximum safe radius problem, which for a
given input sample computes the minimum distance to an adversarial example,
and the feature robustness problem, which aims to quantify the robustness of
individual features to adversarial perturbations. We demonstrate that, under
the assumption of Lipschitz continuity, both problems can be approximated us-
ing finite optimisation by discretising the input space, and the approximation
has provable guarantees, i.e., the error is bounded. We then show that the
resulting optimisation problems can be reduced to the solution of two-player
turn-based games, where the first player selects features and the second per-
turbs the image within the feature. While the second player aims to minimise
the distance to an adversarial example, depending on the optimisation objec-
tive the first player can be cooperative or competitive. We employ an anytime
approach to solve the games, in the sense of approximating the value of a game
by monotonically improving its upper and lower bounds. The Monte Carlo tree
search algorithm is applied to compute upper bounds for both games, and the
Admissible A* and the Alpha-Beta Pruning algorithms are, respectively, used
to compute lower bounds for the maximum safety radius and feature robustness
games. When working on the upper bound of the maximum safe radius prob-
lem, our tool demonstrates competitive performance against existing adversarial
example crafting algorithms. Furthermore, we show how our framework can be
deployed to evaluate pointwise robustness of neural networks in safety-critical
applications such as traffic sign recognition in self-driving cars.
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Figure 1: An adversarial example for a neural network trained on the GTSRB dataset. After
a slight perturbation of Euclidean distance 0.88, the image classification changes from “go
right or straight” to “go left or straight”.
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1. Introduction

Deep neural networks (DNNs or networks, for simplicity) have been devel-
oped for a variety of tasks, including malware detection [1], abnormal network
activity detection [2], and self-driving cars [3, 4, 5]. A classification network
N can be used as a decision-making algorithm: given an input α, it suggests a5

decision N(α) among a set of possible decisions. While the accuracy of neural
networks has greatly improved, matching the cognitive ability of humans [6],
they are susceptible to adversarial examples [7, 8]. An adversarial example
is an input which, though initially classified correctly, is misclassified after a
minor, perhaps imperceptible, perturbation. Adversarial examples pose chal-10

lenges for self-driving cars, where neural network solutions have been proposed
for tasks such as end-to-end steering [3], road segmentation [4], and traffic sign
classification [5]. In the context of steering and road segmentation, an adver-
sarial example may cause a car to steer off the road or drive into barriers, and
misclassifying traffic signs may cause a vehicle to drive into oncoming traffic.15

Figure 1 shows an image of a traffic light correctly classified by a state-of-the-art
network, which is then misclassified after only a few pixels have been changed.
Though somewhat artificial, since in practice the controller would rely on ad-
ditional sensor input when making a decision, such cases strongly suggest that,
before deployment in safety-critical tasks, DNNs’ resilience (or robustness) to20

adversarial examples must be strengthened.
Robustness of neural networks is an active topic of investigation and a num-

ber of approaches have been proposed to search for adversarial examples (see
Related Work). They are based on computing the gradients [9], along which
a heuristic search moves; computing a Jacobian-based saliency map [10], based25

on which pixels are selected to be changed; transforming the existence of ad-
versarial examples into an optimisation problem [11], on which an optimisation
algorithm can be applied; transforming the existence of adversarial examples
into a constraint solving problem [12], on which a constraint solver can be ap-
plied; or discretising the neighbourhood of a point and searching it exhaustively30

in a layer-by-layer manner [13].
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In this paper, we propose a novel game-based approach for safety verifica-
tion of DNNs. We consider two pointwise robustness problems, referred to as
the maximum safe radius problem and feature robustness problem, respectively.
The former aims to compute for a given input the minimum distance to an35

adversarial example, and therefore can be regarded as the computation of an
absolute safety radius, within which no adversarial example exists. The latter
problem studies whether the crafting of adversarial examples can be controlled
by restricting perturbations to only certain features (disjoint sets of input di-
mensions), and therefore can be seen as the computation of a relative safety40

radius, within which the existence of adversarial examples is controllable.
Both pointwise robustness problems are formally expressed in terms of non-

linear optimisation, which is computationally challenging for realistically-sized
networks. We thus utilise Lipschitz continuity of DNN layers, which bounds
the maximal rate of change of outputs of a function with respect to the change45

of inputs, as proposed for neural networks with differentiable layers in [14, 15].
This enables safety verification by relying on Lipschitz constants to provide
guaranteed bounds on DNN output for all possible inputs. We work with mod-
ern DNNs whose layers, e.g., ReLU, may not be differentiable, and reduce the
verification to finite optimisation. More precisely, we prove that under the as-50

sumption of Lipschitz continuity [16] it is sufficient to consider a finite number
of uniformly sampled inputs when the distances between the inputs are small,
and that this reduction has provable guarantees, in the sense of the error being
bounded by the distance between sampled inputs.

We then show that the finite optimisation problems can be computed as55

the solution of two-player turn-based games, where Player I selects features
and Player II then performs a perturbation within the selected features. After
both players have made their choices, the input is perturbed and the game
continues. While Player II aims to minimise the distance to an adversarial
example, Player I can be cooperative or competitive. When it is cooperative,60

the optimal reward of Player I is equal to the maximum safe radius. On the
other hand, when it is competitive the optimal reward of Player I quantifies
feature robustness. Finally, because the state space of the game models is
intractable, we employ an anytime approach to compute the upper and lower
bounds of Player I optimal reward. The anytime approach ensures that the65

bounds can be gradually, but strictly, improved so that they eventually converge.
More specifically, we apply Monte Carlo tree search algorithm to compute the
upper bounds for both games, and Admissible A* and Alpha-Beta Pruning,
respectively, to compute the lower bounds for the games.

We implement the method in a software tool DeepGame2, and conduct ex-70

periments on DNNs to show convergence of lower and upper bounds for the
maximum safe radius and feature robustness problems. Our approach can be
configured to work with a variety of feature extraction methods that parti-
tion the input, for example image segmentation, with simple adaptations. For

2The software package is available from https://github.com/TrustAI/DeepGame

3

https://github.com/TrustAI/DeepGame


the image classification networks we consider in the experiments, we employ75

both the saliency-guided grey-box approach adapted from [17] and the feature-
guided black-box method based on the SIFT object detection technique [18].
For the maximum safety radius problem, our experiments show that, on net-
works trained on the benchmark datasets such as MNIST [19], CIFAR10 [20]
and GTSRB [21], the upper bound computation method is competitive with80

state-of-the-art heuristic methods (i.e., without provable guarantees) that rely
on white-box saliency matrices or sophisticated optimisation procedures. Fi-
nally, to show that our framework is well suited to safety testing and decision
support for deploying DNNs in safety-critical applications, we experiment on
state-of-the-art networks, including the winner of the Nexar traffic light chal-85

lenge [22].
The paper significantly extends work published in [23], where the game-based

approach was first introduced for the case of cooperative games and evaluated on
the computation of upper bounds for the maximum safety radius problem using
the SIFT feature extraction method. In contrast, in this paper we additionally90

study feature robustness, generalise the game to allow for the competitive player,
and develop algorithms for the computation of both lower and upper bounds.
We also give detailed proofs of the theoretical guarantees and error bounds.

The structure of the paper is as follows. After introducing preliminaries
in Section 2, we formalise the maximum safety radius and feature robustness95

problems in Section 3. We present our game-based approximate verification
approach and state the guarantees in Section 4. Algorithms and implementation
are described in Section 5, while experimental results are given in Section 6. We
discuss the related work in Section 7 and conclude the paper in Section 8.

2. Preliminaries100

Let N be a neural network with a set C of classes. Given an input α and a
class c ∈ C, we use N(α, c) to denote the confidence (expressed as a probability
value obtained from normalising the score) of N believing that α is in class
c. Moreover, we write N(α) = arg maxc∈C N(α, c) for the class into which N
classifies α. We let P0 be the set of input dimensions, n = |P0| be the number
of input dimensions, and remark that without loss of generality the dimensions
of an input are normalised as real values in [0, 1]. The input domain is thus a
vector space

D = [0, 1]n.

For image classification networks, the input domain D can be represented as
[0, 1]w×h×ch[0,255] , where w, h, ch are the width, height, and number of channels of

an image, respectively. That is, we have P0 = w × h× ch. We may refer to an
element in w × h as a pixel and an element in P0 as a dimension. We use α[i]
for i ∈ P0 to denote the value of the i-th dimension of α.105
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2.1. Distance Metric and Lipschitz Continuity

As is common in the field, we will work with Lk distance functions to measure
the distance between inputs, denoted ||α− α′||k with k ≥ 1, and satisfying the
standard axioms of a metric space:

• ||α− α′||k ≥ 0 (non-negativity),110

• ||α− α′||k = 0 implies that α = α′ (identity of indiscernibles),

• ||α− α′||k = ||α′ − α||k (symmetry),

• ||α− α′′||k ≤ ||α− α′||k + ||α′ − α′′||k (triangle inequality).

While we focus on Lk distances, including L1 (Manhattan distance), L2 (Eu-
clidean distance), and L∞ (Chebyshev distance), we emphasise that the results115

of this paper hold for any distance metric and can be adapted to image simi-
larity distances such as SSIM [24]. Though our results do not generalise to L0

(Hamming distance), we utilise it for the comparison with existing approaches to
generate adversarial examples, i.e., without provable guarantees (Section 6.4).

Since we work with pointwise robustness [25], we need to consider the neigh-120

bourhood of a given input.

Definition 1. Given an input α, a distance function Lk, and a distance d, we
define the d-neighbourhood η(α,Lk, d) of α wrt Lk

η(α,Lk, d) = {α′ | ||α′ − α||k ≤ d}

as the set of inputs whose distance to α is no greater than d with respect to Lk.

The d-neighbourhood of α is simply the Lk ball with radius d. For example,
η(α,L1, d) includes those inputs such that the sum of the differences of individ-
ual dimensions from the original input α is no greater than d, i.e., ||α′ − α||1 =125 ∑
i∈P0
|α[i] − α′[i]|. Furthermore, we have ||α′ − α||2 =

√∑
i∈P0

(α[i]− α′[i])2

and ||α′ − α||∞ = maxi∈P0 |α[i] − α′[i]|. We will sometimes work with dε-
neighbourhood, where, given a number d, dε = d+ ε for any real number ε > 0
denotes a number greater than d.

We will restrict the neural networks we consider to those that satisfy the130

Lipschitz continuity assumption, noting that all networks whose inputs are
bounded, including all image classification networks we studied, are Lipschitz
continuous. Specifically, it is shown in [25, 16] that most known types of layers,
including fully-connected, convolutional, ReLU, maxpooling, sigmoid, softmax,
etc., are Lipschitz continuous.135

Definition 2. Network N is a Lipschitz network with respect to distance func-
tion Lk if there exists a constant ~c > 0 for every class c ∈ C such that, for all
α, α′ ∈ D, we have

|N(α′, c)−N(α, c)| ≤ ~c · ||α′ − α||k, (1)

where ~c is the Lipschitz constant for class c.
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2.2. Input Manipulations

To study the crafting of adversarial examples, we require the following oper-
ations for manipulating inputs. Let τ > 0 be a positive real number representing
the manipulation magnitude, then we can define input manipulation operations
δτ,X,ψ : D → D for X ⊆ P0, a subset of input dimensions, and ψ : P0 → N, an
instruction function by:

δτ,X,ψ(α[i]) =

{
α[i] + ψ(i) ∗ τ, if i ∈ X
α[i], otherwise

(2)

for all i ∈ P0. Note that if the values are bounded, e.g., in the interval [0, 1],
then δτ,X,ψ(α[i]) needs to be restricted to be within the bounds. Let Ψ be the
set of possible instruction functions.140

The following lemma shows that input manipulation operations allow one to
map one input to another by changing the values of input dimensions, regardless
of the distance measure Lk.

Lemma 1. Given any two inputs α1 and α2, and a distance ||α1 − α2||k for
any measure Lk, there exists a magnitude τ > 0, an instruction function ψ ∈ Ψ,
and a subset X ⊆ P0 of input dimensions, such that

||α2 − δτ,X,ψ(α1)||k ≤ ε

where ε > 0 is an error bound.

Intuitively, any distance can be implemented through an input manipulation145

with an error bound ε. The error bound ε is needed because input α ∈
D = [0, 1]n is bounded, and thus reaching another precise input point via a
manipulation is difficult when each input dimension is a real number.

We will also distinguish a subset of atomic input manipulations, each of
which changes a single dimension for a single magnitude.150

Definition 3. Given a set X, we let ∆(X) be the set of atomic input manip-
ulations δτ,X1,ψ1

such that

• X1 ⊆ X and |X1| = 1, and

• ψ1(i) ∈ {−1,+1} for all i ∈ P0.

Lemma 2. Any input manipulation δτ,X,ψ(α) for some X and ψ can be imple-155

mented with a finite sequence of input manipulations δτ,X1,ψ1(α), ..., δτ,Xm,ψm(α) ∈
∆(X).

While the existence of a sequence of atomic manipulations implementing a
given manipulation is determined, there may exist multiple sequences. On the
other hand, from a given sequence of atomic manipulations we can construct a160

single input manipulation by sequentially applying the atomic manipulations.
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2.3. Feature-Based Partitioning

Natural data, for example natural images and sounds, forms a high-dimensional
manifold, which embeds tangled manifolds to represent their features [26]. Fea-
ture manifolds usually have lower dimensions than the data manifold. Intu-165

itively, the set of features form a partition of the input dimensions P0. In this
paper, we use a variety of feature extraction methods to partition the set P0

into disjoint subsets.

Definition 4. Let λ be a feature of an input α ∈ D, then we use Pλ ⊆ P0 to
denote the dimensions represented by λ. Given an input α, a feature extraction170

function Λ maps an input α into a set of features Λ(α) such that (1) P0 =⋃
λ∈Λ(α) Pλ, and (2) Pλi ∩ Pλj = ∅ for any λi, λj ∈ Λ(α) with i 6= j.

We remark that our technique is not limited to image classification networks
and is able to work with general classification tasks, as long as there is a suitable
feature extraction method that generates a partition of the input dimensions.175

In our experiments we focus on image classification for illustrative purposes and
to enable better comparison, and employ saliency-guided grey-box and feature-
guided black-box approaches to extract features, described in Section 4.

3. Problem Statement

In this paper we focus on pointwise robustness [25], defined as the invariance180

of the network’s classification over a small neighbourhood of a given input.
This is a key concept, which also allows one to define robustness as a network
property, by averaging with respect to the distribution of the test data set.
Pointwise robustness can be used to define safety of a classification decision for
a specific input, understood as the non-existence of an adversarial example in a185

small neighbourhood of the input. We work with this notion and consider two
problems for quantifying the robustness of the decision, the computation of the
maximum safe radius and feature robustness, which we introduce next.

First we recall the concept of an adversarial example, as well as what we
mean by targeted and non-targeted safety.190

Definition 5. Given an input α ∈ D, a distance measure Lk for some k ≥
0, and a distance d, an adversarial example α′ of class c is such that α′ ∈
η(α,Lk, d), N(α) 6= N(α′), and N(α′) = c. Moreover, we write advk,d(α, c) for
the set of adversarial examples of class c and let

advk,d(α) =
⋃

c∈C,c6=N(α)

advk,d(α, c).

A targeted safety of class c is defined as advk,d(α, c) = ∅, and non-targeted
safety is advk,d(α) = ∅.

The following formalisation focuses on targeted safety of a fixed input α
and a fixed class c 6= N(α) for a network N . The case of non-targeted safety
(misclassification into class other than c) is similar.195
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Figure 2: The Maximum Safe Radius (MSR) problem aims to quantify the minimum distance
from an original image α to an adversarial example, equivalent to finding the radius of a
maximum safe norm ball. The solid line represents the classification boundary learned by a
DNN, while the dashed line is the decision boundary. Adversarial examples tend to lie where
the decision and classification boundaries do not align. Intuitively, finding an adversarial
example (green square) can only provide a loose upper bound of MSR.

3.1. The Maximum Safe Radius Problem

Given a targeted safety problem for α, we aim to compute the distance
||α− α′||k to the nearest adversarial example within the d-neighbourhood of α,
or in other words the radius of the maximum safe ball, illustrated in Figure 2.

Definition 6 (Maximum Safe Radius). The maximum safe radius problem
is to compute the minimum distance from the original input α to an adversarial
example, i.e.,

MSR(k, d, α, c) = min
α′∈D
{||α− α′||k | α′ ∈ advk,d(α, c)} (3)

If advk,d(α, c) = ∅, we let MSR(k, d, α, c) = dε.200

Intuitively, MSR(k, d, α, c) represents an absolute safety radius within which all
inputs are safe. In other words, within a distance of less than MSR(k, d, α, c),
no adversarial example is possible. When no adversarial example can be found
within radius d, i.e., advk,d(α, c) = ∅, the maximum safe radius cannot be
computed, but is definitely greater than d. Therefore, we let MSR(k, d, α, c) = dε.205

Intuitively, finding an adversarial example can only provide a loose upper
bound of MSR. Instead, this paper investigates a more fundamental problem –
how to approximate the true MSR distance with provable guarantees.
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Approximation Based on Finite Optimisation. Note that the sets advk,d(α, c)
and advk,d(α) of adversarial examples can be infinite. We now present a discreti-210

sation method that allows us to approximate the maximum safe radius using
finite optimisation, and show that such a reduction has provable guarantees,
provided that the network is Lipschitz continuous. Our approach proceeds by
constructing a finite ‘grid’ of points in the input space. Lipschitz continuity en-
ables us to reduce the verification problem to manipulating just the grid points,215

through which we can bound the output behaviour of a DNN on the whole
input space, since Lipschitz continuity ensures that the network behaves well
within each cell. The number of grid points is inversely proportional to the
Lipschitz constant. However, estimating a tight Lipschitz constant is difficult,
and so, rather than working with the Lipschitz constant directly, we assume the220

existence of a (not necessarily tight) Lipschitz constant and work instead with
a chosen fixed magnitude of an input manipulation, τ ∈ (0, 1]. We show how to
determine the largest τ for a given Lipschitz network and give error bounds for
the computation of MSR that depend on τ . We discuss how Lipschitz constants
can be estimated in Section 6.2 and Related Work.225

We begin by constructing, for a chosen fixed magnitude τ ∈ (0, 1], input
manipulations to search for adversarial examples.

Definition 7. Let τ ∈ (0, 1] be a manipulation magnitude. The finite maximum
safe radius problem FMSR(τ, k, d, α, c) based on input manipulation is as follows:

min
Λ′⊆Λ(α)

min
X⊆

⋃
λ∈Λ′ Pλ

min
ψ∈Ψ
{||α− δτ,X,ψ(α)||k | δτ,X,ψ(α) ∈ advk,d(α, c)}. (4)

If advk,d(α, c) = ∅, we let FMSR(τ, k, d, α, c) = dε.

Intuitively, we aim to find a set Λ′ of features, a set X of dimensions within
Λ′, and a manipulation instruction ψ such that the application of the atomic230

manipulation δτ,X,ψ on the original input α leads to an adversarial example
δτ,X,ψ(α) that is nearest to α among all adversarial examples. Compared to
Definition 6, the search for another input by minα′∈D over an infinite set is
implemented by minimisation over the finite sets of feature sets and instructions.

Since the set of input manipulations is finite for a fixed magnitude, the above235

optimisation problems need only explore a finite number of ‘grid’ points in the
input domain D. We have the following lemma.

Lemma 3. For any τ ∈ (0, 1], we have that MSR(k, d, α, c) ≤ FMSR(τ, k, d, α, c).

To ensure the lower bound of MSR(k, d, α, c) in Lemma 3, we utilise the fact
that the network is Lipschitz continuous [16]. First, we need the concepts of a τ -240

grid input, for a manipulation magnitude τ , and a misclassification aggregator.
The intuition for the τ -grid is illustrated in Figure 3. We construct a finite set
of grid points uniformly spaced by τ in such a way that they can be covered
by small subspaces centred on grid points. We select a sufficiently small value
for τ based on a given Lipschiz constant so that all points in these subspaces245
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are are classified the same. We then show that an optimum point on the grid is
within an error bound dependent on τ from the true optimum, i.e., the closest
adversarial example.

Definition 8. An image α′ ∈ η(α,Lk, d) is a τ -grid input if for all dimensions
p ∈ P0 we have |α′(p)− α(p)| = n ∗ τ for some n ≥ 0. Let G(α, k, d) be the set250

of τ -grid inputs in η(α,Lk, d).

We note that τ -grid inputs in the set G(α, k, d) are reachable from each other
by applying an input manipulation. The main purpose of defining τ -grid inputs
is to ensure that the space η(α,Lk, d) can be covered by small subspaces centred
on grid points. To implement this, we need the following lemma.255

Lemma 4. We have η(α,Lk, d) ⊆
⋃
α′∈G(α,k,d) η(α′, Lk,

1
2d(k, τ)), where d(k, τ) =

(|P0|τk)
1
k .

Proof: Let α1 be any point in η(α,Lk, d). We need to show α1 ∈ η(α′, Lk,
1
2d(k, τ))

for some τ -grid input α′. Because every point in η(α,Lk, d) belongs to a τ -grid
cell, we assume that α1 is in a τ -grid cell which, without loss of generality, has260

a set T of τ -grid inputs as its vertices. Now for any two τ -grid inputs α2 and
α3 in T , we have that ||α2 − α3||k ≤ d(k, τ), by the construction of the grid.
Therefore, we have α1 ∈ η(α′, Lk,

1
2d(k, τ)) for some α′ ∈ T . �

As shown in Figure 3, the distance 1
2d(k, τ) is the radius of norm ball

subspaces covering the input space. It is easy to see that d(1, τ) = |P0|τ ,265

d(2, τ) =
√
|P0|τ2, and d(∞, τ) = τ .

Definition 9. An input α1 ∈ η(α,Lk, d) is a misclassification aggregator with
respect to a number β > 0 if, for any α2 ∈ η(α1, Lk, β), we have that N(α2) 6=
N(α) implies N(α1) 6= N(α).

Intuitively, if a misclassification aggregator α1 with respect to β is classified270

correctly, then all inputs in η(α1, Lk, β) are classified correctly.

Error Bounds. We now bound the error of using FMSR(τ, k, d, α, c) to estimate
MSR(k, d, α, c) in 1

2d(k, τ), as illustrated in Figure 3. First of all, we have the
following lemma. Recall from Lemma 3 that we already have MSR(k, d, α, c) ≤
FMSR(τ, k, d, α, c).275

Lemma 5. If all τ -grid inputs are misclassification aggregators with respect to
1
2d(k, τ), then MSR(k, d, α, c) ≥ FMSR(τ, k, d, α, c)− 1

2d(k, τ).

Proof: We prove by contradiction. Assume that FMSR(τ, k, d, α, c) = d′ for
some d′ > 0, and MSR(k, d, α, c) < d′− 1

2d(k, τ). Then there must exist an input
α′ such that α′ ∈ advk,d(α, c) and

||α′ − α||k = MSR(k, d, α, c) < d′ − 1

2
d(k, τ), (5)
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Figure 3: Provable guarantees for the MSR and FRΛ problems on a dense τ -grid (green dots)
that is reached upon convergence. In the worst case, the true optimum (the red dot) lies in
the middle between two hyper-points of the τ -grid, with the distance of at most 1

2
d(k, τ) from

the found optimum.

and α′ is not a τ -grid input. By Lemma 4, there must exist a τ -grid input α′′

such that α′ ∈ η(α′′, Lk,
1
2d(k, τ)). Now because all τ -grid inputs are misclassi-

fication aggregators with respect to 1
2d(k, τ), we have α′′ ∈ advk,d(α, c).280

By α′′ ∈ advk,d(α, c) and the fact that α′′ is a τ -grid input, we have that

FMSR(τ, k, d, α, c) ≤ ||α− α′′||k ≤ ||α− α′||k +
1

2
d(k, τ). (6)

Now, combining Equations (5) and (6), we have that FMSR(τ, k, d, α, c) < d′,
which contradicts the hypothesis that FMSR(τ, k, d, α, c) = d′. �

In the following, we discuss how to determine the largest τ for a Lipschitz
network in order to satisfy the condition in Lemma 5 that all τ -grid inputs are
misclassification aggregators with respect to 1

2d(k, τ).285

Definition 10. Given a class label c, we let

g(α′, c) = min
c′∈C,c′ 6=c

{N(α′, c)−N(α′, c′)} (7)

be a function maintaining for an input α′ the minimum confidence margin be-
tween the class c and another class c′ 6= N(α′).

Note that, given an input α′ and a class c, we can compute g(α′, c) in constant
time. The following lemma shows that the above-mentioned condition about
misclassification aggregators can be obtained if τ is sufficiently small.290
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Lemma 6. Let N be a Lipschitz network with a Lipschitz constant ~c for every
class c ∈ C. If

d(k, τ) ≤ 2g(α′, N(α′))

maxc∈C,c 6=N(α′)(~N(α′) + ~c)
(8)

for all τ -grid input α′ ∈ G(α, k, d), then all τ -grid inputs are misclassification
aggregators with respect to 1

2d(k, τ).

Proof: For any input α′′ whose closest τ -grid input is α′, we have

g(α′, N(α′))− g(α′′, N(α′))

= min
c∈C,c 6=N(α′)

{N(α′, N(α′))−N(α′, c)} − min
c′∈C,c′ 6=N(α′)

{N(α′′, N(α′))−N(α′′, c′)}

≤ max
c′∈C,c′ 6=N(α′)

{N(α′, N(α′))−N(α′, c′)−N(α′′, N(α′)) +N(α′′, c′)}

≤ max
c′∈C,c′ 6=N(α′)

{|N(α′, N(α′))−N(α′′, N(α′))|+ |N(α′′, c′)−N(α′, c′)|}

≤ max
c′∈C,c′ 6=N(α′)

(~N(α′) + ~c′)||α′ − α′′||k

≤ max
c′∈C,c′ 6=N(α′)

(~N(α′) + ~c′)
1

2
d(k, τ)

(9)
Now, to ensure that no class change occurs between α′′ and α′, we need to have
g(α′′, N(α′)) ≥ 0, which means that g(α′, N(α′))−g(α′′, N(α′)) ≤ g(α′, N(α′)).
Therefore, we can let

max
c′∈C,c′ 6=N(α′)

(~N(α′) + ~c′)
1

2
d(k, τ) ≤ g(α′, N(α′)). (10)

Note that g(α′, N(α′)) is dependent on the τ -grid input α′, and thus can be
computed when we construct the grid. Finally, we let

d(k, τ) ≤ 2g(α′, N(α′))

maxc′∈C,c′ 6=N(α′)(~N(α′) + ~c′)
(11)

Therefore, if we have the above inequality for every τ -grid input, then we
can conclude g(α′′, N(α′)) ≥ 0 for any α′′ ∈ η(α′, k, d), i.e., N(α′′, N(α′)) ≥
N(α′′, c) for all c ∈ C. The latter means that no class change occurs. �295

Combining Lemmas 3, 5, and 6, we have the following theorem which shows
that the reduction has a provable guarantee, dependent on the choice of the
manipulation magnitude.

Theorem 1. Let N be a Lipschitz network with a Lipschitz constant ~c for

every class c ∈ C. If d(k, τ) ≤ 2g(α′,N(α′))
maxc′∈C,c′ 6=N(α′)(~N(α′)+~c′ )

for all τ -grid inputs300

α′ ∈ G(α, k, d), then we can use FMSR(τ, k, d, α, c) to estimate MSR(k, d, α, c) with
an error bound 1

2d(k, τ).

Proof: By Lemma 3, we have MSR(k, d, α, c) ≤ FMSR(τ, k, d, α, c) for any τ > 0.
By Lemma 5 and Lemma 6, when FMSR(τ, k, d, α, c) = d′, we have MSR(k, d, α, c) ≥
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Figure 4: Illustration of the feature robustness (FRΛ) problem, which aims to find, on an
original image α, a feature, or a subset of features, that is the most robust against adversarial
perturbations. Given a benign image, we first apply feature extraction or semantic partitioning
methods to produce a set of disjoint features (‘Sky’, ‘Trees’, ‘Cat’, etc.), then we find a set
of robust features that is most resilient to adversarial perturbations (‘Grass’ in the figure),
which quantifies the most robust direction in a safe norm ball.

d′− 1
2d(k, τ), under the condition that d(k, τ) ≤ 2g(α′,N(α′))

maxc′∈C,c′ 6=N(α′)(~N(α′)+~c′ )
for all305

τ -grid inputs α′ ∈ G(α, k, d). Therefore, when d(k, τ) ≤ 2g(α′,N(α′))
maxc′∈C,c′ 6=N(α′)(~N(α′)+~c′ )

for all τ -grid inputs α′ ∈ G(α, k, d), if we use d′ to estimate MSR(k, d, α, c), we
will have d′− 1

2d(k, τ) ≤ MSR(k, d, α, c) ≤ d′, i.e., the error bound is 1
2d(k, τ). �

3.2. The Feature Robustness Problem

The second problem studied in this paper concerns which features are the310

most robust against perturbations, illustrated in Figure 4. The feature robust-
ness problem has been studied in explainable AI. For example, [27] explains
the decision making of an image classification network through different con-
tributions of the superpixels (i.e., features) and [28] presents a general additive
model for explaining the decisions of a network by the Shapley value computed315

over the set of features.
Let P0(α1, α2) ⊆ P0 be the set of input dimensions on which α1 and α2 have

different values.

Definition 11 (Feature Robustness). The feature robustness problem is de-
fined as follows.

FRΛ(k, d, α, c) = max
λ∈Λ(α)

{xFRΛ(λ, k, d, α, c)} (12)
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where xFRΛ(λm, k, d, αm, c) =
min

αm+1∈η(α,Lk,d)
{||αm − αm+1||k + FRΛ(k, d, αm+1, c) |

∅ 6= P0(αm, αm+1) ⊆ Pλm}, if αm /∈ advk,d(α, c)
0, otherwise

(13)
where Λ is a feature extraction function, and αm, αm+1(m ∈ N) are the in-
puts before and after the application of some manipulation on a feature λm,320

respectively. If after selecting a feature λm no adversarial example can be
reached, i.e., ∀αm+1 : P0(αm, αm+1) ⊆ Pλm ⇒ αm+1 /∈ advk,d(α, c), then we let
xFRΛ(λm, k, d, αm, c) = dε.

Intuitively, the search for the most robust feature alternates between max-
imising over the features and minimising over the possible input dimensions325

within the selected feature, with the distance to the adversarial example as the
objective. Starting from FRΛ(k, d, α0, c) where α0 is the original image, the pro-
cess moves to FRΛ(k, d, α1, c) by a max-min alternation on selecting feature λ0

and next input α1. This continues until either an adversarial example is found,
or the next input αi for some i > 0 is outside the d-neighbourhood η(α,Lk, d).330

The value dε is used is to differentiate from the case where the minimal adversar-
ial example has exactly distance d from α0 and the manipulations are within λ0.
In such a case, according to Equation (13), we have xFRΛ(λ0, k, d, α0, c) = d.

Assuming FRΛ(k, d, α, c) has been computed and a distance budget d′ ≤ d is
given to manipulate the input α, the following cases can be considered.335

• If FRΛ(k, d, α, c) > d, then there are robust features, and if manipulations
are restricted to those features no adversarial example is possible.

• If FRΛ(k, d, α, c) ≤ d′ ≤ d, then, no matter how one restricts the features to
be manipulated, an adversarial example can be found within the budget.

• If MSR(k, d, α, c) ≤ d′ < FRΛ(k, d, α, c) ≤ d, then the existence of adversar-340

ial examples is controllable, i.e., we can choose a set of features on which
the given distance budget d′ is insufficient to find an adversarial example.
This differs from the first case in that an adversarial example can be found
if given a larger budget d.

Therefore, studying the feature robustness problem enables a better under-345

standing of the robustness of individual features and how the features contribute
to the robustness of an image.

It is straightforward to show that

MSR(k, d, α, c) ≤ FRΛ(k, d, α, c). (14)

Compared to the absolute safety radius by MSR(k, d, α, c), FRΛ(k, d, α, c) can
be seen as a relative safety radius, within which the existence of adversarial
examples can be controlled. Theoretically, the MSR(k, d, α, c) problem can be350
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Figure 5: Illustration of the maximum safe radius (MSR) and feature robustness (FRΛ) prob-
lems. From left to right: an adversarial example with two pixel changes, feature extraction of
the image, adversarial examples with three changed pixels on features ‘Sky’ and ‘Cat’, four
changed pixels on ‘Trees’, and five pixel manipulations on ‘Grass’, respectively.

seen as a special case of the FRΛ(k, d, α, c) problem, when we let |Λ(α)| = 1.
We study them separately, because the MSR(k, d, α, c) problem is interesting on
its own, and, more importantly, we show later that they can be solved using
different methods.

One can also consider a simpler variant of this problem, which aims to find355

a subset of features that are most resilient to perturbations, and which can be
solved by only considering singleton sets of features. We omit the formalisation
for reasons of space.

We illustrate the two problems, the maximum safe radius (MSR) and (the
simpler variant of) feature robustness (FR′Λ), through Example 1.360

Example 1. As shown in Figure 5, the minimum distance from the original
image to an adversary is two pixels, i.e., MSR = 2 (for simplicity here we take
the L0-norm). That is, for a norm ball with radius less than 2, the image
is absolutely safe. Note that, for MSR, the manipulations can span different
features. After feature extraction, we find the maximum safe radius of each365

feature, i.e., MSRλ1 = 3, MSRλ2 = 4, MSRλ3 = 3, MSRλ4 = 5.
Assume that we have a norm ball of radius d, and a distance budget d′, then:

• if d = 4, then by definition we have FR′Λ = 4ε, i.e., manipulating ‘Grass’
cannot change the classification;

• if d = 10 and d′ = 7 then we have FR′Λ = 5 < d′ < d, i.e., all the features370

are fragile;

• if d = 10 and d′ = 4 then d′ < FR′Λ = 5 < d, i.e., the existence of an
adversary is controllable by restricting perturbations to ‘Grass’.

Approximation Based on Finite Optimisation. Similarly to the case of the maxi-
mum safe radius, we reduce the feature robustness problem to finite optimisation375

by implementing the search for adversarial examples using input manipulations.

Definition 12. Let τ ∈ (0, 1] be a manipulation magnitude. The finite feature
robustness problem FFRΛ(τ, k, d, α, c) based on input manipulation is as follows:

FFRΛ(τ, k, d, α, c) = max
λ∈Λ(α)

{xFFRΛ(λ, τ, k, d, α, c)} (15)
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where xFFRΛ(λm, τ, k, d, αm, c) = min
X⊆Pλm

min
ψ∈Ψ
{||αm − δτ,X,ψ(αm)||k + FFRΛ(k, d, δτ,X,ψ(αm), c)}, if αm /∈ advk,d(α, c)

0, otherwise

(16)
where Λ is a feature extraction function, and αm, δτ,X,ψ(αm),m ∈ N, are the
perturbed inputs before and after the application of manipulation δτ,X,ψ on a
feature λm, respectively. If after selecting a feature λm no adversarial example
can be reached, i.e., ∀X ⊆ Pλm∀ψ ∈ Ψ : δτ,X,ψ(αm) /∈ advk,d(α, c), then we let380

xFFRΛ(λm, τ, k, d, αm, c) = dε.

Compared to Definition 11, the search for another input by minαm+1∈η(α,Lk,d)

is implemented by combinatorial search over the finite sets of feature sets and
instructions.

Error Bounds. The case for the feature robustness problem largely follows that385

of the maximum safe radius problem. First of all, we have the following lemma
which bounds the error of FFRΛ(τ, k, d, α, c) to 1

2d(k, τ), which depends on the
value of magnitude.

Lemma 7. If all τ -grid inputs are misclassification aggregators with respect to
1
2d(k, τ), then FRΛ(k, d, α, c) ≥ FFRΛ(τ, k, d, α, c)− 1

2d(k, τ).390

Proof: We prove by contradiction. Assume that FFRΛ(τ, k, d, α, c) = d′ for
some d′ > 0, and FRΛ(k, d, α, c) < d′− 1

2d(k, τ). Then, for all subsets Λ ⊆ Λ(α) of
features, either for all X ⊆

⋃
λ∈Λ Pλ and ψ ∈ Ψ we have δτ,X,ψ(α) /∈ advk,d(α, c),

or there must exist X ⊆
⋃
λ∈Λ Pλ and ψ ∈ Ψ such that

α′ = δτ,X,ψ(α) ∈ advk,d(α, c) and ||α′ − α||k < d′ − 1

2
d(k, τ), (17)

and α′ is not a τ -grid input.
For the latter case, by Lemma 4, there must exist a τ -grid input α′′ such

that α′ ∈ η(α′′, Lk,
1
2d(k, τ)). Now because all τ -grid inputs are misclassification

aggregators with respect to 1
2d(k, τ), we have α′′ ∈ advk,d(α, c). By α′′ ∈

advk,d(α, c) and the fact that α′′ is a τ -grid input, we have that

||α− α′′||k ≤ ||α− α′||k +
1

2
d(k, τ). (18)

Therefore, we have FFRΛ(τ, k, d, α, c) < d′ by the combining Equations (17) and
(18). However, this contradicts the hypothesis that FFRΛ(τ, k, d, α, c) = d′.

For the former case, we have FFRΛ(τ, k, d, α, c) = d′ > d. If FRΛ(k, d, α, c) <
d′− 1

2d(k, τ), then there exists an α′ such that α′ ∈ η(α′′, Lk,
1
2d(k, τ)) for some395

τ -grid input α′′. By the definition of misclassification aggregator, we have α′′ ∈
advk,d(α, c). This contradicts the hypothesis that FFRΛ(τ, k, d, α, c) = d′ > d.
�
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Combining Lemmas 3, 6, and 7, we have the following theorem which shows
that the reduction has a provable guarantee under the assumption of Lipschitz400

continuity. The approximation error depends linearly on the prediction confi-
dence on discretised ‘grid’ inputs and is inversely proportional with respect to
the Lipschitz constants of the network.

Theorem 2. Let N be a Lipschitz network with a Lipschitz constant ~c for

every class c ∈ C. If d(k, τ) ≤ 2g(α′,N(α′))
maxc′∈C,c′ 6=N(α′)(~N(α′)+~c′ )

for all τ -grid inputs405

α′ ∈ G(α, k, d), then we can use FFRΛ(τ, k, d, α, c) to estimate FRΛ(k, d, α, c)
with an error bound 1

2d(k, τ).

Proof: By Lemma 3, we have FRΛ(k, d, α, c) ≤ FFRΛ(τ, k, d, α, c) for any τ > 0.
By Lemma 6 and Lemma 7, when FFRΛ(τ, k, d, α, c) = d′, we have FRΛ(k, d, α, c) ≥
d′− 1

2d(k, τ), under the condition that d(k, τ) ≤ 2g(α′,N(α′))
maxc′∈C,c′ 6=N(α′)(~N(α′)+~c′ )

for all410

τ -grid inputs α′ ∈ G(α, k, d). Therefore, when d(k, τ) ≤ 2g(α′,N(α′))
maxc′∈C,c′ 6=N(α′)(~N(α′)+~c′ )

for all τ -grid inputs α′ ∈ G(α, k, d), if we use d′ to estimate FRΛ(k, d, α, c), we
will have d′ − 1

2d(k, τ) ≤ FRΛ(k, d, α, c) ≤ d′, i.e., the error bound is 1
2d(k, τ).

�

4. A Game-Based Approximate Verification Approach415

In this section, we define a two-player game and show that the solutions of
the two finite optimisation problems, FMSR(k, d, α, c) and FFRΛ(k, d, α, c), given
in Expressions (4) and (15) can be reduced to the computation of the rewards of
Player I taking an optimal strategy. The two problems differ in that they induce
games in which the two players are cooperative or competitive, respectively.420

The game proceeds by constructing a sequence of atomic input manipula-
tions to implement the optimisation objectives in Equations (4) and (15).

4.1. Problem Solving as a Two-Player Turn-Based Game

The game has two players, who take turns to act. Player I selects features
and Player II then selects an atomic input manipulation within the selected fea-425

tures. While Player II aims to minimise the distance to an adversarial example,
depending on the optimisation objective designed for either FMSR(k, d, α, c) or
FFRΛ(k, d, α, c), Player I can be cooperative or competitive. We remark that, in
contrast to [23] where the games were originally introduced, we do not consider
the nature player.430

Formally, we let M(k, d, α, c) = (S ∪ (S × Λ(α)), s0, {Ta}a∈{I,II}, L) be a
game model, where

• S is a set of game states belonging to Player I such that each state repre-
sents an input in η(α,Lk, d), and S×Λ(α) is a set of game states belonging
to Player II where Λ(α) is a set of features of input α. We write α(s) for435

the input associated to the state s ∈ S.
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Figure 6: Two-player turn-based solution for finite optimisation. Player I selects features and
Player II then performs an atomic input manipulation within the selected features. For the
Maximum Safe Radius problem, both Player I and Player II aim to minimise the distance
to an adversarial example; for the Feature Robustness problem, while Player II has the same
objective, Player I plays against this, i.e., aiming to prevent the reaching of adversarial ex-
amples by taking suitable actions. The game terminates when an adversary is found or the
distance budget for adversarial perturbation has been reached.

• s0 ∈ S is the initial game state such that α(s0) is the original input α.

• The transition relation TI : S × Λ(α)→ S × Λ(α) is defined as

TI(s, λ) = (s, λ), (19)

and transition relation TII : (S × Λ(α))× P(P0)×Ψ→ S is defined as

TII((s, λ), X, ψ) = δτ,X,ψ(α(s)), (20)

where X ⊆ Pλ is a set of input dimensions within feature λ, ψ : P0 →
{−1,+1} is a manipulation instruction, and δτ,X,ψ is an atomic dimension
manipulation as defined in Definition 3. Intuitively, in every game state440

s ∈ S, Player I will choose a feature λ, and, in response to this, Player II
will choose an atomic input manipulation δτ,X,ψ.

• The labelling function L : S ∪ (S × Λ(α)) → C assigns to each state s or
(s, λ) a class N(α(s)).

Figure 6 illustrates the game model with a partially-expanded game tree.445

Strategy Profile. A path (or game play) of the game model is a sequence s1u1s2u2...
of game states such that, for all k ≥ 1, we have uk = TI(sk, λk) for some feature
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λk and sk+1 = TII((sk, λk), Xk, ψk) for some (Xk, ψk). Let last(ρ) be the last
state of a finite path ρ, and PathFa be the set of finite paths such that last(ρ)
belongs to player a ∈ {I, II}.450

Definition 13. A stochastic strategy σI : PathFI → D(Λ(α)) of Player I maps
each finite path to a distribution over the next actions, and similarly for σII :
PathFII → D(P(P0)×I) for Player II. We call σ = (σI, σII) a strategy profile.

A strategy σ is deterministic if σ(ρ) is a Dirac distribution, and is memoryless
if σ(ρ) = σ(last(ρ)) for all finite paths ρ.455

Rewards. We define a reward R(σ, ρ) for a given strategy profile σ = (σI, σII)
and a finite path ρ ∈

⋃
a∈{I,II} Path

F
a . The idea of the reward is to accumulate

the distance to the adversarial example found over a path. Note that, given σ,
the game becomes a deterministic system. Let α′ρ = α(last(ρ)) be the input
associated with the last state of the path ρ. We write

t(ρ) ≡ (N(α′ρ) = c) ∨ (||α′ρ − α||k > d), (21)

representing that the path has reached a state whose associated input either
is in the target class c or lies outside the region η(α,Lk, d). The path ρ can
be terminated whenever t(ρ) is satisfied. It is not hard to see that, due to the
constraints in Definition 5, every infinite path has a finite prefix which can be
terminated (that is, either when an adversarial example is found or the distance460

to the original image has exceeded d). During each expansion of the game
model, an atomic manipulation is employed, which excludes the possibility that
an input dimension is perturbed in smaller and smaller steps.

Definition 14. Given a strategy profile σ = (σI, σII) and a finite path ρ, we
define a reward function as follows: R(σ, ρ) =

||α′ρ − α||k, if t(ρ) and ρ ∈ PathFI∑
λ∈Λ(α)

σI(ρ)(λ) ·R(σ, ρTI(last(ρ), λ)), if ¬t(ρ) and ρ ∈ PathFI∑
(X,ψ)∈P(P0)×Ψ

σII(ρ)(X,ψ) ·R(σ, ρTII(last(ρ), X, ψ)), if ρ ∈ PathFII

(22)
where σI(ρ)(λ) is the probability of selecting feature λ on finite path ρ by Player I,
and σII(ρ)(X,ψ) is the probability of selecting atomic input manipulation δτ,X,ψ465

based on ρ by Player II. The expression ρTI(last(ρ), λ) is the resulting path of
Player I selecting λ, and ρTII(last(ρ), X, ψ) is the resulting path of Player II

applying δτ,X,ψ on α′ρ. We note that a path only terminates on Player I states.

Intuitively, if an adversarial example is found then the reward assigned is
the distance to the original input, otherwise it is the weighted summation of the470

rewards of its children.
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Players’ Objectives. Players’ strategies are to maximise their rewards in a game.
The following players’ objectives are designed to match the finite optimisation
problems stated in Equations (4) and (15).

Definition 15. In a game, Player II chooses a strategy σII to minimise the475

reward R((σI, σII), s0), whilst Player I has different goals depending on the op-
timisation problem under consideration.

• For the maximum safe radius problem, Player I chooses a strategy σI to
minimise the reward R((σI, σII), s0), based on the strategy σII of Player II.
That is, the two players are cooperative.480

• For the feature robustness problem, Player I chooses a strategy σI to
maximise R((σI, σII), s0), based on the strategy σII of Player II. That is,
the two players are competitive.

The goal of the game is for Player I to choose a strategy σI to optimise its
objective, to be formalised below.485

4.2. Safety Guarantees via Optimal Strategy

For different objectives x ∈ {MSR(k, d, α, c), FRΛ(k, d, α, c)} of Player I, we
construct different games. Given a game model M(k, d, α, c) and an objective
x of Player I, there exists an optimal strategy profile σ = (σI, σII), obtained
by both players optimising their objectives. We will consider the algorithms to490

compute the optimal strategy profile in Section 5. Here we focus on whether the
obtained optimal strategy profile σ is able to implement the finite optimisation
problems in Equations (4) and (15).

First of all, we formally define the goal of the game.

Definition 16. Given a game model M(k, d, α, c), an objective x of Player I,
and an optimal strategy profile σ = (σI, σII), the goal of the game is to compute
the value

val(M(k, d, α, c), x) = R(σ, s0) (23)

That is, the goal is to compute the reward of the initial state s0 based on σ.495

Note that an initial state s0 is also a finite path, and it is a Player I state.

We have the following Theorems 3 and 4 to confirm that the game can return
the optimal values for the two finite optimisation problems.

Theorem 3. Assume that Player I has the objective MSR(k, d, α, c). Then

val(M(k, d, α, c), MSR(k, d, α, c)) = FMSR(τ, k, d, α, c) (24)

Proof: First, we show that ||α − α′||k ≥ val(M(k, d, α, c), MSR(k, d, α, c)) for
any input α′ such that α′ ∈ η(α,Lk, d), α′ ∈ advk,d(α, c), and α′ is a τ -grid500

input. Intuitively, it says that Player I reward from the game on the initial
state s0 is no greater than the distance to any τ -grid adversarial example. That
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is, once computed, the val(M(k, d, α, c), MSR(k, d, α, c)) is a lower bound of the
optimisation problem FMSR(τ, k, d, α, c). This can be obtained by the fact that
every τ -grid input can be reached by some game play.505

Second, from the termination condition of the game plays, we can see that if
val(M(k, d, α, c), MSR(k, d, α, c)) ≤ ||α− α′||k for some α′ then there must exist
some α′′ such that val(M(k, d, α, c), MSR(k, d, α, c)) = ||α−α′′||k. Therefore, we
have that val(M(k, d, α, c), MSR(k, d, α, c)) is the minimum value of ||α − α′||k
among all α′ with α′ ∈ η(α,Lk, d), α′ ∈ advk,d(α, c), and α′ is a τ -grid input.510

Finally, we notice that the above minimum value of ||α− α′||k is equivalent
to the optimal value required by Equation (4). �

Theorem 4. Assume that Player I has the objective FRΛ(k, d, α, c). Then

val(M(k, d, α, c), FRΛ(k, d, α, c)) = FFRΛ(τ, k, d, α, c) (25)

Proof: First of all, let Λ1 be the set of features and ∆1 be the set of atomic
input manipulations in achieving the optimal value of FFRΛ(τ, k, d, α, c). We can
construct a game play for (Λ1,∆1). More specifically, the game play leads from515

the initial state to a terminal state, by recursively selecting an unused input
manipulation and its associated feature and defining the corresponding moves
for Player I and Player II, respectively. Therefore, because the strategy profile
σ is optimal, we have val(M(k, d, α, c), FRΛ(k, d, α, c)) ≥ FFRΛ(τ, k, d, α, c).

On the other hand, we notice that the ordering of the applications of atomic520

input manipulations does not matter, because the reward of the terminal state
is the distance from its associated input to the original input. Therefore, be-
cause the game explores exactly all the possible applications of atomic input
manipulations and FFRΛ(τ, k, d, α, c) is the optimal value by its definition, by
Lemma 2 we have that val(M(k, d, α, c), FRΛ(k, d, α, c)) ≤ FFRΛ(τ, k, d, α, c). �525

Combining Theorems 3, 4 with Theorems 1, 2, we have the following corol-
lary, which states that the optimal game strategy is able to achieve the optimal
value for the maximum safe radius problem MSR(k, d, α, c) and the feature ro-
bustness problem FRΛ(k, d, α, c) with an error bound 1

2d(k, τ).

Corollary 1. The two-player turn-based game is able to solve the maximum530

safe radius problem of Equation (3) and the feature robustness problem of Equa-
tion (12) with an error bound 1

2d(k, τ), when the magnitude τ is such that

d(k, τ) ≤ 2g(α′,N(α′))
maxc′∈C,c′ 6=N(α′)(~N(α′)+~c′ )

for all τ -grid inputs α′ ∈ G(α, k, d).

Furthermore, we have the following lemma.

Lemma 8. For game M(k, d, α, c) with goal val(M(k, d, α, c), MSR(k, d, α, c)),535

deterministic and memoryless strategies suffice for Player I, and similarly for
M(k, d, α, c) with goal val(M(k, d, α, c), FRΛ(k, d, α, c)).

4.3. Complexity of the Problem

As a by-product of Lemma 8, the theoretical complexity of the problems is in
PTIME, with respect to the size of the game model M(k, d, α, c). However, the540
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size of the game is exponential with respect to the number of input dimensions.
More specifically, we have the following complexity result with respect to the
manipulation magnitude τ , the pre-specified range size d, and the number of
input dimensions n.

Theorem 5. Given a game M(k, d, α, c), the computational time needed for the545

value val(M(k, d, α, c), x), where x ∈ {MSR(k, d, α, c), FRΛ(k, d, α, c)}, is polyno-
mial with respect to d/τ and exponential with respect to n.

Proof: We can see that the size of the grid, measured as the number |G(α, k, d)|
of τ -grid inputs in η(α,Lk, d), is polynomial with respect to d/τ and exponential
with respect to n. From a τ -grid to any of its neighbouring τ -grids, each player550

needs to take a move. Therefore, the number of game states is doubled (i.e.,
polynomial) over |G(α, k, d)|. This yields PTIME complexity of solving the
game. �

Considering that the problem instances we work with usually have a large
input dimensionality, this complexity suggests that directly working with the555

explicit game models is impractical. If we consider an alternative representa-
tion of a game tree (i.e., an unfolded game model) of finite depth to express the
complexity, the number of nodes on the tree is O(nh) for h the length of the
longest finite path without a terminating state. While the precise size of O(nh)
is dependent on the problem (including the image α and the difficulty of craft-560

ing an adversarial example), it is roughly O(50000100) for the images used in
the ImageNet competition and O(100020) for smaller images such as GTSRB,
CIFAR10, and MNIST. This is beyond the capability of existing approaches
for exact or ε-approximate computation of probability (e.g., reduction to linear
programming [29], value iteration, and policy iteration, etc.) that are used in565

probabilistic verification.

5. Algorithms and Implementation

In this section we describe the implementation of the game-based approach
introduced in this paper. Figure 7 presents an overview of the reductions from
the original problems to the solution of a two-player game for the case of Lips-570

chitz networks, described in Section 3. Because exact computation of optimal
rewards is computationally hard, we approximate the rewards by means of al-
gorithms that unfold the game tree based on Monte Carlo tree search (MCTS),
Admissible A∗, and Alpha-Beta Pruning.

We take a principled approach to compute for each of the two game values,575

MSR(k, d, α, c) and FRΛ(k, d, α, c), an upper bound and a lower bound. Our algo-
rithms can gradually, but strictly, improve the bounds, so that they gradually
converge as the computation proceeds. For x ∈ {MSR(k, d, α, c), FRΛ(k, d, α, c)},
we write lx and ux for their lower and upper bound, respectively. The bounds
can be interesting in their own. For example, a lower bound lMSR(k,d,α,c) suggests580

absolute safety of an Lk norm ball with radius lMSR(k,d,α,c) from the original in-
put α, and an upper bound uMSR(k,d,α,c) suggests the existence of an adversarial
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Figure 7: A game-based approximate verification approach for the Maximum Safe Radius and
Feature Robustness problems.

example α′ such that ||α − α′||k = uMSR(k,d,α,c). On the other hand, given dis-
tance budget d′, uFRΛ(k,d,α,c) ≤ d′ indicates an unsafe distance from which the
existence of adversarial examples is not controllable.585

We consider two feature extraction approaches to generate feature parti-
tioning: a saliency-guided grey-box approach and a feature-guided black-box
approach. For the grey-box approach, adapted from [17], each dimension of an
input is evaluated on its sensitivity to the classification outcome of a DNN. For
the black-box procedure, Scale Invariant Feature Transform (SIFT) [18] is used590

to extract image features, based on which a partition is computed. SIFT is a
reasonable proxy for human perception, irrelevant to any image classifier, and
its extracted features have a set of invariant characteristics, such as scaling,
rotation, translation, and local geometric distortion. Readers are referred to
Section 6.1 for an experimental illustrations of these two approaches.595

Next we present the algorithms we employ to compute the upper and lower
bounds of the values of the games, as well as their convergence analysis.

5.1. Upper Bounds: Monte Carlo Tree Search (MCTS)

We present an approach based on Monte Carlo tree search (MCTS) [30] to
find an optimal strategy asymptotically. As a heuristic search algorithm for de-600

cision processes notably employed in game play, MCTS focuses on analysing the
most promising moves via expanding the search tree based on random sampling
of the search space. The algorithm, whose pseudo-code is presented in Algo-
rithm 1, gradually expands a partial game tree by sampling the strategy space
of the model M(k, d, α, c). With the upper confidence bound (UCB) [31] as605

the exploration-exploitation trade-off, MCTS has a theoretical guarantee that
it converges to the optimal solution when the game tree is fully explored. In
the following, we explain the components of the algorithm.

Concerning the data structure, we maintain the set of nodes on the partial
tree T (k, d, α, c). For every node o on the partial tree, we maintain three vari-610

ables, ro, no, eo, which represent the accumulated reward, the number of visits,
and the current best input with respect to the objective of the player, respec-
tively. We remark that eo is usually different from α(so), which is the input
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Algorithm 1 Monte Carlo Tree Search for DNN Verification

1: Input: A game model M(k, d, α, c), a termination condition tc
2: Output: val(M(k, d, α, c), FRΛ(k, d, α, c)) or val(M(k, d, α, c), MSR(k, d, α, c))
3: procedure MCTS(M(k, d, α, c), tc)
4: root← s0

5: While(¬tc):
6: leaf ← selection(root)
7: newnodes← expansion(M(k, d, α, c), leaf)
8: for node in newnodes:
9: v ← Simulation(M(k, d, α, c), node)

10: backPropogation(node, v)
11: return optimal value of the root node

associated with the game state so. Moreover, for every node o, we record its
parent node po and a set Co of its children nodes. The value val(M(k, d, α, c), x)615

of the game is approximated by ||eroot − α||k, which represents the distance
between the original input and the current best input maintained by the root
node of the tree.

The selection procedure starts from the root node, which contains the orig-
inal image, and conducts a tree traversal until reaching a leaf node (Line 6).
From a node, the next child node to be selected is dependent on an exploration-
exploitation balance, i.e., UCB [31]. More specifically, on a node o, for every
child node o′ ∈ Co, we let

v(o, o′) =
d ∗ no′
ro′

+

√
2 lnno
no′

(26)

be the weight of choosing o′ as the next node from o. Then the actual choice of
a next node is conducted by sampling over a probabilistic distribution Probo :
Co → [0, 1] such that

Probo(o
′) =

vo,o′∑
o′∈Co vo,o′

(27)

which is a normalisation over the weights of all children. On a leaf node o,
the expansion procedure returns a set of children nodes Co by applying the
transition relation in the game model M(k, d, α, c) (Line 7). These new nodes
are added into the partial tree T (k, d, α, c). This is the only way for the partial
tree to grow. After expanding the leaf node to have its children added to the
partial tree, we call the Simulation procedure on every child node (Line 9). A
simulation on a new node o is a play of the game from o until it terminates.
Players act randomly during the simulation. Every simulation terminates when
reaching a terminal node α′. Once a terminal node α′ is reached, a reward
||α − α′||k can be computed. This reward, together with the input α′, is then
backpropagated from the new child node through its ancestors until reaching
the root (Line 10). Every time a new reward v is backpropagated through a
node o, we update its associated reward ro into ro + v and increase its number
of visits into no + 1. The update of current best input eo depends on the player
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who owns the node. For the MSR(k, d, α, c) game, eo is made equivalent to eo′

such that
o′ = arg min

o1∈Co
||α− eo1

||k (28)

For the FRΛ(k, d, α, c) game, Player II also takes the above approach, i.e., Equa-
tion (28), to update eo, but for Player I we let eo be eo′′ such that

o′′ = arg max
o1∈Co

||α− eo1
||k (29)

We remark the game is not zero-sum for the maximum safe radius problem.

5.2. Lower Bounds: Admissible A* in a Cooperative Game620

To enable the computation of lower bounds with a guarantee, we consider
algorithms which can compute optimal strategy deterministically, without rely-
ing on the asymptotic convergence as MCTS does. In this section, we exploit
Admissible A* to achieve the lower bound of Player I reward when it is coopera-
tive, i.e., MSR(k, d, α, c), and in Section 5.3 we use Alpha-Beta Pruning to obtain625

the lower bound of Player I reward when it is competitive, i.e., FRΛ(k, d, α, c).
The A* algorithm gradually unfolds the game model into a tree. It maintains

a set of leaf nodes of the unfolded partial tree, computes an estimate for every
node in the set, and selects the node with the least estimated value to expand.
The estimation consists of two components, one for the exact cost up to now
and the other for the estimated cost of reaching the goal node. In our case, for
each game state s, we assign an estimated distance value

distances(s) = ||α(s)− α(s0)||k + heuristic(α(s)) (30)

where the first component ||α(s) − α(s0)||k represents the distance from the
initial state s0 to the current state s, and the second component heuristic(α(s))
denotes the estimated distance from the current state s to a terminal state.

An admissible heuristic function is to, given a current input, never overes-630

timate the cost of reaching the terminal game state. Therefore, to achieve the
lower bound, we need to take an admissible heuristic function. We remark that,
if the heuristic function is inadmissible (i.e., does not guarantee the underesti-
mation of the cost), then the A* algorithm cannot be used to compute the lower
bound, but instead can be used to compute the upper bound.635

We utilise the minimum confidence margin g(α′, N(α′)) defined in Defini-
tion 10 to obtain an admissible heuristic function.

Lemma 9. For any game state s such that α(s) = α′, the following heuristic
function is admissible:

heuristic(α′) =
g(α′, N(α′))

maxc′∈C,c′ 6=N(α′)(~N(α′) + ~c′)
(31)
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Algorithm 2 Admissible A* for DNN Verification

1: Input: A game model M(k, d, α, c), a termination condition tc
2: Output: val(M(k, d, α, c), MSR(k, d, α, c))
3: procedure AdmissibleA*(M(k, d, α, c), tc)
4: root← s0

5: While(¬tc):
6: features← Player I (root, feature extraction = grey/black)
7: for feature in features:
8: dimensions← Player II (feature)
9: newnodes← AtomicManipulation(dimensions)

10: for node in newnodes:
11: distances← DistanceEstimation(node)
12: root←MaximumSafeRadius(distances)
13: return ||α(root)− α(s0)||k

Proof: Consider the expression g(α′, N(α′)) − g(α′′, N(α′)), where α′ is the
current state and α′′ is the last state before a terminal state. Then we have
that

g(α′, N(α′))− g(α′′, N(α′)) ≤ g(α′, N(α′)) (32)

Now because

g(α′, N(α′))− g(α′′, N(α′))

= min
c∈C,c 6=N(α′)

{N(α′, N(α′))−N(α′, c)} − min
c′∈C,c′ 6=N(α′)

{N(α′′, N(α′))−N(α′′, c′)}

≤ max
c′∈C,c′ 6=N(α′)

{|N(α′, N(α′))−N(α′′, N(α′))|+ |N(α′′, c′)−N(α′, c′)|}

≤ max
c′∈C,c′ 6=N(α′)

(~N(α′) + ~c′)||α′ − α′′||k

(33)

we can let

max
c′∈C,c′ 6=N(α′)

(~N(α′) + ~j)||α′ − α′′||k ≤ g(α′, N(α′)) (34)

Thus, we define

heuristic(α′) =
g(α′, N(α′))

maxc′∈C,c′ 6=N(α′)(~N(α′) + ~c′)
(35)

which is sufficient to ensure that g(α′′, N(α′)) ≥ 0 for any α′′. That is, the
distance heuristic(α′) is a lower bound of reaching a misclassification. �

The Admissible A* algorithm is presented in Algorithm 2. In the following,640

we explain the main components of the algorithm. For each root node (initialised
as the original input), Player I chooses between mutually exclusive features
partitioned based on either the grey-box or black-box approach. Subsequently, in
each feature, Player II chooses among all the dimensions within each feature
(Line 4-8). On each of the dimensions, an AtomicManipulation is constructed645
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and applied. We add +τ and −τ to each dimension, and make sure that it
does not exceed the upper and lower bounds of the input dimension, e.g., 1 and
0 if the input is pre-processed (normalised). If exceeded, the bound value is
used instead. This procedure essentially places adversarial perturbations on the
image, and all manipulated images become the newnodes (Line 9). For each650

node in the newnodes, the DistanceEstimation function in Equation (30) is
used to compute a value, which is then added into the set distances. The set
distances maintains the estimated values for all leaf nodes (Line 10-11). Among
all the leaf nodes whose values are maintained in distances, we select the one
with the minimum MaximumSafeRadius as the new root (Line 12).655

As for the termination condition ¬tc, the algorithm gradually unfolds the
game tree with increasing tree depth td = 1, 2, .... Because all nodes on the same
level of the tree have the same distance to the original input α, every tree depth
td > 0 is associated with a distance d(td), such that d(td) is the distance of the
nodes at level td. For a given tree depth td, we have a termination condition660

tc(td) requiring that either

• all the tree nodes up to depth td have been explored, or

• the current root is an adversarial example.

For the latter, ||α(root) − α(s0)||k is returned and the algorithm converges.
For the former, we update d(td) as the current lower bound of the game value665

val(M(k, d, α, c), MSR(k, d, α, c)). Note that the termination condition guaran-
tees the closest adversarial example that corresponds to FMSR, which is within
distance 1

2d(k, τ) from the actual closest adversarial example corresponding to
MSR.

5.3. Lower Bounds: Alpha-Beta Pruning in a Competitive Game670

Alpha-Beta Pruning is an adversarial search algorithm, applied commonly
in two-player games, to minimise the possible cost in a maximum cost scenario.
In this paper, we apply Alpha-Beta Pruning to compute the lower bounds of
Player I reward in a competitive game, i.e., FRΛ(k, d, α, c).

Lemma 10. For any game state s ∈ S ∪ (S × Λ(α)), we let σI(s) ∈ S × Λ(α)
be the next state of s ∈ S after Player I taking an action σI, and σII(s) ∈ S
be the next state of s ∈ S × Λ(α) after Player II taking an action σII. If using
alpha(s) (initialised as −∞) to denote Player I current maximum reward on
state s and beta(s) (initialised as +∞) to denote Player II current minimum
reward on state s, and let

alpha(s) = max
σI

beta(σI(s)) if s ∈ S (36)

beta(s) = min
σII

alpha(σII(s)) if s ∈ S × Λ(α) (37)

then alpha(s0) is a lower bound of the value val(M(k, d, α, c), FRΛ(k, d, α, c)).675
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Algorithm 3 Alpha-Beta Pruning for DNN Verification

1: Input: A game model M(k, d, α, c), a termination condition tc
2: Output: val(M(k, d, α, c), FRΛ(k, d, α, c))
3: procedure AlphaBeta(M(k, d, α, c), tc)
4: root← s0

5: root.alpha← −∞
6: features← Player I (root, feature extraction = grey/black)
7: for feature in features:
8: feature.beta← +∞
9: dimensions← Player II (feature)

10: newnodes← AtomicManipulation(dimensions)
11: for node in newnodes:
12: if tc: return ||α(node)− α(s0)||k
13: else: node.alpha←AlphaBeta(node, tc)
14: feature.beta← min(newnodes.alpha)
15: root.alpha← max(features.beta)
16: return root.alpha

Note that, for a game state s, whenever alpha(s) ≥ beta(s′) for some s′ =
σI(s) is satisfied, Player I does not need to consider the remaining strategies of
Player II on state s′, as such will not affect the final result. This is the pruning of
the game tree. The Alpha-Beta Pruning algorithm is presented in Algorithm 3.
Many components of the algorithm are similar to those of Admissible A*, except680

that each node maintains two values: alpha value and beta value. For every
node, its alpha value is initialised as −∞ and its beta value is initialised as
+∞. For each feature, its beta value is the minimum of all the alpha values
of the perturbed inputs whose manipulated dimensions are within this feature
(Line 14); for root in each recursion, the alpha value is the maximum of all the685

beta values of the features (Line 15). Intuitively, beta maintains the MSR of
each feature, while alpha maintains the FRΛ of an input.

5.4. Anytime Convergence

In this section, we show the convergence of our approach, i.e., that both
bounds are monotonically improved with respect to the optimal values.690

Upper Bounds: 1/ε-Convergence and Practical Termination Condition (tc). Be-
cause we are working with a finite game, MCTS is guaranteed to converge when
the game tree is fully expanded, but the worst case convergence time may be
prohibitive. In practice, we can work with 1/ε-convergence by letting the pro-
gram terminate when the current best bound has not been improved for e.g.,695

d1/εe iterations, where ε > 0 is a small real number. We can also impose
time constraint tc, and ask the program to return once the elapsed time of the
computation has exceeded tc.

In the following, we show that the intermediate results from Algorithm 1 can
be the upper bounds of the optimal values, and the algorithm is continuously700

improving the upper bounds, until the optimal values are reached.
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Lemma 11. Let ||α′ − eroot||k be the returned result from Algorithm 1. For an
FMSR(k, d, α, c) game, we have that

||α′ − eroot||k ≥ val(M(k, d, α, c), MSR(k, d, α, c)). (38)

Moreover, the discrepancy between ||α′−eroot||k and val(M(k, d, α, c), MSR(k, d, α, c))
improves monotonically as the computation proceeds.

Proof: Assume that we have a partial tree T (k, d, α, c). We prove by induction
on the structure of the tree. As the base case, for each leaf node o we have that
its best input eo is such that

||α− eo||k ≥ val(M(k, d, α, c), MSR(k, d, α, c)) (39)

because a random simulation can always return a current best, which is an upper
bound to the global optimal value. The equivalence holds when the simulation705

found an adversarial example with minimum distance.
Now, for every internal node o, by Equation (28) we have that

∃o1 ∈ Co : ||α− eo||k ≥ ||α− eo1 ||k (40)

which, together with Equation (39) and induction hypothesis, implies that ||α−
eo||k ≥ val(M(k, d, α, c), MSR(k, d, α, c)). Equation (38) holds since the root
node is also an internal node.

The monotonic improvement can be seen from Equation (28), namely that,710

when, and only when, the discrepancy for the leaf node is improved after a new
round of random simulation, can the discrepancy for the root node be improved.
Otherwise, it remains the same. �

Similarly, we have the following lemma for the feature robustness game.

Lemma 12. Let ||α′ − eroot||k be the returned result from Algorithm 1. For an
FFRΛ(k, d, α, c) game, we have that

||α′ − eroot||k ≥ val(M(k, d, α, c), FRΛ(k, d, α, c)) (41)

Proof: The proof is similar to that of Lemma 11, except that, according to715

Equation (29), for the nodes of Player I (including the root node) to reduce the
discrepancy, i.e., ||α − eo||k − val(M(k, d, α, c), FRΛ(k, d, α, c)), it requires that
all its children nodes reduce their discrepancy. �

Lower Bounds: Gradual Expansion of the Game Tree. The monotonicity of the
lower bounds is achieved by gradually increasing the tree depth td. Because,720

in both algorithms, the termination conditions are the full exploration of the
partial trees up to the depth td, it is straightforward that the results returned
by the algorithms are either the lower bounds or the converged results.

6. Experimental Results

This section presents experimental results for the proposed game-based ap-725

proach for safety verification of deep neural networks, focused on demonstrating
convergence and comparison with state-of-the art techniques.
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Figure 8: Examples of three feature extraction methods applied on the ImageNet (left) and
MNIST (right) datasets, respectively. The top row: image segmentation via the saliency
map generation method introduced in [17]. Middle row: feature extraction using the SIFT
approach [18]. Bottom row: image partition using K-means clustering and superpixels [32].

6.1. Feature-Based Partitioning

Our game-based approach, where Player I determines features and Player II
selects pixels or dimensions within the selected feature, requires an appropriate730

feature partitioning method into disjoint sets of dimensions. In Figure 8 we
illustrate three distinct feature extraction procedures on a colour image from
the ImageNet dataset and a grey-scale image from the MNIST dataset. Though
we work with image classifier networks, our approach is flexible and can be
adapted to a range of feature partitioning methods.735

The first technique for image segmentation is based on the saliency map gen-
erated from an image classifier such as a DNN. As shown Figure 8 (top row),
the heat-map is produced by quantifying how sensitive each pixel is to the clas-
sification outcome of the DNN. By ranking these sensitivities, we separate the
pixels into a few disjoint sets. The second feature extraction approach, shown740

in Figure 8 (middle row), is independent of any image classifier, but instead
focuses on abstracting the invariant properties directly from the image. Here
we show segmentation results from the SIFT method [18], which is invariant
to image translation, scaling, rotation, and local geometric distortion. More
details on how to adapt SIFT for safety verification on DNNs can be found in745

[23]. The third feature extraction method is based on superpixel representation,
a dimensionality reduction technique widely applied in various computer vision
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Figure 9: Convergence of maximum safe radius in a cooperative game with grey-box feature
extraction of a MNIST image originally classified as “4”. Left: The convergence trends of
the upper bound from MCTS and the lower bound from Admissible A* for the MSR problem.
Right: The generated adversarial images while searching for the upper bound via MCTS, and
lower boundary safe images while searching for the lower bound via Admissible A*.

applications. Figure 8 (bottom row) demonstrates an example of how to gener-
ate superpixels (i.e., the pixel clusters marked by the green grids) using colour
features and K-means clustering [32].750

6.2. Lipschitz Constant Estimation

Our approach assumes knowledge of a (not necessarily tight) Lipschitz con-
stant. Several techniques can be used to estimate such a constant, including
FastLin/FastLip [33], Crown [34] and DeepGO [16]. For more information see
the Related Work section.755

The size of the Lipschitz constant is inversely proportional to the number of
grid points and error bound, and therefore affects computational performance.
We remark that, due to the high non-linearity and high-dimensionality of mod-
ern DNNs, it is non-trivial to conduct verification even if the Lipschitz constant
is known.760

6.3. Convergence Analysis of the Upper and Lower Bounds

We demonstrate convergence of the bound computation for the maximum
safe radius and feature robustness problems, evaluated on standard benchmark
datasets MNIST, CIFAR10, and GTSRB. The architectures of the correspond-
ing trained neural networks as well as their accuracy rates can be found in765

AppendixA.1.

Convergence of MSR in a Cooperative Game. First, we illustrate convergence of
MSR in a cooperative game on the MNIST and GTSRB datasets. For the MNIST
image (index 67) in Figure 9, the black line denotes the descending trend of the
upper bound uMSR, whereas the red line indicates the ascending trend of the lower770

bound lMSR. Intuitively, after a few iterations, the upper bound (i.e., minimum
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Figure 10: Convergence of maximum safe radius in a cooperative game with grey-box feature
extraction of a GTSRB image originally classified as “keep right”. Left: The convergence
trends of the upper bound from MCTS and the lower bound from Admissible A* for the MSR

problem. Right: The generated adversarial images while searching for the upper bound via
MCTS, and lower boundary safe images while searching for the lower bound via Admissible
A*.

distance to an adversarial example) is 2.84 wrt the L2 metric, and the absolute
safety (i.e., lower bound) is within radius 0.012 from the original image. The
right-hand side of Figure 9 includes images produced by intermediate iterations,
with adversarial images generated by MCTS shown in the two top rows, and safe775

images computed by Admissible A* in the bottom rows. Similarly, Figure 10
displays the converging upper and lower bounds of MSR in a cooperative game
on a GTSRB image (index 19).

As for the computation time, each MCTS iteration updates the upper bound
uMSR and typically takes minutes; each Admissible A* iteration further expands780

the game tree and updates the lower bound lMSR whenever applicable. The
running times for the iterations of the Admissible A* vary: initially it takes
minutes but this can increase to hours when the tree is larger.

Convergence of FRΛ in a Competitive Game. Next we demonstrate the conver-
gence of FRΛ in a competitive game on the CIFAR10 and GTSRB datasets. Each785

iteration of MCTS or Alpha-Beta Pruning updates their respective bound with
respect to a certain feature. Note that, in each MCTS iteration, upper bounds
uMSR of all the features are improved and therefore the maximum among them,
i.e., uFRΛ

of the image, is updated, whereas Alpha-Beta Pruning calculates lMSR
of a feature in each iteration, and then compares and updates lFRΛ with the790

computation progressing until all the features are processed.
For the CIFAR10 image in Figure 12, the green line denotes the upper bound

uFRΛ
and the red line denotes the lower bound lFRΛ

. The “ship” image is parti-
tioned into 10 features (see Figure 11a) utilising the grey-box extraction method.
We observe that this saliency-guided image segmentation procedure captures the795

features well, as in Figure 11a the most influential features (in blue) resemble the

32



(a) CIFAR10 “ship” image. (b) GTSRB “speed limit 70” image.

Figure 11: Illustration of the 10 features using the grey-box feature extraction procedure:
cells with the same colour indicate the same feature, and the number in each cell represents
the featureID. That is, Feature1 in deep blue has the most salient impact, whereas Feature10
in deep red is the least influential. (a) Features of the CIFAR10 “ship” image (32 × 32) in
Figure 12. (b) Features of the GTSRB “speed limit 70” image (48 × 48) in Figure 13.

silhouette of the “ship”. After 3 iterations, the algorithm indicates that, at L2

distance of more than 1.75, all features are fragile, and if the L2 distance is 0.48
there exists at least one robust feature. The right-hand side of Figure 12 shows
several intermediate images produced, along with the converging uFRΛ

and lFRΛ
.800

The top row exhibits the original image as well as the manipulated images with
decreasing uFR. For instance, after the 1st iteration, MCTS finds an adversary
perturbed in Feature4 with L2 distance 2.38, which means by far the most robust
feature of this “ship” image is Feature4. (FeatureID is retrieved from the number
in each cell of the image segmentation in Figure 11a.) When the computation805

proceeds, the 2nd iteration updates uFRΛ
from 2.38 to 1.94, and explores the

current most robust Feature8, which is again replaced by Feature9 after the 3rd
iteration with lower distance 1.75. The bottom row displays the original image
together with perturbations in each feature while lFRΛ

is increasing. It can be
seen that Feature1, Feature2, and Feature3 need only one dimension change to810

cause image misclassification, and the lower bound Feature4 increases from 0.42
to 0.56 after three iterations.

For the feature robustness (FRΛ) problem, i.e., when Player I and Player II
are competing against each other, apart from the previous CIFAR10 case where
Player II wins the game by generating an adversarial example with atomic815

manipulations in each feature, there is a chance that Player I wins, i.e., at least
one robust feature exists. Figure 13 illustrates this scenario on the GTSRB
dataset. Here Player I defeats Player II through finding at least one robust
feature by MCTS, and thus the convergence trend of the upper bound uFRΛ is
not shown. As for the lower bound lFRΛ , Alpha-Beta Pruning enables Player II820

to manipulate a single pixel in Feature1 - Feature5 (see Figure 11b) so that
adversarial examples are found. For instance, with L1 distance above 0.79,
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Figure 12: Convergence of feature robustness in a competitive game with grey-box feature
extraction of a CIFAR10 image originally classified as “ship”. Left: The convergence trends
of the upper bound from MCTS and the lower bound from Alpha-Beta Pruning for the FRΛ

problem. Right: The generated adversarial images while computing the upper bounds via
MCTS, and lower bound images while computing the lower bounds via Alpha-Beta Pruning.

Figure 13: Convergence of feature robustness in a competitive game with the grey-box feature
extraction of a GTSRB image originally classified as “speed limit 70”. Left: The conver-
gence trends of the lower bound from Alpha-Beta Pruning for the FRΛ problem. Right: The
generated lower bound images while computing the lower bounds via Alpha-Beta Pruning.

Feature1 turns out to be fragile.
Here, each iteration of MCTS or Alpha-Beta Pruning is dependent on the size

of feature partitions – for smaller partitions it takes seconds to minutes, whilst825

for larger partitions it can take hours. The running times are also dependent
on the norm ball radius d. If the radius d is small, the computation can always
terminate in minutes.

Scalability wrt Number of Input Dimensions. We now investigate how the in-
crease in the number of dimensions affects the convergence of the lower and830

upper bounds. From the complexity analysis of the problems in Section 4.3,
we know that the theoretical complexity is in PTIME with respect to the size
of the game model, which is exponential with respect to the number of input
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Figure 14: Analysis of convergence of upper and lower bounds of the maximum safe radius as
the number of dimensions increases for the MNIST image in Figure 9, based on the L2 norm.
The increase in the number of features (2 to 10) corresponds to an increase in the number the
input dimensions.

dimensions.
We utilise the example in Figure 9, where the convergence of the upper835

bound uMSR and the lower bound lMSR in a cooperative game is exhibited on all
the dimensions (pixels) of the MNIST image (index 67). We partition the image
into 10 disjoint features using the grey-box extraction method, and gradually
manipulate features, starting from those with fewer dimensions, to observe how
the corresponding bound values uMSR, lMSR are affected if we fix a time budget.840

To ensure fair comparison, we run the same number of expansions of the game
tree, i.e., 10 iterations of MCTS, and 1000 iterations of Admissible A*, and plot
the bound values uMSR, lMSR thus obtained. Figure 14 shows the widening upper
and lower bounds based on the L2 norm with respect to 2 to 10 features of the
image. It is straightforward to see that the conclusion also holds for the feature845

robustness problem.

6.4. Comparison with Existing Approaches for Generating Adversarial Exam-
ples

When the game is cooperative, i.e., for the maximum safe radius problem,
we can have adversarial examples as by-products. In this regard, both MCTS850

and A* algorithm can be applied to generate adversarial examples. Note that,
for the latter, we can take Inadmissible A* (i.e., the heuristic function can be
inadmissible), as the goal is not to ensure the lower bound but to find adversarial
examples. By proportionally enlarging the heuristic distance heuristic(α′) with
a constant, we ask the algorithm to explore those tree nodes where an adversarial855

example is more likely to be found. Figure 15 displays some adversarial MNIST,
CIFAR10 and GTSRB images generated by DeepGame after manipulating a few
pixels. More examples can be found in Figures A.17, A.18, and A.19 in the
Appendix.
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Figure 15: Examples of adversarial MNIST, CIFAR10 and GTSRB images with slight per-
turbations based on the L2-norm. Top: “9” misclassified into “8”; “1” misclassified into “3”.
Middle: “frog” misclassified into “dog”; “dog” misclassified into “cat”. Bottom: “speed limit
80” misclassified into “speed limit 60”; “danger” misclassified into “pedestrian crossing”.

We compare our tool DeepGame with several state-of-the-art approaches to860

search for adversarial examples: CW [11], L0-TRE [17], DLV [13], SafeCV [23],
and JSMA [10]. More specifically, we train neural networks on two benchmark
datasets, MNIST and CIFAR10, and calculate the distance between the ad-
versarial image and the original image based on the L0-norm. The original
images, preprocessed to be within the bound [0, 1], are the first 1000 images865

of each testing set. Apart from a ten-minute time constraint, we evaluate on
correctly classified images and their corresponding adversarial examples. This
is because some tools regard misclassified images as adversarial examples and
record zero-value distance while other tools do not, which would result in unfair
comparison. The hardware environment is a Linux server with NVIDIA GeForce870

GTX TITAN Black GPUs, and the operating system is Ubuntu 14.04.3 LTS.
Table 1 demonstrates the statistics. Figure A.17 and Figure A.18 in the Ap-

pendix include adversarial examples found by these tools. Model architectures,
descriptions of the datasets and baseline methods, together with the parameter
settings for these tools, can be found in AppendixA.875

6.5. Evaluating Safety-Critical Networks

We explore the possibility of applying our game-based approach to support
real-time decision making and testing, for which the algorithm needs to be highly
efficient, requiring only seconds to execute a task.

We apply our method to a network used for classifying traffic light images880

collected from dashboard cameras. The Nexar traffic light challenge [22] made
over eighteen thousand dashboard camera images publicly available. Each image

3Whilst DeepGame works on channel-level dimension of an image, in order to align with
some tools that attack at pixel level the statistics are all based on the number of different
pixels.
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Table 1: Comparison between our tool DeepGame and several other tools on search for ad-
versarial examples performed on the MNIST and CIFAR10 datasets, based on the L0-norm.
Here DeepGame deploys the grey-box feature extraction method, and Inadmissible A* algo-
rithm. We set a ten-minute time constraint and evaluate on correctly classified images and
the produced adversarial examples.

L0

MNIST CIFAR103

Distance Time(s) Distance Time(s)

mean std mean std mean std mean std

DeepGame 6.11 2.48 4.06 1.62 2.86 1.97 5.12 3.62

CW 7.07 4.91 17.06 1.80 3.52 2.67 15.61 5.84

L0-TRE 10.85 6.15 0.17 0.06 2.62 2.55 0.25 0.05

DLV 13.02 5.34 180.79 64.01 3.52 2.23 157.72 21.09

SafeCV 27.96 17.77 12.37 7.71 9.19 9.42 26.31 78.38

JSMA 33.86 22.07 3.16 2.62 19.61 20.94 0.79 1.15

is labelled either green, if the traffic light appearing in the image is green, or
red, if the traffic light appearing in the image is red, or null if there is no
traffic light appearing in the image. We test the winner of the challenge which885

scored an accuracy above 90% [35]. Despite each input being 37632-dimensional
(112 × 112 × 3), our algorithm reports that the manipulation of an average of
4.85 dimensions changes the network classification. We illustrate the results
of our analysis of the network in Figure 16. Although the images are easy for
humans to classify, only one pixel change causes the network to make potentially890

disastrous decisions, particularly for the case of red light misclassified as green.
To explore this particular situation in greater depth, we use a targeted safety
MCTS procedure on the same 1000 images, aiming to manipulate images into
green. We do not consider images which are already classified as green. Of the
remaining 500 images, our algorithm is able to change all image classifications895

to green with worryingly low distances, namely an average L0 of 3.23.

7. Related Work

In this section we review works related to safety and robustness verification
for neural networks, Lipschitz constant estimation and feature extraction.

7.1. White-box Heuristic Approaches900

In [8], Szegedy et. al. find a targeted adversarial example by running the
L-BFGS algorithm, which minimises the L2 distance between the images while
maintaining the misclassification. Fast Gradient Sign Method (FGSM) [9], a
refinement of L-BFGS, takes as inputs the parameters θ of the model, the input
α to the model, and the target label y, and computes a linearized version of the905

cost function with respect to θ to obtain a manipulation direction. After the
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Figure 16: Adversarial examples generated on Nexar data demonstrate a lack of robustness.
(a) Green light classified as red with confidence 56% after one pixel change. (b) Green light
classified as red with confidence 76% after one pixel change. (c) Red light classified as green
with 90% confidence after one pixel change.

manipulation direction is fixed, a small constant value τ is taken as the mag-
nitude of the manipulation. Carlini and Wagner [11] adapt the optimisation
problem proposed in [8] to obtain a set of optimisation problems for L0, L2,
and L∞ attacks. They claim better performance than FGSM and Jacobian-910

based Saliency Map Attack (JSMA) with their L2 attack, in which for every
pixel xi a new real-valued variable wi is introduced and then the optimisation is
conducted by letting xi move along the gradient direction of tanh(wi). Instead
of optimisation, JSMA [10] uses a loss function to create a “saliency map” of the
image, which indicates the importance of each pixel on the network’s decision. A915

greedy algorithm is used to gradually modify the most important pixels. In [36],
an iterative application of an optimisation approach (such as [8]) is conducted
on a set of images one by one to get an accumulated manipulation, which is ex-
pected to make a number of inputs misclassified. [37] replaces the softmax layer
in a deep network with a multiclass SVM and then finds adversarial examples920

by performing a gradient computation.

7.2. White-box Verification Approaches

Compared to heuristic search for adversarial examples, verification approaches
aim to provide guarantees on the safety of DNNs. An early verification ap-
proach [38] encodes the entire network as a set of constraints. The constraints925

can then be solved with a SAT solver. [12] improves on [38] by handling the
ReLU activation functions. The Simplex method for linear programming is
extended to work with the piecewise linear ReLU functions that cannot be ex-
pressed using linear programming. The approach can scale up to networks with
300 ReLU nodes. In recent work [39] the input vector space is partitioned using930

clustering and then the method of [12] is used to check the individual partitions.
DLV [13] uses multi-path search and layer-by-layer refinement to exhaustively
explore a finite region of the vector spaces associated with the input layer or
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the hidden layers, and scales to work with state-of-the-art networks such as
VGG16. [16] shows that most known layers of DNNs are Lipschitz continuous935

and presents a verification approach based on global optimisation. DiffAI [40] is
a method for training robust neural networks based on abstract interpretation,
but is unable to calculate the maximum safe radius MSR.

7.3. Lipschitz Continuity

The idea of using Lipschitz continuity to provide guarantees on output be-940

haviour of neural networks has been known for some time. Early work [14, 15]
focused on small neural networks (few neurons and layers) that only contain
differentiable activation functions such as the sigmoid. These works are mainly
concerned with the computation of a Lipschitz constant based on strong assump-
tions that the network has a number of non-zero derivatives and a finite order945

Taylor series expansion can be found at each vertex. In contrast, our approach
assumes knowledge of a (not necessarily tight) Lipschtz constant and focuses on
developing verification algorithms for realistically-sized modern networks that
use ReLU activation functions, which are non-differentiable.

7.4. Lipschitz Constant Estimation950

There has been a resurgence of interest in Lipschitz constant estimation
for neural networks. The approaches of FastLin/FastLip [33] and Crown [34]
aim to estimate the Lipschitz constant by considering the analytical form of
the DNN layers. They are able to compute the bounds, but, in contrast to
our approach, which gradually improves the bounds, are not able to improve955

them. Moreover, their algorithms require access to complete information (e.g.,
architecture, parameters, etc) about the DNN, while our approach is mainly
“black-box” with a (not necessarily tight) Lipschitz constant. We remark that
a loose Lipschitz constant can be computed quite easily, noting that a tighter
constant can improve computational performance.960

Although estimation of the Lipschitz constant has not been the focus of this
paper, knowledge of the Lipschitz constant is important in safety verification
of DNNs (i.e., estimation of MSR). The recent tool DeepGO [16] develops a
dynamic Lipschitz constant estimation method for DNNs by taking advantage
of advances in Lipschitzian optimisation, through which we can construct both965

lower and upper bounds for MSR with the guarantee of anytime convergence.

7.5. Maximum Safe Radius Computation

Recent approaches to verification for neural networks can also be used to
compute bounds on the maximum safety radius directly for, say, L∞, by grad-
ually enlarging the region. These works can be classified into two categories.970

The first concentrates on estimation of the lower bound of MSR using various
techniques. For example, FastLin/FastLip [33] and Crown [34] employ layer-by-
layer analysis to obtain a tight lower bound by linearly bounding the ReLU (i.e.,
FastLin/FastLip) or non-linear activation functions (i.e., Crown). Kolter&Wong
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[41, 42], on the other hand, calculates the lower bound of MSR by taking ad-975

vantage of robust optimisation. The second category aims to adapt abstract
interpretation techniques to prove safety. For example, DeepZ and DeepPoly
[43] (also including AI2) adapt abstract interpretation to perform layer-by-layer
analysis to over-approximate the outputs for a set of inputs, so that some safety
properties can be verified, but are unable to prove absence of safety. A funda-980

mental advantage of DeepGame compared to those works is that it can perform
anytime estimation of MSR by improving both lower and upper bounds mono-
tonically, even with a loose Lipschitz constant. Moreover, DeepGame provides
a theoretical guarantee that it can reach the exact value of MSR.

Maximal radius computation for DNNs has been addressed directly in [44,985

45], where the entire DNN is encoded as a set of constraints, which are then
solved by searching for valid solutions to the corresponding satisfiability or op-
timality problem. The approach of [44] searches for a bound on the maximal
safety radius by utilising Reluplex and performing binary search, and [45] in-
stead considers an MILP-based approach. In contrast, our approach utilises a990

Lipschitz constant to perform search over the input space. Further, our ap-
proach only needs to know the Lipschitz constant, whereas [44, 45] need access
to the DNN architecture and the trained parameters.

7.6. Black-box Algorithms

The methods in [46] evaluate a network by generating a synthetic data set,995

training a surrogate model, and then applying white box detection techniques
on the model. [47] randomly searches the vector space around the input image
for changes which will cause a misclassification. It shows that in some instances
this method is efficient and able to indicate where salient areas of the image
exist. [17] and this paper are black-box, except that grey-box feature extraction1000

techniques are also considered in this paper to partition the input dimensions.
L0-TRE [17] quantifies the global robustness of a DNN, where global robustness
is the expectation of the maximum safe radius over a testing dataset, through
iteratively generating lower and upper bounds on the network’s robustness.

7.7. Feature Extraction Techniques1005

Feature extraction is an active area of research in machine learning, where
the training data are usually sampled from real world problems and high dimen-
sional. Feature extraction techniques reduce the dimensionality of the training
data by using a set of features to represent an input sample. In this paper,
feature extraction is used not for reducing dimensionality, but rather to par-1010

tition the input dimensions into a small set of features. Feature extraction
methods can be classified into those that are specific to the problem, such as
the SIFT [18], SURF [48] and superpixels [32], which are specific to the object
detection, and general methods, such as the techniques for computing for every
input dimension its significance to the output [28]. The significance values can1015

be visualised as a saliency map, as done in e.g., [10, 17], but can also be utilised
as in this paper to partition the input dimensions.
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8. Conclusion

In this work, we present a two-player turn-based game framework for the
verification of deep neural networks with provable guarantees. We tackle two1020

problems, maximum safe radius and feature robustness, which essentially cor-
respond to the absolute (pixel-level) and relative (feature-level) safety of a net-
work against adversarial manipulations. Our framework can deploy various
feature extraction or image segmentation approaches, including the saliency-
guided grey-box mechanism, and the feature-guided black-box procedure. We1025

develop a software tool DeepGame, and demonstrate its applicability on state-of-
the-art networks and dataset benchmarks. Our experiments exhibit converging
upper and lower bounds, and are competitive compared to existing approaches
to search for adversarial examples. Moreover, our framework can be utilised
to evaluate robustness of networks in safety-critical applications such as traffic1030

sign recognition in self-driving cars.
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AppendixA. Experimental Setting for Comparison between DeepGame
with Existing Works

AppendixA.1. Model Architectures

Table A.2: Architectures of the MNIST, CIFAR-10, and GTSRB models.

Layer Type MNIST CIFAR-10/GTSRB
Convolution + ReLU 3 × 3 × 32 3 × 3 × 64
Convolution + ReLU 3 × 3 × 32 3 × 3 × 64
Max Pooling 2 × 2 2 × 2
Convolution + ReLU 3 × 3 × 64 3 × 3 × 128
Convolution + ReLU 3 × 3 × 64 3 × 3 × 128
Max Pooling 2 × 2 2 × 2
Flatten
Fully Connected + ReLU 200 256
Dropout 0.5 0.5
Fully Connected + ReLU 200 256
Fully Connected + Softmax 10 10

• Training Accuracy:1180

– MNIST (99.99% on 60,000 images)

– CIFAR-10 (99.83% on 50,000 images)

• Testing Accuracy:

– MNIST (99.36% on 10,000 images)

– CIFAR-10 (78.30% on 10,000 images)1185

AppendixA.2. Datasets

We perform the comparison on two datasets: MNIST and CIFAR-10. They
are standard benchmark datasets for adversarial attack of DNNs, and are widely
adopted by all these baseline methods.

• MNIST dataset4: an image dataset of handwritten digits, which contains1190

a training set of 60,000 examples and a test set of 10,000 examples. The
digits have been size-normalised and centred in a fixed-size image.

• CIFAR-10 dataset5: an image dataset of 10 mutually exclusive classes,
i.e., ‘airplane’, ‘automobile’, ‘bird’, ‘cat’, ‘deer’, ‘dog’, ‘frog’, ‘horse’, ‘ship’,
‘truck’. It consists of 60,000 32×32 colour images, with 50,000 for training,1195

and 10,000 for testing.

4http://yann.lecun.com/exdb/mnist/
5https://www.cs.toronto.edu/˜kriz/cifar.html
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AppendixA.3. Baseline Methods

We choose a few well-established baseline methods that can perform state-
of-the-art L0 adversarial attacks. Their codes are all available on GitHub.

• CW6: a state-of-the-art adversarial attacking method, which models the1200

attacking problem as an unconstrained optimization problem that is solv-
able by Adam optimizer in TensorFlow.

• L0-TRE7: a tensor-based robustness evaluation tool for the L0-norm, and
its competitive L0 attack function is compared in this work.

• DLV8: an untargeted DNN verification method based on exhaustive search1205

and MCTS.

• SafeCV9: a feature-guided safety verification work based on SIFT features,
game theory, and MCTS.

• JSMA10: a targeted attack based on L0-norm, so we perform this attack
in a sense that the adversarial examples are misclassified into all classes1210

except the correct one.

AppendixA.4. Parameter Setting

MNIST and CIFAR-10 use the same settings, unless separately specified.

• DeepGame

– gameType = ‘cooperative’1215

– bound = ‘ub’

– algorithm = ‘A*’

– eta = (‘L0’, 30)

– tau = 1

• CW:1220

– targeted = False

– learning rate = 0.1

– max iteration = 100

• L0-TRE:

– EPSILON = 0.51225

– L0 UPPER BOUND = 100

6https://github.com/carlini/nn_robust_attacks
7https://github.com/TrustAI/L0-TRE
8https://github.com/TrustAI/DLV
9https://github.com/matthewwicker/SafeCV

10https://github.com/bethgelab/foolbox
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• DLV:

– mcts mode = “sift twoPlayer”

– startLayer, maxLayer = -1

– numOfFeatures = 1501230

– featureDims = 1

– MCTS level maximal time = 30

– MCTS all maximal time = 120

– MCTS multi samples = 5 (MNIST), 3 (CIFAR-10)

• SafeCV:1235

– MANIP = max manip (MNIST), white manipulation (CIFAR-10)

– VISIT CONSTANT = 1

– backtracking constant = 1

– simulation cutoff = 75 (MNIST), 100 (CIFAR10)

– small image = True1240

• JSMA:

– bounds = (0, 1)

– predicts = ‘logits’

AppendixA.5. Platforms

• Hardware Platform:1245

– NVIDIA GeForce GTX TITAN Black

– Intel(R) Core(TM) i5-4690S CPU @ 3.20GHz × 4

• Software Platform:

– Ubuntu 14.04.3 LTS

– Fedora 26 (64-bit)1250

– Anaconda, PyCharm

AppendixA.6. Adversarial Images
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Figure A.17: Comparison of the generated adversarial MNIST images (see Section 6.4). From
left to right: original image, DeepGame (this paper), CW, L0-TRE, DLV, SafeCV, and JSMA.
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Figure A.18: Comparison of the generated adversarial CIFAR10 images (see Section 6.4. From
left to right: original image, DeepGame (this paper), CW, L0-TRE, DLV, SafeCV, and JSMA.
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Figure A.19: Adversarial GTSRB images generated by our tool DeepGame.
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